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We apply a method (“eLCQ”) to find the asymptotic spectrum of a Hamiltonian from its symmetries to
two-dimensional adjoint QCD. Streamlining the approach, we construct a complete set of asymptotic
eigenfunctions in all parton sectors and use it in a basis-function approach to find the spectrum of the full
theory. We are able to reproduce previous results including the degeneracy of fermionic and bosonic masses
at the supersymmetric point, and to understand the properties of the lowest states in the massless theory.
The approach taken here is continuous at fixed parton number, and therefore complementary to standard
formulations, e.g. discretized light-cone quantization (DLCQ). Despite its limitation to rather small parton
numbers, it can be used to test and validate conclusions of other frameworks in an independent way.
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I. INTRODUCTION

In the last years there has been renewed interest in two-
dimensional adjoint quantum chromodynamics (QCD2A),
as new methods and computational resources have
become available [1–4]. The theory has been generalized
and thereby become interesting for other subfields [5].
It is simpler in the large N limit, but forays into finite N
calculation [6] have recently been put on a solid founda-
tion [4]. The theory of massive adjoint fermions is con-
fining and possesses a supersymmetric point at m2

adj ¼
g2N=π [7]. Its features are well reproduced in numerical
studies starting with [8,9]. The massless theory can be
bosonized, i.e., cast into a theory of currents obeying a Kac-
Moody algebra [10]. For several reasons it is the more
interesting and challenging version of QCD2A. For in-
stance, pair production is likely important, and thus sectors
of different parton1 number are coupled. Lately, there have
been discussions [2,3,11] about the conjectured screening-
confinement transition [12] as the fermion mass vanishes,
madj → 0. To extract the true single-particle content of the
theory has been difficult because single-particle states
cannot be identified with single-trace states [13]. As was
shown numerically starting with [14], at least some of the
single-trace eigenstates of QCD2 must be categorized as
multiparticle states. This was corroborated in [15] by the
fact that in the bosonized theory exact multiparticle states,

i.e., states with the same mass as a state of noninteracting
partons, are projected out.
To see how the present approach can better our under-

standing of QCD2A, it is helpful to review some of the
literature on the subject in more detail. For starters, QCD2A
is a 1þ 1 dimensional SUðNÞ gauge theory coupled to a
(Majorana) fermion in the adjoint representation. It is a
modification of the ’t Hooft model [16], where the SUðNÞ
gauge fields are coupled to a fundamental Dirac fermion.
Using a 1=N expansion, ’t Hooft was able to solve the
theory in the largeN limit, and its spectrum became the first
to exhibit confinement: the fermion-antifermion (mesonic)
bound states are arranged in a single linear Regge trajec-
tory, i.e., the bound state masses (squared) are proportional
to an integer excitation number. The restriction to two
dimensions means that the gauge fields (gluons) are not
dynamical. Their equations of motion show up as constraint
equations on the way to deriving the Hamiltonian of the
theory. This is in stark contrast to four-dimensional QCD,
so to study the dynamics of adjoint degrees of freedom
QCD2A was devised. Here, the adjoint fermions form
bound states analogous to glueballs in higher dimensional
pure Yang-Mills theories. Since the adjoints are fermions,
sometimes these bound states are called gluinoballs and
interpreted as closed string excitations. The gluinoballs
can contain an arbitrary number of (fermionic) partons,
so the spectrum is much richer. Two Regge trajectories of
bound states are known to exist; from a conjectured
Hagedorn transition one expects an exponentially increas-
ing density of states. Furthermore, the two-index fields
allow for discrete versions of θ-vacua [10], i.e., nontrivial
topological sectors. Numerical work [9,14,15] has naturally
focused on the massive bound-state spectrum of both
the massive and the massless theory, occasionally explor-
ing the ramifications of the massless sector for the
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1A parton is a current or a fermion, depending on whether the
theory is bosonized or not.
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massive spectrum [14], based on the universality of two-
dimensional theories [13].
One strand of new results stems from the finding in [14]

that there exist multiparticle states built from the true
degrees of freedom of the theory, i.e., the single-particle
states made of strings of adjoint fermions. The masses of
these multiparticle states at a certain harmonic resolution K
can often be expressed as sums of masses at lower
resolutions, such that K1 þ K2 ¼ K in typical DLCQ
relations

M2ðKÞ ¼ K

�
M2ðK1Þ

K1

þM2ðK2Þ
K2

�
: ð1Þ

However, some such relations are only approximate, and
one runs into problems with statistics, e.g., two fermionic
single-particle states forming a fermionic multiparticle
state, so one has to invoke the massless sector for
explanations. Nonetheless, the great advantage of the
DLCQ approach with its consistent IR cutoff (1=K plays
the role of smallest momentum), is that one generates a
faithful representation of the underlying algebraic struc-
ture, and can thus use representation theory to classify and
relate states. This program has recently reached near
completion, when Klebanov et al. extended QCD2A by
including Nf fundamental Dirac fermions [3], and con-
sidered the theory at finite N [4]. The trove of results and
explanations of degeneracies leaves little doubt that the
spectrum is well understood qualitatively in the light-cone
gauge Aþ ¼ 0. In particular, the massless theory
(madj ¼ 0) can be “deconstructed” on the grounds of
the Kac-Moody algebra of its currents and a newfound
ospð1j4Þ symmetry related to four “supercharges” involv-
ing all dynamic fermion fields. The authors of [3] find that
degeneracies, e.g., between bosonic and double-trace
states of fermionic gluinoballs and massive fermionic
mesons, persist even when the fundamental fermions are
made massive, yfund > 0. Therefore they reason that the
below-threshold bound states point to an attraction
between the fundamental quarks and antiquarks at short
distances, while the existence of a threshold at which a
continuum starts means that the attractive force is
screened by the adjoint massless fermions.
An argument in [2] corroborated in Ref. [11], based on

index theorems (“mod 2 argument”) that both massive and
massless QCD2A are strongly confining2 theories for odd
N has recently been shown to apply only to the theory
with an additional four-fermion term ½TrðΨ̄ΨÞ�2. In fact,
the augmented model is no longer UV finite but rather has
logarithmic flow in the UV [17]. The current consensus
seems to be that massless QCD2A proper (without the
additional term) is screening, cf. Ref. [18], where it is
argued that the existence of newly found superselection

sectors of the massless theory is evidence for its screening
behavior. Also [4,6] show that the spectrum of QCD2A is
largely insensitive to N (which includes N ¼ 3), sug-
gesting a screening massless theory at odd N.
Another issue is the appearance of vacua. For instance,

in [19] the flow of UVoperators is mapped for generic two-
dimensional field theories, and QCD2A in particular. It is
argued that a subset of UV operators ends up as vacua in
the extreme infrared where the theory is describable as a
topological field theory, and thus would not show up as
massive excitations in a Hamiltonian approach. Due to the
(naive) trivial vacuum in light-cone quantization, one has a
hard time dealing with multiple vacua in this approach.
Most often DLCQ-based work [3,4,9,14,15] assumes light-
cone gauge to be principally sound even in the continuum
limit. One might be worried that gauge or fermionic zero-
modes, absent in the discretized theory with antiperiodic
boundary conditions, will change the spectrum in the
continuum limit. In fact, the typical DLCQ (free) multi-
particle spectrum, Eq. (1), described above suggests the
existence of a discrete vacuum angle analogous to a
θ-vacuum. This was worked out by the authors of Ref. [20]
for SU(2). Their set of vacuum states3 would imply copies
of the masses of lower-resolution versions of the theory
consistent with Eq. (1). If this interpretation is correct, then
the spectrum of QCD2A should look much cleaner in the
continuum limit, where artifacts of regularization are
absent. Additionally, one can ask how to get rid of the
“threshold bound states,” if they are not genuine content of
the theory. As shown in [3] from representation theory,
these single-trace states are degenerate with multitrace
states of the adjoint theory (gluinoballs), and with multi-
string states if fundamental fermions are added and meson
(open string) states appear. As mentioned, bosonization
projects out only the exact multiparticle states. It is unclear
what the role of the approximate multiparticle states is. It
could be that any discrete approach fails: these states
have to be present at any finite representation of the
underlying Kac-Moody algebra, but not necessarily in
the continuum limit. The crux is that precisely the regu-
larization makes it possible to have a faithful representation
of the algebra in the first place; the continuum limit is the
infinite parton limit, regardless of whether fermions or
currents are used.
In light of these results, we hope that the present work

via a different, basis function approach illuminates the
theory in a complementary way. Instead of using the
underlying algebraic structure, we tackle the theory via
the constraints of the integral equation inherent in its
Hamiltonian. We use the asymptotic spectrum of the
theory [21] to evaluate the spectrum of the full theory.
This allows us to understand the masses of the low-lying

2States are color singlets and Wilson loop has area law.

3While SU(2) is not generic in some respects [2], a set with
similar properties has to exist for N > 2.

UWE TRITTMANN PHYS. REV. D 109, 016004 (2024)

016004-2



spectrum, and the emergence of the multiparticle states in
the full theory as described by the asymptotic degrees of
freedom. Our work shares the shortcomings of a fermionic
theory with its predecessors, namely the appearance of
exact multiparticle states. On the other hand, we will
establish that discretization per se is no fundamental flaw.
While quantitatively we do not completely agree with
previous results, we see no evidence that the continuum
limit would qualitatively change conclusions about the
spectrum. For instance, one might be worried that today’s
feasible resolutions of DLCQ approaches, while substan-
tially better than decades ago, are still too modest to tame
the divergencies of the theory enough to render results
accurate.
The paper is organized as follows. In Sec. II we describe

the theory in standard Lagrangian form and highlight the
challenges in solving the associated eigenvalue problem.
In Sec. III we take a look at the asymptotic theory and its
relation to the method of exhaustively-symmetrized light-
cone quantization (eLCQ) [21]. This leads in Sec. IV to
the construction of a complete set of (asymptotic) eigen-
functions, which agree well with known solutions of the
theory. These basis functions are then used in Sec. V to
solve the full theory. To do so, we have to generalize the
procedure to integrate over the Coulomb divergence to be
applicable to adjoints. The evaluation of the Hamiltonian
matrix elements is quite involved in the basis at hand.
Nonetheless, it can be done completely analytically, so
that the result for a fixed parton number is free of all
singularities and approximations—an important feature of
the approach. We therefore describe the calculation in
some detail, but do so in the appendix, as the main focus is
on the spectrum of the theory, which we display in Sec. VI
and then discuss in Sec. VII before concluding. We note
preemptively, that our work is complementary to other
approaches [1,14]. The hope is to get a clearer picture via a
view of the theory from a different angle. While we
cast doubt on the accuracy of other approaches and we
cannot do much better (outside of the asymptotic regime)
because of eLCQ’s severe limitation on parton number,
we believe we can show that discretized or compactified
approaches are not fundamentally flawed when applied
to QCD2A.

II. THEORY OVERVIEW

A. Lagrangian and mode expansion

QCD2A is a non-Abelian Yang-Mills theory in two
dimensions coupled to fermions in the adjoint representa-
tion. It is based on the Lagrangian

L ¼ Tr

�
−

1

4g2
FμνFμν þ iΨ̄γμDμΨ

�
; ð2Þ

where Ψ ¼ 2−1=4
�
ψ
χ

�
, with ψ and χ being N × N anticom-

muting matrices. The field strength is Fμν ¼ ∂μAν − ∂νAμþ
i½Aμ; Aν�, and the covariant derivative is defined as
Dμ ¼ ∂μ þ i½Aμ; ·�. We will use light-cone coordinates

x� ¼ ðx0 � x1Þ= ffiffiffi
2

p
, where xþ plays the role of a time

andwork in the light-conegauge,Aþ ¼ 0, as is customary—
but see Sec. I andRef. [20]. The theory has been discussed in
the literature for a while, so we refer the reader to
Refs. [3,8,9,14] for further details.
The dynamics of a system of adjoint fermions interacting

via a nondynamical gluon field in two dimensions are
described by the light-cone momentum operator Pþ and the
Hamiltonian operator P−. Following the canonical pro-
cedure involving the energy-momentum tensor Θ��, we
express the operators in terms of the dynamic fields,
namely the right-moving adjoint fermions ψ ij quantized
by imposing anticommutation relations at equal light-cone
times

fψ ijðx−Þ;ψklðy−Þg¼
1

2
δðx−−y−Þ

�
δilδjk−

1

N
δijδkl

�
: ð3Þ

The operators are then

Pþ ¼
Z

dx−Θþþ ¼ i
2

Z
dx−Trfψ∂−ψg

P− ¼
Z

dx−Θþ−

¼ −
1

2

Z
dx−Tr

	
im2ψ

1

∂−
ψ þ g2Jþ

1

∂
2
−
Jþ



;

where we introduced the right-moving components Jþij ¼
ψ ikψkj of the SU(N) current. One uses the usual decom-
position of the fields in terms of fermion operators

ψ ijðx−Þ ¼
1

2
ffiffiffi
π

p
Z

∞

0

dkþðbijðkþÞe−ikþx− þ b†jiðkþÞeikþx−Þ;

ð4Þ

with anticommutation relations following from Eq. (3)

fbijðkþÞ; b†lkðpþÞg ¼ δðkþ − pþÞ
�
δilδjk −

1

N
δijδkl

�
: ð5Þ

The dynamics operators then read
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Pþ¼
Z

∞

0

dkkb†ijðkÞbijðkÞ;

P−¼m2

2

Z
∞

0

dk
k
b†ijðkÞbijðkÞþ

g2N
π

Z
∞

0

dk
k
CðkÞb†ijðkÞbijðkÞþ

g2

2π

Z
∞

0

dk1dk2dk3dk4

	
BðkiÞδðk1þk2þk3−k4Þ

×ðb†kjðk4Þbklðk1Þbliðk2Þbijðk3Þ−b†kjðk1Þb†jlðk2Þb†liðk3Þbkiðk4ÞÞþAðkiÞδðk1þk2−k3−k4Þb†kjðk3Þb†jiðk4Þbklðk1Þbliðk2Þ

þ1

2
DðkiÞδðk1þk2−k3−k4Þb†ijðk3Þb†klðk4Þbilðk1Þbkjðk2Þ



; ð6Þ

with

AðkiÞ ¼
1

ðk4 − k2Þ2
−

1

ðk1 þ k2Þ2
;

BðkiÞ ¼
1

ðk2 þ k3Þ2
−

1

ðk1 þ k2Þ2
;

CðkÞ ¼
Z

k

0

dp
k

ðp − kÞ2 ;

DðkiÞ ¼
1

ðk1 − k4Þ2
−

1

ðk2 − k4Þ2
; ð7Þ

where the trace-splitting term DðkiÞ can be omitted at large
N, and the parton-number violating term is proportional to
BðkiÞ. The structure of the Hamiltonian P− is

P− ¼ P−
m þ P−

ren þ P−
PC;s þ P−

PC;ns þ P−
PV þ P−

finiteN: ð8Þ
While the mass term P−

m is absent in the massless theory,
the associated renormalization operator P−

ren needs to be

included. Parton-number violating terms, P−
PV, couple

blocks of different parton number. Parton-number conserv-
ing interactions P−

PC are block diagonal, and may include
singular(s) or nonsingular(ns) functions of the parton
momenta. The finite N term P−

finiteN is proportional to
DðkiÞ. For details see [8,9,22].

