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The so-called Witten effect implies a close relationship between the axion and magnetic monopole. A
sound quantization in the presence of magnetic monopoles, called quantum electromagnetodynamics
(QEMD), was utilized to construct a more generic axion-photon Lagrangian in the low-energy axion
effective field theory. This generic axion-photon Lagrangian introduces the interactions between axion and
two four-potentials, and leads to new axion-modified Maxwell equations. The interface haloscopes place an
interface between two electromagnetic media with different properties and are desirable to search for high-
mass axionsma ≳Oð10Þ μeV. In this work, for the generic axion-photon couplings built under QEMD, we
perform comprehensive calculations of the axion-induced propagating waves and energy flux densities in
different interface setups. We also obtain the sensitivity to new axion-photon couplings for high-mass
axions.
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I. INTRODUCTION

The strong CP problem in quantum chromodynamics
(QCD) arises from the severe constraint on the Chern-
Simons θ term as source of CP violation from neutron
electric dipole moment measurement [1–8]. The most
famous solution is the Peccei-Quinn (PQ) mechanism with
a QCD anomalous Uð1ÞPQ global symmetry [9–12]. The
spontaneous breaking of Uð1ÞPQ introduces a pseudo-
Goldstone boson a called axion. It induces a coupling
−gaγγaFμνF̃μν=4 ¼ gaγγaE⃗ · B⃗ between axion and electro-
magnetic fields in QED. The other motivation for axion is
that it can make up the total dark matter (DM) density
during phase transition in the early universe [13–15]. The
reasonable mass range of axion for a cold DM takes as
ma ≈Oð10Þ μeV. The success of such DM axion paradigm
pivots on the search for the conversion of axion into
electromagnetic field in cavity haloscope experiments
[16] such as ADMX [17]. They look for the axion-induced
radiation as a solution of axion-modified Maxwell equa-
tions, suppose the resonance is tuned to the right axion
mass. Theoretically, the axion mass is not limited on the

above ADMX sensitive range. It is also desirable to search
for DM axion over the broader possible mass range [18].
For instance, ma ≲Oð1Þ μeV can be searched though
electronic LC circuit [19] such as ABRACADABRA
[20,21] and ADMX SLIC [22] or high-mass range of ma ≳
Oð10Þ μeV through dish antenna [23] or dielectric halo-
scopes [24] such as MADMAX [25].
In 1979, E. Witten pointed out that a CP violating term

in the non-Abelian SOð3Þ theory provides an additional
electric charge for the ’t Hooft-Polyakov monopoles in this
theory [26]. This is the so-called Witten effect which
implies the existence of relationship between axion
and magnetic monopole. Later on, W. Fischler et al. derived
this axion-dyon dynamics under the classical electromag-
netism [27]. In order to describe the axion-dyon dynamics
in quantum field theory (QFT), Ref. [28] recently con-
structed a more generic axion-photon Lagrangian in the
low-energy axion effective field theory (EFT). They uti-
lized a reliable quantization in the presence of magnetic
monopoles developed by J. S. Schwinger and D. Zwanziger
in 1960’s, called quantum electromagnetodynamics
(QEMD) [29–31]. This generic low-energy axion-photon
Lagrangian accounts for the Witten effect term as well and
introduces three more interesting interactions between
axion and two four-potentials [28,32]. This axion EFT
Lagrangian also leads to new axion-modified Maxwell
equations [28,32,33].
Very recently, there exist quite a few theoretical and

phenomenological works on the generic axion-photon
interactions under QEMD [32–36]. Reference [33] prop-
erly solved the new axion-modified Maxwell equations and
proposed new LC strategies to measure the new couplings
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for sub-μeV axion. A more recent paper Ref. [36] also
studied the LC regime. References [34,35] applied the
Poynting theorem or quantum calculation to determine
how to obtain the sensitivity to new axion-photon couplings
for μeV axions in resonant haloscopes. However, the for-
mulas and detection strageties of new axion-photon cou-
plings are still lacking for high-mass range of axions
ma ≳Oð10Þ μeV based on interface haloscopes. The tradi-
tional interface haloscopes place a disc (or multiple discs)
between which there are two dielectric media with different
permittivity in a background magnetic field. The axion-
induced electric field on either side jumps at the interface
surface. Then, a propagating wave is produced to satisfy the
continuous boundary conditions and thus emits in both
perpendicular directions to the interface surface. The more
reliable dielectric haloscopesmeasure the energy flux density
of the propagatingwaves by setting a perfectmirror aswell as
multiple interfaces [24,25]. In this work, for the generic
axion-photon couplings built under QEMD, we provide
comprehensive expressions for the axion-induced electro-
magnetic fields and the propagating waves in different
interface setups. We also apply the Poynting’s theorem to
calculate the energy flux densities and obtain the sensitivity
to new axion-photon couplings for high-mass axions.
This paper is organized as follows. In Sec. II, we

