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We revisit kinetic relaxation and soliton/boson star nucleation in fuzzy scalar dark matter featuring short-
ranged self-interactions Hint ¼ −λjψ j4=2m2, alongside gravitational self-interactions. We map out the full
curve of nucleation timescale for both repulsive (λ < 0) and attractive (λ > 0) short-ranged self-interaction
strength and in doing so reveal two new points. Firstly, besides the two usual terms, ∝ G2 and ∝ λ2, in the
total relaxation rate Γrelax, there is an additional cross term ∝ Gλ arising due to interference between
gravitational and short-ranged self-interaction scattering amplitudes. This yields a critical repulsive
interaction strength λcr ≃ −2πGm2=v20, at which the relaxation rate is smallest and serves as the transition
point between typical net attractive self-interaction (λ≳ λcr) and net repulsive self-interaction (−λ≳ −λcr).
Secondly, while in the net attractive regime, nucleation timescale is similar to inverse relaxation timescale
τnuc ∼ Γ−1

relax; in the net repulsive regime, nucleation occurs at a delayed time τnuc ∼ ðλ=λcrÞΓ−1
relax. We

confirm our analytical understanding by performing 3D field simulations with varying average mass
density ρ̄, box size L and grid size N.

DOI: 10.1103/PhysRevD.109.016002

I. INTRODUCTION

Understanding the nature of dark matter (DM) is one of
the main quests of modern cosmology. It could be multi-
faceted in the sense that there are many degrees of freedom
in the whole dark sector, for instance the string theory
axiverse [1–3] or other confined sector(s) (e.g. see [4,5] and
also [6]). Or it could be that there is a dominant degree of
freedom, such as the QCD axion [7–12], that comprises all
(or most) of the dark matter. Furthermore, while the DM
appears to interact only gravitationally with the Standard
Model degrees of freedom (or very weakly if it does
otherwise), it can still have appreciable nongravitational
self-interactions (nGSI) besides the usual gravitational self-
interactions (GSI). Such is the case even for the above
mentioned examples.
For bosonic particles (of any integer spin) and high

enough occupation numbers, which is indeed the case for
particle masses below a few eV, classical description of the

associated field suffices and the dynamics is described by a
nonlinear Schrödinger equation in the nonrelativistic
regime. The nonlinear Schrödinger equation entails novel
wave dynamics owing to the de Broglie scale becoming
manifestly important. As a few examples, suppression of
structure on small scales [13,14], turbulence [15], super-
radiance [16], vortices [17], bound states called solitons/
Bose stars [17–29], interference patterns [29–31], field
correlation scales depending upon the nature of self-
interaction [32], etc. For comprehensive recent reviews
in the case of scalar DM, see [33–35].
Of particular interest to us in this paper is the phenome-

non of kinetic relaxation and associated nucleation of Bose
stars within a bath of DM waves [36–44]. The term
“kinetic” implies two key aspects: (a) The self-interactions
in the field are small, allowing wave modes to freely evolve
(at leading order) with the nonrelativistic dispersion rela-
tion ωk ¼ k2=2m. This enables a kinetic treatment of the
mode occupation number function; (b) the size of the “box”
(∼ the size of a DM halo for practical purposes) is much
larger than the typical fluctuation scale ldB ∼ π=k̄ ∼
π=ðmv0Þ in the bath of DM waves. The process of kinetic
relaxation is attributed to these self-interactions of the DM
field which, although small, over large timescales τrelax ≫
ω−1
k̄

drive the occupation number function to develop
increasing support toward smaller wave numbers k → 0.
See [36,43] for a relevant discussion for the cases of
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pointlike quartic self-interactions and gravitational self-
interactions, respectively. Once enough particles condense
into lower momentum states, their collective net attractive
self-interaction becomes strong enough to counterbalance
their wave pressure resulting in the nucleation of a
Bose star.
In this paper, we focus on investigating kinetic relaxation

and subsequent Bose star nucleation for a single scalar
Schrödinger field with both GSI and pointlike quartic
nGSI. Employing wave-kinetic Boltzmann analysis and
3D simulations, we demonstrate the presence of a pre-
viously overlooked cross term ∝ Gλ in the rate of relax-
ation Γrelax. (Here G denotes Newton’s constant and λ
represents the pointlike nGSI strength.) It arises due to
interference between the gravitational and pointlike self-
interaction scattering amplitudes. The presence of this
cross term gives rise to a critical nGSI (repulsive) strength
λcr ≃ −ð2πGÞm2=v20, at which the rate of relaxation
reaches its minimum value (corresponding to maximum
nucleation time). This critical value also serves as the
transition point from typical net (contributions from both
gravity and short-ranged self-interactions) attractive to
repulsive self-interactions.
Because of the presence of gravitational self-interaction,

kinetic relaxation is generally accompanied with nucleation
of spatially localized clumps/Bose stars, with their nucle-
ation times dependent on the nature of the short-ranged
self-interactions—attractive or repulsive. For λ≳ λcr, the
net typical self-interaction is attractive, and nucleation
happens quickly after relaxation. On the other hand, for
λ≲ λcr, the net typical self-interaction is repulsive and
nucleation gets delayed. We will study relaxation and
nucleation of Bose stars and also discuss their eventual
fate.1 However we will not dwell into a careful analysis of
the growth rate of these nucleated stars. See [45–47] for the
gravity-only (λ ¼ 0) case.
The rest of the paper is organized as follows: Starting

with the basic model of fuzzy scalar DM carrying both GSI
and pointlike nGSI in Sec. II, we describe the associated
wave-kinetic Boltzmann equation for the evolution of the
occupation number function in Sec. III. Highlighting the
presence of the cross term (that gives rise to λcr), we
estimate the total rate of kinetic relaxation or condensa-
tion. In Sec. IV we discuss the two cases of λ≳ λcr and
−λ≳ −λcr and write down the associated nucleation
timescales of spatially localized bound objects. In
Sec. V we discuss our 3D simulations and compare our
analytical estimates with them. We also discuss eventual
behavior of Bose clumps observed in simulations. Finally

in Sec. VI, we summarize our work and also compare
our results with the existing literature on this subject.
In Appendix A we discuss statistical convergence of
our simulations, and in Appendix B we discuss a pecu-
liarity observed in the case of repulsive short-ranged
self-interactions, over longer timescales as compared to
nucleation.
Conventions. Unless stated otherwise, we will work in

units where ℏ ¼ c ¼ 1.

