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Scattering amplitudes of massive spin-2 Kaluza-Klein states with matter

R. Sekhar Chivukula®,"” Joshua A. Gill®,>" Kirtimaan A. Mohan,>* Dipan Sengupta®,**
Elizabeth H. Simmons®,"! and Xing Wang
1Department of Physics and Astronomy, University of California,
San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
ARC Centre of Excellence for Dark Matter Particle Physics, Department of Physics,
University of Adelaide, South Australia 5005, Australia
3Department of Physics and Astronomy, Michigan State University 567 Wilson Road,
East Lansing, Michigan 48824, USA

® (Received 13 November 2023; accepted 21 December 2023; published 31 January 2024)

We perform a comprehensive analysis of the scattering of matter and gravitational Kaluza-Klein (KK)
modes in five-dimensional gravity theories. We consider matter localized on a brane as well as in the bulk
of the extra dimension for scalars, fermions and vectors respectively, and consider an arbitrary warped
background. While naive power counting suggests that there are amplitudes which grow as fast as O(s?)
[where s is the center-of-mass scattering energy squared], we demonstrate that cancellations between the
various contributions result in a total amplitude which grows no faster than O(s). Extending previous work
on the self-interactions of the gravitational KK modes, we show that these cancellations occur due to sum-
rule relations between the couplings and the masses of the modes that can be proven from the properties of
the mode equations describing the gravity and matter wave functions. We demonstrate that these properties
are tied to the underlying diffeomorphism invariance of the five-dimensional theory. We discuss how our
results generalize when the size of the extra dimension is stabilized via the Goldberger-Wise mechanism.
Our conclusions are of particular relevance for freeze-out and freeze-in relic abundance calculations for

dark matter models including a spin-2 portal arising from an underlying five-dimensional theory.
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I. INTRODUCTION

In recent years there has been a revival of interest in the
phenomenology and cosmology of models with compacti-
fied extra dimensions: Kaluza-Klein (KK) theories [1]. The
revival of KK theories was motivated by new solutions to the
hierarchy problem which relate the scales associated with
gravity and electroweak symmetry breaking. These included
models with flat (“large”) extra dimensions [2,3], as well as
those with a “small” warped extra dimension based on a slice
of anti—de Sitter space, known as the Randall-Sundrum (RS)
models [4,5]. Extra dimensions have been used to address
the flavor puzzle (see, for example, [6,7]) to provide a path
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toward understanding the electroweak phase transition [8,9],
and to provide candidates for a dark sector. (For reviews of
these developments see Refs. [10-13].) More recently,
motivated specifically by dark matter and other cosmologi-
cal considerations, new beyond the standard model (BSM)
scenarios have emerged in which extra dimensions play a
crucial role, ranging from those including dark matter freeze-
out [14,15] and freeze-in [16—18], to continuum dark matter
[19], the holographic axion [20], and dark dimensions in the
Swampland conjecture [21].

In many BSM scenarios a key ingredient is the calculation
of squared matrix elements for the scattering of matter
(including possible KK excitations) with massive spin-2
Kaluza-Klein graviton states. In particular, these scattering
amplitudes are of specific relevance for freeze-out and
freeze-in relic abundance calculations for dark matter
models including spin-2 portals, as well as for the study
of the potential collider signatures of such theories.
Calculations involving massive spin-2 states, however, are
plagued by (as we show, potentially anomalous) contribu-
tions that grow rapidly with the center-of-mass energy of the
scattering process. For example, calculations that involve the
production of massive spin-2 KK particles in the final state
from matter particles, such as the ones shown in Fig. 1, have

Published by the American Physical Society
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An example of 2 — 2 scattering of matter particles (where ® = S, .V and ® = S, y, V) on the brane (left) and in the bulk

(right) to spin-2 KK modes. The circle in the middle indicates all intermediate states, and s, #, u and contact diagrams.

contributions due to the helicity-0 mode of the massive
spin-2 states that naively grow like s° /My, where s is the
center-of-mass energy squared of the scattering process and
Mgk the mass of the spin-2 KK modes. This anomalous
high energy behavior—note the anomalous dependence on
the low-energy scale Mygx—has been used to estimate
observables like the relic density as well as direct detection
rates for spin-2 KK mediated dark matter models [15,22,23].

As we show in this paper, while it is true that the
contributions from individual diagrams to the scattering of
matter with massive spin-2 states can indeed grow as fast as
O(s?), a complete analysis using the underlying gravita-
tional theory uncovers a cancellation between different
contributions so that the full amplitude grows only like
O(s). Therefore, phenomenological results based on the
naive dimensional analyses of the individual contributions
to the scattering amplitude [15,22,23] lead to erroneous
conclusions.

This work is an extension of previous analyses [24-27]
conducted by the authors and their collaborators on the
properties of the amplitudes for the scattering of massive
spin-2 states among themselves. In Kaluza-Klein theories
we have shown that the scattering amplitudes involving
spin-2 KK mode self-interactions grow only like O(s)
despite there being individual contributions that grow as
fast as O(s%). We showed that the full amplitudes grow as
s /M3, for flat extra dimensions (toroidal compactification)
with Mp, being the four-dimensional Planck mass, and as
s/AZ2 for RS compactification, with A, being the effective
scale' of the compactified Randall-Sundrum model.

In this work we extend our previous analyses to compute
matter interactions with the gravitational sector in extra
dimensions, show that the anomalous high-energy growth
cancels, and show that the physical amplitudes grow only
as fast as O(s). We perform a comprehensive analysis of
the scattering of matter and gravitational modes in extra-
dimensional theories: we consider matter localized on the
brane as well as in the bulk of the extra dimensions for
scalars, fermions and vectors respectively, and consider an

1 _ . . .
A, = Mpe " where k is the curvature and r, is the radius
of curvature.

arbitrary warped background (in which case flat or toroidal
compactification is a special case where the curvature goes
to zero). We show that while individual 2 — 2 scattering
diagrams (s, ¢, u and contact, see Fig. 2, for example) grow
anomalously, delicate cancellations enforced by a series of
sum rules ensure that the overall amplitude is well
behaved. A special case of the computations reported here
has been performed2 in [29] for brane-localized scalars,
with subsegluent consequences for dark matter observables
in [14,18].

Our computations elucidate the differences between the
behavior of scattering amplitudes of matter in the bulk and
localized on the brane, as well as the differences arising
from the nature of matter (scalars, fermions or vector) and
their various helicities. We will demonstrate that, for brane-
localized matter, the anomalous growth in the scattering
amplitudes only cancels in the case where the matter is
localized to positions at the endpoints (the “branes”) of
RS1. The cancellations we uncover are the result of the
properties of the mode equations for the gravitational KK
modes [24-27], including the consequences of the N = 2
supersymmetry (SUSY) structure relating the properties of
the modes associated with the different helicities of the
gravitational sector [33,34], as well as the mode equations
for the matter particles. In all cases we demonstrate that the
residual amplitudes (after cancellations) grow no faster
than s/AZ.

We also connect the observed cancellations to the
underlying diffeomorphism invariance of the 5D gravita-
tional theory. In what follows we will focus specifically on
the scattering amplitudes for matter (modes of any helicity,
arising from either brane or bulk states) to produce
longitudinally polarized spin-2 KK bosons. It is these

2After this work had been submitted and announced on arXiv,
we were informed of [28]. Aside from the computation of the
production of brane scalar particles from KK graviton annihila-
tion previously published in [29] and cited here, Ref. [28]
duplicates the results presented in [24,30].

3An erroneous calculation with a massive spin-2 KK particle
as a freeze-in candidate was performed in [31], which was
subsequently refuted in [32] as a result of the Ward identities of
the theory.
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FIG. 2. Brane-localized matter (where ® = S, y, V) annihilating to spin-2 KK modes. Here r represents the radion.

amplitudes which, due to polarization tensors of the
external graviton KK modes, suffer from the largest
potential energy growth. We show that the amplitudes
for the production of longitudinal spin-2 KK states, after
cancellation of the anomalous high-energy contributions
from individual diagrams, can be interpreted using a “KK
Equivalence Theorem” analogous to the one in the com-
pactified 5D KK Yang-Mills gauge theories [35,36]. In
extra-dimensional gauge theories the scattering amplitudes
of the longitudinally polarized KK gauge bosons equal that
of the corresponding KK Goldstone bosons in the high-
energy limit. The power counting of the scattering of
Goldstone bosons, unlike those for massive KK gauge
states, is manifest, and has no anomalous high-energy
growth. Specifically, in this paper we show that the leading
nonvanishing contributions to the amplitudes in matter-
gravity scattering involving longitudinal spin-2 states can
be rewritten in terms of of the wave functions of the scalar
gravitational KK Goldstone bosons (for arbitrary curvature)
instead of those of the KK gravitons.4

For gravity compactified on a torus, it has previously
been shown that an equivalence theorem can be established
[37,38], in which case the scattering amplitude of the
longitudinally polarized KK gravitons equals that of cor-
responding gravitational scalar KK Goldstone bosons. The
results presented here suggest that the equivalence theorem
can be extended to a warped geometry for the gravitation
mode self-interactions and their interactions with matter. A
complete demonstration of the equivalence theorem in the
RS1 model is beyond the scope of this paper, and is the
subject of subsequent work [39].

“The form of the amplitudes can also be constructed via the
double copy prescription, which we will also discuss in an
upcoming work.