introduce the generic axion-photon interactions in QEMD

and derive the new axion modified Maxwell equations.
Their macroscopic form and the linearization of fields
and medium response are also performed. In Sec. III,
we obtain the axion-induced radiation at an interface
between two regions of different media. Then, we utilize
the Poynting’s theorem to obtain the energy flux density.
Possible new interface haloscopes are discussed in Sec. IV.
We also show the numerical results of high-frequency
axion search potentials in terms of such interface halo-
scopes. Our conclusions are drawn in Sec. V.

II. THE MODIFIED MAXWELL EQUATIONS
OF AXION IN QEMD

A. The generic axion-photon interactions in QEMD

The QEMD framework introduces two four-potentials
Aμ and Bμ to describe photon, instead of one four-potential
in the standard electromagnetism. The corresponding Uð1Þ
gauge group of QEMD is replaced by Uð1ÞE × Uð1ÞM
whose conserved charges are electric and magnetic
charges. Based on the QEMD theory, a generic low-energy
axion-photon EFT can be built [28]. The Lagrangian
for the generic interactions between axion a and photon
in QEMD is1 [28]

L ¼ 1

2n2
��
n · ð∂ ∧ BÞ� · �n · ð∂ ∧ ÃÞ� − �

n · ð∂ ∧ AÞ� · �n · ð∂ ∧ B̃Þ� − �
n · ð∂ ∧ AÞ�2

−
�
n · ð∂ ∧ BÞ�2� −

1

4
gaEE a tr

�ð∂ ∧ AÞð∂ ∧ ÃÞ� − 1

4
gaMM a tr

�ð∂ ∧ BÞð∂ ∧ B̃Þ�

−
1

2
gaEM a tr

�ð∂ ∧ AÞð∂ ∧ B̃Þ� − je · A − jm · Bþ LG; ð1Þ

where ð∂ ∧ XÞμν ≡ ∂
μXν − ∂

νXμ for four-potential Xμ ¼
Aμ or Bμ, ð∂ ∧ X̃Þμν ≡ ϵμνρσð∂ ∧ XÞρσ=2 as the Hodge dual
tensor with ϵ0123 ¼ þ1, nμ ¼ ð0; n⃗Þ is an arbitrary fixed
spatial vector, and LG is a gauge-fixing term. Note that we
ignore the term for Witten effect here. The electromagnetic
field strength tensors Fμν and F̃μν are then introduced in the
way that

F ¼ ∂ ∧ A − ðn · ∂Þ−1ðn ∧ j̃mÞ;
F̃ ¼ ∂ ∧ Bþ ðn · ∂Þ−1ðn ∧ j̃eÞ; ð2Þ

where je and jm are electric and magnetic currents,
respectively. Thus, the two four-potentials have opposite
parities. The first two dimension-five operators (gaEE and
gaMM terms) are CP-conserving axion interactions. Their
couplings gaEE and gaMM are given by the Uð1ÞPQUð1Þ2E
and Uð1ÞPQUð1Þ2M anomalies, respectively. Note that the
coupling gaEE is equivalent to the standard coupling gaγγ .