II. MODEL

Ignoring Hubble flow (for we are interested in suffi-
ciently subhorizon dynamics), the evolution of the cold or
nonrelativistic fuzzy scalar dark matter with both GSI and
short-ranged quartic nGSI can be described using mean
field theory. The dark matter field ψ obeys the following
nonlinear Schrödinger (Gross-Pitaevskii) equation:

i
∂

∂t
ψ ¼ −

1

2m
∇2ψ þ ψ

�
4πGm2∇−2

=0 −
λ

m2

�
ψ�ψ : ð1Þ

Here G is the Newton’s constant, and λ is the pointlike
self-interaction strength. In our convention, λ > 0 and
λ < 0 dictate attractive and repulsive self-interaction,
respectively. To obtain the form Eq. (1), we have plugged
the self-gravitational potential, Φ¼ 4πG∇−2ðmψ�ψ − ρ̄Þ≡
4πGm∇−2

=0ψ
�ψ , in the usual Schrödinger-Poisson system of

equations. The ∇−2
=0 denotes exclusion of the homogeneous

part of the number density field ψ�ψ . In Fourier space with
the decomposition ψðx; tÞ ¼ ð2πÞ−3 R dke−ik·xΨkðtÞ, the
Schrödinger equation becomes

iΨ̇k ¼
k2

2m
Ψk þ

Z
dp

ð2πÞ3
dq

ð2πÞ3
dl

ð2πÞ3 T k;p;q;lΨ�
pΨqΨl

× ð2πÞ3δð3Þðkþ p − q − lÞ; ð2Þ

where

T k;p;q;l ¼ −
4πGm2

jk − lj2 −
λ

m2
; ð3Þ

and it is understood that k ≠ l ≠ 0 in the above. For later
convenience, it is also useful to write down the Hamiltonian
density (in physical space) for the mean field ψ :

H ¼ 1

2m
j∇ψ j2 þmΦjψ j2 − λ

2m2
jψ j4: ð4Þ

Here the different terms in the above can be attributed
to the wave pressure Hwp ¼ j∇ψ j2=2m, gravitational self-
interaction Hgr ¼ mΦjψ j2, and short-ranged self-interac-
tion Hself ¼ −λjψ j4=2m2.

1Following conventional nomenclature, we shall use the words
relaxation and condensation interchangeably, but it is to be
stressed that nucleation (of a bound state) is not always equivalent
to relaxation or condensation. As we shall see, it is equivalent to
the other two in the net attractive regime, whereas different in the
net repulsive regime.
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The Gross-Pitaevskii (GP) equation, being nonlinear,
renders it difficult to analyze and study the evolution of the
ψ field in generality. However for the purposes of kinetic
relaxation leading to nucleation of localized Bose clumps,
wave-kinetic Boltzmann analysis can be performed which
we discuss next. To test and verify our analytical under-
standing, we perform 3D field simulations which we
discuss in a later section.

III. WAVE KINETICS AND RELAXATION

For kinetic relaxation in wave dynamics, we can study
the evolution of the mode occupation number function

fk ¼ jΨkj2=V (V is the volume), which is nothing but the
Fourier transform of the two-point volume-averaged field
correlator ζðx; tÞ ¼ V−1 R dyψ�ðy; tÞψðyþ x; tÞ. Under
random phase approximation with weak interactions, the
relevant wave-kinetic Boltzmann equation can be derived.
See for instance [48]. For a derivation for the general case
of arbitrary number of fields and two-body interactions, see
[43]. For the scalar case at hand, characterizing the
dependence of the occupation number functions on wave
numbers as fk=m, the wave-kinetic equation takes the
familiar form

∂fk=m
∂t

¼
Z

dp
ð2πÞ3 dσkþp→qþljv − ṽj½ðfk=m þ fp=mÞfq=mfl=m − ðfq=m þ fl=mÞfk=mfp=m�;

where dσkþp→qþl ¼ 1

2jv − ṽj
dq

ð2πÞ3
dl

ð2πÞ3 ðT k;p;q;l þ T k;p;l;qÞðT k;p;q;l þ T k;p;l;qÞ�

× ð2πÞ4δð3Þðkþ p − q − lÞδðEk þ Ep − Eq − ElÞ: ð5Þ

Here v ¼ k=m and ṽ ¼ p=m are the incoming “veloc-
ities” in the two-wave interaction, and the quantities in
the one-dimensional Dirac delta function are the free
wave energies Ek ¼ k2=2m. The quantity dσ is the
effective differential cross section. The cubic nature of
the terms in the right-hand side bracket (∼fxfyfz),
usually understood as Boltzmann enhancement terms,
arise due to the wave-mechanical nature of the system (1)
and are crucial for the phenomenon of Bose condensa-
tion. Last but not the least, it is the form of the differential
cross section that appears in the wave-kinetic equation,
∼jT j2, that is of utmost importance for our discussion.

The scattering amplitudes due to the different kinds of
two-body interactions (here gravity and pointlike self-
interactions) are added first and then squared: What
appears in the differential cross section is jT j2, where
T ¼ T G þ T λ [cf. Eq. (3)] and jT G þ T λj2 ≠ jT Gj2 þ
jT λj2 (since both T G ∝ −4πGm2 and T λ ¼ −λ=m2 are
real). This can be attributed to the wave-dynamical nature
of the GP system. The above equation (5), after integra-
tion over the Dirac deltas, can be rewritten in terms of the
incoming and outgoing relative velocities u ¼ un̂ and
u0 ¼ un̂0, respectively,2 by redefining p=m ¼ k=m − un̂
and q=m ¼ l=m − un̂0:

∂fv
∂t

¼ m3

Z
du

ð2πÞ3 dσu½ðfv þ fṽÞfṽ−wfvþw − ðfṽ−w þ fvþwÞfvfṽ�;

where dσ ¼ dΩn0

32π2m2

��
16πm2G
u2jn̂0 − n̂j2 þ λ

�
2

þ
�

16πm2G
u2jn̂0 þ n̂j2 þ λ

�
2

þ 2

�
16πm2G
u2jn̂0 − n̂j2 þ λ

��
16πm2G
u2jn̂0 þ n̂j2 þ λ

��
: ð6Þ

Let us briefly discuss the different terms in the differ-
ential cross section explicitly. Broadly speaking, there are
two types of interference terms that arise. One is the
interference between the t and u channels (relevant mainly
for the gravitational interaction), and the second is the
interference between the two different types of interactions
(gravitational and short-ranged). See Fig. 1 for a pictorial
representation.