All of the potential bad high-energy behavior of the
individual contributions to the scattering of longitudinal
spin-2 KK states is, from the perspective of an equivalence
theorem, just the usual naive unphysical high-energy
behavior to be expected in a “unitary gauge” calculation
due to the unitary-gauge massive spin-2 propagators and
external polarization states. This unphysical high-energy
behavior of individual diagrams disappears in a ‘t-Hooft-
Feynman-like gauge in which there are unphysical scalar
(and, for gravity, vector) Goldstone states [39]. The con-
nection between the cancellation of the high-energy growth
of the scattering amplitudes demonstrated here and the
diffeomorphism invariance of the underlying 5D gravita-
tional theory is the ability to perform the analysis in either a
unitary or a ‘t-Hooft-Feynman-like gauge, a freedom which
relies on the diffeomorphism invariance of the underlying
5D gravitational theory.

Finally, we will show that the sum rules that ensure the
cancellations of the anomalously growing contributions to
the scattering amplitudes can be extended to models where
the extra dimension is stabilized via the Goldberger-Wise
mechanism [40]. Like the analogous calculation for spin-2
KK graviton self-interactions [27,30,41], we will argue that
the matter interactions within the GW-stabilized model will
involve additional contributions to the sum rules from the
GW scalars.

The rest of the paper is organized as follows. In Sec. Il we
set up the gravitational Lagrangian, the metric, and the
graviton sector mode expansions. In Sec. III, we discuss
matter-KK mode interactions for both bulk and brane matter.
In Sec. IV, we describe the structure of the scattering
amplitudes and the necessary sum rules that ensure that
scattering amplitudes are well behaved. We conclude in
Sec. VI. We provide details of the calculation in the
Appendices for the interested reader. Appendix A gives
the Lagrangian up to 4 point interactions between the gravity
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sector and matter for bulk and brane, relevant for scattering
amplitude calculation. In Appendix B we provide wave
functions of gravitons and bulk matter while Appendix C
gives the coupling structures between brane/bulk matter and
the gravity sector. Appendix D gives our kinematic con-
ventions, and finally Appendix E gives detailed proofs of
sum rules used in the main body of the paper.

II. GRAVITATIONAL LAGRANGIAN,
METRIC, AND MODES

The metric for the RS model in conformal coordinates
(x,,z) can be written as

where the background 4D Minkowski metric 7, =
Diag(+1,—1,—1,—1) is used to raise and lower indices.
The line element is then written as

ds* = A0y, dx"dx* — dz?). (2)

The metric fluctuations /,,(x,z) define the spin-2
fluctuations in 4D, while the Aﬂ and ¢ fields yield the

spin-1 and spin-O fluctuations respectively. The warp
factor A(z),

A(z) = —1In(kz), (3)

satisfies the Einstein equations for the bulk geometry,
A — (A/)z — 0’ (4)

and the value of the coupling « is set by the bulk and brane
cosmological constants, such that the four-dimensional
Planck constant Mp is k4 = 2/Mp;. The extra dimension
spans the interval z; < z < z,, where z; is the location of
the “Planck brane” and z, location of the “TeV brane”
respectively. The 5D RS Lagrangian can then be written as

£§'§S) = Lgy + Lec + AL, (5)

where Lgy and Lqc are the usual Einstein-Hilbert and
cosmological constant terms respectively. The AL term is a
total derivative term required for a well-defined variational
principle for the action.

The effective 4D action is obtained after KK decom-
posing the 5D field as [27]

hul.2) = S e ), ©
n=0
Au(er.2) = 3 AL g o), )

P 2) = RO (2) + 3 AN (), (8)
n=1

and integrating over z. The massless graviton fields are

given by fzf,?,), while the massive KK graviton fields are
ﬁf,'fo). The massless radion field is given by 7 The
unphysical degrees of freedom, which can be eliminated

using diffeomorphism invariance, are described by the

spin-1 vector Goldstone modes A,(l") and the spin-0 scalar
Goldstone modes #"). The wave functions satisfy the
boundary conditions

0.f"(z) =g (z) = [0, +24"(2)]k"(z) =0, forz=z,.
©)

The details of the procedure to bring the Lagrangian to a
canonical form, and the coupling structures of the 3- and 4-
point vertices for the gravity sector have been documented
in [26]. In conformal coordinates, the solutions to the

Sturm—Liouville problems defining the modes subject to
the boundary conditions are [27]

f(z) = Cﬁ")zz[Yl(ngz)Jz(ng) = Jy(m,z5)Y,(m,z)],
(10)

9" (2) = CV (Y (myz0) T (myz) = T4 (m,22) Yy (my2)],

(11)
K (2) = CY 2V (my22)To(myz) = 1 (m,25) Yo(m,2)]
(12)
for the massive modes n > 0, and
o) =c). (13)
99(z) =0, (14)
KO(z) = ¢;)22 (15)

for the massless modes, where J, and Y, are Bessel

functions of the first and second kind, respectively. The

normalizations C;,'L)L , are fixed by

/ 7 dze@ pim) (2) £ ()
21

- / " dzeM g (2)g ()

21

/  dzeMAE K (k) () = 5, . (16)
21
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where the spin-2 massless mode represents the usual
massless 4D graviton that yields gravity in 4D, while
the k(%) massless mode is the radion. The mass m,, of the
KK gravitons is the nth solution of the equation’

Yi(m,z0)Jy(myzy) = J1(m,2z5) Y (m,zy) = 0. (17)

The wave functions have an N =2 supersymmetric
structure [27,33,34],

azf(n) =m, g (0, +A/)g(n) = m, k")
(=0, =3A4")g\") = m, f) (=0, —2A" k" = m, g™,

(18)

which we will use in what follows.

As mentioned previously, the Goldstone modes Af,”) and
72 can be gauged away [42], and the relevant physical
states are the spin-2 KK modes with wave function £ (z)
starting from n = 0 and a massless physical radial mode
with wave function k(°)(z). In the rest of the paper, we work
in such unitary gauge—however, we will show that the
leading nonzero scattering amplitudes involving helicity-0
spin-2 KK modes may be rewritten in terms of the “pion”
wave functions k")(z) as expected from an equivalence
theorem.

ITI. BULK AND BRANE MATTER

In this section we lay out the relevant matter Lagrangians
and interaction terms for matter coupled to gravity either in
the brane or the bulk. Note that in contrast to previous
papers [24-26], we work in conformal coordinates, and
therefore the interaction Lagrangians, the Sturm-Liouville
problem and the subsequent wave functions are defined in
terms of these coordinates.

In the effective 4D description, the couplings of the spin-
2 KK gravitons to matter (scalars, fermions or vectors) can
be expressed by the following action:

Sy = /d“xﬁ(é,s,u,f), (19)

which upon expanding to order « in the metric fluctuation
yields

K

Sy = 2/d4xhﬂ,,T””(s,v,f). (20)

The stress energy tensor 7, is given by

The masses of the “unphysical” vector and scalar states are
degenerate with those for the physical spin-2 states as the result
of an N =2 SUSY symmetry of the corresponding mode
equations [27].

oL
Tb: - ,U,C+2~— (—pe 21
’ ( " 5GW)|G ,, (1)

From this point onward the task is to compute scattering
amplitudes of matter-KK mode interactions. We first lay
out the relevant matter Lagrangians, and the corresponding
3- and 4-point interaction terms that will be used in the
calculation of the scattering amplitudes.

A. Brane matter

We write the most general brane matter Lagrangian
interacting with the spin-2 KK sector as

Lirane = ‘Cspin—Z + ‘CM,brzmev (22)

where
['M,brane = [’S,brane + ‘C;(, brane T EV,branev (23)

and Lgpanes Ly brane and Ly e are the Lagrangian
densities for brane-localized scalars, fermions and vector
fields respectively. The corresponding Lagrangians, local-
ized on a brane at the boundaries 7 = z; or z,, are given by

¢ =1~ 1
‘CS,brane = / ’ dZ\/a<2 GMNOMSONS - 2M%SZ>
21

x e 2A05(z - 7), (24)
ﬁ)(.,brane = /Nz dZ\/E()_(ie”ayaD”){ - M;{)?)()
21
x e734E)§(z - 7), (25)

k%) — 1 - - - —
’CV.brane = / dZ\/E |:_ZGMRGNSFMNFRS
21
1 o
+ 5MZVGMN Vu VN] 5(z —2). (26)

The metric and its determinant are evaluated as an object
induced on the brane enforced by the delta function. Thus
the brane-localized quadratic kinetic term can then be
written in a canonically normalized form as

1. 1 .-
Lys = 59'30,8 EméSz, (27)
'C)()( = (U_ﬂﬂ)( - m;()_()()’ (28)

1 1 _
Lyy= 3 H nﬂy(dpdf’ + m%,) - <1 - E) aﬂay] VK. (29)
For fermions, the covariant derivative on the fermion
field is defined as

015033-5
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1
Dy = a,,;HEQ/”%,—,;(, (30)

where 6, = [ya,75]/4, withy; ; being the gamma matrices
defined over the tetrad ¢*“. The induced spin connection
Q," is given by

Q0 =eve,,” = e (e, —e,"T7,). (31)

For vectors, in Eq. (29) we have included a Proca mass
term. While such a mass term would break the 4D gauge
symmetry, we will show that it does not spoil the unitarity
for the scattering of VV — h"Wh(™ .., diffeomorphism
invariance in the gravity sector ensures that these processes
are well behaved. In the case of massless gauge boson
My = 0, one would need to fix the gauge by the gauge-
fixing term,

Loa = [ -z@mrfa-a. o)

which leads to the canonical Lagrangian in 4D given by
Eq. (29). Here we use reparametrized mass terms of the
scalar, fermion and vector fields which are

mg = eA(Z)MS, (33)
m, = eA(Z)Ml, (34)
my = eA My, (35)

Note that unlike bulk fields, there are no interactions
which contain an explicit derivative in the fifth dimension.
We will show that this leads to different behaviors in the
leading terms of matrix elements of the scattering amplitude
calculations. From here on we can perform the usual KK
decomposition for the gravity sector to obtain an effective
4D action, with spin-2 KK graviton wave functions given by
Eq. (10). The 3- and 4-point interactions of the KK sector
and matter are written out in Appendices A la—A Ic.