As Aμ and Bμ have opposite parities, the third operator
(gaEM term) is a CP-violating one. Its coupling gaEM is
determined by the Uð1ÞPQUð1ÞEUð1ÞM anomaly.
The above coupling coefficients can be calculated as

gaEE¼
Ee2

4π2vPQ
; gaMM¼ Mg20

4π2vPQ
; gaEM¼ Deg0

4π2vPQ
; ð3Þ

where vPQ is the Uð1ÞPQ symmetry breaking scale, e is the
unit of electric charge, and g0 is the minimal magnetic
charge with g0 ¼ 2π=e under the Dirac-Schwinger-
Zwanziger (DSZ) quantization condition. E and M are
the electric and magnetic anomaly coefficients, respec-
tively. D is the coefficient from mixed electric-magnetic

1We follow Ref. [36] to change the notation of couplings to
gaEE (¼ gaγγ), gaEM , and gaMM. They are equivalent to gaAA, gaAB,
and gaBB in Ref. [28], respectively.
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CP-violating anomaly. They can be computed by following
Fujikawa’s path integral method [37] and integrating out
heavy PQ-charged fermions with electric and magnetic
charges. As the DSZ quantization condition tells g0 ≫ e,
according to Eq. (3), we have the hierarchy of the axion-
photon couplings as gaMM ≫ gaEM ≫ gaEE.

B. The axion modified Maxwell equations
and their macroscopic form

According to the above Lagrangian for generic axion-
photon interactions, we can derive the classical equations of
motion for the photon field. By applying the Euler-
Lagrange equation of motion for the two potentials, one
obtains

1

n2
ðn ·∂n ·∂Aμ−n ·∂∂μn ·A−n ·∂nμ∂ ·A−n ·∂ϵμνκλn

ν
∂
κBλÞ

−gaEE∂νað∂∧ ÃÞνμ−gaEM∂νað∂∧ B̃Þνμ¼ jμe; ð4Þ

1

n2
ðn ·∂n ·∂Bμ−n ·∂∂μn ·B−n ·∂nμ∂ ·Bþn ·∂ϵμνκλn

ν
∂
κAλÞ

−gaMM∂νað∂∧ B̃Þνμ−gaEM∂νað∂∧ ÃÞνμ¼ jμm: ð5Þ

In terms of the field strength tensors Fμν and F̃μν, the
following axion modified Maxwell equations are obtained
[28]

∂μFμν − gaEE∂μaF̃μν þ gaEM∂μaFμν ¼ jνe; ð6Þ

∂μF̃μν þ gaMM∂μaFμν − gaEM∂μaF̃μν ¼ jνm; ð7Þ

where the term responsible for Witten effect is omitted. The
new Maxwell equations in terms of electric and magnetic
fields are then given by

∇!× B⃗ −
∂E⃗
∂t

¼ j⃗e þ gaEE

�
E⃗ × ∇!a −

∂a
∂t

B⃗

�

þ gaEM

�
B⃗ × ∇!aþ ∂a

∂t
E⃗

�
; ð8Þ

∇!× E⃗þ ∂B⃗
∂t

¼ j⃗m − gaMM

�
B⃗ × ∇!aþ ∂a

∂t
E⃗

�

− gaEM

�
E⃗ × ∇!a −

∂a
∂t

B⃗

�
; ð9Þ

∇! · B⃗ ¼ ρm − gaMME⃗ · ∇!aþ gaEMB⃗ · ∇!a; ð10Þ

∇! · E⃗ ¼ ρe þ gaEEB⃗ · ∇!a − gaEME⃗ · ∇!a; ð11Þ

where the magnetic charge ρm and current j⃗m will be
ignored below as there is no observed magnetic monopole.

Next, we derive the macroscopic form of the above
Maxwell equations in order to deal with the propagating
wave in media. Let us first recall the classical electromag-
netism. In media, both the electric charge and the current
are composed of a free part and a bound part

ρe ¼ ρe;f þ ρe;b; j⃗e ¼ j⃗e;f þ j⃗e;b: ð12Þ
where the bound parts are given by

ρe;b ¼ −∇! · P⃗e; j⃗e;b ¼ ∇!× M⃗e þ
∂P⃗e

∂t
: ð13Þ

Here P⃗e and M⃗e denote the macroscopic polarization and
magnetization, respectively. Moreover, the free parts satisfy
the continuity equation

∂ρe;f
∂t

þ ∇! · j⃗e;f ¼ 0: ð14Þ

The macroscopic electric displacement field D⃗ and the
macroscopic magnetic field H⃗ are defined as