B. The eigenvalue problem

To find the spectrum of the general Hamiltonian (8) we
solve the eigenvalue problem

2P̂þP̂−jΨi≕ ĤLCjΨi ¼ M2jΨi ð9Þ

where HLC is the so-called light-cone Hamiltonian. This is
a daunting task, since its eigenkets jΨi will be linear
combinations4 jΨi ¼ P∞

r jΨri of states of definite (fer-
mion) parton number r

jΨri ¼
Z

1
r

0

dx1

�Yr−1
j¼2

Z
1−ðr−jþ1Þx1−

P
j−1
k¼2

xk

x1

dxj

�
ψ rðx1; x2;…; xrÞ

Nr=2 Tr½bð−x1Þ � � � bð−xrÞ�j0i: ð10Þ

In practice, one transforms the eigenvalue problem, Eq. (9), into an integral equation for the wave functions
ψ rðx1; x2;…; xrÞ which distribute momentum between the partons and the total momentum is set to unity by Lorentz
invariance. For instance, in the two-parton sector we have the ’t Hooft-like equation

m2ψ2ðxÞ
xð1 − xÞ −

2g2N
π

Z
�

1

0

ψ2ðyÞ
ðx − yÞ2 dy ¼ m̃2ψ2ðxÞ

xð1 − xÞ þ
2g2N
π

Z
�

1

0

ψ2ðxÞ − ψ2ðyÞ
ðx − yÞ2 dy ¼ M2ψ2ðxÞ; ð11Þ

where m̃ is the renormalized fermion mass and
ψ2ðx1; x2Þ ¼ ψ2ðx; 1 − xÞ≕ψ2ðxÞ due to the momentum
constraint

Pþ ¼
Xr

i¼1

xi ¼ 1; ð12Þ

which defines the physical Hilbert space, i.e., the hyper-
plane of the naive Hilbert space ½0; 1�r on which this
constraint is realized.

A good understanding of the integration domain and
therefore the Hilbert space will help us to crucially simplify
evaluations of matrix elements for the numerical work in
Sec. V. The quantum theory consists of states with certain
symmetries, such as cyclic permutations due traced fer-
mionic operators. Since states related by symmetry oper-
ations are equivalent, only a small region of the naive

4Summation is over even(odd) integers and starts at 2(3) in the
bosonic(fermionic) sectors of the theory.
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Hilbert space is necessary to completely and uniquely
describe the dynamics of the physical system. We call such
a region a unique Hilbert space cell (uHS). Without loss of
generality, we single out the first r − 1 momenta, i.e.,
project onto the ðx1; x2;…; xr−1Þ hyperplane. The uHS is
then constructed by ordering tuples of momentum fractions
xi so that x1 is the smallest, x2 the second smallest, etc., i.e.,
parton momenta are monotonically increasing as possible,5

which leads to x1 ≤ 1=r, and

uHS≐
�
0;
1

r

�
×
Yr−1
j¼2

�
x1;1−ðr−jþ1Þx1−

Xj−1
k¼2

xk

�
: ð13Þ

In fact, we have already written out the resulting prescrip-
tion for integral limits in Eq. (10). The upper integral limits,
e.g., in the unique Hilbert space cell volume

N r¼
Z

1=r

0

dx1

�Yr−1
j¼2

Z
1−ðr−jþ1Þx1−

P
j−1
k¼2

xk

x1

dxj

�
¼ 1

r!
ð14Þ

monotonically decrease. Yet, the last momentum fraction,
xr−1, will be the largest, since all redundant cyclic permu-
tations will be purged, and the tuple ð0; 0;…; 0; 1 −

P
j xjÞ

is the first to be constructed in Fock-space generating
algorithms such as DLCQ. Note that ð1=r; 1=r;…; 1=rÞ is a
unique point, and x1 is a special variable with this choice of
ordering. Of course, the formalism is symmetric in all xi,
but it is not practical to formulate the approach such that the
symmetry is manifest.
A physical way to think of the integral domain bounda-

ries is as planes of equal momenta, xi ¼ xj, where particle
identities, i.e., longitudinal momenta, get swapped. For
instance, x3 ¼ x1 implies x2 ¼ 1 − x1 for three partons.
Pauli exclusion then dictates that wave functions be
extreme or zero at these boundaries.

III. THE ASYMPTOTIC THEORY AND eLCQ

The coupling of parton sectors is due to the parton-
number violating interaction P−

PV, i.e., pair creation. This
coupling suggests that we have to solve the problem on all
scales. However, things simplify in the largeM2 limit, since
the form of the integral equation allows one to separate the
long-range Coulomb interaction from the rest, which apart
from pair creation consists of the nonsingular (regular)
parton-diagonal interactions. The main arguments are that
for large eigenvalues M2 one can neglect the mass term
proportional to m2 and the behavior of the integral away
from the pole at x ¼ y, while the pair production function
BðkiÞ is nonsingular [7] and therefore subdominant.
However, this reasoning might be too naive. In particular,

in the massless sectors regular parton-diagonal interactions
can lead to large corrections via singularities at the
“boundary” which might also happen for the (regular)
parton-number violating interaction. As we will show, the
regular parton-diagonal contribution lifts the ground state
of the theory from being asymptotically massless to
roughly 5.7g2N=π. While it is thus unclear a priori how
important pair creation is, we know from Refs. [3,4,8,9]
that it has a small effect on the lighter states. We therefore
omit pair production for now,6 and will justify this step by
assessing the quality of our approximation after the fact.
This allows us to push the integration limits to infinity and
to replace Eq. (11) with

−
2g2N
π

Z
∞

−∞

ϕðyÞ
ðx − yÞ2 dy ¼ M2ϕðxÞ;

which has sinusoidal eigenfunctions; this remains true
when regular interactions are included. We renamed the
wave function to ϕ to make it clear that this is an
approximation, and will use ΨðxÞ and ψðxÞ for the full
theory. The Coulomb problem itself is intricate for adjoint
fermions due to the “connectedness” of operators under the
color trace. Fortunately, this Gordian knot is resolvable by
an exponential ansatz paired with group theory in the guise
of an exhaustive symmetrization. The approach called
eLCQ has been brought forth in [21], albeit in a clumsy
way, so we’ll review its salient features in a streamlined
fashion here. In short, the approach is based the fact that the
total momentum can be set to unity by Lorentz invariance
plus the following five defining characteristics of QCD2A:
(1) In the asymptotic regime, the simplest solution of the

integral equation based on the singular Coulomb
interaction (inverse square behavior) is a pure phase

Z
∞

−∞

eiπny

ðx − yÞ2 dy ¼ −jnjπ2eiπnx:

Therefore a reasonable ansatz for the generic sol-
ution is

χν⃗ðx1;…; xrÞ ¼
Yr−1
j¼1

eiπnjxj ¼ eiπ
P

r−1
j¼1

njxj ≕ eiπν⃗·x⃗;

ð15Þ

where the constraint momentum compels us to
operate on a (r − 1)-hyperplane of the naive
r-dimensional Hilbert space of r parton states, which

5Only cyclic reordering is allowed, so minimizing x1 may
preclude x2 minimization, etc.

6Alternatively, we can take the stand that regardless of the
physical justification, the asymptotic eigenstates in the massless
(and all other) sectors furnish a complete and orthogonal set of
functions, i.e., a bona fide basis, in which we can expand any
function.
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is signified by the Greek letter. An eigenfunction
of the Hamiltonian will then be a sum of such
exponential terms, written for now symbolically as

ϕν⃗ðx⃗Þ ¼ ϕν⃗ðx1;…; xrÞ ¼
X
Gν⃗

ð−1Þsðν⃗Þeiπν⃗·x⃗

¼
X
Gν⃗

ð−1Þsðν⃗Þχν⃗;

where the sign of the term is determined via sðν⃗Þ by
group theoretical arguments, and the sum is over all
permutations g∈G allowed by the symmetries of the
theory, see Eq. (20), below.

(2) The cyclic structure of the Hamiltonian P̂− results in
a mandatory (anti)symmetrization of its eigenfunc-
tions under

C∶ ðx1; x2;…; xrÞ → ðx2; x3;…; xr; x1Þ:

In particular,

ϕðx1; x2;…; xrÞ ¼ ð−1Þðr−1Þϕðx2; x3;…; xr; x1Þ:
ð16Þ

(3) The reality of the fermions results in a mandatory
(anti)symmetrization of the eigenfunctions under
complex conjugation. One way of achieving this
is to “invert” the momenta with

I∶ ðx1; x2;…; xrÞ → ð1 − x1; 1 − x2;…; 1 − xrÞ:

(4) The vanishing of the massive wave functions if one
momentum fraction is zero ϕð0; x2; x3;…; xrÞ ¼ 0

and the vanishing of the derivative ∂ϕ
∂x1

ð0; x2;

x3;…; xrÞ ¼ 0 of the massless wave functions
results in a mandatory (anti)symmetrization of
the eigenfunctions under the so-called lower-
dimensional inversion

S∶ ðx1;…xrÞ
→ ðx1;1−x2−x1;1−x3;1−x4;…;1−xr−x1Þ:

ð17Þ

(5) Finally, the symmetry of the Hamiltonian under
flipping of color indices

T ∶ bij → bji

can be used to (anti)symmetrize under

T ∶ ðx1; x2;…; xrÞ → ðxr; xr−1;…; x1Þ:

Note that one has to distinguish the transformation
of the state under T (sector identifier Tstate) from the
behavior of its wave function under momentum
reversal (symmetry quantum number T). For in-
stance, in the literature [14,15], the lowest fermionic

state withM2 ≈ 5.7 g2N
π has been labeled as a T even

state. While indeed its wave function is constant and
trivially even under reversal of the momenta, the
state does lie in the Tstate ¼ −1 sector of the theory.
Sectors are defined by the states’, not the wave
functions’ symmetry properties.

These five automorphisms of momentum space com-
pletely determine the asymptotic eigenfunctions. It is
often useful to think of them as operating in excitation
number space:

C∶ ðn1; n2;…; nr−1Þ → ð−1Þnr−1ð−nr−1; n1 − nr−1;…; nr−2 − nr−1Þ;
I∶ ðn1; n2;…; nr−1Þ → ð−n1;−n2;…;−nr−1Þ;
S∶ ðn1; n2;…; nr−1Þ → ðn1 − n2;−n2;−n3;…;−nr−1Þ;
T ∶ ðn1; n2;…; nr−1Þ → ð−1Þn1ð−n1; nr−1 − n1; nr−2 − n1;…; n2 − n1Þ: ð18Þ

One constructs the eigenfunctions by acting with the
operators on a generic single-particle momentum state

jx⃗i ¼ jx1;…xri ¼ Trfb†ðx1Þ � � � b†ðxrÞgj0i ð19Þ

or equivalently on the function

χν⃗ðx1; x2;…; xrÞ ¼ hx1; x2;…; xrjn1; n2;…; nr−1i ¼ eiπν⃗·x⃗;

to produce all distinct operators (algebraic words)
Ok ¼ CI � � �ST C2 � � �IS, where k is an enumerative index.

The (complete) set of such operators is called the total
symmetrization group

G≕ fOkg: ð20Þ

We find that the order of G is 2r!, which is twice the order of
the symmetric group Sr. This makes sense, since we are in
essence permuting r objects (the fermion operators) with
an additional optional Z2 symmetrization with respect to T .
In essence, the exchange of momentum is the same as
swapping partons since they are identified by their
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longitudinal momentum. Even if we are limited to trans-
positions of adjacent operators, we can still cover the entire
symmetric group Sr, albeit with an algebraic structure that
reflects this. It is unclear whether this scheme can be
generalized to higher dimensions.
In practice, one uses a computer to construct these states.