B. Bulk matter

For matter in the bulk, we write the Lagrangian as

Lyrpuk = Lspuik T Ly puk + L7 puik- (36)

The corresponding Lagrangians for a real bulk scalar S
with a mass Mg, a Dirac bulk (five-dimensional nonchiral)

fermion
v
=) (37)
YR

with a bulk mass M, and a massless bulk gauge boson V
are given by

1 1
Lspa = VG (5 GMNo,, SoyS — §M§52> . (38)
‘Cy/, bulk — \/5<l/_/iEMaraDMl// - My/l/_ﬂ//)’ (39)
1
Lypu = VG <— 1 FMNFMN) . (40)

Next we perform the integration over the extra dimension
and provide the canonical 4D Lagrangians for each of the
species of matter.

(1) Scalars: Given the above scalar Lagrangian, the

quadratic term is canonically normalized as

1 [
Lss =35 / " dze3{0°80,8 — S[(—0, — 340,

2

+ M2e*]S}. (41)

The bulk scalar can be decomposed into KK modes
in the usual way,

S0 =3 S0 0. (42)

n=0

where fg”) are the eigenfunctions of the
eigenequation

[(=0.—3A4"0, + M2e] 1" (2) = m3, £ (2). (43)
We choose the boundary condition to be®

azf(sn)(z) =0 atz=z,. (44)

Note that a massless mode exists only if Mg = 0.
The corresponding wave functions and their ortho-
gonality are provided in Appendix B 2.

(2) Fermions: For fermions, we define the vierbein E,,“
which satisfies

E?wEfvﬂab = Gyy-» (45)

and the gamma matrices in 5D defined by I'* =
(y*, —iy®) such that they anticommute,

®In principle, one could choose any Robin boundary con-
ditions for the scalar wave functions 0,5 — ;S =0 at z = z,.
Such a choice corresponds to adding brane mass terms of the
form ALg = +ay VGet 528(z — z1.,). For simplicity, we choose
the Neumann condition a; = 0.

015033-6
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{re, 10} = 2p9b. (46)

The covariant derivative on the fermion field is
defined as

1
Dyy = oyy + 5 Qo (47)

where o, = [[,,T',]/4, and the spin connection is

given by

QMab — ENaEN;Mb — ENa(aMENb _ EPbFPMN)‘
(48)

In conformal coordinates, the quadratic term of the
fermion Lagrangian can be written as

L, 2 e (ppidyy + wridwr —wrDyy L
—LDyyg). (49)

where the differential operator D, is defined as
D, =0, +2A'(z) + M, e, (50)
D) = —0. = 2A'(z) + M, e, (51)

Note that D;, is the Hermitian conjugate of D,, with
respect to the inner product

() = / ® dzeMOg ()f().  (52)

<1

After the compactification, the fermion fields can be
expanded in KK modes as

wiR(2) = Y wi (il (2), (53)

where f, .(,,"L)/ «(2) are the wave functions of the left and
right chiral fermions respectively. The wave functions
satisfy the eigenequations

D1y = my . fi),

(54)

Dj/-/fl(//R) = my/,nfl(//L)’
with m,, , being the masses of the nth KK mode.
Notice that the eigenequations are coupled, i.e., they
mix the left- and the right-handed sectors. The mass

spectra of ff,,"L) and fls,"R) are degenerate, except for the
zero mode, due to an N = 2 quantum mechanical
supersymmetry. In order to have a massless left-
handed fermion, one has to choose the boundary
condition,

015033-7

3

D, () = fi(z) =0 atz=z,. (55)

And the corresponding boundary condition for a
massless right-handed fermion is

Dy fy)(x) = fy)(z) =0 atz=z, (56)
The solutions to the eigenequations are the wave
functions provided in Appendix B 3 along with the
corresponding orthonormality conditions.
Vectors: For vectors, Fyy is the 5D field strength
tensor,
Fyn =0V — vV, (57)
such that in conformal coordinates, the quadratic

term of the gauge boson Lagrangian can be
written as

1
EVV :EeA(Z) [VM (nmzapap - ayap +’7/w(_az _A/)az)vy
~V50,0"Vs+2V50,0.V¥]. (58)

The gauge fixing term is chosen to eliminate the
terms involving mixing between Vs and V¥ in the
above equation,

1
Lygr = —€A2_5 [0, VH — ge™0,(e*Vs)]?. (59)

Then the gauge fixed quadratic terms become
Lyvicr = %eMZ) [V” <;7”D6p6/’ - <1 - %) 9,9,
+ n,wDTVDV> v
= V(9,0 + 5DVD*V>VS] : (60)
where the differential operator Dy, is defined as
Dy =90, (61)
D = —0. - A'(2). (62)

Note that DI, is the Hermitian conjugate of Dy with
respect to the inner product

@)y = / P L Og ()f Q). (63)

After the KK compactification, the gauge boson
fields can be expanded as
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FIG. 3. Bulk matter (where ® = S, y, V) annihilating to spin-2 KK modes. Note that, unlike brane matter shown in Fig. 2, there are
intermediate KK states which contribute in the ¢ and u channels. Here r represents the radion.

ZVMH @) n (2), (64) where M, ;7 come from the - and u-channel KK graviton
or matter exchange diagrams, M, ;; corresponds to the
s-channel diagrams with intermediate KK gravitons, M, ;;

ZV x*) f Vs (2). (65) s the s-channel radion exchange contribution, and M, ;;

comes from a 4-point contact interaction. These contribu-

tions are illustrated in Figs. 2 and 3 for brane matter and
bulk matter.

To analyze the energy dependence of the scattering
amplitude, we now expand the matrix element M,; in

The wave functions satisfy the eigenequations

¥ pn) (n) (66) terms of the scattering energy /s and the scattering angle 0,
Dyfy, =my,fy
0/2
We choose the boundary condition to be Mi(s.0) (;:ZM : (70)
Dy f(n) _ f(n) —0 atz=1z, (67) In the following sections we will analyze the energy growth
v =Jvy = =212

of the scattering amplitudes for matter (brane or bulk)
scattering into pairs of longitudinally polarized KK grav-
such that V,, has a massless mode and V5 does not.
The solutions to the differential equations given in
terms of eigenequations are given in Appendix B 4.

itons. We will determine the coefficients /\/l;? (0) and
demonstrate that the contributions for ¢ > 2 vanish as the
result of sum rules which follow from the properties of
the Sturm-Liouville problems for the mode expansions in
IV. SCATTERING AMPLITUDES FOR BRANE the gravitation and matter sectors.

AND BULK MATTER

Consider the 2-to-2 elastic scattering of a pair of matter
fields into a pair of longitudinally polarized KK gravitons, In general, the self-couplings of the entire compactified
spin-2 sector, including KK-gravitons and the radion

,0; — h(Ln)h(Ln)’ q)ﬁm)q)%m) N h(Ln)h(Ln)’ (68) couplings as well. as any coupling of the KK sector with
matter can be split up into two pieces due to the Lorentz

where the @ represent incoming brane matter fields structure, which we call ¢ and b type couplings. The 4 type
with ® = 3., 7, and ® are bulk modes with @) = couphng§ only have 4.D derivatives, and.thereforf? the
(m) . (m) ’(m’)' ’ - . L overlap integrals contain only wave functions, while b
S i L Vi™; here 4, ’1 denote thelr.hehcmes. In the couplings have derivatives over the compact dimension,
unitary gauge, there. are six .Feynman diagrams that con- gych hat overlap integrals contain explicit 5D derivatives.
tribute to the scattering amplitude, The structure of KK-sector self-couplings was discussed in
detail in [26] and in conformal coordinates in [27]. Brane

M= Mg+ My + Mg+ Mg (69 natter couplings to the KK sector involve only a type

A. Coupling structures

015033-8
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couplings of the gravity sector since matter is confined to
the 4D brane. Here we describe the coupling structures that
we will need for our calculations.

