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The axion-gluon coupling is the defining feature of the QCD axion. This feature induces additional and
qualitatively different interactions of the axion with standard model particles—quadratic couplings.
Previously, hadronic quadratic couplings have been studied and experimental implications have been
explored especially in the context of atomic spectroscopy and interferometry. We investigate additional
quadratic couplings to the electromagnetic field and electron mass. These electromagnetic quadratic
couplings are generated at the loop level from threshold corrections and are expected to be present in the
absence of fine-tuning. While they are generally loop-suppressed compared to the hadronic ones, they open
up new ways to search for the QCD axion, for instance via optical atomic clocks. Moreover, due to the
velocity spread of the dark matter field, the quadratic nature of the coupling leads to low-frequency
stochastic fluctuations. These distinctive low-frequency fluctuations offer a new way to search for heavier
axions. We provide an analytic expression for the power spectral density of this low-frequency background
and briefly discuss experimental strategies for a low-frequency stochastic background search.
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I. INTRODUCTION

The axion ssolution of the strong CP problem requires
the axion field to couple to the strong sector [1–8].
Couplings between ultralight spin-0 fields and the strong
sector occur also in models addressing other theoretical
questions, such as the quark-flavor puzzle and electroweak
hierarchy problem, or in phenomenological models like
the Higgs-portal [9–18]. If the spin-0 field is a scalar,
these couplings are severely constrained by equivalence-
principle and fifth-force bounds [19,20]. Conversely, if the
spin-0 field is a pseudoscalar field, long-range forces do not
appear at the leading order, and therefore, the correspond-
ing bounds are dramatically weaker.
[These ultralight states could account for the dark matter

in the present universe. The canonical example is the QCD
axion dark matter [21–23], where the coherent oscillation
of the axion plays a role of cold dark matter. On the
more phenomenological side, fuzzy dark matter of mass
m ≃ 10−22 eV was proposed to resolve problems of cold
dark matter at small scales [24]. Currently, no positive
signals of ultralight dark matter (ULDM) candidates exist,

resulting in bounds on its mass and on possible interactions
between ULDM and the standard model (SM) particles.
For instance, astrophysical and cosmological investigations
have placed a lower bound on the ULDM mass as m≳
10−19 − 10−20 eV (see Ref. [25] for a recent review).]
Current terrestrial axion dark matter searches mostly rely

on its anomalous coupling to the photon or axial-vector
couplings to standard model particles. However, below the
confinement scale, strong confining dynamics generate
sizable quadratic couplings of the QCD axion to SM scalar
operators in the strong sector,1 offering new directions
for axion searches. For instance, the quadratic couplings
can change the potential structure of the axion in a finite
density environment, which can be examined in extreme
stellar environments such as white dwarfs and neutron
stars [27–30].
Moreover, these hadronic quadratic couplings induce

small time-oscillations of nuclear parameters, if the axion
constitutes the observed dark matter. Such small oscilla-
tions of nuclear parameters can be probed by atomic
spectroscopy and/or interferometry, for instance by atomic
clocks [31]. While atomic spectroscopy provides an inter-
esting way to probe axion dark matter, it is still challenging
to probe the axion via hadronic quadratic couplings since
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1In generic axion models these are suppressed by the axion
mass [26].
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atomic clocks are in general less sensitive to the variation of
nuclear parameters.
In this work, we explore another kind of quadratic

interaction of the QCD axion—the quadratic interactions
with the electromagnetic field and the electron. The former
arises from one-loop corrections, while the latter is induced
by two-loop corrections. Although such couplings are
generally smaller than their hadronic counterpart, they
allow us to probe the QCD axion with a wider range of
experimental setups, some of which are more sensitive.

These couplings are induced and dominated by loops
involving IR states and therefore are expected to be
naturally present in the theory regardless of the details
of the microscopic theory. The main objective of this work
is to study the interplay between current and near-future
experimental sensitivity of the quadratic axion couplings to
the strong and electromagnetic sectors. Our main result,
which will be detailed below, is summarized in Fig. 1.
This work is organized as follows. In Sec. II, we briefly

discuss hadronic quadratic couplings from the axion-gluon
interaction. We then show that the hadronic quadratic
couplings generate quadratic interactions with the photon
and the electron at one and two-loop levels, respectively. In
Sec. III, we discuss the implications of electromagnetic
quadratic interactions in axion searches with atomic spec-
troscopy and gravitational wave detectors. In Sec. IV, we
discuss in more detail the signal spectrum of axion dark
matter generated by quadratic interactions. We show that
the quadratic nature of the coupling leads to low-frequency
stochastic fluctuations of observables besides the coherent
harmonic signals at frequencies corresponding to two times
the axion mass. We further discuss possibilities to constrain
and probe such stochastic signals in an experimental setup
with a single detector and multiple detectors. We conclude
in Sec. V. We use natural units c ¼ ℏ ¼ 1 throughout
this work.

II. QUADRATIC COUPLINGS

We start from the axion coupling to the standard model
gluon field,

L ¼ g2s
32π2

ϕ

fϕ
Ga

μνG̃
aμν; ð1Þ

where fϕ is the axion decay constant, gs is the strong
coupling, Ga

μν and G̃a
μν are the gluon field strength and its

dual. We do not take into account any other couplings in
this work; i.e. we consider KSVZ-like models where axion
couplings to the axial vector currents of SM fields are
absent at UV scales. Model-dependent couplings will not
change our analysis, but they may lead to additional bounds
on the axion parameter space.
The axion-gluon coupling (1) naturally leads to

hadronic quadratic couplings below the QCD scale. For
instance, the pion mass can be found from the chiral
Lagrangian as m2

πðθÞ ¼ Bðm2
u þm2

d þ 2mumd cos θÞ1=2
with B ¼ −hq̄qi0=f2π and θ ¼ ϕ=fϕ [50,51]. Expanding
the pion mass around θ ¼ 0, we find a quadratic coupling
to pions,L ⊃ θ2π2. Furthermore, the nucleon mass depends
on the pion mass through L ⊃ 4c1m2