For GSI-only (λ ¼ 0) case, the contribution from the t
and u channels are the first two terms ∝ G2jn̂0 − n̂j−4 and
∝ G2jn̂0 þ n̂j−4, whereas the second term ∝ G2jn̂0 −
n̂j−2jn̂0 þ n̂j−2 is due to their mutual interference (as also
discussed in [43]). Note that the sole contributions from the
t and u channels are identical: The full integral with the
jn̂0 þ n̂j−4 term is identical to that with the jn̂0 − n̂j−4 term.
The sole contributions give rise to the Rutherford scattering
cross section, carrying a logarithmic IR divergence (also
known as the Coulomb logarithm), while the interference
term becomes subdominant in the large log limit and
can be omitted.

2Note that the magnitude of the relative velocity does not
change in an elastic collision, i.e. juj ¼ ju0j≡ u.
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For nGSI-only (G ¼ 0) case, contributions from t and u
channels are identical to their mutual interference one and
go as λ2. This is simply due to the interaction being a
contact or point interaction.
Importantly when both of the interactions are present,

their respective scattering amplitudes (for either of the two
channels) are added first and then squared. All the terms
∝ Gλ, while giving identical contributions, characterize the
interference between the two types of interactions. Splitting
the contributions from GSI, nGSI, and their interference,
we have the following wave-kinetic Boltzmann equation:

∂fv
∂t

¼ CGSIþCcrossþCnGSI;

where CGSI¼
Λð4πGÞ2m5

4π
∇vi

�
1

2
∇vjfv

Z
dṽ

ð2πÞ3fṽ
δij− ûiûj

u

×fṽþfvfv

Z
dṽ

ð2πÞ3
ûi
u2

fṽ

�
;

Ccross¼
ð4πGÞλm3

4π

Z
dΩn

4π

duu2

2π2
dΩn0

4π

u
jwj2

× ½ðfvþfṽÞfvþwfṽ−w− ðfvþwþfṽ−wÞfvfṽ�;

CnGSI¼
λ2m
2π

Z
dΩn

4π

duu2

2π2
dΩn0

4π

×u½ðfvþfṽÞfvþwfṽ−w− ðfvþwþfṽ−wÞfvfṽ�:
ð7Þ

Here w ¼ uðn̂0 − n̂Þ=2, and Λ ¼ logðmv0LÞ is the afore-
mentioned Coulomb logarithm with v0 and L equal to

typical velocity and box size (or halo size for physical
considerations), respectively.While the cross term and nGSI
term follow straightforwardly from Eq. (6), the Rutherford
scattering collision term CGSI is obtained after an eikonal
approximation and was derived explicitly in [43]. Also see
[48,49] for the same equation for a scalar field.
Now in order to get a typical estimate for the total

relaxation rate Γrelax ≡ 1
fv

∂fv
∂t , we can replace different

quantities in the three collision terms with their appropriate
scalings. Replacing angular volume

R
dΩ → 4π, typical

relative velocity jn̂0−n̂j→ ffiffiffi
2

p
, velocity derivative ∇v →

1=v0, velocity integral
R
duun−1 → vn0=n, and finally the

occupation number function fv → ð2πÞ3=2ρ̄=ðm4v30Þ, the
total relaxation rate is parametrized as

Γrelax ≃ α1
ð4πGÞ2ρ̄2Λ
4m3v60

þ α12
ð4πGÞλρ̄2
m5v40

þ α2
λ2ρ̄2

m7v20
: ð8Þ

Our scaling of the occupation number is dictated by
Gaussian initial condition [see Eq. (12) ahead] which we
shall use to perform simulations, described in the next
section. In general, α1, α12, and α2 are positive Oð1Þ
coefficients that would depend on the specific initial
conditions. Equation (8) is our master formula for the
relaxation rate. The value of λ around which the relaxation
rate becomes smallest is easily estimated to be

λcr ¼ −β
2πGm2

v20
∼ 10−57

�
10−4

v0

�
2
�

m
10−5 eV

�
2

; ð9Þ

where β¼ α12=α2∼Oð1Þ, and the associated (minimum)
rate is3

ΓrelaxðλcrÞ ≃
ð4πGÞ2ρ̄2
4m3v60

�
α1Λ −

α212
α2

�
:

Notice that this critical value of λcr can also be
obtained from the GP equation (1) by balancing the
gravitational term with the self-interaction term together
with replacing the exchange momenta by its typical value
jk − lj2 ∼ 2ðmv0Þ2. This criticality marks the transition
point from attractive to repulsive net typical self-inter-
actions: For λ≳ λcr, typical interactions within the bath of
DM waves are attractive since typical T is negative,
whereas for −λ≳ −λcr they are repulsive since typical T
is positive.

IV. NUCLEATION AND BEHAVIOR OF SOLITONS

A. Nucleation

In general, the process of kinetic relaxation is charac-
terized by an increasing support of the occupation number

FIG. 1. Pictorial or Feynman graph representation of all the
terms appearing in the differential cross section in Eq. (6). The
total contribution to the interaction rate (left-hand side of the
equality) is the square of the sum of both gravitational amplitude
(top two graphs) and point self-interaction amplitude (bottom
graph ×2). For gravitational interaction, there are two distinct
channels (t and u). Their mutual interference, as compared to
their sole contributions, becomes subdominant in the large log
limit (leading to Rutherford scattering result). More importantly,
interference between scattering amplitudes of the two different
interactions matters. See main text for details.