1. Graviton self-couplings

The relevant self-couplings within the gravitational
sector are given by

oy = (fU) f12) flna)y, (71)
by, = (0, (0, M) flm)), (72)
by iyr = ((0.f") (0, "))KO), (73)

where the bracket (- - -) denotes the inner product,

n n 22 n n
q&v&*~>—/)dwmwﬂ”@vykw~n (74)
21
2. Couplings to matter fields

The “a-type” couplings between the matter fields and the
graviton/radion fields, which contain no derivatives, are
defined as

apin, = (F £ P (75)
dpnn, = (f00) ) £ fy (76)
apr = (50 f kO, | (77)

where the bracket (- - -)4 denotes the inner product,

mmgwmb:/*awwwwwv&m»u

21

with Wy, =W, =w, =4. (78)

In the case of ®; = ®,, we abbreviate the coupling as

a® = a®®, (79)

We also define the couplings that are related to the mass
term in the Lagrangian as

d%s-nlnz = <62Af(n) : 'fg‘nl>f§n2)>5’ (80)
M, n
an--v~n1112 - < Af L) '(I’Rz>>l//’ (81)
e = (AL RO) . (82)
M, n
Cln,nzr _ < Af 2 )>l//' (83)

The “b-type” couplings are defined in a similar manner
as the “a-type” couplings, except that we use a bar on top of
the index to denote there is a derivative acting on the
corresponding wave function,

poD = (... @ F") - . (84)

A detailed account of the overlap integrals for 3- and 4-
point interactions is provided in Appendices C 2—-C 4 along
with the basic integration by parts and coupling identities.

B. Amplitudes for brane-localized matter

1. Brane scalar

In the case of a brane localized scalar, the nontrivial
contributions to the amplitude start at O(s?), yielding a
total

0 k(1 —cos20)
192m?

- iannjfo)(z)] ’ (85)
Jj=0

which vanishes due to completeness of the graviton wave
functions,

(86)

We note that the leading order O(s*) amplitude vanishes independent of any condition on the brane z. The situation changes

at next order, as we demonstrate now.

At the order of O(s?), after applying the sum rule above, the amplitude at next order can be written as

~(4) g

]
576m” —

— {(3cos29+1>§°.jm?annjf<-f>(z)+24bwk<°>(z> —2m3(3c0s20+5)[f")(z )F—Smﬁannof@)(a}- (87)
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One can use the eigenequations and the completeness
relation to derive the following sum rule:

[
E m annjf Z =2 E n Appj —

j=0

= 2m;[f" ()P, (88)

byq)fY(z)

but, as we explain below, the last equality relies on the fact
that the wave functions o, f () = ¢\ vanish at the location
of the brane,

Z br‘zﬁjf(j)(z) =m; [9(
=0

Using this relation the amplitude at subleading order
becomes

P =0.  (89)

2
— 2 {3 KO @) — [ B2

©(2)}. (90)

which then vanishes due to the radion sum rule

T —

- m% ann()f

SIS

2
baak®(@) = WP + Fanof/ O @) (O1)

u‘§

The proof of the radion sum rule is given in Appendix E.

We emphasize that the cancellation of the bad O(s?)
high-energy behavior crucially relies on the fact that the
matter is localized at the boundaries 7 = z; or z,, where the
graviton KK mode wave functions satisfy d,f")(z) =
g™ (Z) = 0. The fact that the graviton wave functions have
this property at the branes can be understood as the remnant
of 5D diffeomorphism invariance. While the existence
of the branes in RS breaks general 5D diffeomorphism
invariance, the graviton Lagrangian is still invariant under
the infinitesimal coordinate transformations that leave the
location of the brane fixed,

M XM = M 4 M (92)
such that the parameter £ satisfies

0.6,(x*,z;) =0, and O(x* z;) =& (x%z)=0. (93)
As shown in [27], the residual diffeomorphism is such that

the parameters £, can be expanded in terms of the modes

£, while the parameters @ have g/) mode expansions.
Hence, for a “translation” along the fifth dimension &, = 0
and 0 # 0, the location of the brane matter at a fixed
position is diffeomorphism invariant only if it is localized at
the boundaries. Breaking such invariance would thus spoil
the cancellation of the bad high-energy behavior. For

models with more than two branes, it is possible to localize
the brane matter in the intermediate branes—but only if the
appropriate boundary conditions are imposed in the gravi-
tational sector—leading to a different form for the mode
expansion and a different physical spectrum. The study of
such a scenario is beyond the scope of this work.

The residual nonvanishing amplitude starts at O(s).
Applying all the previous sum rules, the leading nonzero
contribution to the amplitude can then be written as

{Z m;%annjf(j) (Z)
j=0

= 2my[f"(2)? } (94)

O _K*(3cos20 +1)
B 576m?

Such an expression can be further simplified, using the
eigenequations, integration by part, and the fact that A” =
(A")? in the bulk,

~ 2(3¢c0s20 + 1
M(2>:_K( cos 26 + )[f

S @R 99)

Using the N =2 SUSY relations Eq. (18) and
the boundary conditions Eq. (9), one can relate the KK
graviton wave functions £ and scalar Goldstone wave
functions k"

. . 24'(2) . .
(@) = ~19(2) - 28 iz = (@) (for > )
mj
(96)
Therefore, the amplitude can be written as
—~ 2 20+ 1
MO = K820+ D) e (g

96

We note that, while the amplitude in Eq. (94) appears to be
singular in the limit of m, — 0, such singularity is not
physical, as shown by Egs. (95) and (97). Another
important observation is that Eq. (97) depends solely on
the wave function k") of the scalar Goldstone mode 7(")
consistent with what is expected from a Goldstone
Equivalence Theorem [39].

2. Brane fermion

For the scattering of brane fermions, the leading non-
trivial contributions to the scattering amplitudes arise at
O(s*) and O(s>/?), depending on the helicity combinations
chosen, and are given by

(9]
Z annjf

j=0

~(6) _ x%sin20
== 192m

] =0, (98)
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— 2 oo
M, = 2 (0 - 3 it 92)| =0, (99)
n ]:O

both of which vanish due to the sum rule given in Eq. (86).
At next order the O(s?) contributions also vanish,

~(4) K2 sin 26 _

Mz = Topm {Zm i) (2) = 2m2 1 ><z>12} ~o0. (100)
due to the sum rule derived in Eq. (88). Again, it is crucial that the matter is localized at the boundaries.

The radion starts to contribute at O(s*?), where its contribution to the amplitude at leading order can be written as

2

ML =7 Tom?

{3625, KO @) = [ Q) = 2o ©(2) } =0, (101)

and it vanishes due to the radion sum rule given in Eq. (91). B
The leading contribution to the residual amplitudes starts at O(s) for helicities A1 = + F, and at O(s'/?) for helicities

M=+,

~ (2 k% sin 20 —\12
B {Zm i U(2) = 2} 1) ()] } (102)
~a _ m, (3 00529+1 _
Again, they can be simplified to a compact form of
2 2
~@ _K sin 260 =2 K sin 260 (n) (=12
ME, =22 =S E RO, (104)
—~ 2m.,, (3 cos20 + 1 ’m, (3 cos26 + 1
), = £ 3L i gy AW HD) i g, (105)

which are nonsingular in the limit of m, — 0, leading to a form consistent with an equivalence theorem.
Note that for fermions, depending on whether a “helicity flip” is required, the different spin channels have different
power-counting behavior.

3. Brane vector boson

For the scattering of brane vector bosons, the leading nontrivial contributions to the amplitudes for helicities A4 = 00
and + F arise at O(s%), for 41 = £0/0+ at O(s*/?), and for A1 = ++ at O(s?), and are given by

-~ -~ cos260 —1 >,
MG =M = (74) 2= Y (106)
192m =
~(5) K' sin 20 5
MiO/Oi 48\/5 4 lz ann/f ( )) ‘|7 (107)
MY, = @T%mé l i f V) (2) W(z))"‘] : (108)
my, j=0
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all of which vanish due to the sum rule given in Eq. (86).

We note that the amplitude Mfi vanishes due to a direct
cancellation between the #-, u-channel diagrams and the
4-point contact interaction, and it does not require any
sum rule.

The cancellation for helicities A1 = 4 F at the sublead-
ing order O(s?) further uses the sum rule derived in
Eq. (88),

~(4) cos 20-1)
Mz =" oomt Z sl

~2m} [f(">(2)]2} = (109)

The radion contributes to the scattering for the helicities
=00 at O(s?),
|

~ k*(cos20—1)

AR = 30,5, 0(2) = il )
00 72m3 nnr n

- m%annOf(O)(Z)} = O’ (110)

which vanishes due to the radion sum rule given in Eq. (91).
At O(s%/?), the subamplitudes

“ (3
M0 =0 (111)

vanish once the sum rules in Eq. (86) and (88) are applied.

Finally, similar to the behavior of brane scalars and
fermions, the leading nonvanishing contribution to the
amplitudes is at O(s) for A1 = 00/+ F, and at O(s'/?)
for A1 = 4+0/0+, and can be written as

k?(cos20 — 1)

MG == U@ = = " @), (112)
My == ey = _Kz(cosgz:__ Doz (113)
. 2 2w

M. = F S0 mg 0 @ = 7 S me k) (114)

in a manner consistent with an equivalence theorem.

C. Bulk scalar

For the scattering of m-level KK scalar bosons to n-level KK gravitons, the nontrivial amplitude starts at O(s?),

(6) _ 52 [(3 c0s260 + 5) Z; (aS,;)? + (cos20 — 1) Z; Apj @ — (008 20 + 1) @300 | (115)
Jj= j=
which vanishes due to completeness of the graviton and scalar wave functions,
Z nmj Zann] ]mm - annmm (116)
J=0 J=0
At the order of O(s?), after applying the sum rule above, the amplitude at next order can be written as
2 00 0
~ (4 K
MY = o { — cos 20) E%m A j @ = 215(5 = €08 20) @3y — 2(c08 260 + 3) Zom @)
n J= J=
+ 2m3 ,,,(c08 20 + 3)as,m + 16bgﬁmm}. (117)

One can use the eigenequations and the completeness relation to derive sum rules as
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MY —o. 120
S M@ = 20 = 265 (118) (120
=0
It is interesting to note that, unlike other cases, the
S cancellation of the bad high energy for the bulk scalar
Zm 5 nm] = m3 @ + Vyamm-  (119)  case does not require the contribution from the radion,
J=0 which only starts to appear at O(s).