πðθÞN̄N with c1 ¼
−1.1 GeV−1 [52], which leads to a quadratic interaction
between the axion and nucleons as well.
The hadronic quadratic interactions introduce time

oscillations of the nuclear parameters if the axion is the

FIG. 1. Summary of constraints. Constraints with microwave
clocks are shown in a red color scheme: Rb/Cs fountain clocks
(Rb/Cs) [32], a H-maser with a Si cavity (H/Si) [33], and
strontium and cesium clocks (Sr/Cs) [34]. They receive the
dominant contribution from the variation of nuclear parameters
[31]. Constraints based on optical transitions are shown with a
green color scheme: Ybþ and Sr (Yb/Sr) [34], Sr with a Si cavity
(Sr/Si) [33], Alþ, Hgþ, Yb, and Sr (Al/Hg, Al/Yb, Yb/Sr) [35],
and the electric-octupole (E3) and the electric-quadrupole (E2)
transitions of Ybþ ion (YbþE3=E2), and Ybþ (E3) and Sr
(YbþE3=Sr) [36]. The region bounded by the green dashed line
is excluded by comparing measured frequency uncertainties in
YbþE3=E2 with the low-frequency fluctuations of the axion DM
(see Sec. IV for details). Other constraints and projections
include: (co)magnetometers (pink) with a projection of NAS-
DUCK (pink dashed) [37–40], molecular iodine I2 spectroscopy
(dark blue), MAGIS-100/MAGIS-km (dot-dashed/dotted blue), a
projection of CASPEr-electric (red dashed) [41], the AURIGA
resonant bar gravitational wave experiment (emerald) [42],
oscillating neutron EDM (brown) [43], supernova 1987A
(orange) [44], axion superradiance constraints (gray) [45],
229Th nuclear isomer transition (gray dashed) [14,46], and
strontium monohydroxide SrOH (violet dashed) [47]. We also
show a minimal QCD axion line (olive), corresponding to
m2f2ϕ ≃m2

πf2π . Spectroscopy bounds above the cyan solid line
must be taken carefully as the axion could develop a static profile
around the Earth (cyan) [27]. In addition, we show the reaches of
MAGIS-km and 229Th nuclear clock as a thick blue and gray line
in scenarios where the DM density in the solar system is
enhanced via capture processes [48]. Constraints from magne-
tometers and supernova are obtained by assuming axion-nucleon
couplings from KSVZ-like QCD axion models [49].
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dark matter in the present universe. As it is clear from the
chiral Lagrangian, the pion and nucleon mass will receive a
small oscillating component, e.g.

δm2
π

m2
π
¼ −

z
2ð1þ zÞ2 θ

2ðtÞ ð2Þ

with z ¼ mu=md. The amplitude of the oscillating θ2ðtÞ is
proportional to the dark matter density ρ ≈ θ2ðtÞm2f2ϕ,
where m denotes the axion mass. Other nuclear parameters
that depend on the pion mass, such as the nuclear g-factor
will also receive such a time-oscillating component. As a
consequence, atomic energy levels oscillate and, in addi-
tion, any object whose mass receives QCD contributions
experiences an acceleration due to the axion dark matter
background.
Based on this observation, it was shown in Ref. [31] that

spectroscopic and interferometric measurements, such as
atomic clocks and gravitational wave interferometers, can
be used to search the axion at the low mass range. In
particular, clock comparison tests using hyperfine transi-
tions are considered since hyperfine transitions are directly
affected by the variation of nuclear parameters. In addition,
gravitational wave interferometers are considered as
most mass of the test bodies comes from QCD, and
therefore, they fluctuate inevitably in the axion dark matter
background.
[Furthermore, as we will show shortly, the hadronic

interactions also lead to EM quadratic couplings at low
energy scales through loop corrections. A small change in
the charged pion mass due to the background axion dark
matter inevitably introduces a fluctuation of the quantum
corrections to the fine structure constant and the electron
mass. These effects can be described as electromagnetic
quadratic operators of axions, and will allow us to utilize a
broader range of spectroscopic measurements for the axion
search. Below, we detail how these EM couplings are
induced and show that all of these effects are due to the
variation of the pion mass.]

A. Quadratic interaction with the electromagnetic field

We first consider the quadratic coupling to the electro-
magnetic field,

L ¼ −
1

4
FμνFμν þ Cγ

4

ϕ2

f2ϕ
FμνFμν ð3Þ

at energy scales below the pion mass. The coefficient Cγ is
given as

Cγ ¼ −
z

24ð1þ zÞ2
α

π

�
1þ 8

σπN
mN

�
≃ −3 × 10−5: ð4Þ

Here z ¼ mu=md ≃ 0.46 and σπN ¼ ∂mN=∂ lnm2
π ∼

Oð50Þ MeV. The coefficient Cγ can be directly obtained
from the one-loop computation of ϕϕ → γγ via a pion loop
or a nucleon loop as shown in diagrams (a), (b) and (c) in
Fig. 2. Alternatively, it can be read off from the threshold
correction to the running of the fine structure constant with
respect to the variation of the pion and the nucleon masses.
Consider the running of the electromagnetic coupling

1=e2 from ΛUV to ΛIR. Let us assume a single charged
particle whose mass mπ is in between these scales.
The gauge coupling runs as 1=e2ðΛIRÞ − 1=e2ðΛUVÞ ¼RΛUV
ΛIR

d ln μ½2βeðμÞ=e3� where βeðμÞ ¼ ðbe3=8π2Þ, b ¼
2
3

P
f Q

2
f þ 1

6

P
s Q

2
s , and the sums over f and s account

for Dirac fermions and complex scalars, respectively. For a
fixed UV value of the gauge coupling, one finds that the
gauge coupling at low energy depends on the mass of the
charged particle,

δ

�
1

e2IR

�
¼ −

Δb
4π2

δmπ

mπ
: ð5Þ

Here Δb is the change of the beta function coefficient at the
threshold; Δb ¼ 2Q2=3; Q2=6 for a Dirac fermion and a
complex scalar field of charge Q, respectively. In the
effective Lagrangian, this dependence is incorporated by

L ¼ Δbe2

ð4πÞ2
δmπ

mπ
FμνFμν:

From this, we obtain

δα

α
¼ Cγθ

2 ¼ α

π

X
i

Δbi
δmi

mi
¼ α

12π

�
1þ 8σπN

mN

�
δm2

π

m2
π
; ð6Þ

(a) (b) (c) (d)

FIG. 2. The Feynman diagrams that are responsible for the quadratic operators of the axion to the electromagnetic field Eq. (3)
[diagrams (a), (b), and (c)] and to electrons Eq. (8) [diagram (d)]. In the diagram (d), the vertex between axions and photons is obtained
from the other three diagrams.
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where we include the variation of the nucleon mass; the fine
structure constant fluctuates as the pion mass changes due
to the background axion dark matter.