Note that this has to be done symbolically since we need to
decide which operators are distinct, because numerical
matching does not suffice.7 The direct product of inver-
sions, I , reorientations T , and cyclic permutations C forms
a subgroup B of order 4r of the full group G of order 2r!.
This means we can organize the “statelets” jn1; n2…; nr−1i
as right cosets of B in G where the operators in B
act on 1

2
ðr − 1Þ! − 1 operators collected in the exhaustive

set

E ¼ fS1;S2;…;Sðr−1Þ!=2−1g

plus the identity. In [21] we tried to classify these S
operators further, but it suffices to view them as composite
operators involving at least one instance of the “funda-
mental” S operator. In particular, S1 ¼ S. Then the Si are

algebraic words like SICTSC2, and for our purposes we
only need to know the number of times the letter S appears
in the word (two in the example) which we refer to as
S-ness. The latter determines the sign of the statelet within
the eigenstate. Since S is a Z2 operator with eigenvalues
S ¼ �1, we get a minus sign only for odd S-ness in the
S ¼ −1 sectors of the theory.
We conclude that the vanishing of the wave function

whenever xi ¼ 0 is rather tricky to implement. Indeed, to
achieve ϕðxi ¼ 0Þ ¼ 0we need to subtract a term eiπν⃗·x⃗ that
is identical to an existing term at xi ¼ 0 but different
otherwise. But this new term then becomes part of the
problem: it too needs to be canceled by yet another term,
and so on until the possibilities to form distinct terms are
exhausted. On the other hand, once the eigenfunctions
are constructed reflecting the symmetries and structure of
the Hamiltonian, they will automatically respect Pauli
exclusion (vanish for xi ¼ xf where necessary) and be
(anti)periodic at the boundaries of the unique Hilbert
space.
We now have a blueprint for the states of the theory. In

excitation space we may write it as (jri ¼ jn1; n2;…; nr−1i)

jϕν⃗i ¼ jν⃗i ¼ Gjri ¼ jri þ Cjri þ C2jri þ…

¼ jn1; n2;…; nr−1i þ ð−1Þnr−1 j − nr−1; n1 − nr−1;…; nr−2 − nr−1i þ…:

The next step is to fill in integers for the excitation numbers
ni and check which combinations lead to viable states.8 The
task to generate these bona fide states is best left to a
computer. The results are displayed in Table I.

A. Grand bulk equivalence and orthonormality

In light of the symmetries the structure of the Hilbert
space becomes clear. Namely, in a unique Hilbert space cell
one Fock state Trfbð−x1Þ � � � bð−xrÞgj0i with a specific
tuple of momentum fractions represents 2r! such states
located in r! different cells9 of the physical Hilbert space,
which is thus tessellated. As a consequence eigenfunctions
that are orthogonal on a unique Hilbert space cell will
be orthogonal everywhere. The r! unique Hilbert space
cells of the physical hyperplane are connected by the
four automorphisms C, T , I , and S that generate the group
G≡ hC; T ; I ;Si.
Now, the symmetrization of the wave functions under G

is equivalent to putting a representative of each cell into the

linear combination in one specific cell. Mathematically, it is
the simple fact that ðgνÞ · x⃗ ¼ ν · ðgx⃗Þ up to a sign for g∈G.
For instance, at r ¼ 4 we have with g ¼ C

ð−n3; n1 − n3; n2 − n3Þ · ðx1; x2; x3Þ
¼ ðn1; n2; n3Þ · ðx2; x3; x4Þ;

with x4 ¼ 1 − x1 − x2 − x3 on the physical hyperplane. In
other words, a term eiπν⃗·ðgx⃗Þ in the Hilbert cell gjx⃗i is
substituting for the term eiπðgν⃗Þ·x⃗ in the original cell. Note
that the former has the original excitation numbers.
Therefore, integrating a 2r! term eigenfunction over one
unique cell is equivalent to integrating a one-term function
over the entire physical Hilbert space (pHS) projected onto
the ðx1;…; xr−1Þ hyperplane.10 We might call this grand
bulk equivalence (GBE), since it holds anywhere in the
bulk of the Hilbert space. In lieu of a proof, consider that
the integral over the second term (first cyclic permutation,
g ¼ C) of the three-parton asymptotic wave function is
shifted by a change of variables x01 ¼ x2; x02 ¼ 1 − x1 − x2

7For example, n1 þ n2 ≠ n2 − n3, but for n⃗ ¼ ð1; 2;−1Þ we
have 3 ¼ 3.

8The ni can be even, odd, positive, negative or zero, and may
lead to vanishing or redundant wave functions [21,22].

9There are r! cells since the action of T yields a state of
different orientation in the same cell.

10As implausible as it sounds! For example, one might be
worried that there is one oscillating function everywhere with a
given set of wave numbers, so that the choice of ν⃗ matters.
However, a set of excitation numbers is interpreted as a different
set in a different cell.
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with Jacobian ∂ðx1;x2Þ
∂ðx0

1
;x0

2
Þ ¼ 1, while its integral domain uHS2 ¼ CðuHS1Þ is the cyclically permuted version11 of the original.

To wit

Z
uHS1

d2x⃗eiπððn1−n2Þx1−n1x2Þ ¼
Z

1=3

0

dx1

Z
1−2x1

x1

dx2eiπððn1−n2Þx1−n1x2Þ

¼
Z

1=3

0

dx02

Z
1−2x0

2

x0
2

dx01e
iπðn1x01−n2x02Þ ¼

Z
uHS2

d2x⃗eiπðn1x1þn2x2Þ; ð21Þ

TABLE I. The lowest states in the lowest asymptotic parton sectors including their quantum numbers TIS. The sectors are labeled with
a subscript indicating behavior under T ( �), i.e., Tstate ¼ �1, and superscripts signifying massless ( 0) and massive fermions ( μ).

r T I S Sectormass
Tstate

Excitation numbers of lowest states Masses (g2Nπ)

2 −þ joi0þ (1), (3), (5), (7) 2, 6, 10, 14
−− jeiμþ (2), (4), (6), (8) 4, 8, 12, 16

3 −− jeei0þ (4, 2), (6, 2), (8, 2), (8, 4) 8, 12, 16, 16
þþ jeei0− (0, 0), (2, 2), (4, 2), (4, 4), (6, 2) 0, 4, 8, 8, 12
−þ jeeiμþ (6, 2), (8, 2), (10, 4), (10, 2) 12, 16, 20, 20
þ− jeeiμ− (2, 0), (4, 0), (6, 2), (6, 0) 4, 8, 12, 12

4 þ − − joeoi0þ (3, 2, 1), (5, 4, 3), (5, 6, 3), (7, 6, 3) 6, 10, 12, 14
−þþ joeoi0− (1, 2, 1), (3, 2, 1), (3, 4, 3), (3, 6, 3) 4, 6, 8, 10
þ −þ jeeeiμþ (6, 6, 4), (8, 8, 6), (8, 10, 6), (10, 10, 6), (10, 10, 8) 12, 16, 20, 20, 20
−þ − jeeeiμ− (4, 6, 4), (6, 6, 4), (6, 8, 6), (6, 10, 6) 12, 12, 16, 16

5 þþþ jeeeei0þ (0, 0, 0, 0), (2, 2, 2, 2), (2, 4, 4, 2), (4, 4, 4, 2), (4, 4, 4, 4) 0, 4, 8, 8, 8
− − − jeeeei0− (4, 4, 4, 2), (4, 6, 6, 6), (4, 6, 4, 2), (6, 6, 4, 2), (4, 8, 8, 8) 8, 12, 12, 12, 16
þþ − jeeeeiμþ (4, 6, 6, 4), (6, 8, 8, 6), (6, 10, 10, 6), (8, 10, 10, 6) 12, 16, 20, 20
− −þ jeeeeiμ− (8, 10, 10, 6), (8, 12, 10, 6), (8, 14, 12, 8) 20, 24, 28

6 −þþ joeoeoi0þ (1, 2, 3, 2, 1), (1, 2, 3, 4, 3), (5, 4, 3, 2, 1), (3, 4, 5, 4, 3) 6, 8, 10, 10
þ − − joeoeoi0− (1, 2, 3, 4, 3), (5, 4, 3, 2, 1), (3, 6, 5, 4, 3), (5, 6, 5, 4, 3) 8; 10; 12ð2Þ
− −þ jeeeeeiμþ (6, 10, 12, 10, 6), (6, 10, 12, 12, 8), (8, 12, 14, 12, 8), 24ð2Þ; 28ð2Þ; 32, 36

(8, 14, 14, 12, 8), (8, 14, 16, 14, 8), (8, 14, 18, 14, 8)
þþ − jeeeeeiμ− (8, 12, 12, 10, 6), (10, 12, 12, 10, 6), (8, 12, 14, 14, 10), 24ð2Þ; 28ð3Þ

(8, 14, 14, 12, 8), (12, 14, 14, 12, 8)

7 − − − jeeeeeei0þ (2, 4, 4, 4, 4, 4), (4, 6, 6, 6, 4, 2), (4, 6, 8, 6, 4, 2), 8, 12, 16, 16
(4, 6, 8, 8, 8, 4)

þþþ jeeeeeei0− (0, 0, 0, 0, 0, 0), (2, 2, 2, 2, 2, 2), (2, 4, 4, 4, 4, 2), (2, 4, 4, 4, 4, 4) 0, 4, 8, 8
−þ − jeeeeeeiμþ (8, 14, 16, 16, 14, 10), (8, 14, 18, 18, 16, 10), 32; 36ð3Þ

(8, 14, 18, 18, 16, 12), (10, 16, 18, 18, 16, 12)
þ −þ jeeeeeeiμ− (6, 10, 12, 12, 10, 6), (8, 14, 16, 16, 14, 8), 24, 32, 32, 36

(8, 14, 16, 16, 14, 10), (8, 14, 18, 18, 14, 8)

8 þ − − joeoeoeoi0þ (3, 4, 5, 4, 3, 2, 1), (5, 4, 5, 4, 3, 2, 1), (3, 6, 5, 4, 3, 2, 1) 10, 12, 12
−þþ joeoeoeoi0− (1, 2, 3, 4, 3, 2, 1), (3, 4, 5, 4, 3, 2, 1), (3, 4, 5, 6, 5, 4, 3) 8, 10, 12
þ −þ jeeeeeeeiμþ (10, 16, 20, 20, 18, 14, 8), (10, 18, 20, 20, 18, 14, 8) 40, 40
−þ − jeeeeeeeiμ− (8, 14, 18, 20, 18, 14, 8), (10, 16, 20, 20, 18, 14, 8) 40, 40

9 þþþ jeeeeeeeei0þ ð0Þ8; ð2Þ8; ð4; 4; 4; 4; 4; 4; 4; 4Þ, 0, 4, 8, 8, 8
(4, 4, 4, 4, 4, 4, 4, 2), (2, 4, 4, 4, 4, 4, 4, 2)

− − − jeeeeeeeei0− (4, 4, 4, 4, 4, 4, 4, 2) 8
þþ − jeeeeeeeeiμþ (8, 14, 18, 20, 18, 14, 8) 50
− −þ jeeeeeeeeiμ− (12, 18, 20, 22, 20, 18, 10) 44

11Its boundaries are x02 ¼ 0; x02 ¼ x01; x
0
2 ¼ 1

2
ð1 − x01Þ.

UWE TRITTMANN PHYS. REV. D 109, 016004 (2024)

016004-8



where we omitted the primes of the integration variables in
the last step. Similar transformations for the other g∈G
lead to a full coverage of the semi-naive Hilbert space
snHS ¼∪r!

j¼1 uHSj. There are two caveats. First, this only
works if we integrate; the wave functions themselves are,
of course, not the same. Second, the 2r! terms of an
eigenfunction enter with different signs owing to the
quantum numbers of the symmetry sector. Since we are
mostly interested in evaluating scalar products between two
wave functions of the same sector, this is of no consequence
as we are squaring the sign.
If exploiting GBE seems too good to be true, note first

that it is simply a consequence of the structure of the
Hamiltonian. For instance, the much simpler ’t Hooft
Hamiltonian leads to fewer constraints, hence larger
(and fewer) Hilbert space cells, and therefore to the same
result: integration of a single sinusoidal function over the
entire semi-naive Hilbert space suffices. Second, GBE is
of little practical use unless the function integrand is
invariant under G. Unfortunately, this is not the case
for the Hamiltonian matrix elements as they depend on
specific momenta on the physical hyperplane of the naive
Hilbert space. If nothing else, GBE allows for an effortless
proof of the orthonormality of the asymptotic eigenfunc-
tions

hμ⃗jν⃗i ¼
Z
uHS

dr−1x⃗ϕ�
μ⃗ðx⃗Þϕν⃗ðx⃗Þ ¼

Z
pHS

dr−1x⃗χ�μ⃗ðx⃗Þχν⃗ðx⃗Þ

¼
Yr−1
j¼1

Z
1

0

dxje−iπμ⃗·x⃗eiπν⃗·x⃗ ¼ δμ⃗ ν⃗:

Note that hμ⃗jν⃗i ¼ 0 only implies independent states
when jν⃗i and jμ⃗i are in different equivalence
classes defined by jν⃗i ≈ jμ⃗i if jν⃗i ¼ gjμ⃗i for at least one
g∈G. The Hilbert space is tessellated by r! unique cells,
while there are 2r! exponential terms or r! statelets
representing trigonometric functions. The normalization
factor is

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r!N 0

#statelets

r
; ð22Þ

where for almost all eigenfunctions N 0 ¼ 2 save for the
constant ν⃗ ¼ 0⃗ functions (appearing in the odd parton
Tstate ¼ ð−1Þðr−1Þ=2 sectors) we haveN 0 ¼ 1. The number
of statelets varies due to “accidental” symmetries of
excitation number tuplets, see Eq. (23) and similar.