The leading nonvanishing contribution to the amplitude
Once the above sum rules are applied, the amplitude  starts at O(s). Applying all the previous sum rules, the
vanishes at this order, residual amplitude can then be written as

M = 576m {24stj ay,;)? = (3cos20+1 Z;m @Sy + [2(3€0820 + 1)mf + 16m2m3,, — 24m 105
e

1
—8[(3c0s20 + 1)mj + 4m3 163 i + 16m,1m5 0@ — 144b; 5, (bfnm, + §M§a%§,r> } (121)

Although radion does not contribute to the cancellation, one can still derive the following radion sum rule, with the details
given in Appendix E:

1w 1 1 2 1
bﬁﬁr (bgzmr +3 M2amfsm‘> = _m%(mg,m + 3m%)a5nmm + 3 (7mSm - 3mn)brslnmm - 3 Mzbn limm + §m%m§,mann()agmm

3 9 9
10 m m 10 n n m m
g AT £ F) s mi (A2 g f s (122)
Together with another two sum rules,
Jj=
+24m% (A g g £ £ . (124)
Z mé,j(agmj)z = (mém + 3mﬁ)a£nmm (3mSm —m )bgnmm (125)
=0
— AMDYS 0 + 24m3 (A FO G P (126)
24 (A2 g g £ 1), (127)

and the fact that k) = —f() —2A4’¢(") /m, [see Eq. (96)], the subamplitude can be written in a extremely compact form,

~ K*(1 — cos 26)

M = 5 (kW ) pm) gy (128)

which is nonsingular in the limit of m, — 0, and depends only on the wave functions of the scalar Goldstone boson ), as
expected from an equivalence theorem.

D. Bulk fermion

For the scattering of m-level bulk fermions to n-level gravitons, the nontrivial contributions to the amplitudes start
at O(s3),
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K2 sin 20 - -
M2, = 192m} [3a”"’"”’ 22 Uj)” = Zanw‘“ﬁ"’]
My =0 j=0

=0, (129)

2 o
~(6) Kk-sin20 v
M+_ = 192m2 3anfmm — 22 nm/

o0
VR
E annjajmm:|

J=0 J=0

=0, (130)

both of which vanish due to the completeness of the
graviton and fermion wave functions,

Yo VR __ Vi v
2 E m[//.jam;jam);j = my/,manrltmm + mw,manrlfmma

=0

which leads to vanishing subamplitudes at O(s%/?).
The amplitudes at the order of O(s?) can be written as

T4 K sin 260 -
M = oot 2;'" O

2 o3 ©
@ _ Kk sin26 } : 2 (VR \2 } : 2 Wr 2 2 N\, V¥R
M+— - 2 ml//,j (anmj) + mjannjajmm - Z(mn + my/,m)annmm ’

4
192m;, =

which vanish once the following sum rules are applied,

(6]
U5 /R
>y ()

Jj=0

[

2 Yi/R __
D i =
Jj=0

D (i)’ Z U@l = it (131)
Jj=0
At the order of O(s*?), the amplitudes read as
2
~ k“(cos20 + 3
ng)i = i(lTn’li) My m (alilllr%mm + alilllrltemm)
-2 m, alkalt j] : (132)
=0

One can use the eigenequations and the completeness
relation to derive sum rules as

The radion starts to contribute at O(s*?), where the amplitude can be written as

—~
M—l - 144m Zml//j rvl/rfu ll{lj}’[:lj _2mllf.m(blll1/l;tmm

aM,, u
2 Ve Yr VR v v
+ mnmw,manno(a()mm + aOmm) - gmw,mbnn r <ammr + Ammr — 3 Ammr s

and it vanishes due to the sum rules,

3

(s
1
E Ve V/R _ Vi VR 3 Vi VR
m ]anm] nmj Emlll,m (bﬁﬁmm + bﬁﬁmm) + *m,,,_m(annmm + annmm)

Jj=0

(133)
Z m3ay,aly,, — 2(my; + mi,m)a%mm} , (134)

j=0
(135)

j=0
= Dyt + 13 mniiims (136)
2ammm — 2by . (137)

bm mm) + my/,m( 3my/ m)(annmm + annmm)
(138)
My m

2M bnnmm? (139)

2
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aM M, 7 1
bizhr <ammr + ammr - 3m v ammr) = § (bZZ mm + blrlzjnmm) +3 9 m anno(aOmm + aOmm)
w,m

1 4M
g + ) = 3 B (140)
w,m

While the first sum rule can be proved using the eigenequations and the completeness relation, the proof of the radion sum
rule on the second line also requires the completeness of the wave functions {k"} of the scalar Goldstone bosons [27].
The nonvanishing helicity-violating residual amplitudes start at O(s),

—~ K2 sin 26 | &
(_24)r = 1928 mt Tanmja jmm — 2mi Al + 8migbs |, (141)
moLj=0 i
— 25in 20 [& ]
M2 = Kl 95;:14 3 byt — 2mbaln - 8mib . (142)
noLj=0 J
Again, they can be simplified to a compact form of
2 .
~0 K=Sin260 oo (m) A(m
ML = =2 = (K £ 1)), (143)
2 .
~ K=8in20 o\ (m) p(m
0 = = KO£ f) (144)
as is consistent with an equivalence theorem.
Similarly, the residual helicity-conserving amplitudes begin at order O(s'/?) and can be written as
) _ KMy m) ) m) My ) () ) )
M:tj: =+ TUC k (fV’L fl//L +f'l/R fl//R )>W(C0820—5) + T<e k" k fll/L flI/R >y/' (145)

E. Bulk gauge bosons

For the scattering of m-level bulk vector bosons to n-level gravitons, the nontrivial contributions to the amplitudes
start at O(s?),

2 o oo
Vi) K
My = T2 4(c0s 20 + 1) aimm — (3 0820 + 5) ]Z(): amj)” — (0820 — 1) 2, il ]mm , (146)
M(G) K*(cos26 — 1) -2 v i i (147)
T . a p— a s
+F 192mﬁ nnmm = nm] = nn/ Jmm
e, RSB43 [y S s
+4 96mﬁ nnmm = nmj .
All of them vanish due to the completeness of the graviton and fermion wave functions,
Z nmj Zann] ]mm annmm’ (149)
j=0
Z (a::rsnj)z = Z aﬂn‘]a)/niqnl = at‘;ﬁmm (150)
j=0 j=0
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At order O(s/?), using the previous sum rules the amplitudes become

~ 5 k% sin 26 g
Mf)i/io =4+ va]affmja,‘fml —my ,(a Y omm + annmm) . (151)

96v/2m’* =

One can use the eigenequations and the completeness relation to derive a sum rule as

1
Z my ja r‘l/m] nm] szm( r‘z/nmm + annmm) (152)
which leads to vanishing amplitudes
yWit
M(O:IZ/:I:O =0. (153)

At order O(s?), the radion starts to contribute. The subamplitudes are given, after applying all the previous sum rules, by

2 0 oo
@ _ K 2’
Myy = 576 { cos260 —5) ]; mi ] nmj + (3cos20+1 ]:0 m2 F @ m (154)

48bn n rbxzm r

+ 16m?, a, 155
mv,m mV,mannmm ( )

2 Vv
_8mnann0a0mm +

—[2m2(3c0s 260 + 5) + 2m3, (3 08 20 — 7)]cduimm (156)

o 2
V \%
+1 Z 2 ’mj jrflm - a}/mm) }’ (157)
j=1 J

2 co
~@) Kk*(cos20—1)
L = e 2 St i =208 4 el (15)
n —0 =0
2 o0
~ K
Mg;)i = 72m4 |f3 Z m%/,j ((11\1/mj)2 - m%/,mar‘l/nmm - zm%/,ma:{'slmm - 3b71ﬁrar‘:zmr (159)
n 0
00 m2m2
+2 Z nsz,m annj(a;/r:zm - a}/mm>‘| . (160)
j=1 J

One can use the eigenequations and the completeness relation to derive the following sum rules:

V.
13 () = b & 1Y G (161)

7 2L

2 Vs _ 2. Vs Vs
M5 Q@ = 2 @niimm = 2555 - (162)
Jj=0

With the help of the completeness of {k"}, one can derive the following radion sum rules:

2 v 1 1 v
br‘lﬁ rbr":nhr = g m%/ mbn;mm - § m‘\t/.mar‘l/nmm + 6 m%/,m (m% + Zm%/,m)an:tmm (163)
1 ) 4 v
+ 8 m%m%/.mannoa(‘)/mm - g Z 2v Appj jl’:lm - a}/mm)’ (164)
j=1 J
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2
vV 3V 2 14 Vs
bﬁ irQmmr = bﬁﬁmm + g my ., (annmm - annmm)
2 mimi
E m Vs %
+ g m2 annj(ajmm - ajmm)' (165)
=1 j

And thus the total amplitudes also vanish at O(s?),
@ @ e
M) = MY = MY, =o. (166)
At the order of O(s/?), the radion does not contribute,

and no new sum rules are needed. The subamplitudes
vanish once all the previous sum rules are applied,

143
M40 =0. (167)

The nonvanishing amplitudes start at O(s), and may be
written as

k?(3cos20 + 13))

Mgy = 50 KOO LV )y (168)
—~ k*(3cos20 + 1 m) s(m

2y, = SR oo ), (169
ML =o. (170)

At the order of O(s'/?), the leading amplitudes can be
written as

k*(3c0s260—11))cotd
482
VAV

a1 n) 1.(n m) p(m
M(i(;/Oi ==+ my (kO K A A

(171)

Note again that all forms are consistent with the expect-
ations from an equivalence theorem.