B. Quadratic interaction with electron mass

Furthermore, the hadronic quadratic couplings lead to a
quadratic coupling to the electron mass,

L ¼ −Ceme
ϕ2

f2ϕ
ēe; ð7Þ

where the coefficient Ce is

Ce ≃
3α

4π
Cγ ln

m2
π

m2
e
: ð8Þ

This effect arises at two-loop order; it is suppressed
by ðα=πÞ2.
We estimate the coefficient Ce in the following way.

Below the QCD scale, the dim-6 operator (3) contributes to
the running of the electron mass. In QED, the correction to
the electron mass due to running from the QCD scale to the
electron mass is given by ðδme=meÞ ¼ ð3α=4πÞ lnm2

π=m2
e.

Since θ2ðtÞ oscillates at a frequency much smaller than
the electron mass or the QCD scale, we can effectively
take Cγθ

2 as a constant and absorb it by rescaling the gauge
field Aμ → ð1þ Cγθ

2Þ1=2Aμ. This is equivalent to taking
e2 → e2ð1þ Cγθ

2Þ. Using the QED result, one finds that
the dim-6 operator contributes to the running as

δme

me
≃
3α

4π
Cγθ

2 lnðm2
π=m2

eÞ ¼ Ceθ
2

from which we estimate Ce as in (8). An explicit compu-
tation of the diagram (d) in Fig. 2 leads to the same
estimation. However, we do not consider the variation of
electron mass further as its effect on observables is usually
much smaller than the variation of the fine structure
constant and nuclear parameters.

III. IMPLICATIONS

The quadratic couplings to the electromagnetic field and
the electron mass offer alternative ways to search for the
QCD axion. Previously, Ref. [31] focused on the quadratic
coupling to hadrons.2 Assuming that the axion constitutes
DM, it was pointed out that such hadronic quadratic
couplings lead to time variations of the nuclear parameters,
such as the nucleon mass and nuclear g-factor, and that
atomic clocks based on hyperfine transitions could probe
the axion DM-induced signals. With additional quadratic
couplings to the electromagnetic field and the electron

mass, a wider range of experiments, e.g. atomic clocks
based on electronic transitions, becomes sensitive to the
QCD axion dark matter. Since such optical clocks usually
have a shorter averaging time and better sensitivities, one
can expect to probe a wider range of parameter space.
For clarification, let us briefly review how a clock

comparison test probes couplings of ultralight dark matter
with SM particles [46]. Consider two stable frequency
standards fA and fB. Suppose that each frequency standard
has a slightly different dependence on the fine structure
constant, fA ∝ αξA and fB ∝ αξB with ξA ≠ ξB. Due to the
time-variation of the fine structure constant caused by the
DM field, the ratio of these two frequencies fluctuates as

δðfA=fBÞ
ðfA=fBÞ

¼ ðξA − ξBÞ
δα

α
∝ θ2ðtÞ;

where θ2ðtÞ ¼ ðρ0=m2f2ϕÞ cosð2mtÞ is related to δα=α
by (6). By monitoring the frequency ratio and investigating
if the time series contains any harmonic signal at ω ¼ 2m,
one can probe the QCD axion.
Generically the fractional frequency deviation arising

from a quadratic coupling can be written as

δfA
fA

¼ KAθ
2ðtÞ; ð9Þ

where KA is the sensitivity coefficient that depends on
the atomic species and transition. It takes all the effects
(hadronic and electromagnetic) into account. A list of the
coefficient KA for different atom species is available in
Appendix A.
Any stable frequency standard can be used to search for

the QCD axion. Ref. [31] only used hyperfine transitions as
only hadronic quadratic couplings were considered in that
work and hadronic couplings do not affect the electronic
transition to leading order. Possible variations of electronic
transition caused by oscillations of the nuclear charge
radius were investigated in Ref. [55]. Due to the electro-
magnetic quadratic couplings described above, electronic
transition levels now change directly as the background
DM oscillates. Although these new quadratic couplings
are at least one-loop suppressed, they still lead to com-
petitive bounds compared to microwave clocks as optical
clocks have orders of magnitude smaller frequency
uncertainties.
In Fig. 1, we show bounds on 1=fϕ from various

spectroscopic measurements, particularly the atomic clock
comparison tests. All bounds with solid lines are recast
either from existing experimental constraints on scalar
ultralight dark matter or from the power spectral density
of frequency uncertainties. The detailed connection
between the constraints on scalar-like dark matter and
axion dark matter is discussed in Appendix B. In addi-
tion to the clock-comparison tests, we also show the

2A generic ultralight dark matter model with ϕ2 coupling was
considered in [53,54].
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constraints and projections from the resonant-bar gravita-
tional wave detectors, AURIGA [42], and atom interfer-
ometers [41,56,57].