IV. CONSTRUCTING AN ASYMPTOTIC
EIGENFUNCTION BASIS

In the previous section we presented the principles of
finding a set of harmonic eigensolutions for asymptotic
QCD2A and listed the resulting bona fide states separately
for the lowest parton sectors in all viable symmetry sectors
in Table I. We will now see that the approach can be applied
to construct the complete (asymptotic) spectrum of QCD2A.
The hope is that it can be generalized to tackle other
theories, too.

A. Generic algorithm based on ground states

Using Table I, it is not hard to come up with general, all-
parton-sector expressions for the “ground states” of all
symmetry and parton sectors, including their masses and
symmetry factors. As can be gleaned from Table I, the
expressions will differ substantially for even and odd parton
number as well as even and odd excitation numbers. We
therefore need to consider eight different cases (fermionic
vs bosonic, massless vs massive, and T ¼ �). Masses M̄2

are in units gN2π (as in Table I); for instance M̄2 ¼ 4 →

M2 ≈ 39.48 g2N
π in the usual units.

(1) The fermionic massless T ¼ þ1 sector is the easiest
to figure out. These are Tstate ¼ ð−1Þðr−1Þ=2 states12

and all symmetry quantumnumbers are positive since
the lowest state has r! identical statelets which all
have to enter with the same sign lest the state vanishes
identically. It is easy to read off the lowest five states

j1i0fðþÞ ¼ jM̄2 ¼ 0; 0r−1i 1ffiffiffiffiffiffiffi
2r!

p ; j2i0fðþÞ ¼ jM̄2 ¼ 4; 2r−1i 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðr − 2Þ!p ;

j3i0fðþÞ ¼ jM̄2 ¼ 8; 4r−1i 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðr − 2Þ!p ; j4i0fðþÞ ¼ jM̄2 ¼ 8; 4r−2; 2i 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðr − 3Þ!p ;

j5i0fðþÞ ¼ jM̄2 ¼ 8; 2; 4r−3; 2i 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðr − 4Þ!p ; ð23Þ

where we displayed the symmetry factor of the states under the square root. For instance, the ground state has 2r! identical
statelets in which all r − 1 excitation numbers are zero j0; 0;…; 0i. Note that the masses do not depend on the parton
number r, and thus we expect high-parton-number sectors to contribute significantly if parton number violation is allowed.

12We use Tstate for the behavior of the states (wave function and trace of operators); (�) indices signify T not Tstate sectors.
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(2) The massless fermionic T ¼ −1 sector has Tstate ¼ ð−1Þðrþ1Þ=2 states which have asymmetric excitation number
tuples. The symmetry quantum numbers are opposite of the previous sector, so TIS ¼ ð− − −Þ

j1i0fð−Þ ¼ jM̄2 ¼ 8; 4ðr−2Þ; 2i 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðr − 3Þ!p :

(3) The massive fermionic T ¼ þ1 sector with Tstate ¼ ð−1Þðr−1Þ=2 states can be symmetric in excitation numbers (the
ground state is!). The symmetry quantum numbers are TIS ¼ ðþ; ð−Þr−12 ; ð−Þrþ1

2 Þ and the lowest state is

j1iμfðþÞ ¼ jM̄2 ¼ 2
Xr

even j

r − j; r − 1; 2ðr − 2Þ; 3ðr − 3Þ;…; 2ðr − 2Þ; r − 1i=
ffiffiffi
2

p
:

(4) The massive fermionic T ¼ −1 sector with Tstate ¼ ð−1Þðrþ1Þ=2 states. There is no symmetry here; all symmetry
factors are one, TIS ¼ ð−; ð−Þrþ1

2 ; ð−Þr−12 Þ

j1iμfð−Þ ¼ jM̄2 ¼ 6r − 10; rþ 3; 2r; 2ðrþ 1Þ; 2ðrþ 2Þ;…2ðrþ 2Þ; 2ðrþ 1Þ; 2r; rþ 1i:

Mass squared is M̄2 ¼ 12 for r ¼ 3 and M̄2 ¼ 6r − 10 otherwise, so growing linearly with parton number r.
(5) The massless bosonic T ¼ þ1 sector with Tstate ¼ ð−1Þr=2 states are

j1i0bðþÞ ¼ jM̄2 ¼ rþ 2; 3; 4; 5;…
r
2
− 1;

r
2
;
r
2
− 1;…; 2; 1i=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr=2þ 1Þ!

p
:

The mass grows linearly with parton number.
(6) The massless bosonic T ¼ −1 sector with Tstate ¼ ð−1Þr=2−1, states having symmetric excitation number tuples

j1i0bð−Þ ¼ jM̄2 ¼ r̄; 1; 2; 3;…
r
2
− 1;

r
2
;
r
2
− 1;…; 2; 1i 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
Qr=2

j¼2 j
2

q ;

with r̄ ¼ r for r > 2 and one for r ¼ 2. Note that mass is proportional to r, so high parton-number states should not
contribute much to the lowest states of the full theory. Note also that due to the large symmetry factor there are only
2r!=2

Qr=2
j¼2 j

2 ¼ 6; 20; 70;… independent statelets for r ¼ 4; 6; 8;…. This is an example for an “accidental”
symmetry we alluded to in [21].

(7) The massive bosonic T ¼ þ1 sector with Tstate ¼ ð−1Þr=2 states with no symmetries (factors all one). The lowest
state is

j1iμbðþÞ ¼ jM̄2 ¼ r

�
r
2
þ 1

�
; rþ 2; 2r; 3r − 2;…; R; R;…; 3ðr − 2Þ; 2ðr − 1Þ; ri;

with R ≔ r
2
ðr
2
þ 1Þ.

(8) The massive bosonic T ¼ −1 sector with Tstate ¼ ð−1Þr=2−1 states. A subset of them was constructed in [7]. A
symmetric representative of the ground state is

j1iμbð−Þ ¼ jM̄2 ¼ 2
Xr
even j

j; r; 2ðr − 1Þ; 3ðr − 2Þ; 4ðr − 3Þ;…; R;…; 3ðr − 2Þ; 2ðr − 1Þ; ri=
ffiffiffi
2

p
:

Note that the mass increases with the parton number, and that a simpler representative of the state is

j10iμbð−Þ ¼ jM̄2 ¼ 2
Xr
even j

j; r; 0; r − 2; 0; r − 4; 0;…; 0; 2i=
ffiffiffi
2

p
:

Since every other excitation number is zero in this statelet, it looks like the state can be characterized by r=2
excitation numbers, see Sec. IV C. The symmetry factor suggests that this is not the most general state of the sector.

UWE TRITTMANN PHYS. REV. D 109, 016004 (2024)

016004-10



Now that the ground states are known, we can construct
the rest of the spectrum by acting with the “ladder
operators”

L̂i∶ jn1; n2;…; ni;…; nr−1i→ jn1; n2;…; ni þ 2;…; nr−1i;

This will take us from the “highest weight” statelet of a
bona fide state to some statelet of a different bona fide state
—unless the latter does not exist in the symmetry sector
considered, in which case we act with Liþ1, until a desired
number of bona fide states is produced.
The astonishing fact that for every parton number only

four of eight TIS symmetry sectors give rise to states
regardless of whether only even or even and odd excita-
tion numbers are allowed is—of course—due to group
theory.

B. Extracting the physics

These combinatorics exercises entail some physics. We
saw that the bound states of themassless sectors likely have
significant contributions from all higher parton sectors.
Additionally, a look at the I quantum number reveals that in
the massless sectors, the r and rþ 2 sectors sport opposite
trigonometric functions (sines vs cosines), whereas in the
massive sectors, the trigonometric functions are the same.
This holds in both the bosonic and fermionic sectors and
will dramatically change the importance of the parton-
number violating interaction in the massless versus mas-
sive sectors, see Sec. V.
Note that the wave functions are necessarily

even(odd) under cyclic rotations of their momenta in the
odd(even) parton sectors. The question is then whether
they are even or odd under momentum order reversal.13

For states with three fermionic operators, asymmetric
states

T jai ¼ jbi; jai ≠ jbi ð24Þ

are combined with(out) a relative sign to form T -even
(odd) states

ffiffiffi
2

p jT�i ¼ jai � jbi. Therefore we need a
T -even wave function to consistently distribute the
momenta. The scheme reverses at rþ 2, where the addi-
tional operators yield an extra sign when putting flipped
indices in order. Thus the five-fermion states in the same
Tstate sector have asymmetric states under momentum
reversal, and therefore a relative sign in Eq. (24). Hence, a
T -even wave function is necessary. Only the symmetric
wave functions produce massless states, so surprisingly a
generic all-sector wave function of the full theory will
have opposite T -symmetry of the wave functions in
adjacent parton sectors. So it will, for instance, comprise

a massless asymptotic state in the 4s − 1 parton sectors,
but asymptotic states with rather high mass (M̄2 ¼ 8) in
the 4sþ 1 sectors (s ¼ 1; 2; 3;…). This leads to a large
mass gap between the lowest states in a sector, explaining
the purity in parton number [8,9] and the fact that almost
any brutalization of the theory leads to the correct mass of
the ground state(s).
In fact, much of the insight into the lowest states could

have been gleaned from earlier work, e.g., [9,14,15], and
becomes almost trivial in the eLCQ approach. For instance,
the fact that the lowest fermionic and bosonic states are
isolated in mass and pure in parton number is a result of the
asymptotic spectrum having massless states only in the
fermionic sectors. In particular, the lowest state of the full
theory is a three-parton fermion and not a two-parton boson
since the lowest bosonic state has a mass (squared) of about

M̄2 ¼ 1 (M2 ≈ 10 g2N
π ) whereas the lowest asymptotic

fermionic state in the adjoint theory is massless, and

acquires a mass (squared) of about rðr − 1Þ g2Nπ ≈ 5.7 g2N
π

via the nonsingular parton-number preserving interaction,
see Appendix B 3.
In eLCQ it is easy to see that the lowest states are

isolated, since the higher-parton states start at quite high
mass, see Fig. 2. In particular, the lowest four- and five-
parton states are M2 ≈ 36 g2N

π and M2 ≈ 55 g2N
π , so about

three- and ten times the ground state mass. Also the
surprising find [8] that the lowest Tstateþ state is a very
pure five-parton state is clear in eLCQ: the lowest three-

parton asymptotic state is at M2 ≈ 50 g2N
π , since14 the

lowest available excitation numbers in that sector
(TI ¼ −−) are (4, 2), implying a large mass. But that
is where it stops: the lowest six- and seven-parton states
have a similar mass as their lower-parton counterparts, and
therefore none of the higher states are pure in parton
number. Incidentally, in Ref. [9] it was speculated that this
isolation and purity of the lowest states could be related to
the surprising success of the valence quark model
in full four-dimensional QCD. We can also answer the
question as to why the lowest mass grows linearly with the
number of flavors [23]. The terms in the Hamiltonian,
Eq. (26) of [15], are at most linear in Nf, and thus in the
absence of eigenvalue repulsion due to isolation, the
trajectory M2

lowðNfÞ is necessary linear, see Fig. 5(b)
of [15].

C. Comparison to known solutions

As a cross-check we compare the eLCQ eigensolutions
with the output of other approaches. Two-, four-, and six-
parton wave functions for one of the two bosonic T sectors
were presented in Ref. [7], Eqs. (4.12), (4.13), and (4.15).

13Actually, the question is more complicated for r > 3 since
there are 1

2
ðr − 1Þ! − 1 additional symmetries associated with the

lower-dimensional inversions.

14This remains true even if nonsingular terms are added,
because the expectation value of the nonsingular term is zero
for three-parton states in that sector.
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The solutions in [7] are orthogonal and vanish at xi ¼ 0,
so they should be a subset of the massive solutions
presented in the present note. Indeed, the lowest states

ϕ½7�
4 ð4; 2Þ and ϕ½7�

6 ð6; 4; 2Þ are identical with the eLCQ
solutions φ4−ð4; 0; 2Þ and φ6þð6; 0; 4; 0; 2Þ including the

masses.15 At r ¼ 4 the equivalency is ϕ½7�
4 ðn1; n2Þ ¼

φeLCQ
4− ðn1; 0; n2Þ. However, we find that some eLCQ states

(which are numerically virtually identical with
DLCQ results [21]) are not reproduced. This means that
the set of states described by [7], Eq. (4.13), is not
complete. In the six parton sector the situation is more
complicated. While some states of [7], Eq. (4.15),
coincide with eLCQ states, others do not match. Since
the former are orthogonal and vanish at the boundary, they
must violate some “internal” boundary condition, i.e., a
zero or extremal wave function on hyperplanes where
momentum fractions match, xi ¼ xj. Crossing such hyper-
planes one enters a different, redundant part of the
Hilbert space.
Needless to say, the eLCQ eigenfunctions pass a

numerical orthonormality check. Note that the first four
r ¼ 4 eigenvalues are pairwise degenerate, and yet their
wave functions are orthogonal. Hence, it looks like we have
all relevant symmetries taken care of.