D⃗ ¼ E⃗þ P⃗e; H⃗ ¼ B⃗ − M⃗e: ð15Þ

After plugging them into QEMDAmpere’s law Eq. (8), we
obtain

∇!× H⃗ −
∂D⃗
∂t

¼ j⃗e;f þ gaEE

�
E⃗ × ∇!a −

∂a
∂t

B⃗

�

þ gaEM

�
B⃗ × ∇!aþ ∂a

∂t
E⃗
�
: ð16Þ

The axion-photon interaction terms are not affected by the
medium response. Thus, the electromagnetic fields on the
right-hand side of the above equation are E⃗ and B⃗ but not D⃗
and H⃗. Similarly, the QEMDGauss’s law can be rewritten as

∇! · D⃗ ¼ ρe;f þ gaEEB⃗ · ∇!a − gaEME⃗ · ∇!a: ð17Þ
There is no conventional source in Faraday’s law and the

divergence of B⃗. Their equations thus remain unaffected.
Finally, we obtain the macroscopic form of axion Maxwell
equations in QEMD

∇!× H⃗ −
∂D⃗
∂t

¼ j⃗e;f þ gaEE

�
E⃗ × ∇!a −

∂a
∂t

B⃗

�

þ gaEM

�
B⃗ × ∇!aþ ∂a

∂t
E⃗
�
; ð18Þ

∇!× E⃗þ ∂B⃗
∂t

¼ −gaMM

�
B⃗ × ∇!aþ ∂a

∂t
E⃗

�

− gaEM

�
E⃗ × ∇!a −

∂a
∂t

B⃗

�
; ð19Þ
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∇! · B⃗ ¼ −gaMME⃗ · ∇!aþ gaEMB⃗ · ∇!a; ð20Þ

∇! · D⃗ ¼ ρe;f þ gaEEB⃗ · ∇!a − gaEME⃗ · ∇!a: ð21Þ

These are the macroscopic wave equations that we shall
solve below.

C. Decomposition and linearization

Next, we decompose and linearize the fields in the above
macroscopic axion Maxwell equations. Because the axion
couplings are expected to be small, as a good perturbative
approximation, we can expand the fields in Eqs. (18)–(21)
(denoted by X⃗ ¼ H⃗; D⃗; B⃗; E⃗) in terms of order of axion
couplings. The decomposition is thus X⃗ ¼ X⃗0 þ X⃗γa where

X⃗0 is the large static electromagnetic fields and X⃗γa ≡ X⃗γ þ
X⃗a corresponds to the homogeneous axion-induced fields
X⃗a and the propagating waves X⃗γ. The electric charge

density ρe;f and current density j⃗e;f can also be decom-
posed as the part causing the large background fields and
the axion source term, i.e., ρe;f ¼ ρ0e;f þ ρ0e;f and

j⃗e;f ¼ j⃗0e;f þ j⃗0e;f. Thus, the static background fields satisfy
the ordinary Maxwell equations

∇!× B⃗0 −
∂E⃗0

∂t
¼ j⃗ 0

e;f; ð22Þ

∇!× E⃗0 þ
∂B⃗0

∂t
¼ 0; ð23Þ

∇! · B⃗0 ¼ 0; ð24Þ

∇! · E⃗0 ¼ ρ0e;f: ð25Þ

Next, we assume that the static fields B⃗0 and E⃗0 are ideally
provided and perfectly homogeneous. Thus, both Eqs. (22)
and (25) turn to be approximately equal to zero, i.e.,

∇!× B⃗0 −
∂E⃗0

∂t ≈ 0 and ∇! · E⃗0 ≈ 0. After keeping only the
leading terms on the right-hand side, in terms of the static
external electromagnetic fields B⃗0 and E⃗0, we have

∇!× H⃗ −
∂D⃗
∂t

¼ j⃗0e;f þ gaEE

�
E⃗0 × ∇!a −

∂a
∂t

B⃗0

�

þ gaEM

�
B⃗0 × ∇!aþ ∂a

∂t
E⃗0

�
; ð26Þ

∇!× E⃗þ ∂B⃗
∂t

¼ −gaMM

�
B⃗0 × ∇!aþ ∂a

∂t
E⃗0

�

− gaEM

�
E⃗0 × ∇!a −

∂a
∂t

B⃗0

�
; ð27Þ

∇! · B⃗ ¼ −gaMME⃗0 · ∇!aþ gaEMB⃗0 · ∇!a; ð28Þ

∇! · D⃗ ¼ ρ0e;f þ gaEEB⃗0 · ∇!a − gaEME⃗0 · ∇!a: ð29Þ

Applying a time derivative on the last two equations gives

∇! · ˙B⃗ ¼ −gaMME⃗0 · ∇! ȧþgaEMB⃗0 · ∇! ȧ; ð30Þ

∇! · ð ˙D⃗þ j⃗0e;fÞ ¼ gaEEB⃗0 · ∇! ȧ−gaEME⃗0 · ∇! ȧ : ð31Þ

These equations are now linear for all times-space
dependent quantities. We then perform a Fourier expansion
for the quantities in form of plane waves given