IV. SPECTRUM

The quadratic axion DM signal discussed so far is the
harmonic signal, sðtÞ ∝ θ2ðtÞ ∝ cosð2mtÞ, at the frequency
twice the dark matter mass, ω ¼ 2m. By investigating if the
detector output has an oscillating component at ω ¼ 2m via
matched filtering, it is possible to probe or constrain
interactions of ULDM with SM particles.
The quadratic operator exhibits not only coherent har-

monic oscillations but also distinctive low-frequency sto-
chastic fluctuations at ω≲mv2, where v denotes the DM
velocity. This offers another opportunity to test the QCD
axion. Recently, Masia-Roig et al. [58] showed that a
network of sensors can be used to probe such low-
frequency stochastic background in the context of non-
gravitational quadratic interactions of ULDM with SM
particles. Flambaum and Samsonov [59] argued that, by
directly comparing the low-frequency background with
experimentally measured uncertainties, it is possible to set
limits on the QCD axion parameter space at higher masses.
We provide below the analytic spectrum of the low-

frequency fluctuation of the axion dark matter from its
quadratic interactions and project the sensitivity of different
detector networks.
To see how this low-frequency stochastic noise arises

from the quadratic operator, let us assume that the signal is
proportional to the quadratic operator as follows,

sðtÞ ¼ Kθ2ðtÞ;

with arbitrary constant K. Once we expand the field as3

ϕðt; xÞ ¼
X
i

1ffiffiffiffiffiffiffiffiffiffi
2mV

p �
αie−iki·x þ α�i e

iki·x
� ð10Þ

with complex random numbers ðαi; α�i Þ, it is clear that the
quadratic operator contains the sum, ωi þ ωj, and the
difference, ωi − ωj of two frequencies in the field,

ϕ2ðt; 0Þ ⊃ αiαje−iðωiþωjÞt þ αiα
�
je

−iðωi−ωjÞt þ H:c:

In the non-relativistic limit, the first term ωi þ ωj ≃ 2m
provides the harmonic signal at ω ¼ 2m. The second term,
on the other hand, provides a low-frequency fluctuation
at ω≲mv2.
A more careful investigation is possible via the power

spectrum of the quadratic operator. The one-sided power
spectral density (PSD) of the signal, PsðfÞ, is defined as

hs̃ðfÞs̃�ðf0Þi ¼ δðf − f0Þ 1
2
PsðfÞ; ð11Þ

where sðtÞ ¼ R
dfe−2πifts̃ðfÞ. Following Ref. [61], for a

normal DM velocity distribution nðv⃗Þ ¼ ½ðρ0=mÞ=
ð2πσ2Þ3=2� expð−v2=2σ2Þ with the mean dark matter den-
sity ρ0 and the velocity dispersion σ, one finds the signal
PSD as

PsðfÞ ¼ K2
θ40
4
τϕ½AðfÞ þ BðfÞ� ð12Þ

where τϕ ¼ 1=mσ2 is the coherence time and

AðfÞ ¼ π
v̄4

σ4
e−v̄

2=σ2Θðv̄2Þ ð13Þ

BðfÞ ¼ 4ω̄K1ðω̄Þ: ð14Þ

Here v̄2 ¼ 2πf=m − 2, ω̄ ¼ 2πf=mσ2, KnðxÞ is the modi-
fied Bessel function of the second kind, and ΘðxÞ is the
step function. The expression shows two distinctive fre-
quency components: AðfÞ represents the harmonic signal at
ω ¼ 2πf ¼ 2m, and BðfÞ represents the low-frequency
stochastic fluctuation. For a detailed derivation, see
Appendix C.
The low-frequency stochastic background behaves sim-

ilarly to white noise and is therefore difficult to distinguish
from other random noises in a detector.4 If it is somehow
possible to arrange the output data in a way that it is
insensitive to the axion DM signal, then it could be possible
to calibrate the noise and therefore detect the axion with
only one experiment. Alternatives are the following two
approaches: (i) the reported stability of clocks can be used
to constrain the parameter space as the low-frequency
stochastic DM background would lead to larger fluctua-
tions than the ones observed; (ii) to possibly detect the
axion, one may utilize the cross-correlation between
multiple experiments for which the individual experi-
ment-intrinsic noise cancels, while the axion signal persists.
In the following, we discuss these two possibilities in more
detail.

A. Single detector setup

As already demonstrated in Ref. [59], by comparing the
low-frequency fluctuations with the measured uncertainty
of clocks, one can place lower limits on the decay constant
fϕ. In a repeated measurement of a given frequency
standard, there will be varying fluctuations due to the
experiment’s intrinsic effects as well as possibly the axion

3See Appendix C and Refs. [60,61] for more detailed dis-
cussions on this statistical description of wave dark matter.

4It might be possible to disentangle axion DM-induced
fluctuation from Gaussian random noise since axion DM fluc-
tuations from quadratic interaction follows the exponential
distribution rather than the normal distribution [59].
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signal. Since the low-frequency part of the signal has very
similar properties to white noise, we expect the two to be
hardly distinguishable. Even if we consider the axion signal
as just another component of the noise, we can still
constrain the axion by requiring that the noise due to the
axion is smaller than the total observed one.
We illustrate this further with the measurement of the

frequency ratio of Ybþ electric-octupole (E3) and electric-
quadrupole (E2) clock transitions as an example [36]. As
explained above, one way to extract the constraints on 1=fϕ
is to directly compare the low-frequency noisePs ∼ K2θ20τϕ
(12) with the measured clock frequency uncertainties.
The fluctuations of the measured frequency ratio in
Ref. [36] are consistent with white noise of PnðfÞ ¼ σ2n ≃
ð10−14= ffiffiffiffiffiffi

Hz
p Þ2. A direct comparison leads to the constraint

on 1=fϕ as f−1ϕ ¼ ½m2σn=ð2Kρ0
ffiffiffiffiffi
τϕ

p Þ�1=2 with K ≃ 10−4.
The quantity commonly cited to quantify the frequency

stability in a clock comparison test is the Allan deviation.
[The Allan deviation σyðτÞ was initially introduced to
provide a means to quantify the stability of frequency
standards in the presence of noise with a divergent IR
behavior. In particular, it describes the stability of fre-
quency between measurements τ-seconds apart.] To find
our bounds quantitatively, we compute the Allan deviation
caused by the axion DM and require it to be smaller than
the experimentally reported value. The Allan deviation is
defined in (C20) and the expected value for the axion DM is
provided in Appendix C 2. We find

1

fϕ
¼

�
m4σ2nðτÞ

8K2ρ20Iðτ=2τϕÞ
�
1=4

ð15Þ

where σnðτÞ is the reported Allan deviation with an
averaging time τ. The detailed derivation and the function
IðxÞ are given in Appendix C 2. This constraint is shown
by the green dashed region in Figs. 1 and 3.