3In the large Coulomb limit (relevant for realistic scenarios),
Λ ¼ logðmv0LÞ ≫ 1, and the rate is always positive.
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function fk at vanishing wave number. (For instance
see [36,43] for discussions of nGSI and GSI cases,
respectively). This implies increasing field correlation over
larger length scales with diminishing density fluctuations,
i.e. field homogenization. A heuristic understanding of the
subsequent nucleation of a spatially localized and bound
clump can perhaps be gained most easily from a particle
physics perspective, together with recalling that λcr also
marks the transition from typical net attractive self-inter-
action to typical net repulsive self-interaction. As particles
lose kinetic energy on account of self-interactions and
move toward smaller momenta (condensate state), there
comes a time when within some region the collective
net potential (due to both self-gravitational and short-
ranged interactions) becomes comparable to wave pressure.
The timescale of this process is nothing but the inverse
relaxation rate Eq. (8), which in the case of net attractive
self-potential λ≳ λcr leads to “immediate locking” of
such a region into a bound clump (having negative energy).
That is, τnuc ≃ Γ−1

relax. Strictly speaking, this can be taken as
a definition of τnuc with Γnuc ¼ Γrelax, in which case the
different α constant coefficients in the rate Eq. (8) are
understood as such.
On the other hand, for −λ≳ −λcr, relaxation cannot

immediately lead to nucleation of a localized bound clump.
This is because the net typical interaction is repulsive:
The collective self-potential within density fluctuation
regions is not binding yet. Over time though, more particles
get driven toward the condensate phase, and eventually
there arises a potential for a bound object to nucleate
(within which net gravity can now compensate for both
repulsive short-ranged interaction and wave pressure). This
gives τnuc > Γ−1

relax. In general, we can therefore write the
following:

τnuc ≃
1

Γrelax

�
1 λ≳ λcr;

hðλÞ −λ≳ −λcr;
ð10Þ

where hðλÞ is a threshold function (or the delay factor) that
relates nucleation times to relaxation rates. As mentioned
earlier, relaxation means field homogenization, and we
expect the rate at which the system relaxes to be compa-
rable to the rate at which density fluctuations decrease. The
delay factor can then be estimated as the ratio of typical
density fluctuation at relaxation to that at nucleation,
h ∼ δρrelax=δρnuc. While we expect this to be order unity
for net attractive case [first case of Eq. (10)], for large
repulsive strengths it should increase with increasing −λ.
Below, we estimate this scaling.
Consider a region of typical size ∼ðmv0Þ−1 where the

field would have “locked” itself into a bound configuration
upon relaxation or condensation, where the net potential
was binding. However this is not the case yet, and we may
balance the typical self-interaction energy density (mostly
due to short-ranged interactions) Hself ∼ −λδρ2relax=2m4,

with the wave pressure within Hwp ∼ v20δρrelax=2. This
gives δρrelax ∼m4v20=λ. As relaxation continues (meaning
more particles are driven toward low momenta state), the
value of both density fluctuations δρ and typical size of
fluctuation regions ðmvÞ−1 change. The former decreases
and the latter increases so as to maintainHself ∼Hwp. Then,
nucleation is expected to occur when gravity can compen-
sate for both the wave pressure and repulsive short-ranged
self-interaction. That is, we may balance (the magnitudes
of) all the three energy densities, Hwp ∼ v2nucδρnuc=2,
jHgrj ∼ 2πGδρ2nuc=ðmvnucÞ2, and Hself ∼ −λδρ2nuc=2m4, to
give δρnuc ∼m2v4nuc=ð4πGÞ and vnuc ∼ ð4πGm2=ð−λÞÞ1=2.
Eliminating vnuc from δρnuc gives the following estimate for
the delay factor:

hðλÞ ∼ δρrelax
δρnuc

→ α3

�
λ

λcr

�
: ð11Þ

Here we have inserted another constant coefficient α3 that
depends upon the initial conditions. Through simulations,
we will confirm our estimate Eq. (10) [together with
Eqs. (8) and (11)] and also extract the different α coef-
ficients for Gaussian initial conditions.

B. Eventual behavior

Once a spatially localized Bose clump or soliton emerges,
its subsequent evolution and long-term dynamics depends
on whether the short-ranged self-interactions are attractive
or repulsive. The full spectrum of such solitons is exten-
sively discussed in the literature. See e.g. [21,35,50,51].
To recapitulate some of the basic points that may suffice for
our purposes, consider the energy landscape for objects
of radius rs and mass Ms in the theory. Using Eq. (4), the
wave pressure energy, self-gravitational potential energy,
and short-ranged self-interaction potential energy are
Hwp ¼ aMs=ðm2r2sÞ,Hgr ¼ −bð4πGÞM2

s=ðrsÞ, andHself ¼
−cλM2

s=ðm4r3sÞ, respectively, with a, b, and c some positive
coefficients that depend upon the exact profile of the object.
The total energy is the sum of all three.

1. Attractive short-ranged interactions λ > 0

For this case, the energy vs radius curve (for a given
mass Ms) has a local minima that corresponds to quasi-
stable negative energy (bound) states/solitons. It is sepa-
rated from the runaway behavior toward small radii,
∼ − λ=r3s , by a barrier whose height decreases with increas-
ing Ms. The barrier disappears at a critical mass
Ms;crit ∝ ðλGÞ−1=2, beyond which the theory does not admit
any quasistable bound states anymore. Starting in the
kinetic regime and upon relaxation, a quasistable Bose
clump nucleates and starts to accrete mass from its
surroundings. Ultimately once it accumulates enough mass
such that the energy barrier gets sufficiently low, and/or it
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“breathes” rapidly enough so as to be able to probe beyond
the energy barrier, it “collapses.” This is because the region
now prefers to lower its energy by transitioning on the
runaway ∼r−3s curve. This is sometimes referred to as
“Bosenova” (owing to its analogy with a type II super-
nova). While subsequent evolution of the object beyond
this criticality requires a fully relativistic analysis and has
been pursued in the literature [52] (also see [53] for an
associated astrophysical phenomenology), the evolution
leading up to this criticality (and even beyond until the
wave pressure starts to become comparable to rest mass
energy) is well captured by the nonrelativistic treatment.
For large attractive strengths λ≳ −λcr, the barrier is less
significant and the object quickly collapses upon nuclea-
tion. In our simulations we indeed observe this phenome-
non (see Fig. 3 in Sec. V ahead).