V. SCATTERING AMPLITUDES WITH A
GOLDBERGER-WISE STABILIZED GEOMETRY

While all the results above are derived for an unstabi-
lized RS1 model, they can be easily generalized to the
case in which the size of the extra dimension is dynami-
cally stabilized via the Goldberger-Wise mechanism. The
Goldberger-Wise mechanism [40] introduces a bulk scalar
field & with the kinetic term and potential terms

Lo = VG B GMNaMdA)aNGS}, (172)
Loot = —%[\/EV@] + \/EVI [0]6(z — 21)
VGV, [B18, (2 = )] (173)

The potential terms are chosen such that the ground state
has a nonzero z-dependent expectation value for ®, and
such that minimizing the action fixes the proper length of
the extra dimension. The bulk scalar field & can be
expanded around the background as

B(,2) = () + =), (174)

Under the assumption that the GW scalar disa part of the
gravity sector and does not directly couple to the matter
fields, the GW scalar only contributes to the scattering via
its mixing with the radion.”

Following the notation in Ref. [27], the GW sector can
be decomposed as

n=1 n=0
where
e (96%2) i _ (K
“’”‘(ﬂ%@) (”‘<ww>’
7(n)
K"(z) = (f( ) @) ) . (176)
1" (z)

The Goldstone modes #") are rotated away in the unitary

gauge, and the physical scalars ) now replace the role of
the radion to unitarize the scattering amplitudes. In par-

ticular, the completeness of the wave functions {k(")} is
modified,

[se] (5]

&)=Yk EE) + Y K@) &g, (177)
n=1 n=0
in comparison to the one in the unstabilized RS1 model,

) = 3RO () k),

n=0

(178)

where £(z') is an arbitrary function that satisfies the proper
boundary conditions.

To generalize the radion sum rules discussed above to the
GW model, we consider the Feynman diagrams of
exchanging the physical GW scalars. At leading order in
s, the masses of the GW scalars can be neglected. Thus, the
scattering amplitude can be obtained by simply replacing

In general, ® could directly couple to the matter fields, and
such interactions would contribute to the scattering amplitudes in
a model-dependent fashion. The analysis in such cases is beyond
the scope of this work.
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the radion wave function k() in the RS1 by a tower of the

GW scalar wave function k. Therefore, we can generalize
the radion sum rules to the GW model by replacing all the
radion-related couplings with the couplings involving the
physical scalars 7(),

(179)

We note that such generalization at leading order is
sufficient for all the radion sum rules given in this paper,
because the radion contribution only appears at the lowest
nontrivial order of the cancellation. For the residual terms at
O(s) and below, they receive an additional contribution that
is proportional to the masses of the scalar fields #(7), which
cannot be deduced from the scattering amplitudes involving
a massless radion in RS1. An example is the scattering
amplitudes of four KK gravitons. As shown in Refs. [30,41],
the leading order radion contribution appears at O(s?),
where the radion sum rules can be generalized as above. But
the cancellation of the scattering amplitude at order of O(s?)
requires an additional radion sum rule that contains terms
proportional to the scalar masses ,u(zl.), as in Eq. (22)

in Ref. [30].

VI. CONCLUSION

In this paper we have performed a comprehensive
analysis of the scattering of matter and gravitational
Kaluza-Klein modes in compactified five-dimensional
gravity theories. We considered the scattering amplitudes
for matter localized on a brane as well as in the bulk of the
extra dimension for scalars, fermions and vectors respec-
tively, and considered an arbitrary warped RS background.
While naive power counting suggests that these amplitudes
could grow as fast as O(s*) [where s is the center-of-mass
scattering energy squared], we demonstrated by explicit
computation that cancellations between the various con-
tributions result in a total amplitude which grows no faster
than O(s).

Extending previous work on the self-interactions of the
gravitational KK modes, we showed that these cancella-
tions occur due to sum-rule relations between the cou-
plings and the masses of the modes that can be proven from
the properties of the mode equations describing the gravity
and matter wave functions. We demonstrated that these
properties are tied to the underlying diffeomorphism
invariance of the five-dimensional theory. We showed
how our results generalize when the size of the extra
dimension is stabilized via the Goldberger-Wise (GW)
mechanism [40]. Our results show that naive calculations
[15,22,23] of the freeze-out and freeze-in relic abundance
calculations for dark matter models including a spin-2
portal arising from an underlying five-dimensional theory
will yield incorrect results.

Our computations further showed that the form of the
leading high-energy behavior of graviton-matter KK scat-
tering with external helicity-0 spin-2 states has the form
expected from a gravitational equivalence theorem analo-
gous to one in compactified 5D Yang-Mills gauge theory
[35,36], namely that the leading nonzero amplitudes are
proportional to overlap integrals involving the wave func-
tions of the scalar gravitational KK Goldstone bosons. In
future work [39] we will prove that the gravitational
equivalence theorem, which has been established for the
self-interactions of the gravitational modes in toroidal
compactification [37,38], generalizes to warped geometry
and also to the interaction of gravity and matter modes as
expected from the results reported here.
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APPENDIX A: LAGRANGIAN

In this Appendix, we give the relevant Lagrangian up to
4-point interactions.

1. Brane matter
a. Scalar

The 3-point interactions are given by the Lagrangian

[

K 22 T uy C I 1 S S S
155 = 5/ dz h* {—aﬂsabs +§'7/w(apsaﬂs_ m%Sz)

2

x6(z—2), (A1)

K 22 1 - - _
Lyss = —/ dz- p1-230,5 + 2m25(z - 7). (A2)
958 =5 ; NG " z
The 4-point interactions are given by the Lagrangian

2
Linss = %/Zz dz {(Zh”/’h”,, —hh**)0,50,8
21

1 s Tup T TP C =
+Z(h2—2h’hD,,)(a,,Sa”S—m%Sz) 8(z—z2), (A3)
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K2

I RO S 2% -
w35 =7 : ng(p (6”56#5—4mSS )6(z—2), (A4)
gl

b. Brane fermion

The 3-point interactions are given by the Lagrangian

<>

2 1 A . <> .
L =x [ i d, il (89
21

Am}m _3), (A7)

N =

2 3 < 2 o _
%m:K/ZI dz{mfﬂ[—l)( MH%MﬁAW;(}ﬁ(z—z),
(A8)

where the derivative 0 acts only on the fermion fields and is
defined as

The 4-point interactions are given by the Lagrangian

K2

22 1 Nty AR N e <
Lz, = 3/2 d2{§(3h"ph o = 2h") (iy, 0.x)
1

S

+ o (P =200y, )ig dx —2Mye"7y] (A1)

1
8

1 _ -
+§€laﬂph”a0ph#ﬂu’L}q}{L - (L <> R)]}S(Z - Z)

(A11)

EW){)(:_K;/ZIZZ dz ¢* (1361)( ﬁ)(JFz ;()_0(>5(Z—Z),
(A12)
Lhgzy =& /Z | dz&—fw"”bf(w p in,w;)x (A13)
+8M e, ix)6(z — 2). (A14)

c. Brane vector boson

The 3-point interactions are given by the Lagrangian

K 22 A~ l A\ — -
Ly = —/ dz| | hy ——nuh | F*PF, (A15)
2. 4
~ 1 ~\ -
i (R = S )0 e -2, (o)
c oy V, V(2 - 7). (A17)
V=5 z -2
pVV 2 ; \/gqo

The 4-point interactions are given by the Lagrangian

KX [z
Cunr ="y [ as8c=2){ By 41,20,
21

(A18)
1 pop 1 2 v Ipo
+Zf7ﬂp7’]yo- h haﬂ—ih FHF s (A19)
- m%-/ [hhm/ Zhﬂ/’h,/p + 277141, <hp6 -
—;iﬂ)] ‘ﬂVV}, (A20)
K'Z 22 m% RO
L7 Z/z dz?V(pZV”Vﬂé(z—z), (A21)
1

2. Bulk matter
a. Scalar

The 3-point interactions are given by the Lagrangian
K 22 ~ 1
Lyss = 5/ dz A h" {—aﬂsays + Enﬂy(a,,sa's —(0.5)?
2]

- M§e2A52)], (A23)

[3(0.5)* + M%e*AS?].  (A24)

K 22 1
Lyss = —/ dz et —¢
058 2 21 \/6

The 4-point interactions are given by the Lagrangian
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KZ

Lanss =5 / ? dz e3A{(2izﬂﬂiﬂ,, — hh*)9,50,S
21

4; |

(A25)

$0°50,5 +10(0.5)?],  (A26)

K2 22 1
‘CWPSS = —Z/z d e g
1

K2 2 1
ﬁhq)SSZE/ dz e

NG Ph[3(0.9)2+M}e*S?). (A27)

b. Fermion

The 3-point interactions are given by the Lagrangian

Ly = K/Z]Z2 dz 64A{%ilﬂv[l/_/1‘<_i7/ﬂ311 + i’?y»;;)l//L
+ (L - R)| (A28)
1. <
Zh[l//R wr— (L —R)]
- % ARy, + WLys] }, (A29)