B. Multidetector setup

If two or more detectors are available, it is possible to
distinguish the axion DM signal from the detector’s noise
by cross-correlating multiple detector outputs. Suppose we
have two detector outputs d1;2ðtÞ ¼ s1;2ðtÞ þ n1;2ðtÞ. If we
now consider the correlation between the two outputs
hd1d2i, we expect the noises in the two detectors to be
uncorrelated among themselves, hn1n2i ∼ 0, while the
signal is hs1s2i ≠ 0 as long as the two detectors are placed
within one coherence length L < λ ≈ 1=ðmvÞ. In practice,
this is done by constructing an observable as Y ¼R
dt

R
dt0s1ðtÞs2ðt0ÞQðt − t0Þ with some real filter function

Qðt − t0Þ. The signal and noise are computed as S ¼ hYi
and N2 ¼ ½hY2i − hYi2�s¼0, respectively. The maximum
signal-to-noise ratio is [62]

S
N

¼
�
2T

Z
fu

fl

df
jPcrossj2
P2
nðfÞ

�
1=2

ð16Þ

where fu;l is the highest and lowest frequency where PnðfÞ
is available, T is the total observation timescale, PnðfÞ ¼
½Pn1ðfÞPn2ðfÞ�1=2 is the noise PSD, and Pcross is the cross-
correlation defined as

hs̃1ðfÞs̃�2ðf0Þi ¼ δðf − f0Þ 1
2
PcrossðfÞ: ð17Þ

ForNdet detectors, the above expression is modified as T →
½NdetðNdet − 1Þ=2�T assuming that the noise PSD in all
detectors is more or less the same.
The cross-correlation PSD from the axion DM can be

computed straightforwardly with the formulation described
above. For a normal velocity distribution with zero mean
velocity, we find

Pcrossðf; L⃗Þ ¼ K1K2

θ40τ

4
Bcrossðf; L⃗Þ ð18Þ

where

Bcrossðf; L⃗Þ ¼ 2

Z
∞

−∞
dx

e−iω̄x

ð1þ x2Þ3=2 exp
�
−
ðmσLÞ2
1þ x2

�
: ð19Þ

Note that K1;2 is the sensitivity coefficient defined as si ¼
Kiθ

2ðtÞ and L is the detector separation. The detailed
derivation and more general expressions with dark matter
mean velocity are given in Appendix C. Note that the above
expression coincides with (14) in the L → 0 limit.
In Fig. 3, we choose optical clock systems to investigate

to which extent they can probe the QCD axion parameter
space at a higher mass range. Assuming only white noise
and mσL ≪ 1 such that Bcross ≈ B, one finds the projected
sensitivity on 1=fϕ as

FIG. 3. A projection for cross-correlation with optical clock
systems (red line). We choose T ¼ 100 days, Ndet ¼ 10 detec-
tors, and S=N ¼ 3.
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1

fϕ
≈
�

Pn

4K1K2

S
N
m4

ρ20

�1
4

�
π

Tτϕ minð1; 2πfuτϕÞ
�1

8 ð20Þ

We chooseK1;2 ¼ 10−4, measurement frequency fu ¼ 1Hz,

and P1=2
n ðfÞ ¼ 10−16=

ffiffiffiffiffiffi
Hz

p
. Unlike the single detector

setup in the previous section, the signal-to-noise ratio
and the projection on 1=fϕ show a mild improvement as
a function of observation time and the number of detectors.
This can be seen by comparing the projection of a network
with T ¼ 100 days and Ndet ¼ 10 detectors shown in
Fig. 3 as a red line, with the green dashed region showing
the Ybþ (E3)/(E2) constraint from the previous section in
a single detector setup. Crucially the multidetector setup
allows for the detection of the axion since the nonvanishing
cross-correlation can distinguish the signal from detec-
tor noise.
[Before we conclude, we remark on the parameter space

shown in the figures. We consider an axion that couples to
the gluon field (1), while we have treated the mass m and
the decay constant fϕ as if they are independent. These two
parameters are not independent in minimal QCD axion
models, as QCD provides an inevitable mass contribution
to the axion; the axion mass is given as m2 ∼ Λ4

QCD=f
2
ϕ. As

a result, the parameter space above the olive line in Fig. 1
cannot be achieved by minimal QCD axion scenarios.
However, it was recently shown that this parameter space
with small mass can be achieved in a technically natural
way by introducing a discrete symmetry [63] and can also
be dark matter in the present universe [64].]

V. CONCLUSION

In this work, we have considered the quadratic inter-
actions of the QCD axion with the electromagnetic field
and the electron mass. These quadratic interactions natu-
rally arise as long as the axion couples to the gluon field of
the standard model. Similar to the quadratic interaction
with pions and nucleons, such interactions lead to oscillat-
ing atomic energy levels. Contrary to the hadronic cou-
pling, the electromagnetic interaction directly affects the
electronic energy levels, making systems that depend on
these energy levels sensitive to axion DM. As examples of
such systems, we studied optical clocks, resonant-bar
gravitational wave detectors, and atom interferometers.
We have summarized existing constraints and projected

sensitivities of future nuclear clocks in Fig. 1. While they
are still far from the minimal QCD axion parameter space,
they provide alternative ways to search the QCD axion.
Moreover, the quadratic nature inevitably introduces a low-
frequency stochastic background. We have derived an
analytic expression for the low-frequency spectrum of
the ultralight DM-induced signal. By directly comparing
the axion DM-induced low-frequency fluctuations with
measured clock uncertainties, we show that the Ybþ (E3)
and (E2) comparison can also probe heavier axions than

those considered in previous work [36]. In addition, with
several assumptions, we have also projected the sensitivity
of a network of detectors, which could probe this higher
mass range further.