V. SOLVING THE THEORY WITH A
BASIS-FUNCTION APPROACH

Now that we have a basis of asymptotic eigenstates
fjϕμ⃗ig, we use it to solve the full theory. We expand the
true eigenstates as linear combinations of asymptotic eigen-
states by diagonalizing the Hamiltonian in this asymptotic
basis, i.e., by solving the eigenvalue problem (Ĥ ≔ 2P̂þP̂−),
cf. Eq. (9)

hϕμ⃗jĤfulljϕν⃗i ¼ M2hϕμ⃗jϕν⃗i: ð25Þ

This is a finite matrix equation when the number of basis
states is cut off at Nϕ < ∞. Convergence is typically
exponential in the number of basis states used. Recall that
the parton sectors are coupled by the pair-production
interaction, so it will be convenient to limit the number of
states separately in each parton sector so that

P
r Nϕ;r ¼ Nϕ.

To compute the matrix elements in the asymptotic basis,
we need the Hamiltonian in a basis of single-particle
momentum eigenstates fjx⃗ig, Eq. (19), where fermionic
operators act on a conventional vacuum state. We can easily
compute the matrix elements in such a momentum base
from the mode expansions, Eq. (6). The relevant operators
are the contractions, the parton-conserving interactions,
and the parton-number violating term

hx⃗jĤrenjy⃗i ¼
2g2N
π

Xr¼r0

j¼1

Z
yj

0

dp
ðyj −pÞ2 δðx⃗− y⃗Þ ¼ 2g2N

π

Xr¼r0

j¼1

Z
xj

0

dp
ðxj −pÞ2 δðx⃗− y⃗Þ;

hx⃗jĤPCjy⃗i ¼
g2N
π

Xr0
i¼1

Xr

j¼1

ð−1Þðrþ1Þðiþj−2Þ
�

1

ðxi þ xiþ1Þðyj þ yjþ1Þ
−

1

ðxi − yjÞ2
�
δðxi þ xiþ1 − yj − yjþ1Þδðx⃗i;Sp − y⃗j;SpÞ;

hx⃗; r0jĤ−
PVjy⃗; ri ¼ −

g2N
π

Xr0
i¼1

Xr
j¼1

δðy⃗j;Sp − x⃗i;SpÞ
��

1

ðyjþ2 þ yjþ1Þ2
−

1

ðyj þ yjþ1Þ2
�
δrr0þ2

δðyj þ yjþ1 þ yjþ2 − xiÞ

×

�
1

ðxiþ2 þ xiþ1Þ2
−

1

ðxi þ xiþ1Þ2
�
δrþ2
r0 δðxi þ xiþ1 þ xiþ2 − yjÞ

�
;

where xSp; ySp are spectator momenta. The matrix elements
do not contain a summation over in- or outgoing momenta.
This summation/integration appearing in the integral equa-
tion is a consequence of the action of the Hamiltonian
on the states jΦi, leading to the appearance of the wave
functions ϕðk⃗Þ ¼ hk⃗jΦi. Note that the nonsingular term is
written manifestly symmetric in in- and outgoing momenta.
Then

hϕμ⃗jĤfulljϕν⃗i ¼
Z
uHS

dx⃗
Z
uHS

dy⃗hϕμ⃗jx⃗ihx⃗jĤfulljy⃗ihy⃗jϕν⃗i;

ð26Þ

where we conventionally integrate over “the”Hilbert space,
i.e., one unique Hilbert space cell each. Owing to the
symmetry structure of the theory, we can minimize the
numerical effort by rewriting this integral. Paradoxically,
we do better if we enlarge the domain, because we can
subsume the cyclic permutations. In the end, we will be
able to write the eigenvalue problem of the adjoint theory in
the same form as the fundamental problem [16]. Inciden-
tally, ‘t Hooft used the “trick” of writing the Hamiltonian as

15See [21] where the massive(massless) wave functions are
labeled with φðϕÞ.
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a scalar product to show that it is Hermitian, not to tame the
singularity; the latter is of importance to us.
To proceed it is salutary to distinguish the Hamiltonian

matrix element proportional to

X
ij

δðxi þ xiþ1 − yj − yjþ1Þδðx⃗Sp;i − y⃗Sp;jÞ
ðxi − yjÞ2

from the wave function part (dropping the μ; ν vector signs
to simplify notation)

½ϕðx⃗Þ − ϕðy⃗Þ�μν ≔
1

2
½ϕμðx⃗Þ − ϕμðy⃗Þ�½ϕνðx⃗Þ − ϕνðy⃗Þ�; ð27Þ

which does not carry i, j indices, i.e., is not part of the
cyclic permutations. Confusingly, the eigenfunctions them-
selves are sums over all permutations g∈G and are affected
by the delta-function variable substitutions. The point is
that the enlarging of the integral domain affects only the
matrix elements, not the wave functions. To wit

Z
uHS

dx⃗
Z
uHS

dy⃗
X
ij

½ϕðx⃗Þ−ϕðy⃗Þ�μν
ðxi − yjÞ2

Δij

¼
Z
uHS

dx⃗
Z
uHS

dy⃗
½ϕðx⃗Þ−ϕðy⃗Þ�μν

ðx1 − y1Þ2
Δ11 þ

Z
uHS

dx⃗
Z
uHS

dy⃗
½ϕðx⃗Þ−ϕðy⃗Þ�μν

ðx1 − y2Þ2
Δ12 þ

Z
uHS

dx⃗
Z
uHS

dy⃗
½ϕðx⃗Þ−ϕðy⃗Þ�μν

ðx1 − y3Þ2
Δ13 þ…

¼
Z
uHS

dx⃗
Z
uHS

dy⃗
½ϕðx⃗Þ−ϕðy⃗Þ�μν

ðx1 − y1Þ2
Δ11 þ

Z
uHS

dx⃗
Z
CuHS

���� ∂y⃗
∂y⃗0

����dy⃗0 ½ϕðx⃗Þ−ϕðy⃗0Þ�μν
ðx1 − y02Þ2

Δ0
12 þ…

¼
Z
cHS

dx⃗
Z
cHS

dy⃗
½ϕðx⃗Þ−ϕðy⃗Þ�μν

ðx1 − y1Þ2
Δ11;

were we have defined

Δij ≔ δðxi þ xiþ1 − yj − yjþ1Þδðx⃗Sp;i − y⃗Sp;jÞ;
Δ0

ij ≔ δðxi þ xiþ1 − y0j − y0jþ1Þδðx⃗Sp;i − y⃗0Sp;jÞ;

and the union of all unique Hilbert space cells connected to
the first one (x1 ≤ xi ∀ i ≠ 1) by one of the r − 1 cyclic
permutations

cHS ≔ uHS ∪ CðuHSÞ ∪ C2ðuHSÞ þ… ∪ Cr−1ðuHSÞ:

In the derivation, we have used
R
gðuHSÞ dx⃗fðx⃗Þ ¼R

uHS dx⃗fðg−1x⃗Þ, cf. Eq. (21) and ðC−1y⃗0Þkþ1 ¼ y0k. Finally,
ϕrðx⃗0Þ ¼ ϕrðCjx⃗Þ ¼ ð−1Þðrþ1Þjϕrðx⃗Þ, and the Jacobian of
the transformation induced by the cyclic permutation

xi ¼ x0iþ1 ∀ i < r − 1; xr−1 ¼ 1 −
Xr−1
j

x0j ð28Þ

is

���� ∂x⃗
∂x⃗0

���� ¼
���� ∂ðx1; x2;…; xr−1Þ
∂ðx01; x02;…; x0r−1Þ

���� ¼ ð−1Þrþ1:

In other words, we are performing a coordinate trans-
formation y⃗ → y⃗0 ¼ Cy⃗, in which the integral domain gets
mapped uHS → uHS0 ¼ CuHS, and the effect of the
inverse of Eq. (28) is to bring down the index of the
momentum fractions. Apparently, there are two ways to

interpret the integral
R
CuHS j ∂y⃗∂y⃗0 jdy⃗0: either with rather

complicated boundaries in the original variables y⃗, or as
an almost trivial copy with yj → yjþ1 in the new variables,
in which y1 does not appear explicitly. Note that this works
only with cyclic permutations Ck, under which the
Hamiltonian is explicitly symmetrized.16

This means that instead of summing explicitly over in-
and out-permutations, we can simply push the integral
limits to include them, i.e., integrate over the union cHS. As
an added bonus this simplifies the integral limits, and the
associated cell volume is

Z
cHS

dx⃗¼
Z

1

0

dx1
Yr−1
j¼2

Z
1−
P

j−1
k¼1

xk

0

dxj

≕
Z

1

0

dx1

Z
1−x1

0

dx2

Z
dr−3x⃗Sp ¼

1

ðr− 1Þ! : ð29Þ

Recasting this in the notation of Ref. [16] (ϕμ ≕ψ ;ϕν≕φ),
the generalization of the ’t Hooft trick, i.e., Eq. (27) of [16],
reads

hψ jĤφi

¼1

2

Z
cHS

dx⃗
Z
cHS

dy⃗
½ψ�ðx⃗Þ−ψ�ðy⃗Þ�½φðx⃗Þ−φðy⃗Þ�

ðx1−y1Þ2
���� y2¼x1þx2−y1
y3¼x3 ;y4¼x4 ;…

:

16There is no quantum (symmetry) number C!
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This is remarkable, because it allows us to treat the
much more involved adjoint theory on the same footing
as the fundamental theory. We can now evaluate the matrix
elements. We shift this technical work to the Appendix A to
focus on the results, i.e., the eigensolutions of Eq. (25).

VI. RESULTS AND INSIGHTS

Contrary to DLCQ, in eLCQwe have to labor to evaluate
matrix elements, but then the hard work is done: we have a
Hamiltonian matrix of modest dimensions (a few hundred
rows and columns at most), and if we separate its salient
parts (singular, regular, mass, pair creation), we can
assemble the full Hamiltonian at will to study dependence
on parameters and importance of interaction. While this is a
typical numerical study, we can also look at the matrix
elements themselves, and get insights as to which part of
the Hamiltonian the bound state mass comes from for
different states, and what the interplay between states or
role of sets of states is.
In the latter realm are the following results. The mass of

the lowest state (a three-parton fermion) is entirely created
by the parton-diagonal, regular interaction. In fact, we show
in Appendix B 3 that the regular matrix element for all
states with vanishing excitation numbers ν⃗ ¼ 0⃗ is

h0r−1jP̂−
PC;nsj0r−1i ¼

g2N
π

rðr − 1Þ: ð30Þ

We will see below that these states are typically insensitive
to parton-number mixing. Modifications to the mass value
in Eq. (30) come from mixing within the same parton
sector. But the only massless states of the (asymptotic)
theory are fermionic and appear at alternating Tstate, so in
the TIS ¼ þþþ sectors, since all statelets have to have
the same sign. Because the three-parton state receives just a

small correction ΔM2 ¼ 5.7 g2N
π and there is no massless

five-parton state, and the massless r ¼ 7 parton state

receives a large regular correction of ΔM2 ≈ rðr − 1Þ g2Nπ ,
the lowest (three-parton) state is basically protected against
mixing due to the large mass differences of the states.
Let us take a look at the numerical results. We should

first check convergence. As expected, convergence without
pair creation is very good. In the isolated, fixed parton-
number sectors we reach percent accuracy with ten states or
less, at least for the lowest states. On the other hand,
convergence with parton number is problematic in the
massless sectors of the theory. Figure 1 shows that the
ground state has well, the first excited state somewhat
converged by the time the seven(eight) parton sector has
been included in the fermionic(bosonic) sectors. The higher
states have sizable contributions from higher parton sectors,
although some of the higher bosonic masses seem pretty
well converged by r ¼ 8. This is what we predicted in
Sec. IVA, where we found that the lowest asymptotic
fermionic states have masses independent of parton num-
ber, whereas the masses of their bosonic counterparts grow
linearly with r, suppressing mixing.
Things look quite differently in the massive theory,

Fig. 3(a). At the supersymmetric point m ¼ g2N
π , most

masses have converged after three parton sectors have
been included. Apparently, it is energetically expensive to
create parton pairs, and the asymptotic spectrum is a good
approximation of the full solution.

A. The massless theory

Just how important is pair creation in the massless
theory? If we plot masses as a function of the parton-
number violation parameter ε, where the asymptotic(full)
theory has ε ¼ 0ð1Þ, Fig. 2, we see that some states’masses
are quite insensitive, while others depend substantially on
ε. In fact, there seems to be a cascade of ε-dependent states.
These states are impure in parton number, and intriguingly
some of them have been identified previously [3,14]
as threshold bound states, i.e., multiparticle states. For

FIG. 1. Bound state masses (squared) as a function of the (maximal) inverse parton number 1=r in the (a) massless fermionic Ts− and
the (b) massless bosonic Tsþ sector.
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instance, the second lowest bosonic state in Fig. 2, which
starts out (as depicted in the left portion of the graph) as a
four-parton state, has a 19%, 57%, 17%, 2% probability to
be a 2, 4, 6, 8 parton state. The pattern continues at higher
masses. It seems thus that there are two types of states. It is
not clear what mechanism is at work to protect the pure
states by heavily mixing the impure states. It could be that
the impure states decouple from the rest of the spectrum in
the large parton limit or, in DLCQ, in the continuum limit.
It would be interesting to apply eLCQ to the bosonized
theory to see whether the approximate multiparticle states
decouple (as in: they are present in [15] only because the
continuum limit has not been taken), or whether they are a
genuine part of the theory.
Judging from the results at hand, eLCQ has limited

capabilities to contribute positively to the debate about the
massless theory. That said, it does provide evidence that the
massless theory has a very different spectrum because its
asymptotic eigenstates are in crucial aspects different from
their massive counterparts. As we will see later, eLCQ also
points to a problem of other approaches with the massless
theory: due to its singularities it becomes near impossible to
produce accurate, quantitative results with a simple, rigid
IR regulator such as DLCQ.