2. Repulsive short-ranged interactions λ < 0

In the repulsive scenario there is no runaway domain
since the energy for low radii is now −λ=r3s > 0. This
renders the previous local minima stable (hence now
global minima), corresponding to bound soliton states.
The critical mass Ms;crit ∝ ð−λGÞ−1=2 serves as the tran-
sition point into the Thomas-Fermi regime [21,54,55].
This is where the mass of solitons gets large enough to
admit comparable amounts of self-gravitational and short-
ranged interaction energy densities, with gradient pressure
becoming subdominant. As a result, the radius starts to
approach a constant rs ∼

ffiffiffiffiffiffi
−λ

p
=ðm2

ffiffiffiffiffiffiffiffiffi
4πG

p Þ (with the
mass-dependent correction term dying out as ∼M−1

s ).
Up until the mass becomes sufficiently large where
GMs;relv ∼ rs and relativistic effects start to become
important (see [56,57]), the theory then admits a set
of “Chandrasekhar solitons” with masses ranging any-
where between Ms;crit and Ms;relv and radii approximately
around rs ∼

ffiffiffiffiffiffi
−λ

p
=ðm2

ffiffiffiffiffiffiffiffiffi
4πG

p Þ.4
Though the theory admits these stable Chandrasekhar

solitons, understanding their evolution and long-term
behavior within the bath of DM waves is crucial and
has been extensively studied in the literature. See [60–64]
for simulation setups using the fluid/Madelung equations
instead of the Schrödinger field equation for scalar wave
dark matter (with repulsive short-ranged self-interaction).
For our Fourier split simulation technique (which we
discuss in the next section), we find that over longer
timescales (after the nucleation of Bose clumps) the system
reaches some sort of criticality when high-frequency modes
(near cutoff) start to appear in the simulation box. This

leads to a breakdown of the simulation (along with the
disruption of the clump), visible in the form of a check-
erboardlike pattern. We present this peculiar artifact from
our simulations in Appendix B, although a detailed inves-
tigation of it is left for future work.

V. FIELD SIMULATIONS

To verify our analytical understanding of kinetic relax-
ation and associated nucleation of bound Bose stars, we
have carried out a large suite (∼500) of 3D simulations
of the GP system (1) with varying values of the
nGSI strength λ. We evolve the GP system (1) with the
following initial Gaussian function for the k-space
Schrödinger field:

V−1=2Ψk=m

����
t¼0

¼ eiθk=m
ffiffiffiffiffi
fv

p ����
t¼0

¼ eiθk=m
�ð2πÞ3=2ρ̄
mðmv0Þ3

e
− v2

2v2
0

�1=2
; ð12Þ

where θk=m are random phases, uniformly distributed in
ð0; 2πÞ, for every wave number k. Our numerical algo-
rithm is based on the well-known split Fourier technique
and pseudospectral method [15,65–69], and we have used
both PYTHON-based and MATLAB-based codes to generate
our simulation data.
As mentioned earlier, in order to be in the kinetic

regime we require (i) interactions to be tiny as compared
with the typical free wave evolution (occurring over
timescales ∼2=mv20) and (ii) the box size to be larger
than the typical field fluctuation scale πðmv0Þ−1.
Furthermore, we also impose the box size to be smaller
than the gravitational Jeans scale associated with a
incoherent bound halo lJ ∼ v0ðπ=Gρ̄Þ1=2, in order to avoid
its formation within our simulation box. In this sense, our
simulation box of a collection of DM waves with typical
fluctuation scale ∼πðmv0Þ−1 may be regarded as a region
within a DM halo. In summary we require the following to
hold true:

Kinetic regime∶ L ≫ πðmv0Þ−1 and Γrelax ≪ mv20=2;

sub Jeans scale∶ L < lJ ∼ v0ðπ=Gρ̄Þ1=2: ð13Þ

In our simulations, we work with dimensionless quan-
tities, for which purpose we set G ¼ 1=ð8πÞ and m ¼ 1.
More explicitly, one can rescale different quantities in the
fashion t → t=E, x → x=

ffiffiffiffiffiffiffi
mE

p
, ψ → ψE=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGm

p
and λ →

λE=ð8πGm3Þ to get Eq. (1) with both 8πG and m replaced
by unity. Here E is any reference energy scale in the
system (for instance E ¼ mv20=2). The discretization in
space is simply Δx ¼ L=ðNx − 1Þ, where L and N3

x are the
box size and number of grid points, respectively, and the

4The reason we call them “Chandrasekhar” solitons (also see
[58]) is because of the scaling of their maximum mass Ms;relv. It
behaves similarly to that of the Chandrasekhar limit for degen-
erate starsM ∝ G−3=2m−2 and can be attributed to the fact that the
Fermi pressure essentially gets replaced with repulsive short-
ranged self-interactions [21,54,55,59].
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time discretization isΔt ¼ 2πðΔxÞ2m=ð3ηÞwith η ≥ 1.5 In
the split Fourier technique, the field evolution is split into
a drift part, where it is evolved solely due to the gradient
term (free field evolution), and a kick part, where it is
evolved solely due to interactions. The Courant-
Friedrichs-Lewy condition ensures that the fastest process
in the dynamics is captured appropriately. Hence, the
fastest among the kick and drift processes, at any time
iteration, sets the time discretization Δt (e.g. see [68,69]
for details). In the kinetic regime, the time discretization is
always set by the free field evolution term ∼ðΔxÞ−2=2m
and, hence, by space discretization as given above.
In all of our simulations we set v0 ¼ 1=

ffiffiffi
2

p
and choose

the box size and average mass density such that we are deep
in the kinetic regime. Most of the simulations were
performed with L ¼ 40, L ¼ 45, and L ¼ 50 box sizes,
and the average mass densities were chosen to be small
enough such that the factor Γ−1

relaxmv20=2was at least as large
as ∼250, going all the way up to even ∼4500. For
robustness, we have performed simulations with different
grid sizes Nx ¼ f192; 216; 256g, scanning over different
λ=λcr values. We also performed simulations with Nx ¼
150 and Nx ¼ 300 to test convergence of our results (see
Appendix A).
To capture the formation of localized Bose clumps, we

keep track of the mass density in the box, radially averaged
(in k space) occupation number function fk, the associated
volume-averaged correlation function ζðrÞ, and the maxi-
mum mass density in the box ρmax.