Note added. While this work was being finalized, a related
work [65] appeared on the arXiv, which shares some of the
points discussed above.
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APPENDIX A: CLOCK COMPARISON TEST

We list the sensitivity coefficient for the QCD axion for
different atomic species. Let us consider the frequency
standards based on hyperfine and electronic transitions.
The transition frequency is parametrized as

fhfs ¼ g
m2

e

mp
α4FhfsðαÞ; ðA1Þ

felec ¼ meα
2FelecðαÞ; ðA2Þ

where g is the nuclear g-factor, and FðαÞ is the relativistic
correction.
There are total 4 parameters, fg;me;mp; αg. Each of

them varies in time. The transition frequency can be

conveniently written as fA ¼ g
Kg

A m
Kme
e m

Kmp
p αKα . Since

the effect of the QCD axion always arises through the
variation of pion mass, the fractional frequency change can
be written as

δfA
fA

¼
X
i

Ki
∂ lnAi

∂ lnm2
π

δm2
π

m2
π

ðA3Þ

where the index runs over all four parameters. Kg ¼ 1; 0,
Kme

¼ 2; 1, and Kmp
¼ −1; 0 for hyperfine and electronic

transition, respectively. The values for Kα can be found in
Refs. [66,67]. The dependence of each parameter on the
pion mass is

∂ lnmp

∂ lnm2
π
¼ σπN

mN
≃ 0.06 ðA4Þ
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∂ ln α
∂ lnm2

π
¼ α

12π

�
1þ 8σπN

mN

�
≃ 3 × 10−4 ðA5Þ

∂ lnme

∂ lnm2
π
¼ 3α2

48π2

�
1þ 8σπN

mN

�
ln
m2

π

m2
e
≃ 6 × 10−6: ðA6Þ

where σπN ¼ ∂mN=∂ lnm2
π . For the g-factor, one finds

∂ lngp=∂ lnm2
π ¼ −ðg2A=gpÞ½mNmπ=ð8πf2πÞ�≃−0.17 for the

hydrogen atom, ∂ ln gRb=∂ lnm2
π ¼ −0.024 for 87Rb, and

∂ ln gCs=∂ lnm2
π ¼ 0.011 for 133Cs [31]. For the nuclear

clock transition in 229Th, the hadronic quadratic coupling is
dominant, δfA=fA ≃ ð2 × 105Þ × δm2

π=m2
π [31].

The above expression can be written in a more compact
form:

δfA
fA

¼ KAθ
2: ðA7Þ

The sensitivity coefficient KA for each system is listed in
Table I. The sensitivity coefficient of the frequency ratio of
any pair of atomic transitions is simply the difference of the
two respective sensitivity coefficients.

APPENDIX B: RECASTING LIMITS

For the deterministic signal search at ω ¼ 2m, the
previous results on dilaton dark matter can be straightfor-
wardly converted into the constraints on axion dark matter.
We illustrate this with the electromagnetic couplings of
dilaton dark matter, parametrized as

L ¼ ϕffiffiffi
2

p
Mp

de
4
FμνFμν; ðB1Þ

where Mp is the reduced Planck mass. This leads to a
fluctuation in the fine structure constant as

δα

α
¼ deϕ0ffiffiffi

2
p

Mp

cosðmtÞ ðB2Þ

where ϕ ≈ ϕ0 cosðmtÞ with ϕ0 ¼
ffiffiffiffiffi
2ρ

p
=m.

Consider now two frequency standards A and B.
Suppose that they are proportional to the fine structure
constant as fA;B ∝ αξA;ξB . The fractional frequency uncer-
tainty due to the dilaton dark matter is then given by

sðtÞ≡ δðfA=fBÞ
fA=fB

¼ ðξA − ξBÞ
δα

α

¼ ðξA − ξBÞ
de

ffiffiffi
ρ

p
mMp

cosðmtÞ: ðB3Þ

The dilaton-induced signal appears at ω ¼ m. On the
other hand, the fractional uncertainty due to the axion
dark matter is

sðtÞ≡ δðfA=fBÞ
fA=fB

¼ ðKA − KBÞθ2

≈ ðKA − KBÞ
ρ

m2f2ϕ
cosð2mtÞ ðB4Þ

where we have dropped the constant term. The axion-
induced signal appears at ω ¼ 2m.
Carefully considering the difference in the frequency of

time-oscillating signal, the constraints on dilaton couplings
deð2mÞ at the dilaton mass 2m can be translated into the
constraints on 1=fϕðmÞ at the axion mass m:

1

fϕðmÞ ¼
�
ξA − ξB
KA − KB

m
2Mp

deð2mÞffiffiffi
ρ

p
�
1=2

: ðB5Þ

We emphasize that fϕðmÞ is the resulting constraint on
the decay constant at the axion massm, while deð2mÞ is the
constraint on the linear dilaton-photon coupling at the
dilaton mass 2m. Using this relation, previous constraints
on de of the dilaton dark matter can easily be translated into
the constraints on axion parameter space. While we
demonstrate this connection with de, the discussion equally
applies to other linear couplings of dilaton dark matter.

APPENDIX C: QUADRATIC SPECTRUM

Here we provide a detailed computation of the low-
frequency power spectrum, following Ref. [61].
We expand the field as

ϕðt; xÞ ¼
X
i

1ffiffiffiffiffiffiffiffiffiffi
2mV

p �
αie−iki·x þ α�i e

iki·x
�
: ðC1Þ

Here ðαi; α�i Þ are complex random numbers. The under-
lying probability distribution of this complex random
number is given by [60,68–70]

TABLE I. Table for the sensitivity coefficient KA for the QCD
axion. The electromagnetic quadratic interactions provide the
dominant effect for the optical clock transitions, while the
hadronic couplings provide the dominant effects for hyperfine
and nuclear clock transitions.