B. The massive theory and the supersymmetric point

The massive theory’s spectrum is quite different from its
massless counterpart which may shed some light on the
controversy as to whether the massless theory is screening
or confining [2,3]. Note that we argue here from a basis
function point of view. This may seem naive, but keep in
mind that it is the physics (e.g., representation of fields) that
determines the “boundary conditions” and therefore the
appropriate set of basis states.
In the massive regime, all excitation numbers are even

integers; the odd excitation numbers of the bosonic massless

states would make it impossible to match fermionic and
bosonic mass eigenvalues. All massive eigenfunctions are
built form the same trig function, whereas in the massless
sectors they are opposite (sine goes with cosine in the adjacent
parton sector). Without this feature (following automatically
from the symmetry structure of the theory) a supersymmetric
point at μ ≔ m2π

g2N ¼ 1 would be impossible.
The massive sectors have the least symmetric states, i.e.,

most disjunct statelets, which makes computing matrix
elements expensive. On the positive side, the asymptotic
eigenstates are very good approximations to the full eigen-
states; the diagonal Hamiltonian matrix blocks (singular,
regular, mass terms) are dominated by their diagonal ele-
ments, whereas the pair-creation matrix elements are small.
Hence, there is very little coupling between sectors of
different parton number [observe the flatness of the eigen-
value trajectories in Fig. 3(a)], but also states with the same
parton number hardly mix. Note that this feature is mostly
independent of the mass of the fermions, as the singular and
regular blocks just depend on the symmetry quantum
numbers TIS, not on mass. In other words, there is a
noncontinuous difference between the massive and massless
theory, favoring a different (screening) behavior of the latter.
Can we understand this qualitatively? After all, we are

saying that a two-parton bosonic state yields the same
(diagonal) element as a three-parton fermionic state. We
consider the lowest states as the simplest case without loss
of generality, since we need to have one-to-one matching of
quasi-isolated states. From the singular, regular and mass
term contributions we gather 23.2þ 0þ 6.2μ ¼ 29.8 as a
crude estimate for the lowest two-parton mass in units
g2N=π (true: 26.7), whereas for the three-parton state we
have 14.4þ 3.7þ 11.3μ ¼ 29.4, so this agrees pretty well.
Both masses are evaluated at the supersymmetric point,
μ ¼ 1. The mechanism behind this “adjustment” of sin-
gular, regular and mass contributions is not obvious.

FIG. 2. Bound state masses (squared) as a function of the parton-number violation parameter ε in the (a) massless fermionic Ts− and
the (b) massless bosonic Tsþ sector; the eigenvalue trajectories in the massive sectors are essentially horizontal lines.
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Consider that in order to obtain the matrix elements, we
integrate a single-variable sine over a one-dimensional
domain vs a sin πðn1x1 þ n2x2Þ over a much more com-
plicated domain.17 Of course, supersymmetry guarantees
this degeneracy of fermion and boson masses, as shown in
Ref. [7] by using the supersymmetric generator18 G0.
Nonetheless, it is amusing to watch this unfold numeri-
cally—even though it is the equivalent of showing (by
group theory) that the product two rotations around two
different axes is always a rotation.
Overall, eLCQworkswell for themassive theory. To a fair

approximation the asymptotic states describe the solutions
of the full theory, and the supersymmetric degeneracy of
boson and fermion bound-state masses is reproduced.

VII. DISCUSSION AND CONCLUSION

In this work we presented a complementary calculation
of the spectrum of two-dimensioal adjoint QCD. By using a
basis-function approach based on the asymptotic spectrum
of the theory generated via the eLCQ algorithm, we work in
the (momentum) continuum limit. The Achilles heel of the
method is the relatively small number of parton sectors in
which the Hamiltonian matrix elements can be calculated—
at least by brute force methods. Leveraging the insights
gained in the construction of the complete asymptotic
eigenfunction spectrum, we understand that this is not a
problem in the massive theorym > 0, where pair creation is
unimportant. In the massless theory we find states whose

asymptotic masses are independent of parton number. We
therefore expect the generic eigenstate in this sector to have
substantial contributions from all parton sectors. As first
noticed in [8], this is not the case for the lowest states; they
are pure in parton number. This can be understood via
eLCQ from the severe constraints of possible excitation
numbers allowed by the symmetries of the theory. These
symmetries explain the properties of the lowest states in
remarkable detail, allowing for a good estimate of the
masses, even though naively the asymptotic approximation
is good for high excitation numbers. As we pointed out in
Sec. III, one does not know a priori whether the expansion
of full eigenfunctions in the asymptotic basis is converging
fast enough to be of practical use. We believe we have
shown that convergence is good overall—except for the
higher states in the massless sectors. To put things in
perspective, consider that the most important aspect of the
constructed (asymptotic) basis is that it is manifestly
compliant with all symmetries of the theory. Indeed, it is
our finding that the asymptotic wave functions are a very
good approximation of the full wave functions even for the
lowest bound states in the massless sectors, whereas the
eigenvalues are quite off. This is no contradiction but a
statement that the contributions to the bound-state masses
of the nonasymptotic terms (regular parton-diagonal term
and correct treatment of integral domains, i.e., parton
momenta) are important. For instance, the ground state
of massless QCD2A stems from the asymptotically massless
in the fermionic r ¼ 3, Ts odd sector, which acquires a
mass of rðr − 1Þg2N=π through the regular term of AðkiÞ,
Eq. (7). Its mass (squared) is pushed down by the other
three-parton Ts odd states to 5.707g2N=π. Including
interactions with the other available parton sectors

FIG. 3. (a) Convergence and comparison of fermionic (left) and bosonic (right) eigenvalues at the supersymmetric point (m ¼ g2N
π or

μ ¼ 1) as a function of inverse parton number 1=r. Discrepancy of corresponding eigenvalues is at most 1.5%. (b) Comparison of DLCQ
and eLCQ bound state masses (squared) in the asymptotic massive six parton sector with Tþ and μ ¼ 4. DLCQ results are dots plotted
as a function of inverse harmonic resolution 1=K; eLCQ results appear as squares at infinite resolution. Linear fits (dashed lines) to the
DLCQ masses at highest K agree well with eLCQ. Quadratic fits to data up to K ¼ 24 lead to unreasonable results, even though the
behavior of the lowest three mass trajectories appears consistent.

17Technically, it is the product of two such sines, but we
use trig identities.

18Note that G0 acts on operators not the wave function, so we
need the same trig function in supersymmetric partner sectors.
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(r ¼ 5; 7) results in a small additional lowering of the mass
to 5.696g2N=π. Still, even with all corrections included, the
ground state has a 99% probability of being in the lowest
asymptotic state, i.e., a three-parton state!.
Overall, our results are in fair agreement with previous

DLCQ-based work [3,14]. This shows that discretization or
compactification of the theory yields qualitatively correct
results, even if accuracy of bound-state masses becomes an
issue. Note that in DLCQ(eLCQ) mass trajectories increase
(decrease) as one approaches the continuum(infinite parton
number) limit. In this light, it is concerning that there is a
discrepancy even in the ground state mass

M2
F0 ¼ 5.72jDLCQ

g2N
π

≥ 5.70jeLCQ
g2N
π

:

After completing this work, we appreciate the great
advantage of DLCQ to consistently (if coarsely at available
K) approximating all states, which results in a faithful
representation of the underlying algebraic structure. This is
paramount for representation theory analyses [3,4], and
barring any improvements on the eLCQ approach, might be
more important than accurately describing the eigenstates
at low parton number. If the advantages of the two methods
could be combined, one would have a powerful tool to
analyze low-dimensional field theories!
In the meantime, one should beware the pitfalls in both

approaches. Take a look at Fig. 3 depicting the masses of
six-parton states when one neglects pair creation but
includes all other interactions. Note that this is in the
massive theory, so the former is actually a good approxi-
mation even in eLCQ. In Fig. 3 the DLCQ continuum limit
cannot be taken if one has data only forK < 26. The lowest
states do not split off until a crucial resolution is reached;
for higher states this resolution is obviously higher. In fact,
at r ¼ 7, the condition has worsened to the point that this
split (and hence the possibility of extrapolation) does not
happen until one is forced to use sparse matrix methods
(roughly 10,000 states at K ≥ 41). Note that these large
resolutions are not possible when all parton sectors are
included. Figure 3 also shows that eLCQ does get it right.
Its limitation is that it essentially stops working at nine
partons due to the exponentially growing numbers of terms
in the Hamiltonian and statelets.
As mentioned, the conclusions of [3,4] do not depend on

the precise masses, but rather on the consistent, qualitative
features of the spectrum and the relations (degeneracies)
across different sectors of the theory. For eLCQ one might
think of going to higher parton sectors by stochastically
sampling statelets and terms.
Let us briefly discuss potential problems of discretized

approaches at finite resolution—which are surprisingly
benign as far as we can tell from comparing eLCQ and
DLCQ results. To expose problems, we consider a hybrid
method, where we take a DLCQ Hamiltonian matrix and

sandwich it between eLCQ continuous asymptotic eigen-
functions. One then finds that there is a crucial discrepancy
between the matrix elements computed in the two schemes.
The hybrid method fools us into diagnosing a linear
convergence in 1=K of the matrix elements toward a much
smaller value than the (correct) one obtained analytically via
the eLCQ algorithm. We can trace the dominant contribu-
tions to the matrix elements to integrals of the formR
1
0 cosðπðn0 − n3ÞxÞSiðπn1xÞdx in which one of the incom-
ing excitation numbers ni is equal to the outgoing n0. These
expressions result from similar integrals in the function
IPNVðx1; y1Þ, see appendix, which is diverging whenever
y1 ¼ 0, while its integral over y1 has only isolated diver-
gences that will eventually cancel. It is clear, that any
numerical integration—let alone a multidimensional
one—will have poor outcomes. It is surprising that these
issues with matrix elements in DLCQ do not have more
severe consequences. It must be that there is a partial
cancellation of errors which likely stems from the highest
virtue of DLCQ: consistent approximations in all parton
sectors.
In conclusion, the application of the eLCQ algorithm to

QCD2A generates a continuous (at fixed parton number)
method to compute the spectrum of the theory. It is
complementary to discretized approaches, and validates
certain findings within these frameworks. While working
in the continuum allows us to address some issues
with using the light-cone gauge in a discretized formu-
lation [2], problems connected to the Hamiltonian itself
are beyond the scope of the present work. Since eLCQ is
limited to small parton numbers, it would be interesting to
apply it to the bosonized version of QCD2A, where the
effective parton number is essentially halved. It is not
clear if this is feasible due to the symmetries being
compromised by the Kac-Moody commutator. In general,
however, one should be able with the present approach to
figure out more easily which (formulations of) theories
result in eigenstates pure in parton number, and for which
pair production is crucial.
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APPENDIX A: EVALUATING MATRIX
ELEMENTS I—GENERAL METHOD

We now apply the results of Sec. V, i.e., the enlarged
integral domain, to evaluating the matrix elements for
arbitrary parton number r with the spectator variables
x⃗Sp and y⃗Sp. We start with
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hμ⃗rjĤ0jν⃗ri ¼
Z
cHS

dx⃗
Z
cHS

dy⃗ δðx1 þ x2 − y1 − y2Þδr−3ðx⃗Sp − y⃗SpÞ
½ϕðx⃗Þ − ϕðy⃗Þ�μν

ðx1 − y1Þ2

¼
Z

1

0

dx1

Z
1−x1

0

dx2

Z
dr−3x⃗Sp

Z
x1þx2

0

dy1
½ϕðx⃗Þ − ϕðy⃗Þ�μν

ðx1 − y1Þ2
����y2¼x1þx2−y1

y⃗Sp¼x⃗Sp

; ðA1Þ

where the upper limit on the last integral follows from y2 ≥ 0 and indices and vector signs of excitation numbers have been
suppressed on the right. To split off the noninteracting partons (spectators), we have to commit to the actual form of our
eigenfunctions, cf. Eq. (22)

ϕIþ;ν⃗ ¼ N
X
g∈G

cos ðπgν⃗ · x⃗Þ or ϕI−;ν⃗ ¼ N
X
g∈G

sin ðπgν⃗ · x⃗Þ:

To simplify notation, call ðgνÞi ≡ ni, and use the sum-to-product trig identities to split off the spectator variables x⃗Sp and y⃗Sp
in the double difference ½ϕðx⃗Þ − ϕðy⃗Þ�μν, Eq. (27). This leads to

½ϕðx⃗Þ − ϕðy⃗Þ�þμν ¼
1

2
½fcosðπðm1x1 þm2x2ÞÞ − cosðπðm1y1 þm2y2ÞÞg cosðπm⃗ · x⃗SpÞ

− fsinðπðm1x1 þm2x2ÞÞ − sinðπðm1y1 þm2y2ÞÞg sinðπm⃗ · x⃗SpÞ�
× ½fcosðπðn1x1 þ n2x2ÞÞ − cosðπðn1y1 þ n2y2ÞÞg cosðπn⃗ · x⃗SpÞ
− fsinðπðn1x1 þ n2x2ÞÞ − sinðπðn1y1 þ n2y2ÞÞg sinðπn⃗ · x⃗SpÞ�;

and similar for ϕI−, where we set x⃗Sp ¼ y⃗Sp due to the second delta function in Eq. (A1). So we get four terms for Iþ (and
similar for I−)