6 Nucleation of a
localized clump can be characterized by a change of trend
of ρmax, wherein it starts to monotonically increase beyond
just the statistical fluctuations that happen over short
timescales. We record the corresponding times in all of
our simulations, both by direct inspection and statistical
methods such as moving average.7

In order to gauge the validity of our analytical estimate of
nucleation times [cf. Eq. (10) with Eq. (8)], and to extract
the different α coefficients, we split the dataset into two,
with λ ¼ −2πGm2=v20 being the splitting point. Below we
elaborate on the statistical analysis we performed in the two
regimes.

A. Net attractive interactions (λ≳ λcr)

In order to test the λ dependence of our estimate,
we construct the quantity rðλÞ ¼ logðmv0LÞðτnucð0Þ −
τnucðλÞÞ=2τnucðλÞ using Eqs. (8) and (10). This gets rid
of the ρ̄ and L dependence, giving

rðλÞ ¼ α12
α1

�
λv20

2πGm2

�
þ α2
2α1

�
λv20

2πGm2

�
2

:

Not only is the curve simple enough to do statistics with,
this way we can also combine all of our simulation data
(with different ρ̄ and L). The analogous quantity for
simulations is

r̂ðλÞ ¼
�hτ̂nucð0Þi − τ̂nucðλÞ

2hτ̂nucðλÞi
�
logðmv0LÞ;

where hats denote simulation data and angle brackets
denote averaging over all of the data (for a given λ value).
To extract the ratios α12=α1 and α2=α1 for the theory curve,
we construct the cost function

cost

�
α12
α1

;
α2
α1

�
¼

X∼λcr
λ

1

Nλ

XNλ

i¼1

�
r̂iðλÞ − rðλÞ

rðλÞ
�
2

ð14Þ

for least square fitting. Here Nλ is the number of different
simulations performed for a given λ value. Minimizing
this cost function then fetches the optimal values for
α12=α1 and α2=α1. For α1, we simply find the average of
τ̂nucð0Þ=τnucð0Þ, which we then use to get α12 and α2 from
the previous two ratios. For our Gaussian initial condition
(12), we found α1 ≃ 0.8, α12 ≃ 1.2, and α2 ≃ 1.2.

B. Net repulsive interactions (− λ≳ − λcr)
In this case, we expect nucleation to happen later than

relaxation, given by Eq. (10) with the delay factor hðλÞ in
Eq. (11). We can use the previous case relationship
τnucðλ≳ λcrÞ ≃ Γ−1

relax, to test the scaling of hðλÞ for the −λ≳
−λcr case. From simulations, we construct τ̂nucΓrelax with
the three α’s in the relaxation rate set to the ones obtained
above. We then perform least square fitting by constructing
the cost function similar to the previous case:

costðα3Þ ¼
X∼λcr
λ

1

Nλ

XNλ

i¼1

�
τ̂nucΓrelax − hðλÞ

hðλÞ
�
2

; ð15Þ

and minimizing it. For Gaussian initial conditions, we
found α3 ≃ 1.
With the above analysis and all four α values

obtained, the upper panel in Fig. 2 shows our main plot.
We plot τnucðλÞ [normalized by τnucð0Þ] as a function of
λðv20=2πGm2Þ:

5The η ≥ 1 makes sure that there is at least one time point in
between the full 2π rotation of the fastest oscillating mode
kmax ∼ 2π=Δx. Since any faithful dynamics of the system should
not be sensitive to high frequencies (corresponding to the box
discretization scale), η can even be smaller than unity. For all our
simulations, η is at least as big as unity.

6In all of our simulations, we confirm the behavior of fk, in
that it develops increasing support toward smaller k values, at
least up until nucleation.

7We note that this is not the only way to know whether a bound
clump has formed or not. For instance one can alternatively
construct an energy spectral function as in [37], to extract
the timescale when the function develops a support toward
negative ω.
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τnuc
τnuc;0

ðxÞ¼ 2α1ΛhðxÞ
2α1Λþ4α12xþα2x2

; x≡ λv20
2πGm2

; ð16Þ

along with our simulation data. Here Λ ¼ logðmv0LÞ is the
Coulomb logarithm, and hðxÞ is unity for x≳ −1 (right
upper panel in Fig. 2) while linearly increasing as −x≳ −1
(left upper panel in Fig. 2). Note that we have only plotted
one curve for L ¼ 50 (solid gray), since the dependence on
L is very mild and renders different curves for different
values of L practically on top of each other. The error bars
correspond to 1σ fluctuations (owing to random and
different initial condition for every simulation seed), with

different colors corresponding to three different box sizes
considered. In general, the agreement between analytical
estimates and simulations is evident. Let us highlight our
two main results: (a) The rising feature as λ goes from
positive to negative, with a peak occurring around
λ ≃ −2πGm2=v20 ≃ λcr, is a clear evidence of the interfer-
ence term in the relaxation rate. To represent the effect of
the interference term visually, we have also plotted a dotted
gray curve (in the upper right panel in Fig. 2), which is
equal to inverse of the relaxation rate with the interference
term dropped—that is, inverse of Eq. (8) with the term
∝ Gλ set to zero; (b) to the left of the peak and increasing

FIG. 2. Upper Panel: Our main figure showing the nucleation time τnuc (normalized by the gravity only case) as a function of short-
ranged self-interaction strength λ (normalized by the critical factor 2πGm2=v20). Solid gray curves are from the theory estimate Eq. (16)
(c.f. Eq. (10) with Eqs. (8) and (11), where the different α coefficients are obtained from least square fitting as described in the main text.
The different colored 1σ bars are from simulations (performed with Gaussian initial conditions (12), with box sizes L ¼ 36 (brown),
L ¼ 40 (pink), L ¼ 45 (magenta), and L ¼ 50 (blue), and varying average densities ρ̄. Here we have only plotted one theory curve for
L ¼ 50 (all curves for the four different box sizes lie practically on top of each other since the L dependence is quite mild). To show the
effect of the interference term in the relaxation rate and the delay factor in the nucleation time, we have also plotted dotted and dashed
gray curves. Respectively, these correspond to when the interference term from the relaxation rate is set to zero, and the delay factor in
the nucleation time scale is set to unity. This delay factor is only relevant in the λ≲ 2πGm2=v20 case, and the dashed gray curve in the left
panel is simply the extension of the main solid gray curve in the right panel. Bottom panel: Normalized ρmax (by their respective initial
values) vs time curves for six different λ values, highlighted by colored points in the upper panel. The points of ‘sudden’ rise correspond
to nucleation of respective localized Bose clumps.
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−λ, nucleation happens later than just the inverse relaxation
rate. The delay factor h and the relaxation rate Γrelax scale as
∼ − λ and λ2 (to leading order), respectively, resulting in the
scaling of the nucleation time as ð−λÞ−1 (and not λ−2) to
leading order. To highlight this, we have augmented the
upper left panel in Fig. 2 with just the relaxation time curve,
i.e. Γ−1

rel , shown in dashed gray. (This is nothing but the solid
gray curve on the right upper panel, extended toward the
left upper panel.)
The lower panel in Fig. 2 shows moving averaged ρmax

vs time curves for six simulations with different λ values.
The unambiguous “sudden” rise in ρmax marks the nucle-
ation of a localized object within which density grows
over time.8