System Transition KA

H Ground state hyperfine þ1.2 × 10−2

Cs Ground state hyperfine þ2.6 × 10−3

Rb Ground state hyperfine þ4.5 × 10−3

Si Cavity −1.5 × 10−5

Sr 1S0 → 3P0 −3.2 × 10−5

Alþ 1S0 → 3P0 −3.1 × 10−5

Hgþ 2S1=2 → 2D5=2 þ1.4 × 10−5

Yb 1S0 → 3P0 −3.5 × 10−5

Ybþ (E2) 2S1=2 → 2D3=2 −4.6 × 10−5

Ybþ (E3) 2S1=2 → 2F7=2 þ6.0 × 10−5

Th Nuclear −2.2 × 104
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pðαiÞ ¼
1

πni
e−jαij2=ni ; ðC2Þ

where ni is the mean occupation number of the mode i.
The probability of finding αi in ½αi; αi þ dαi� is

dP ¼ pðαiÞd2αi ¼ ½pðriÞdri�½pðϕiÞdϕi� ðC3Þ

where αi ¼ rieiϕi , d2αi ¼ ridridϕi, and

pðriÞ ¼
2ri
ni

e−r
2
i =ni ; ðC4Þ

pðϕiÞ ¼
1

2π
: ðC5Þ

The amplitude ri ¼ jαij follows the Rayleigh distribution,
while the phase ϕi is uniformly distributed. In this
description, the field ϕ is a Gaussian random field.
The mean occupation number ni is given by the dark

matter velocity distribution. For simplicity, we assume a
normal distribution

nðv⃗Þ ¼ ρ0=m

ð2πσ2Þ3=2 exp
�
−
ðv⃗ − v⃗0Þ2

2σ2

�
ðC6Þ

where ρ0 is the mean dark matter density, v⃗0 is the velocity
of the dark matter wind relative to the experiment, and σ is
the velocity dispersion.
We focus on the case where the signal in the detector is of

the following form:

sðtÞ ¼ Kθ2ðtÞ; ðC7Þ

where K is a sensitivity coefficient and θ ¼ ϕ=fϕ. The
power spectral density PsðfÞ is defined as

hs̃ðfÞs̃�ðf0Þi ¼ δðf − f0Þ 1
2
PsðfÞ: ðC8Þ

We choose the following convention for the Fourier trans-
formation, sðtÞ ¼ R

dfe−2πifts̃ðfÞ.
The signal power spectral density is related to the PSD of

the axion field as

PsðfÞ ¼ K2Pδθ2ðfÞ ðC9Þ

where

hfδθ2ðfÞfδθ2�ðf0Þi ¼ δðf − f0Þ 1
2
Pδθ2ðfÞ: ðC10Þ

We have introduced δθ2 ¼ θ2 − hθ2i. This subtracts an
unobservable constant shift in θ2. Note that the above
power spectrum is one-sided; we only consider f ≥ 0.

1. Power spectral density

The Fourier component of the quadratic operator is

eθ2ðωÞ ¼ 1

f2ϕ

1

2mV

X
i;j

h
αiαjeiðk⃗iþk⃗jÞ·x⃗ð2πÞδðω − ωi − ωjÞ

þ αiα
�
je

iðk⃗i−k⃗jÞ·x⃗ð2πÞδðω − ωi þ ωjÞ
þ α�i αje

−iðk⃗i−k⃗jÞ·x⃗ð2πÞδðωþ ωi − ωjÞ
þ α�i α

�
je

−iðk⃗iþk⃗jÞ·x⃗ð2πÞδðωþ ωi þ ωjÞ
i

ðC11Þ

To compute hfδθ2ðωÞfδθ2�ðω0Þi, the following expression is
useful

hαiαjα�kα�l i ¼ ninjðδikδjl þ δilδjkÞ: ðC12Þ

The angle bracket denotes an ensemble average, defined as

hOi ¼
Z �Y

i

d2αipðαiÞ
�
O: ðC13Þ

After a straightforward computation, we find

Pδθ2ðωÞ ¼
1

m2f4ϕ

Z
d3v1d3v2nðv⃗1Þnðv⃗2Þ

×
�ð2πÞδðω−ω1 −ω2Þ þ ð2πÞδðωþω1 þω2Þ

þ ð2πÞδðω−ω1 þω2Þ þ ð2πÞδðωþω1 −ω2Þ
�
;

ðC14Þ

where we took the continuum limit in the velocities. This is
a general expression, which holds for an arbitrary velocity
distribution as long as the probability distribution for αi is
given as (C2).
Given a normal velocity distribution (C6), we find that

the power spectrum of the scalar quadratic operator is

Pδθ2ðfÞ ¼
1

4
θ40τϕ½AðfÞ þ BðfÞ�; ðC15Þ

where θ0 ¼
ffiffiffiffiffiffiffi
2ρ0

p
=mfϕ, τϕ ¼ 1=mσ2 is the coherence

time, and

AðfÞ ¼ 2πv2

v20
exp

�
−
v̄2 þ v20

σ2

�
I2

�
2v0v̄
σ2

�
Θðv̄2Þ; ðC16Þ

BðfÞ ¼ 2σ

v0

Z
∞

0

dvce
− ω̄2

4v2c
�
e−ðvc−

v0
σ Þ2 − e−ðvcþ

v0
σ Þ2

�
: ðC17Þ

Here InðxÞ is the modified Bessel function of the first kind
andΘðxÞ is the unit step function. For notational simplicity,
we have introduced
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v̄2 ¼ 2πf
m

− 2; and ω̄ ¼ 2πf
mσ2

:

The spectral function AðfÞ represents the coherent har-
monic oscillation at ω ¼ 2m. The spectral function BðfÞ
represents the low-frequency background at ω < mσ2.
Note that the above PSD is valid for f > 0. The low-
frequency spectrum BðfÞ is still valid for f < 0, but AðfÞ
changes to Að−fÞ.
These expressions are further simplified in the isotropic

limit v0 → 0. In this case, we find

AðfÞ ¼ π
v̄4

σ4
e−v̄

2=σ2Θðv̄2Þ; ðC18Þ

BðfÞ ¼ 4ω̄K1ðω̄Þ; ðC19Þ

where KnðxÞ is the modified Bessel function of the second
kind andΘðxÞ is the step function. Note that both functions,
A and B, are normalized such that τϕ

R
∞
0 dfAðfÞ ¼

τϕ
R
∞
0 dfBðfÞ ¼ 1. The spectrum in this case is shown

in Fig. 4.