Lo =k [ Cdz et +(L=>R)] (A30
o =r [ Cdze {M iy ury + (L= R)] (A30)

il

+wLwg] },

L
zl//L (L - R)] +%MW€ PlwrwL

(A31)

where the derivative 0 acts only on the fermion fields and is
defined as

The 4-point interactions are given by the Lagrangian

K2 <

“ P p IV PEATAYESS
Ly = 3/Z dz e4A{§(3h’"h , = 2hh") (i, 0y,

1y e o <
+ (L < R)) + g (W =20 h,, )i dwri
—2M, e* gy + (L < R)] (A33)
1
+§€’1aﬂph”aaphﬂﬂ[l/7LM//L —(L < R)] (A34)

(il — 21" h,,)[0,5S — (9.S)? — M S?] }

)

(h Zh w hv/))[ azll/L - (L <~ R)] (A35)

1
8

Lo ny
bt o - (L= K] (439

K* (2 ]
Lopiy = _3/Z dz 64A(P2{ {161/@&1//14 + (L < R)]
1

(A37)
1 e
i - n)| . (A38)
L _ 2 @ d 3A 1 Aillw (1 3 ; "
hopy — K . ze 76¢ {[WL(l},ﬂ u lr]/ll/ﬁ)WL
1
(A39)
+4M, et ryr + (L < R)] (A40)
+An, g dwr — (L < R)]}. (A41)

c. Vector boson

The 3-point interactions are given by the Lagrangian

K [z ~ 1 ~
Lyyy = E/ dz e |:<h/w - Z’/lﬂvh> FIPE",
2]
o 1 ~ ” .
—{ hy —Enﬂyh o, V¥o, V¥ |,
2 A A
ﬁhVSVS = —_/Z dZ e h‘,ul/
1
22 Al 7
LhVV5 =K dze h/,w
21
K [2 2 1
Loy =7 / dz eA\/;go <—4F"”Fﬂb - aZV”aZV,,>,
21

(A42)

(A43)

=

| N
— Eﬂﬂyh> aﬂVS()VVS, (A44)

\S)

1
-5 r]Wh) 9,Vsd.V,, (A45)

(A46)
Loy, = / dz e \/Zp(? Vs0'Vs, (A47)
21
22 A 2
Ly, =K dze g(paﬂVﬁzV". (A48)
21

The 4-point interactions are given by the Lagrangian
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K2 22 A A A A A A
Lypyy = Z/ dz eA{ |:hﬂahup + My (hhw - 2hyahaa)
21

(A49)

1 ~ ~ 1 ~
+ 3 e <h"/}haﬁ -5 hz) ] Frv Fro (A50)

P P 1 7po7 1ay v
—{hhﬂy -2h,h,, —|—§i1ﬂy (hp h""_ih >]0ZV"02V }

(A51)

dz et fAdeOV

2V

(AS52)

WVV - /

K> [z A 1, A 1 ~ o v
ﬁhWV:E dze %qo hﬂy—znﬂyh FWFY, (A53)
21

+ (20, —1,,h)0. V40, Vv] . (A54)

APPENDIX B: WAVE FUNCTIONS
OF BULK MATTER

1. Graviton

The gravitational wave functions in RS, in conformal
coordinates, take the form of

M(2) = C 2 [Y 1 (my22)J2(myz) = T (my22) Y2 (m,2)].

(BI)

g(n) (Z) = CXOZZ[YI (ngZ)Jl (ng) - Jl (ngZ)Yl (mnz)]’
(B2)

= CY (Y (my22)To(myz) = J1(my20) Yo(m,2)],
(B3)

k(n) (Z)

for the massive modes n > 0, where J, and Y, are Bessel
functions of the first and second kind, respectively, and

(B4)

(BS)
|

1)

f'l/R (Z) 'I/R Zj (YMV/Z]_I/Z( l//’lz) -

0)(z) = V2 (B6)

for the massless modes. The normalizations Cﬂw are
fixed by

7 a0 = [ azerign o

21 b4

_ / ® dzeME Km ()0 (2)

2

= Opn- (B7)

The physical mass m,, is the nth solution of the equation

Yl (ngZ)Jl(mnzl) - Jl (ngZ)Y1<ng1) =0. (BS)
2. Bulk scalar
The wave functions of KK scalars are given by
F5(2) = 2lenumg ) +ddy(ms,2)]. (B)

where v = /4 + M3 Szl, and the coefficients ¢, and d,, and
the masses myg,, are fixed by the boundary conditions,

0.f9(z)) = 0.1 (z2) = 0, (B10)
and orthogonality,
Z
/ Tz I f(2) = S (BL)
21

3. Bulk fermion

Without the loss of generality, we consider the case
where the left-handed fermion has a massless mode. In such
case, the wave functions are given by

= CE,/HL)Z% (YMWZ]-‘,-I/Z(mI//JIZ) -

fil() = €z, (B12)

fin(z) =0, (B13)

YMWz]—l/Z(my/,nZZ)JMWZIJrI/Z(ml//,nz) ’ (B14)
In,z-172(My n22)

Y, oi-172(my n22)I b1, 2y -1/2(My 0 2) ’ (B15)
In,z-1/2(My n22)
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where the masses m,, ,, are the solutions of the equation fg)) (z) =0 (B19)
5 b

w.n

Int,z=172(My 0 22) Y g 2 —1 2 (1, 021)
a2 a2 f(n)(Z) _ C(n)z Ty (my ,2) = Jo(my ,21)Y (my ,2)
- YMWZI—I/Z(m'l/,nZZ)JMV/ZI—I/Z(mlll.nzl) =0, (B16) v K v TV Yo(””v,nZl) ’

) e . (B20)
and the normalization Cy,, is fixed by the orthogonality

@ m n M\ _ ) Jo(myz1)Yo(my ,2)
/Z dze“A(Z)fl(,,L;R(Z)fl(,,L)/R(z) =Smn- (B17)  fy,(z) = Cy, Z<Jo(mvfnl) - Yo(my,2)) ;
: .
(B21)
4. Bulk vector
The wave functions of KK gauge bosons are given by where the masses my , are the solutions of the equation
W) =cy, (B18)  Yo(my,z1)Jo(my n22) — Jo(my ,z1)Yo(my ,22) = 0,
(B22)
|
and the normalization C E,") and C g,"i ) are fixed by the orthogonality
22 m n 22 m n
/ dze*O £ () () = / dze"O £y (V) (2) = S (B23)
2] 21

APPENDIX C: COUPLING STRUCTURES

1. Graviton

The overlap integrals relevant to the KK graviton self-interaction are given by

an1n2n3 = <f(n])f(n2)f(n3)>’ br‘l]ﬁzn3 = <<azf(nl)>(azf(n]))f(nz)% bﬁlflzr = <(azf(nl))(azf(nl)>k<0)> (Cl)

One can derive the following “b-to-a” identities using the eigenequations and integration by parts:

2. Bulk scalar

The overlap integrals relevant to the KK scalars are given by

a5, = (FOVFEFS s ain, = (APPSR e BS s = (P00 ) (C4)
af e = PV g @l = (AR O) s bS = (08 0.1 KO, (C5)
S nny = (FOVLOVLEV LI s antiamn, = (AL FO) £ £V, (C6)
B nyniny = (0oL O F FE Uy b = (F )0, £ 0 £, (€7)
DA s = (€40, flma_flm) ) p 0y (C8)
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One can derive the following “b-to-a” identities using the eigenequations and integration by parts,

1
S _ 2 2 2 Mg
bjﬁwh - <mS.m - Emj jmm M Ajmpm>

N _ 1S 2\ S 2 Mg
bnnrhm - bﬁfzmm + (mS,m - mn)annmm - Msdnnmm

The completeness relations can be written as

(s (s (6]
E — S E S _ S E S _ S
nm] = Qnnmm > annjajmm = pnmm> bﬁ ﬁjajmm bnnmm
J=0 j=0

Jj=0

3. Bulk fermions

The overlap integrals relevant to the KK fermions are given by

vty = (PO FUe b Fuih e gy = (ARG F) o B = (0, ) £ fi)

bR = (F0) (0, EJ’R) Wy B = (FR 0 fE ), anit = (F ek @),

e = (A FUKO) o B = (0 fy KO, B = (f (0. f 4 K O)
i, = (FOD L0 L) Furid )y amnn, = (A f) ) f) ple)y

YR = (0. fl) f prsy o pve = () pi) (o)) £y

pive o= (f) plm) ) (g plyy b= (0 M) (9, ) £ ),

M,

DY e = (@MYL F f)y b= (A0 (9. f ) £ o),

One can derive the following “b-to-a” identities using the eigenequations and integration by parts,

VIVR __ Yo _ YR
bnmj ml//.janmj ml//.manmj’
VYiVYR YR YL
bﬁjm - _ml//,janmj + m(//.manmj’
YIVR _ JWLVR _ Y
b]mm - b/mm My m @ jmm = My,ma Jmm + 2Ml//a]mm’
Ly v M
bt = my/_mamﬁnr - My,amru;zr,
b'I/LII/R —-m all’R + M aMw
mmr w.m“Ymmr wmmr,
WLWR v
Diimm = 5 my, mGnsimm — 5 my/,manrfmm,
M,
WLy WLy v v y
bnanfn = bmémfn - my/,manrlimm - mw,manrlfmm + 2My/annumm-
The completeness relations can be written as
(] (&9 o0
E ‘/’L/R _ YR E VL pWLWR _ WLVR E YR LWLYR _ LWLYR
nm] = Annmm anmjbnjm - bnnmmv anmjbnMJ bnnmm’
=0 — —
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[Se]