by e−iðωt−k⃗·x⃗Þ

k⃗ × ˆH⃗ þ ω ˆD⃗þ iˆj⃗
0
e;f ¼ gaEEðE⃗0 × k⃗ âþωâB⃗0Þ

þ gaEMðB⃗0 × k⃗ â−ωâE⃗0Þ; ð32Þ

k⃗ × ˆE⃗ − ω ˆB⃗ ¼ −gaMMðB⃗0 × k⃗ â−ωâE⃗0Þ
− gaEMðE⃗0 × k⃗ âþωâB⃗0Þ; ð33Þ

k⃗ · ˆB⃗ ¼ −gaMMk⃗ · E⃗0âþ gaEMk⃗ · B⃗0â; ð34Þ

k⃗ · ðω ˆD⃗þ iˆj⃗
0
e;fÞ ¼ gaEEωk⃗ · B⃗0â − gaEMωk⃗ · E⃗0â; ð35Þ

where â, ˆH⃗, ˆD⃗, ˆE⃗, ˆB⃗, and ˆj⃗
0
e;f are all amplitudes as a

function of ω and k⃗.

III. QEMD AXION-INDUCED RADIATION
AT AN INTERFACE

We set up a configuration of interface between two
regions I and II with a parallel static electromagnetic field
B⃗0 or E⃗0. The two regions are filled by media with different
dielectric constant ϵ or magnetic permeability μ. As the
propagating waves and the axion-induced electromagnetic
fields are all parallel to the interface plane, we have the
following continuity requirements between the two differ-
ent regions

E⃗I
k ¼ E⃗II

k ; H⃗I
k ¼ H⃗II

k : ð36Þ

The general form of continuity in terms of the electromag-
netic fields is

E⃗I
γ þ E⃗I

a þ E⃗I
0 ¼ E⃗II

γ þ E⃗II
a þ E⃗II

0 ;

H⃗I
γ þ H⃗I

a þ H⃗I
0 ¼ H⃗II

γ þ H⃗II
a þ H⃗II

0 ; ð37Þ

where we include the external static electromagnetic fields
to account for the possibility of their direction the same as
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others or sudden change at the interface. In Fig. 1, we show
the induced electromagnetic fields in two regions for
four cases.
In this section, we discuss the above equations in

different setups of the media for the two regions between
the interface and the axion-induced radiation in QEMD.

A. The radiation at an interface between two regions

1. Case 1: B⃗0 ≠ 0, E⃗0 = 0, ϵ1 ≠ ϵ2 and μ= 1

In this case, there is no static charge density causing an
external electric field and the material is purely dielectric in
the two regions. After applying the ordinary equations for

FIG. 1. The induced electromagnetic fields in two regions for four cases.
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static fields, themacroscopicMaxwell equations in a Fourier
expansion become

k⃗ × ˆH⃗γa þ ω ˆD⃗þ iˆj⃗
0
e;f ¼ gaEEωâB⃗0 þ gaEMB⃗0 × k⃗ â;

k⃗ × ˆE⃗γa − ω
ˆB⃗γa ¼ −gaMMB⃗0 × k⃗ â−gaEMωâB⃗0;

k⃗ · ˆB⃗γa ¼ gaEMk⃗ · B⃗0â;

k⃗ · ðω ˆD⃗þ iˆj⃗
0
e;fÞ ¼ gaEEωk⃗ · B⃗0â: ð38Þ

As E⃗0 ¼ 0, we can define the following relation in themedia

ˆ⃗Hγa¼
ˆ⃗Bγa

μ
; ω ˆ⃗Dþ iˆ⃗j0e;f¼ω ˆ⃗Dγaþ iˆ⃗j0e;f¼ωϵE⃗γa; ð39Þ

where μ is the magnetic permeability and ϵ is the total
effective dielectric permittivity taking into account all
electric effects. Using these relations, we get the linearized
macroscopic axion equations

k⃗ ×
ˆB⃗γa

μ
þ ωϵ ˆE⃗γa ¼ gaEEωâB⃗0 þ gaEMB⃗0 × k⃗ â;

k⃗ × ˆE⃗γa − ω
ˆB⃗γa ¼ −gaMMB⃗0 × k⃗ â−gaEMωâB⃗0;

k⃗ · ˆB⃗γa ¼ gaEMk⃗ · B⃗0â;