As visual examples, in Fig. 3 we also present density
projection snapshots for six different λ values at later times,

showing the presence of nucleated Bose stars. For attractive
short-ranged self-interaction λ > 0, nucleated Bose clumps
eventually collapse into a Bosenova. This happens when it
reaches the critical mass where it can no longer remain
stable (see Sec. IV B).

VI. SUMMARY AND DISCUSSION

In this paper we have investigated kinetic relaxation
and associated nucleation times of Bose stars, in scalar
fuzzy dark matter with short-ranged two-body self-inter-
actions. Starting with the wave-kinetic Boltzmann equa-
tion for the mode occupation number function (which we
derived in an earlier work), we first highlighted the
presence of a cross or interference term ∝ Gλ in the rate
of relaxation Γrelax, alongside the usual two terms ∝ G2

and λ2 due to both gravitational and short-ranged self-
interaction individually. This is because of the wave-
mechanical nature of the system: The rate depends on
the total cross section, which is not just the sum of
individual cross sections due to the different processes.

FIG. 3. Density projection snapshots for six different λ values, at different times t̂ in the respective simulations. Upper panel: snapshots
for three λ values in the typical net attractive regime λ ≳ λcr ≃ −2πGm2=v20. In the rightmost snapshot, for λ ≈ 3λcr, the nucleated Bose
clump quickly collapses (within 5dt), shown in the smaller right corner image. Bottom panel: snapshots for three different λ values for
the other case of typical net repulsive self-interactions −λ≳ −λcr ≃ 2πGm2=v20.

8In all of our simulations, we have explicitly verified, by
visually tracking the simulation box, that this rising feature
indeed corresponds to appearance of an overdense region.
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Rather, the scattering amplitudes due to all the processes
must be added first, and then use its absolute square to get
the cross section and associated rate of relaxation or
condensation.
The presence of this cross term gives rise to a critical

repulsive self-interaction strength λcr ≈ −2πGm2=v20,
around which the typical net self-interaction (due to both
gravitational and short-ranged self-interaction), transitions
between being attractive and repulsive, and the relaxation
rate becomes smallest. Here k0 ¼ mv0 is the typical wave
mode present in the system initially.
For nucleation times as a function of λ, we found that

for the case of net attractive self-interaction λ≳ λcr,
nucleation happens quickly upon relaxation, giving
rise to the relationship τnuc ≃ Γ−1

relax. One the other hand,
for net repulsive self-interaction −λ≳ −λcr, nucleation is
delayed. This is because upon relaxation short-ranged
self-interaction dominates over gravitational self-interac-
tion, preventing nucleation of a bound object. Over time
as more particles are driven toward the condensate phase
(equivalently, as field correlation length scale increases
along with diminishing density fluctuations), a potential
arises for the formation of a bound region where gravity
can now overcome both the wave pressure and short-
ranged self-interaction. The associated delay factor rises
linearly with −λ, giving the nucleation timescale as
τnuc ≃ ðλ=λcrÞΓ−1

relax. In summary, Eq. (10) along with
Eq. (8) [with the delay factor give in Eq. (11)] is our
main analytical estimate for the nucleation timescale of
Bose stars, as a function of the short-ranged self-inter-
action strength λ.
To analyze this, we performed a large suit of 3þ 1-

dimensional simulations of the Schrödinger-Poisson or
Gross-Pitaevskii system [Eq. (1)], for many different
values of λ and different parameters such as the box size
L and average mass density ρ̄. All of our simulations were
carried out with Maxwell-Boltzmann distribution, with
random phases for each value of the wave mode k
[Eq. (12)]. Throughout most of our simulations, we kept
track of the max density in the box, occupation number
function fk (radially averaged fk in k space), the asso-
ciated correlation function ζðrÞ, and projected mass
density along some direction. By reading the times at
which ρmax starts to monotonically rise beyond just the
statistical fluctuations (together with making sure that a
localized over dense region does appear in the simulation
box around this time), we record the times of nucleation.
The upper panel in Fig. 2 presents the comparison
between simulations and analytical estimate. As exam-
ples, the figure is also appended (lower panel) with ρmax vs
time curves for six different λ values.
While in this paper we have not analyzed our simulation

data for the rate at which Bose stars accrete mass from their

surroundings, we kept track of the eventual behavior of
these objects (post nucleation), for many of our simula-
tions. For the attractive case (λ > 0), we confirmed that the
nucleated Bose stars eventually decay away. This is
expected since there exists a maximum critical mass
beyond which the star becomes unstable and collapses
into a Bosenova. For instance see upper right snapshot in
Fig. 3, when the nucleated star “immediately” collapses.
While the study of eventual dynamics and fate of such
regions requires a full relativistic treatment, field dynamics
up to this point is well described by the nonrelativistic GP
equation (e.g. see [52]).
For the repulsive case λ < 0, we found a peculiar decay

behavior. We find that the nucleated clump eventually (over
timescales longer than the nucleation time) reaches a type
of criticality at which point very high frequency modes,
passing through the clump and traveling along the three
directions of the simulation box, appear in the system. See
Appendix B for some discussion. This could be an artifact
of the periodic boundary conditions of the split-Fourier
simulation setup and, if so, brings into question its use to
study long-term dynamics of fuzzy dark matter with
repulsive short-ranged self-interactions via such simulation
setups. We leave a detailed investigation of this behavior
for a separate work.