2. Allan deviation

Let us consider a single clock comparison test in which
the axion causes a signal sðtÞ ¼ Kδθ2ðtÞ. If this signal
cannot be distinguished from the noise, it still contributes to
the total observed variation of the frequencies commonly
characterized by the Allan deviation. In terms of the
fractional frequency shift, the Allan variance over a period
τ ¼ n · Δt, where Δt is the time between measurements, is
defined as [71]

σ2sðτÞ ¼
1

2ðM − 1Þ
XM−1

i¼1

		hsðτÞiiþ1 − hsðτÞii
		2; ðC20Þ

where hsðτÞii denotes the i-th measurement of sðtÞ over the
period τ,

hsðτÞii ¼
1

t̄

Z
tiþτ

ti

dtsðtÞ ¼ Kδθ2ðtiÞ: ðC21Þ

In the second step, we defined δθ2ðtiÞ as the average value
of δθ2 over this period. The ensemble average of the Allan
variance then becomes

hσ2sðτÞi ¼
K2

2ðM − 1Þ

×
XM−1

i¼1


				
Z

dfðe−2πifðtiþτÞ − e−2πiftiÞfδθ2ðfÞ				2
�

¼ 2K2

Z
∞

0

dfsin2ðπfτÞP
δθ2

ðfÞ: ðC22Þ

Here the angle bracket denotes an ensemble average. The

Fourier transformation and power spectrum of δθ2 are
defined analogously to the ones of δθ2. To find the relation
between these quantities let us consider the Fourier trans-
formation

f
δθ2ðfÞ ¼

Z
dte2πitf

�
1

τ

Z
tþτ

t
dt0δθ2ðt0Þ

�
ðC23Þ

¼ e−πiftsincðπfτÞfδθ2ðfÞ; ðC24Þ

where sincðxÞ ¼ sinðxÞ=x. The two power spectra are
therefore simply related by a factor sinc2ðπfτÞ, i.e.
P
δθ2

ðfÞ ¼ sinc2ðπfτÞPδθ2ðfÞ. Using this, we find

hσ2sðτÞi ¼ 2K2

Z
∞

0

dfPδθ2ðfÞ
sin4ðπfτÞ
ðπfτÞ2 : ðC25Þ

From this expression, the Allan deviation caused by the
quadratic coupling can be computed using the coupling
coefficients that can be found in Table I and the power
spectral density from the last section. In particular, in the
isotropic limit, we find

hσ2sðτÞi ¼ 2K2θ40Iðτ=2τϕÞ ðC26Þ

with the integral IðxÞ defined as

IðxÞ ¼
Z

∞

0

dω̄
2π

ω̄K1ðω̄Þ
sin4ðω̄xÞ
ðω̄xÞ2 : ðC27Þ

The constraint on 1=fϕ is therefore obtained as

1

fϕ
¼

�
m4σ2s;obsðτÞ

8K2ρ20Iðτ=2τϕÞ
�1=4

ðC28Þ

FIG. 4. The spectrum of the quadratic operator δθ2 in the
isotropic limit. We choose σ ¼ 0.1 for demonstration. The narrow
peak at ω ¼ 2m represents the harmonic oscillations, while the
plateau at ω < mσ2 gives the low-frequency stochastic
background.
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where σs;obsðτÞ is the experimentally measured Allan
deviation with an averaging time τ.
We obtain the bound shown in Figs. 1 and 3 as a green

dashed region, by requiring that the noise caused by the
coupling of the axion is below the 1σ upper bound on
the Allan deviation shown in Fig. 1 of [36] for all given
values of τ.

3. Cross-correlation

Above we computed the correlation between δθ2ðωÞ
evaluated at the same spatial position. For the cross-
correlation of displaced detectors, we must evaluate
δθ2ðωÞ at different spatial positions. In particular, we are
interested in

hfδθ2aðωÞfδθ2�bðω0Þi ¼ ð2πÞδðω − ω0Þ 1
2
Pcross
δθ2

ðω; L⃗Þ: ðC29Þ

where fδθ2aðωÞ ¼ fδθ2ðω; x⃗aÞ and L⃗ ¼ x⃗a − x⃗b is the dis-
tance between two detectors. Following the same line of
computation, we find

Pcross
δθ2

ðω; L⃗Þ ¼ 1

m2f4ϕ

Z
d3v1d3v2nðv⃗1Þnðv⃗2Þ

×
h
ð2πÞδðω − ω1 − ω2Þeþiðk⃗1þk⃗2Þ·L⃗

þ ð2πÞδðωþ ω1 þ ω2Þe−iðk⃗1þk⃗2Þ·L⃗

þ ð2πÞδðω − ω1 þ ω2Þeþiðk⃗1−k⃗2Þ·L⃗

þ ð2πÞδðωþ ω1 − ω2Þe−iðk⃗1−k⃗2Þ·L⃗
i

ðC30Þ

Assuming the normal velocity distribution (C6), we find

Pcross
δθ2

ðf; L⃗Þ ¼ 1

4
θ20τ

�
Acrossðf; L⃗Þ þ Bcrossðf; L⃗Þ

� ðC31Þ

where the two spectral functions are given by

AcrossðfÞ ¼
2πðv̄=σÞ2

X2
exp

�
−
v̄2 þ v20

σ2

�
I2

�
2X

v̄
σ

�
θðv̄2Þ

ðC32Þ

BcrossðfÞ ¼ 2

Z
∞

−∞
ds

e−iω̄s

ð1þ s2Þ3=2 exp
�
−
ðL⃗λ þ s v⃗0

σ Þ2
1þ s2

�
ðC33Þ

Here X⃗ ¼ v⃗0=σ þ iL⃗λ with L⃗λ ¼ mσL⃗ is introduced. These
expressions reduce to (C18)–(C19) in the isotropic v0 →
and small distance L → 0 limit. This expression is valid
again for f > 0. The low-frequency spectrum Bcrossðf; L⃗Þ is
valid also for f < 0, but the other component Acrossðf; L⃗Þ
changes for f < 0 to Acrossðf; L⃗Þ → Acrossð−f;−L⃗Þ.
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