ϵk⃗ · ˆE⃗γa ¼ gaEEk⃗ · B⃗0â; ð40Þ

where k⃗ is a general symbol of wave vector which should be
specified for particular fields below.
Then, in the limit of k⃗a ¼ 0, we obtain the axion-induced

electromagnetic fields

E⃗aðtÞ¼
1

ϵ
gaEEB⃗0aðtÞ; B⃗aðtÞ¼μH⃗aðtÞ¼gaEMB⃗0aðtÞ;

ð41Þ

as well as the propagating wave equations

k⃗γ × H⃗γ þ ωϵE⃗γ ¼ 0; ð42Þ

k⃗γ × E⃗γ − ωB⃗γ ¼ k⃗γ × E⃗γ − ωμH⃗γ ¼ 0; ð43Þ

where k⃗γ denotes the wave vector of a propagating
electromagnetic field with k2γ ¼ n2ω2 and n2 ¼ ϵμ. Here
and below, we work in the approximation of axion with
zero velocity k⃗a ¼ 0 and frequency ωa ≈ma. The axion
DM field can be given by

aðtÞ ¼ a0e−imat; ð44Þ

where a0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
=ma with ρDM ¼ 0.4 GeVcm−3 being

the local DM density.
For the case of different dielectrics with ϵ1 ≠ ϵ2, we

obtain the axion-induced electromagnetic fields

H⃗I
a ¼ H⃗II

a ¼ 1

μ
gaEMB⃗0a0e−imat;

E⃗IðIIÞ
a ¼ 1

ϵ1ð2Þ
gaEEB⃗0a0e−imat; ð45Þ

and the field values from continuity conditions become

EI
γ þ EI

a þ EI
0 ¼ EII

γ þ EII
a þ EII

0 ;

HI
γ ¼ HII

γ ⇒ −
ϵ1
n1

EI
γ ¼

ϵ2
n2

EII
γ ; ð46Þ

where Hγ is produced in the direction perpendicular to Eγ .
Inserting the obtained axion-induced fields to the above
two equations, the solutions of propagating waves in the
two regions are

EI
γ ¼ þ½EII

a − EI
a þ EII

0 − EI
0�

ϵ2n1
ϵ1n2 þ ϵ2n1

;

EII
γ ¼ −½EII

a − EI
a þ EII

0 − EI
0�

ϵ1n2
ϵ1n2 þ ϵ2n1

;

HI
γ ¼ −½EII

a − EI
a þ EII

0 − EI
0�

ϵ1ϵ2
ϵ1n2 þ ϵ2n1

;

HII
γ ¼ −½EII

a − EI
a þ EII

0 − EI
0�

ϵ1ϵ2
ϵ1n2 þ ϵ2n1

; ð47Þ

where

½� � �� ¼
�
1

ϵ2
−

1

ϵ1

�
gaEEB0a0: ð48Þ

Thus, in this case, the external static magnetic field B0 can
be set to measure gaEE coupling.

2. Case 2: E⃗0 ≠ 0, B⃗0 = 0, ϵ1 ≠ ϵ2 and μ= 1

In this case, after applying the ordinary equations for
static fields, the macroscopic Maxwell equations in a
Fourier expansion become

k⃗ × ˆH⃗γa þ ω ˆD⃗þ iˆj⃗
0
e;f ¼ gaEEE⃗0 × k⃗ â−gaEMωE⃗0â;

k⃗ × ˆE⃗γa − ω ˆB⃗γa ¼ gaMMωE⃗0â − gaEME⃗0 × k⃗ â;

k⃗ · ˆB⃗γa ¼ −gaMMk⃗ · E⃗0â;

k⃗ · ðω ˆD⃗þ iˆj⃗
0
e;fÞ ¼ −gaEMωk⃗ · E⃗0â: ð49Þ

As ˙E⃗0 ¼ 0, we can also define the following relation in the
media
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ˆ⃗Hγa¼
ˆ⃗Bγa