A. Comparison with earlier work

Let us now compare our results with some of the earlier
work on the subject of kinetic nucleation of Bose stars.
First, our results encompass the result of [37] for the
gravity-only (λ ¼ 0) case and are even in very good
agreement with the order unity coefficient α1 in the rate
expression (besides the overall scaling with ρ̄, m, v0, L and
G), obtained for Gaussian initial condition. Upon inclusion
of short-ranged self-interaction (λ ≠ 0 case), our results
differ significantly from the existing literature [39–41].
First, we find that there exists an interference term ∝ Gλ in
the relaxation rate, which in fact is the leading-order
λ-dependent term when short-ranged self-interaction is
not dominating over gravitational self-interaction. Only
in the scenario when the former is dominant does the
relaxation rate go as λ2 to leading order. Secondly, the
nucleation timescale is not always equal to the inverse
relaxation rate. While for λ≳ λcr, nucleation timescale is
just the inverse relaxation rate, for the strong repulsive self-
interaction −λ≳ −λcr, nucleation time is delayed by an
extra factor of ðλ=λcrÞ. Therefore for the purposes of
nucleation of Bose stars, only in the case of strong attractive
short-ranged self-interaction, λ≳ −λcr, is it true that the
nucleation time goes as λ−2 to leading order. For in the
opposite case of strong repulsive short-ranged self-inter-
action, −λ≳ −λcr, the nucleation timescale goes as λ−1 to
leading order instead.
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B. Implications

Our results could have important implications in the
context of self-interacting fuzzy dark matter and various
interesting phenomenon that it entails. The appearance of
the interference term in the relaxation rate, and hence in
the nucleation timescale of boson stars, may modify
results for some of the phenomenon such as recurrent
axinovae [53] and destabilization of gravitational
atoms [70], among others.
In general, irrespective of the nature (attractive or

repulsive) of pointlike self-interaction, the interference
term becomes the leading-order λ-dependent term (and
hence extremely important), when jλj is at best compa-
rable to the critical value jλcrj. As an example, even for
the QCD axion we have λqcd=jλcrj ≃ 1.3ðv20m2

pl=f
2
aÞ,

hence becoming comparable to or less than jλcrj, in
cosmological environments with v0 ≲ ðfa=mplÞ ∼ 10−5.
For instance this could be important in the study of axion
miniclusters [71].
In this paper we have focused on kinetic nucleation via

both gravitational and short-ranged self-interactions for a
single scalar field. A natural generalization is to include
multiple scalar fields with naturally different masses and
four-point interactions, or a single spin-1 field including
density-density and spin-spin interactions [58,72], or even
multiple spin-1 fields with extra Yang-Mills interactions
[58], or a combination thereof. While there would neces-
sarily be interference terms ∝ Gλ, and we expect similar
scaling of nucleation timescales as presented in this work
(as a function of λ), a detailed analysis of such cases is left
for future work.9
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APPENDIX A: STATISTICAL CONVERGENCE

Here we show convergence and reliability of our
simulation results. Figure 4 compares the main theory
curve (in solid gray), with data points for the lower
(Nx ¼ 150) and higher (Nx ¼ 300) resolution grids, com-
pared to Nx ¼ 192, Nx ¼ 216 and Nx ¼ 256 used for our
results presented in the main text. See caption for details.

Convergence of our results is evident from this plot. Note
that this is not the usual convergence, where two or more
simulations with similar initial conditions are performed,
with different values of Δx and Δt. Rather, here we show a
“statistical convergence” of sorts. Also, since Δt ∝ ðΔxÞ2,
increasing grid size reduces both Δx and Δt.

APPENDIX B: PECULIAR APPEARANCE OF
HIGH-FREQUENCY MODES FOR THE

REPULSIVE CASE

In the case of repulsive short-ranged self-interaction
λ < 0, we find a peculiar behavior over long timescales
(later than nucleation). There starts to appear high-
frequency modes (near cutoff of the simulation box) that
pass through the clump and in all the three perpendicular

FIG. 4. Similar to the upper panel in Fig. 2, for simulations
performed with lower and higher resolution grids compared to the
ones used in the main text. With box size L ¼ 40, the 1σ bars
represent simulations performed using 1503 grid, while the solid
points are from simulations using 3003 grid. The solid gray
curves correspond to the analytical estimate Eq. (16) [cf. Eq. (10)
with Eqs. (8) and (11)], with the Oð1Þ α coefficients obtained
using simulations performed with grid sizes 1923, 2163, and 2563

as in the main text.

9We thank Benjamin Schussler for carrying out some prelimi-
nary simulations for the self-interacting vector case, confirming
the presence of the interference term in the relaxation rate.
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directions of the box. This leads to disruption of the
simulation (manifesting in the form of checkerboardlike
pattern) and of the clump, as these waves circulate within
the periodic simulation box. An artifact of this is wiping out
of density fluctuations and eventual homogenization of the
simulation box.
In Fig. 5 we provide some simulation snapshots of this

peculiarity, for three different values of λ. Notice the
appearance of checkerboardlike pattern in the right-hand
side panel.
In order to check if the phenomenon is an artifact of finite

discretization, we simulated lower and higher resolution
grids with the same initial conditions for long times. We
found no clues if this is the case or not. As an example, for
λ ≈ −4.2λcr, with L ¼ 40 and ρ̄ ¼ 0.01, in the lower
resolution (1283) and higher resolution grids (2563) the
nucleation times were ∼3600 and ∼3800, respectively. This
shows decent convergence of the nucleation time. At the
same time, however, the onset of these high-frequency
waves for both the grids were also similar (∼5300 and
∼5700, respectively).
We also performed two other tests to see if something

can be learned about this phenomenon. In one test we put a
precomputed soliton in a bath of DM waves. We observed
the same appearance of high-frequency modes and checker-
board pattern developing, leading to disruption of the
soliton. The times at which this happens depended upon
the average mass density and total mass of the soliton. In
yet another test, we performed a few runs with larger
average mass densities, such that the associated gravita-
tional Jeans scale lJ ∼ v0ðπ=Gρ̄Þ1=2 became smaller than
the box size. Even in this case, upon formation of a halo,
the same peculiar phenomenon appears.
While we have confirmed the presence of this feature in

our (split-Fourier technique-based) simulations through
multiple tests, we leave a detailed analysis of this pecu-
liarity for future work.
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