½ϕðx⃗Þ − ϕðy⃗Þ�þμν ¼ D00
μ̄ ν̄ cosðπm⃗ · x⃗SpÞ cosðπn⃗ · x⃗SpÞ −D01

μ̄ ν̄ cosðπm⃗ · x⃗SpÞ sinðπn⃗ · x⃗SpÞ
−D10

μ̄ ν̄ sinðπm⃗ · x⃗SpÞ cosðπn⃗ · x⃗SpÞ þD11
μ̄ ν̄ sinðπm⃗ · x⃗SpÞ sinðπn⃗ · x⃗SpÞ

where the double differences are defined as

D00
μ̄ ν̄ðx1; x2; y1Þ ≔

1

2
fcosðπðm1x1 þm2x2ÞÞ − cosðπðm1y1 þm2y2ÞÞg

× fcosðπðn1x1 þ n2x2ÞÞ − cosðπðn1y1 þ n2y2ÞÞg;

D01
μ̄ ν̄ðx1; x2; y1Þ ≔

1

2
fcosðπðm1x1 þm2x2ÞÞ − cosðπðm1y1 þm2y2ÞÞg

× fsinðπðn1x1 þ n2x2ÞÞ − sinðπðn1y1 þ n2y2ÞÞg; ðA2Þ

etc., and μ̄ ν̄ is short for m1, m2, n1, n2. Recall y2 ¼ x1 þ x2 − y1. Analytically integrating over x⃗Sp is straightforward if
tedious for large r. We label the results as follows

Fab−
mn ðx1; x2Þ ≔

Z
dr−3x⃗Sp sina ðπm⃗ · x⃗SpÞ sinb ðπn⃗ · x⃗SpÞ; ðA3Þ

where a; b∈ f0; 1g, sin0 ¼ cos, sin1 ¼ sin, and the integral is implicitly defined in Eq. (29). Note that F01−
mn ¼ F10−

nm . Letting
Fabþ
mn ðx1; x2Þ ¼ ð−1ÞaþbF1−a;1−b−

mn ðx1; x2Þ, we are left with the three-dimensional integral

hμ⃗rjĤ0jν⃗ri� ¼
X

gin;gout ∈G

X1
a;b¼0

Z
1

0

dx1

Z
1−x1

0

dx2F
1−a;1−b�
ðm⃗;n⃗ÞSp ðx1; x2Þ

Z
x1þx2

0

dy
Dab

μ̄ ν̄ðx1; x2; yÞ
ðx1 − yÞ2 : ðA4Þ

To evaluate the matrix element, we first integrate over the momentum y exchanged between the interacting partons for
various trig function combinations
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Ĩþ;−;0
y ðx1; x2Þ ≔

Z
x1þx2

0

dy
D00;11;01

μ̄ ν̄ ðx1; x2; yÞ
ðx1 − yÞ2

To properly treat the singularities, the integrals are to be taken with the prescription

Z
1

0

dx1

Z
1−x1

0

dx2

Z
x1þx2

0

dy ≔ lim
ϵ→0

Z
1

0

dx1

Z
1−x1

0

dx2

�Z
x1−ϵ

0

dyþ
Z

x1þx2

x1þϵ
dy

�
:

In total we have in the Iþ sector with m� ≔ m1 −m2 � ðn1 − n2Þ

Ĩþy ¼ −
1

x2
½cosðπm1ðx1 þ x2ÞÞ cosðπn1ðx1 þ x2ÞÞ þ cosðπðm1x1 þm2x2ÞÞ cosðπðn1x1 þ n2x2ÞÞ

− cosðπðm1x1 þm2x2ÞÞ cosðπn1ðx1 þ x2ÞÞ − cosðπðn1x1 þ n2x2ÞÞ cosðπm1ðx1 þ x2ÞÞ�

−
1

x1
½cosðπm2ðx1 þ x2ÞÞ cosðπn2ðx1 þ x2ÞÞ þ cosðπðm1x1 þm2x2ÞÞ cosðπðn1x1 þ n2x2ÞÞ

− cosðπðm1x1 þm2x2ÞÞ cosðπn2ðx1 þ x2ÞÞ − cosðπðn1x1 þ n2x2ÞÞ cosðπm2ðx1 þ x2ÞÞ�
−
π

2
fmþ sinðπððm1 þ n1Þx1 þ ðm2 þ n2Þx2ÞÞ½Ciðπjmþjx2Þ − Ciðπjmþjx1Þ�

þm− sinðπððm1 − n1Þx1 þ ðm2 − n2Þx2ÞÞ½Ciðπjm−jx2Þ − Ciðπjm−jx1Þ�g
− πðn1 − n2Þ cosðπðm1x1 þm2x2ÞÞ sinðπðn1x1 þ n2x2ÞÞ½Ciðπjn1 − n2jx2Þ − Ciðπjn1 − n2jx1Þ�
− πðm1 −m2Þ cosðπðn1x1 þ n2x2ÞÞ sinðπðm1x1 þm2x2ÞÞ½Ciðπjm1 −m2jx2Þ − Ciðπjm1 −m2jx1Þ�
−
π

2
fπmþ cosðπððm1 þ n1Þx1 þ ðm2 þ n2Þx2ÞÞ½Siðπmþx2Þ þ Siðπmþx1Þ�

þm− cosðπððm1 − n1Þx1 þ ðm2 − n2Þx2ÞÞ½Siðπm−x2Þ þ Siðπm−x1Þ�g
− πðn1 − n2Þ cosðπðm1x1 þm2x2ÞÞ cosðπðn1x1 þ n2x2ÞÞ½Siðπðn1 − n2Þx2Þ þ Siðπðn1 − n2Þx1Þ�
− πðm1 −m2Þ cosðπðn1x1 þ n2x2ÞÞ cosðπðm1x1 þm2x2ÞÞ½Siðπðm1 −m2Þx2Þ þ Siðπðm1 −m2Þx1Þ�

and similar for Ĩ−ðx1; x2Þ and Ĩ0ðx1; x2Þ. We then assemble
the full matrix elements by combining the Ĩyðx1; x2Þ
functions with the spectator functions Fab

mnðx1; x2Þ. The
result are functions of x1, x2 which involve powers, trig
functions, and logarithms.
Before we categorize and integrate those in the next

section, we point out that Eq. (A1) contains a redundancy
which will allow us to save at least a factor of two in
numerical effort. Namely, due to the fact that xr does
not explicitly appear yet is present in the formalism
(we went to great lengths in Sec. V to keep it out of
calculations), we can replace the integral over xr−1 with
an integral over xr (same limits). This means that
sandwiching the Hamiltonian between statelets that are
cyclically rotated (on both in and out sides) such that xr−1
and xr are permuted will yield the same result. For
instance,

hμ; 0jĤjν; r − 1i ¼ hμ; 0jĤCr−1jν; 0i ¼ hμ; 0jCr−1Ĥjν; 0i
¼ hμ; r − 1jĤjν; 0i;

where jν; ji is the jth statelet of the state characterized by
the excitation tuplet ν.

APPENDIX B: EVALUATING MATRIX
ELEMENTS II—INTEGRALS

All matrix elements require us to integrate expressions of
the form

sinaðπm⃗ · x⃗Þsinbðπn⃗ · y⃗Þ
ðx1 � y1Þ2

over various domains of different dimensionality.19 All
singularities are integrable if the integrals are carefully
regulated and one evaluates only matrix elements between
bona fide asymptotic states. In particular, matrix elements
between statelets might still be singular, typically like ln ϵ

19For instance, in the parton-number violating interaction,
a one-dimensional x-integral is paired with a three-dimensional
y-integral.

SOLVING TWO-DIMENSIONAL ADJOINT QCD WITH A BASIS- … PHYS. REV. D 109, 016004 (2024)

016004-19



or ln ϵ̄, where the former is a spatial, the latter a excitation number regulator.20 The four fundamental categories of integrals
we encounter are

Z
dx xn sinsðπkxÞ;

Z
dx xn SiSðπqxÞ;

Z
dx xn sinsðπkxÞ ln x;

Z
dx xn sinsðπkxÞSiSðπqxÞ;

where s ¼ 0ð1Þ denotes a cosðsinÞ and S ¼ 0ð1Þ is a CiðSiÞ. All matrix elements are linear combinations of integrals of
these types, e.g., part of the “singular” matrix element

Z
1

0

dx1 x
n1
1

Z
1−x1

0

dx2 x
n2
2 sinsðπðk1x1 þ k2x2ÞÞSiSðπqx2Þ: ðB1Þ

This makes sense, since integrating a double pole will lead to a single pole or a sine or cosine integral SiS, while integrating
again will turn the single pole into a logarithm (worst case). The powers of x are generated by spectator integrals in the
higher parton sectors if two excitation numbers are equal or opposite. We sketch the specific evaluations for singular,
regular, and parton-number violating interactions in the following subsections.

1. Fundamental integrals

We need the following results

Z
xn sinðπðaþ kxÞÞdx ¼

� Xn=2þ1

j¼1

ð−1Þj
ðπkÞ2j−1

n!
ðn − 2jþ 2Þ! x

n−2jþ2

�
cosðπðaþ kxÞÞ

þ
� Xðnþ1Þ=2

j¼1

ð−1Þjþ1

ðπkÞ2j
n!

ðn − 2jþ 1Þ! x
n−2jþ1

�
sinðπðaþ kxÞÞ

≕AnðxÞ cosðπðaþ kxÞÞ þ BnðxÞ sinðπðaþ kxÞÞ ðB2Þ

Z
xn cosðπðaþ kxÞÞdx ¼ −AnðxÞ sinðπðaþ kxÞÞ þ BnðxÞ cosðπðaþ kxÞÞ; ðB3Þ

where An≕
Pn=2þ1

j¼1 anjxn−2jþ2, etc.. These expressions have to be evaluated at the limits (L ≔ 1 −
P

t
i¼1 xi; 0) for some

integer t so that

Z
L

0

xn sinðπðaþ kxÞÞdx ¼ AnðLÞ cosðπðaþ kLÞÞ − an;n=2þ1ð0Þ cosðπaÞ

þ BnðLÞ sinðπðaþ kLÞÞ − bn;ðnþ1Þ=2ð0Þ sinðπaÞ;

where

an;n=2þ1ð0Þ ¼
n!ð−1Þn=2þ1

ðπkÞnþ1
; bn;nþ1

2
ð0Þ ¼ −

n!ð−1Þnþ1
2

ðπkÞnþ1
:

Note that at the lower limit there is at most one (constant) term, since j has to be such that the exponent of x is zero.

20For example, we write CiðπkxÞ as CiðπkϵÞ for x → 0 and as Ciðπϵ̄xÞ for k → 0.
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For the second type of integrals we have (x̃1 ≔ 1 − x1, δ̄nm ≔ 1 − δnm)

Z
x̃1

0

xnSiðπqxÞdx ¼ 1

nþ 1

�
x̃nþ1
1 Siðπqx̃1Þ þ

x̃n1
πq

ðcosðπqx̃1Þ − δn0Þ −
nδ̄n0
πq

Z
x̃1

0

xn−1 cosðπqxÞdx
�

Z
x̃1

0

xnCiðπqxÞdx ¼ δ̄q0
nþ 1

�
x̃nþ1
1 Ciðπqx̃1Þ −

x̃n1
πq

sinðπqx̃1Þ þ
nδ̄n0
πq

Z
x̃1

0

xn−1 sinðπqxÞdx
�

þ δq0
nþ 1

�
γ þ ln πϵ̄þ ln x̃1 −

1

nþ 1

�
x̃nþ1
1 :

The third type of integrals can be written recursively as (k ≠ 0)

Z
x̃1

0

dx xn sinðπkxÞ ln x ¼ LðnÞ
s ðx̃1Þ þ

n
πk

Z
x̃1

0

xn−1 cosðπkxÞ ln x
Z

x̃1

0

dx xn cosðπkxÞ ln x ¼ LðnÞ
c ðx̃1Þ −

n
πk

Z
x̃1

0

xn−1 sinðπkxÞ ln x; ðB4Þ

with the “rest” functions

LðnÞ
s ðx̃1Þ ¼ −

x̃n1
πk

½ln x̃1 cosðπkx̃1Þ − δn0ðCiðπkx̃1Þ − γ − ln πkÞ� þ δ̄n0

�
x̃n−11

ðπkÞ2 sinðπkx̃1Þ −
ðn − 1Þδ̄n1
ðπkÞ2

Z
x̃1

0

xn−2 sinðπkxÞdx
�

LðnÞ
c ðx̃1Þ ¼

x̃n1
πk

½ln x̃1 sinðπkx̃1Þ − δn0Siðπkx̃1Þ� þ δ̄n0

�
x̃n−11

ðπkÞ2 ðcosðπkx̃1Þ − δn1Þ −
ðn − 1Þδ̄n1
ðπkÞ2

Z
x̃1

0

xn−2 cosðπkxÞdx
�
:

Converting into sums yields

Z
x̃1

0

dx xn sinsðπkxÞ ln x ¼ δ̄k0
Xn=2
j¼0

n!
ðn − 2jÞ!