μ
; ω

ˆ⃗Dþ iˆ⃗j
0
e;f¼ω

ˆ⃗Dγaþ iˆ⃗j
0
e;f¼ωϵE⃗γa: ð50Þ

Then, we get the linearized macroscopic axion equations

k⃗ ×
ˆB⃗γa

μ
þ ωϵ ˆE⃗γa ¼ gaEEE⃗0 × k⃗ â−gaEMωE⃗0â;

k⃗ × ˆE⃗γa − ω ˆB⃗γa ¼ gaMMωE⃗0â − gaEME⃗0 × k⃗ â;

k⃗ · ˆB⃗γa ¼ −gaMMk⃗ · E⃗0â;

ϵk⃗ · ˆE⃗γa ¼ −gaEMk⃗ · E⃗0â: ð51Þ

In the limit of k⃗a ¼ 0, we obtain the axion-induced
electromagnetic fields

E⃗aðtÞ ¼ −
1

ϵ
gaEME⃗0aðtÞ;

B⃗aðtÞ ¼ μH⃗aðtÞ ¼ −gaMME⃗0aðtÞ; ð52Þ

as well as the propagating wave equations also apply here.
For the case of different dielectrics with ϵ1 ≠ ϵ2, we

obtain the axion-induced electromagnetic fields

H⃗I
a ¼ H⃗II

a ¼ −
1

μ
gaMME⃗0a0e−imat;

E⃗IðIIÞ
a ¼ −

1

ϵ1ð2Þ
gaEME⃗0a0e−imat; ð53Þ

and the field values from continuity conditions become

EI
γ þ EI

a þ EI
0 ¼ EII

γ þ EII
a þ EII

0 ;

HI
γ ¼ HII

γ ⇒ −
ϵ1
n1

EI
γ ¼

ϵ2
n2

EII
γ : ð54Þ

Inserting the obtained axion-induced fields to the above
two equations, the solutions of propagating waves in the
two regions are

EI
γ ¼ þ½EII

a − EI
a þ EII

0 − EI
0�

ϵ2n1
ϵ1n2 þ ϵ2n1

;

EII
γ ¼ −½EII

a − EI
a þ EII

0 − EI
0�

ϵ1n2
ϵ1n2 þ ϵ2n1

;

HI
γ ¼ −½EII

a − EI
a þ EII

0 − EI
0�

ϵ1ϵ2
ϵ1n2 þ ϵ2n1

;

HII
γ ¼ −½EII

a − EI
a þ EII

0 − EI
0�

ϵ1ϵ2
ϵ1n2 þ ϵ2n1

; ð55Þ

where

½� � �� ¼ −
�
1

ϵ2
−

1

ϵ1

�
gaEME0a0: ð56Þ

Thus, in this case, the external static electric field E0 can be
set to measure gaEM coupling.

3. Case 3: B⃗0 ≠ 0, E⃗0 = 0, μ1 ≠ μ2 and ϵ= 1

In this case, we obtain the macroscopic Maxwell
equations in a Fourier expansion as

k⃗ × ˆH⃗γa þ ω ˆD⃗γa þ iˆj⃗
0
e;f ¼ gaEEωâB⃗0 þ gaEMB⃗0 × k⃗ â;

k⃗ × ˆE⃗γa − ω ˆB⃗γa ¼ −gaMMB⃗0 × k⃗ â−gaEMωâB⃗0;

k⃗ · ˆB⃗γa ¼ gaEMk⃗ · B⃗0â;

k⃗ · ðω ˆD⃗γa þ iˆj⃗
0
e;fÞ ¼ gaEEωk⃗ · B⃗0â: ð57Þ

They are exactly the same as those in case 1 and the
solutions of E⃗a and B⃗a are also the same.
For the case of different magnetic materials with μ1 ≠ μ2

and ϵ1 ¼ ϵ2 ¼ ϵ, we have the axion-induced electro-
magnetic fields

E⃗I
a ¼ E⃗II

a ¼ 1

ϵ
gaEEB⃗0a0e−imat;