Z @ = A Z 7 /D = i 202 (byinE)? = bl s (C27)
Z b%ﬁlzlk - blrll/%mm (CZS)
j=0
4. Bulk gauge bosons
The overlap integrals relevant to the KK gauge boson are given by
@y = FOFELT N i, = FOOLSY N B = PO @AV @)y, (C29)
@ = YLDy, BY = (V) (01K, (C30)
a"lllnzﬂam = <f(n])f(n2> i/n3)f§/n4)>v’ a"l/lsﬂznzm = <f . f = f f > Vs (C31)
BY onn, = (@SOS NFTT Ty BY o, = FOIFOD @) @7 )y (C32)
Drinann, = (0L )@f "NV FU )y (C33)
One can derive the following “b-to-a” identities using the eigenequations and integration by parts:
bxlnzn; mV.nsz,n3a"l/15’lz”3’ (C34)
br‘z/lnzn;m mV,n3mV.n4a"1/fn2n3n4' (C35)
The completeness relations can be written as
> (@) = Qe > (@) = i, §:amujmm:: al E:amujmm WL, (C36)
j=0 j=0
belﬁj jmm _br‘t/nmm’ annj jmm _br‘t/izmm (C37)
=0
APPENDIX D: KINEMATICS
We define the Mandelstam variables such that
s = (p1+ p2)? = (ki + k)?, (D1)
t=(p1—ki)*=( k)2 (D2)
u=(pi—ky)*=(ps— k1)2 (D3)

Choosing the Z direction as the center-of-momentum frame, with two outgoing massive spin-2 KK gravitons with masses
m,,, and two incoming massive particles with masses m,,, we can express the four-momenta of various particles as

) )
V00,8, P

Pr=15

2
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Vs

) (1,-p,sin0,0,—p, cos0),

Ky :?(1,&, sin, 0, 3, cos 9), Ky =
where 8, = \/1 —4m?2/s, and B;,, = \/1 —4m?, /s for i = 8,8y yim vV vim,

APPENDIX E: PROOF OF SUM RULES

(D5)

In this section, we give the analytic proof of the sum rules for bulk fermions. The proof for bulk scalars and gauge bosons

can be easily derived in a similar manner.
(1) Sum rule at O(s>/?), given in Eq. (133):

(5]

E V/L E VLYR YR Yr
2 ml/l] nmj nm] =2 bnm] + ml// manm])anmj
j=0

YLYR YR
annmm + 2ml//,ma"”mm

_ YR
- mw.mannmm + m.,,,mannmm,

where we have used Eqgs. (C19), (C26), and (C24).
(2) Sum rules at O(s?), given in Eqgs. (133) and (137).
With the “b-to-a” relations and the completeness relations given in Appendix C 3, one can derive

=) =)

p— Ve VL VR

me/// nm] _Z[mllhjanmj nmj Zm sm nm] +2mem l/lj nmj nm]
Jj=0 Jj=0

)
_ § : WLWRY2 W
= (bms”R + mV/ mam%mm

j=0
778
bnélmm ‘I’m,,,,mam%mma
[s+] o0
2 YL
E m? jnnja jmm - E (Zmnannj _Zbﬁﬁj)ajmm
J=0 J=0

— 2 .V U4
- 2mnaml5mm 2bn l}:l mm*

(3) To prove the sum rule at O(s*?), as given in Eq. (139), we first show
1 M,
Z 1y O Dontt™ = =2 My (D + B ) + 2M, 5 -

Proof. Note that, using the eigenequations and integration by parts,

mV/ J bWLV/R

R ULV
= —(g" 1y (9, + 24 = M, e fi),,
= (fih(0. +24" + M,e") (g™ £32)),,
= =1, (F) e Fiay = 1y (9 F 0 0D
+2M,, (g™ £y ), = 3(A g £ £,

n
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Thus, with the completeness relations,

Sy BB =3 (=m0 £ I G S PRy = iy (g £ PG 1
Jj=0 j=0

o+ 2m2 M (eAg £ I £ £, = 3mE (AT £ A 0 £ )
= —m}(f"g wa fy,R> — 2y (g g F) F),, = 3m2 (A g g pi) iy
+ Zm%M <€ 9 fl//L fl//R > . (E9)

On the other hand, applying eigenequations to the surface integral
/ " dz0, (Mg g 1) fi) = 0, (EL0)
21

one gets

m) s(m 1 ) (n) p(m) p(m 1 n) (n) p(m) p(m 1 n) (n) £(m) p(m
<A/g(n)g(n)f'$/L)f'S/R)>y/ = _gmn <f( >g( )f'(I/L)fl(l/R>>y/ +6m1//,m <g( )g( )flS/R)ff//R)>l/I _gmu/.m <g( )g( )fl(l/L>f'$/L)>y/ (El 1)

Hence,
N PYLYR YLV R :_l 2 (n) (n) p(m) p(m) (n) (n) £(m) ¢(m) 22 M A A g g(m) i) £(m)
Zml//j njm “nmj zmnmx//,m(<g g flI/LflI/L >1//+<g g fl//Rf‘//R >1//)+ nmy 1//<€ g9’y fV/LfV/R >y/
Jj=0

1

== 2 (bm mm + bZme) + 2Ml//bnnvmm (Elz)

Finally, we are ready to prove the sum rule given in Eq. (139).

)

E YL '//R _E YLYR YR YLYR YL
m ]anmj nmj ml//j bnm] +m anmj)( bn]m +m anmj)

j=0

Il
Ms

Ly (B BE) i, (a2 + al P) = i sl

| W .
o

1
= 2 mu/.m (b!rlt/l;l mm blrll/fl mm) + 5 mSI,m (ayll'%mm + Cl%lfmm) 2M bn nmm:* (El 3)

(4) The proof of the radion sum rule given in Eq. (140).
Proof. Applying eigenequations to the surface integral

/ 2 dz[0, (34 f) fin) g(0))] = / 2 dz[0.(e¥4 gt g gli))] = 0, (E14)
2 21
one gets

(A g gln) i)y = — % ((f0) £ FO)Y 4 (gm gn) £0)Y). (E15)
Then, from
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/ " dz[o.(e* g £y £ = 0.
/ dz[ ( f'//L f'l/R )] - (E16)

one gets

M / m m
SIS (BT)

H m m m; i m m 2m m
<A/g(J)f5/L3Rf§/L3R>(// - ?J <f<J)flS/L3Rfl§/L3R>I// + W < fl//L fV/R >1//

A )y (EI8)

i\ p(m) p(m m; i\ p(m) p(m My m N plm) p(m
(ANGD L [y = =SS Fi )y = =2 (g 1 fu),

Note that, by combining the SUSY relations

{ (_(az + 34" gW) = mjf(f), (E19)

0, +A)gl) = mjkop

one gets
ki) = —f) — 2200 for j> 0. (E20)

Thus, we have

(E21)

I
|
W N
S
N
=
~
_|_
(98]
S
=
=
<
=
Q
=
~
V
=
~

And,

i m m m m 4M m m i m m m m 4M/ m m
<k(,)<f§h)fl<h>+fl<”>f.<ﬂk>_3_weA fn)f.fuk)>> :_<f<1><fl<“>f5h)+ﬂ<h>ﬁ<”>_3_veAfl<“>f.<ﬂR>>>
My v m v

w,m
—3< (fw £ g gl o My i gl gt )>
m; 3mu,’ v
1 i m m m m
= _g <f(j)(f‘5/L)f'5/L) +fl(llk)f15/1e))>y/

+ aV/R

3( Jjmm /mm) (fOI' .] > 0) (EZZ)
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Finally, using the completeness of the wave functions kl/) of the scalar Golstone boson, we have

L R 4M M, n) (n m
br‘zﬁr(a;/nmr‘f'a%mr_?’m ul ammr> :m%<g( )g< )k( >< <fl//L f'l/L +f1//R fl//R _3 VI Afl//L fl//R >>
W

w,m

= m) p(m) aM m) p(m
:mng@(")g(")k >< <fV/L f'I/L +fV/R f'I/R _3m = eAf£/L>f'S/R)>>
74

w.m

_m%Z<g(n)g(n)k >< <fl//nLlfl//L +fV/RfWR _3 II/ AfV/L fl(lfrz))>
v

w.m

p(m) p(m p(m) p(m M, A p(m) p(m
m%<g(n)g<n) < l(//L>f'5/L) + l(//R>f15/R) - —?’Ve 15/L>fl5/R)> >
v

y,m

aM, u I &
= (blrlt%mm + blrll/flmm - Im = bnr(;/mm) +§ E (mgtannj - Zbﬁﬁj)(aljl/nim + alj,'/mRm)
m =0

(mzannO annO)(GOmm + aOmm)
1
blrll/%mm blrll/l:lmm> +3 mnannO(aOmm + aOmm)

9
aM,,
3m

m%(ai’{y’imm + arvzlrll?mm) - bnnmm (E23)

w,m

(5) In a similar manner, we can also prove the radion sum rule for brane matter given in Eq. (91):

- 3
J
=/ 2 m? , 2 m>
j=0
M) (572 4. T 0)(3
= 2O + 5 anefO@). (E24)
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