ð−1Þj
ðπkÞ2j

�
Lðn−2jÞ
s − ð−1Þs n − 2j

πk
Lðn−2j−1Þ
1−s

�
:

The last integral category is handled in the next subsection as part of an example for the calculation of matrix elements.

2. Singular matrix elements

For “singular” matrix elements one employs the enlarged integral domain of Sec. V which complicates the numerator of
the integrals, i.e., requires more algebraic effort, but does not add to the list of integrals. Nonetheless, evaluation is very
cumbersome, as one can see from computing the generic integral(s) Eq. (B1) ∀ n1; n2 ≥ 0; k1; k2; q∈Z as well as

s; S∈ f0; 1g. We can write the inner integral recursively as in Eq. (B4) where the “rest” functions RðnÞ
jJ ðx̃1Þ (replacing the

LðnÞ
j ) are

2πkRðnÞ
sS ðx̃1Þ ¼ −2x̃n1 cosðπkx̃1ÞSiðπqx̃1Þ �

X
∓

δ̄k�qfδn0Siðπðk ∓ qÞx̃1Þ þ δ̄n0Γ∓ðx̃1Þg

2πkRðnÞ
cS ðx̃1Þ ¼ 2x̃n1 sinðπkx̃1ÞSiðπqx̃1Þ − ðδkq − δk−qÞ

�
δ̄n0
n
þ δn0 ln x̃1

�
x̃n1




∓ X
∓

δ̄k�qfδn0½Ciðπjk ∓ qjx̃1Þ − γ − lnðπjk ∓ qjÞ� þ δ̄n0Γ̄∓ðx̃1Þg

RðnÞ
sC ðx̃1Þ ¼ δq0

�
ðγ þ lnðπϵ̄ÞÞ

Z
x̃1

0

xn sinðπkxÞdxþ
Z

x̃1

0

xn sinðπkxÞ ln x dx
�

þ δ̄q0
2πk

	
−2x̃n1 cosðπkx̃1ÞCiðπqx̃1Þ þ ðδkq þ δk−qÞ

�
δ̄n0
n
þ δn0 ln x̃1

�
x̃n1




þ
X
∓

δ̄k�qfδn0 x̃n1½Ciðπjk ∓ qjx̃1Þ − γ − lnðπjk ∓ qjÞ� þ δ̄n0Γ̄∓ðx̃1Þg
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RðnÞ
cC ðx̃1Þ ¼ δq0

�
ðγ þ lnðπϵ̄ÞÞ

Z
x̃1

0

xn cosðπkxÞdxþ
Z

x̃1

0

xn cosðπkxÞ ln xdx
�

þ δ̄q0
2πk

	
2x̃n1 sinðπkx̃1ÞCiðπqx̃1Þ −

X
∓

δ̄k�qfδn0Siðπðk ∓ qÞx̃1Þ − δ̄n0Γ∓ðx̃1Þ


;

where

Γ∓ðx̃1Þ ≔
x̃n−11

πðk ∓ qÞ ðcosðπðk ∓ qÞx̃1Þ − δn1Þ −
ðn − 1Þδ̄n1
πðk ∓ qÞ

Z
x̃1

0

xn−2 cosðπðk ∓ qÞxÞdx;

Γ̄∓ðx̃1Þ ≔
x̃n−11

πðk ∓ qÞ sinðπðk ∓ qÞx̃1Þ −
ðn − 1Þδ̄n1
πðk ∓ qÞ

Z
x̃1

0

xn−2 sinðπðk ∓ qÞxÞdx:

The integrals in these expressions are sums of powers of x̃1 and trig functions, Eqs. (B2) and (B3), plus integrals with an
additional logarithm. In other words, integrals of categories one and three. Then

Z
x̃1

0

dx xn sinsðπkxÞSiSðπqxÞ ¼ δ̄k0
Xn=2
j¼0

n!
ðn − 2jÞ!

ð−1Þj
ðπkÞ2j

�
Rðn−2jÞ
sS − ð−Þs n − 2j

πk
Rðn−2j−1Þ
1−s;S

�
þ δk0δ

s
0

Z
x̃1

0

dx xnSiSðπqxÞ:

With the inner integral evaluated, we can now use

Z
1

0

xn1 sinsðπk1x1Þfð1 − x1Þdx1 ¼
Xn
p¼0

ð−1Þk1þsþp

�
n

p

�Z
1

0

x̃p1 sinsðπk1x̃1Þfðx̃1Þdx̃1

and the occasional trig identity to write our integral (B1) as a linear combination of the four categorized integrals above.

3. Regular matrix elements

By comparison, the regular parton-number conserving interaction is easy to deal with, since the term looks like

g2N
πðx1 þ x2Þ2

Z
x1þx2

0

dyϕðy; x1 þ x2 − y; x3;…xbÞ:

It is easy to see that the term vanishes for r ¼ 2. The general result (r > 3) is essentially the integral

Z
x1þx2

0

dy sinsðπðn1 − n2ÞyÞ ¼ ð−1Þs
�

1

πðn1 − n2Þ
sin1−sðπðn1 − n2Þðx1 þ x2ÞÞ − δs0

�
:

The projection integral is cumbersome since we pick up the factor 1
ðx1þx2Þ2 which becomes part of the x1 and x2 integrations

and is singular at the lower limit. As before, we assume the spectator momenta have been separated and integrated out,
producing linear combinations of polynomials and sinusoidals of x1 and x2, such that the arising types of integrals are
limited to

Z
1

0

dx1

Z
1−x1

0

dx2
sinsðπðk1x1 þ k2x2Þ

ðx1 þ x2Þn
; n ¼ 0; 1; 2; ki ∈Z:

Note that the asymptotically massless fermionic states j0r−1i have a regular matrix element h0r−1jĤPCj0r−1i that is easily
calculated due to

Z
1

0

dx1

Z
1−x1

0

dx2
1

x1 þ x2

Z
1−x1−x2

0

dx3 � � �
Z

1−
P

r−2
j

xi

0

dxr−1 ¼
1

ðr − 2Þ! :
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The norm for these constant states is the square-root of the inverse integration volume r!, so we obtain Eq. (30), which leads,
as pointed out above, to a good estimate for the ground state masses in the fermionic sectors.

4. Parton-number violating matrix elements

The calculation of the parton-number violating matrix elements involves integrals similar to the regular matrix elements
of Appendix B 3. To wit, for incoming cosines we have

Z
1

0

dx1

Z
1

0

dy1

Z
1−y1

0

dy2

Z
1−y1−y2

0

dy3cosðπm1x1Þcosðπðn1y1þn2y2þn3y3ÞÞ
�

1

ðy1þy2Þ2
−

1

ðy2þy3Þ2
�
δðx1−y1−y2−y3Þ

¼
Z

1

0

dx1cosπm1x1

Z
x1

0

dy1½IPNV;1cðx1;y1Þ−IPNV;2cðx1;y1Þ�;

where

Iðn2¼n3Þ
PNV;1c ðx1; y1Þ ≔ cosðπðn3x1 þ ðn1 − n3Þy1ÞÞ

�
1

y1
−

1

x1

�
ðB5Þ

Iðn2≠n3ÞPNV;1cðx1; y1Þ ≔
cosðπðn3x1 þ ðn1 − n3Þy1ÞÞ

y1
−
cosðπðn2x1 þ ðn1 − n2Þy1ÞÞ

x1
− πðn2 − n3Þ

× fcosðπððn2 − n1Þy1 − n3x1ÞÞ½Siðπðn2 − n3Þx1Þ − Siðπðn2 − n3Þy1Þ�
− sinðπððn2 − n1Þy1 − n3x1ÞÞ½Ciðπðn2 − n3Þx1Þ − Ciðπðn2 − n3Þy1Þ�g

Iðn2≠n3ÞPNV;2cðx1; y1Þ ≔
1

πðn3 − n2Þ
sinðπðn3x1 þ ðn1 − n3Þy1ÞÞ

ðx1 − y1Þ2
þ ðn2 ↔ n3Þ ðB6Þ

Iðn2¼n3Þ
PNV;2c ðx1; y1Þ ≔

cosðπðn3x1 þ ðn1 − n3Þy1ÞÞ
x1 − y1

. ðB7Þ

The next step is the y1 integration which yields

Z
x1

ϵ
Iðn2¼n3;n1≠n3Þ
PNV;1c dy1 ¼

1

πðn1 − n3Þ
sinðπn3x1Þ − sinðπn1x1Þ

x1
− sinðπn3x1ÞSiðπðn1 − n3Þx1Þ

þ cosðπn3x1Þ½Ciðπðn1 − n3Þx1Þ − Ciðπðn1 − n3ÞϵÞ�Z
x1

ϵ
Iðn2¼n3;n1¼n3Þ
PNV;1c dy1 ¼ cosðπn3x1Þ½ln x1 − ln ϵ − 1�

Z
x1

ϵ
Iðn2≠n3;n2≠n1ÞPNV;1c dy1 ¼ δn1n3 cosðπn3x1Þ½ln x1 − ln ϵ� − δ̄n1n3fsinðπn3x1ÞSiðπðn1 − n3Þx1Þ

− cosðπn3x1Þ½Ciðπðn1 − n3Þx1Þ − Ciðπðn1 − n3ÞϵÞ�g þ
sinðπn1x1Þ − sinðπn2x1Þ

πðn2 − n1Þx1
− πðn2 − n3Þ

�
Siðπðn2 − n3Þx1Þ

πðn2 − n1Þ
½sinðπðn2 − n1 − n3Þx1Þ − sinðπn3x1Þ�

− IcSðx1; n2 − n1; n2 − n3;−n3x1Þ þ
Ciðπðn2 − n3Þx1Þ

πðn2 − n1Þ
½cosðπðn2 − n1 − n3Þx1Þ − cosðπn3x1Þ�

þ IsCðx1; n2 − n1; n2 − n3;−n3x1Þ
�

Z
x1

ϵ
Iðn2≠n3;n2¼n1Þ
PNV;1c dy1 ¼ cosðπn3x1Þ½Ciðπðn1 − n3Þx1Þ − Ciðπðn1 − n3ÞϵÞ� − sinðπn3x1ÞSiðπðn1 − n3Þx1Þ − cosðπn2x1Þ

þ cosðπn3x1Þ½cosðπðn2 − n3Þx1Þ − 1� − sinðπn3x1Þ sinðπðn2 − n3Þx1Þ;
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where

IsSðk; q; bÞ ¼
Z

x

0

sinsðπðkx0 þ bÞÞSiSðπqx0Þdx0:

The contributions from the second terms, Eqs. (B6) and (B7), are similar, but only contribute when n1 ≠ n3. Incidentally, a
multidimensional numerical integration might have trouble converging, since one integrates divergent functions in
intermediate steps. For incoming sine wave functions we obtain similar results.
From the expressions it is clear that the final integration over x1 can be expressed in terms of definite integrals of the four

types discussed above. The simplest are21

DcCðk; qÞ ≔
Z

1

0

cosðπkxÞCiðπqxÞdx ¼ δ̄k0
2πk

½Siðπðk − qÞÞ þ Siðπðkþ qÞÞ� þ δk0CiðπqÞ

DsSðk; qÞ ≔
Z

1

0

sinðπkxÞSiðπqxÞdx ¼ δ̄k0
2πk

½Siðπðk − qÞÞ − Siðπðkþ qÞÞ þ 2ð−ÞkSiðπqÞ�

DcSðk; qÞ ≔
Z

1

0

cosðπkxÞSiðπqxÞdx ¼ δ̄k0
2πk

�
Ciðπjk − qjÞ − Ciðπjkþ qjÞ− ln

���� k − q
kþ q

����
�
þ δk0

�
SiðπqÞ þ ð−1Þq − 1

πq

�

DsCðk; qÞ ≔
Z

1

0

sinðπkxÞCiðπqxÞdx ¼ 1 − δk0
2πk

�
Ciðπjk − qjÞ þ Ciðπjkþ qjÞ−2CiðπjqjÞð−1Þk − ln

���� k
2

q2
− 1

����
�
:

Note that DcCð0; q → 0Þ ¼ γ þ lnðπqÞ − 1 is divergent, whereas

DsCðk; 0Þ ¼
1

πk
½CiðπjkjÞ − ln jkj − ð−1Þkðγ þ ln πÞ − ln qðð−1Þk − 1Þ�

is finite only for even k.

5. Mass term matrix elements

The mass term matrix elements are dramatically simplified by using the union of all unique Hilbert spaces, cHS, as the
integration domain, see Sec. V. They read

hμ⃗jĤmjν⃗i ¼
m2

2

Z
1

0

dx1
x1

Z
1−x1

0

dx2 � � �
Z

1−
P

r−1
i

xi

0

dxr−1 sinIðπμ⃗ · x⃗ÞsinIðπν⃗ · x⃗Þ;

where I is the I quantum number of the sector, sin−1 ¼ sin, and sinþ1 ¼ cos.

21We have to be careful at the lower limit here, and use limϵ→0

R
1
ϵ whence, e.g.,

lim
ϵ→0

Ciðπðk − qÞϵÞ þ Ciðπðkþ qÞϵÞ − 2CiðπqϵÞ cosðπkϵÞ ¼ − ln

���� k
2

q2
− 1

����:
Dropping the ϵ2 term, the cosine does not change sign with k, unlike its counterpart at the upper limit. Note that we are assuming
k; q∈Z and that expressions for identical arguments have to be worked out separately.
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