H⃗IðIIÞ
a ¼ 1

μ1ð2Þ
gaEMB⃗0a0e−imat; ð58Þ

and the field values from continuity conditions are

HI
γ þHI

a þHI
0 ¼ HII

γ þHII
a þHII

0 ;

EI
γ ¼ EII

γ ⇒ −
μ1
n1

HI
γ ¼

μ2
n2

HII
γ : ð59Þ

The solutions of propagating waves in the two regions are

HI
γ ¼ þ

	
HII

a −HI
a þ

BII
0

μ2
−
BI
0

μ1



μ2n1

μ1n2 þ μ2n1
;

HII
γ ¼ −

	
HII

a −HI
a þ

BII
0

μ2
−
BI
0

μ1



μ1n2

μ1n2 þ μ2n1
;

EI
γ ¼ −

	
HII

a −HI
a þ

BII
0

μ2
−
BI
0

μ1



μ1μ2

μ1n2 þ μ2n1
;

EII
γ ¼ −

	
HII

a −HI
a þ

BII
0

μ2
−
BI
0

μ1



μ1μ2

μ1n2 þ μ2n1
; ð60Þ

where

½�� ��¼
�
1

μ2
−
1

μ1

�
ðgaEMB0a0þB0Þ≈

�
1

μ2
−
1

μ1

�
B0: ð61Þ

In this case, the propagating waves are approximately
independent of the axion coupling and thus cannot be
used to measure it because the external magnetic field is
embedded in the H continuity condition.
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4. Case 4: E⃗0 ≠ 0, B⃗0 = 0, μ1 ≠ μ2 and ϵ= 1

In this case, the macroscopic Maxwell equations in a
Fourier expansion are

k⃗ × ˆH⃗γa þ ω ˆD⃗γa þ iˆj⃗
0
e;f ¼ gaEEE⃗0 × k⃗ â−gaEMωE⃗0â;

k⃗ × ˆE⃗γa − ω ˆB⃗γa ¼ gaMMωE⃗0â − gaEME⃗0 × k⃗ â;

k⃗ · ˆB⃗γa ¼ −gaMMk⃗ · E⃗0â;

k⃗ · ðω ˆD⃗γa þ iˆj⃗
0
e;fÞ ¼ −gaEMωk⃗ · E⃗0â: ð62Þ

They are exactly the same as those in case 2 and the
solutions of E⃗a and B⃗a are also the same.
The axion-induced electromagnetic fields are then

E⃗I
a ¼ E⃗II

a ¼ −
1

ϵ
gaEME⃗0a0e−imat;

H⃗IðIIÞ
a ¼ −

1

μ1ð2Þ
gaMME⃗0a0e−imat: ð63Þ

and the field values from continuity conditions are

HI
γ þHI

a þHI
0 ¼ HII

γ þHII
a þHII

0 ;

EI
γ ¼ EII

γ ⇒ −
μ1
n1

HI
γ ¼

μ2
n2

HII
γ : ð64Þ

The solutions of propagating waves in the two regions are

HI
γ ¼ þ

	
HII

a −HI
a þ

BII
0

μ2
−
BI
0

μ1



μ2n1

μ1n2 þ μ2n1
;

HII
γ ¼ −

	
HII

a −HI
a þ

BII
0

μ2
−
BI
0

μ1



μ1n2

μ1n2 þ μ2n1
;

EI
γ ¼ −

	
HII

a −HI
a þ

BII
0

μ2
−
BI
0

μ1



μ1μ2

μ1n2 þ μ2n1
;

EII
γ ¼ −

	
HII

a −HI
a þ

BII
0

μ2
−
BI
0

μ1



μ1μ2

μ1n2 þ μ2n1
; ð65Þ

where

½� � �� ¼ −
�
1

μ2
−

1

μ1

�
gaMME0a0: ð66Þ

Thus, in this case, the external static electric field E0 can be
set to measure gaMM coupling.

B. Poynting’s theorem and the energy flux density

The energy flux density of an EM propagating field is
given by the Poynting’s theorem as

S⃗γ ¼ E⃗γ × H⃗γ: ð67Þ

Next, we give the results of energy flux density for the
above viable cases (case 1, 2, and 4).
The propagating waves in Case 1 are

EI
γ ¼ gaEEB0a0

ϵ1 − ϵ2
ϵ1

ffiffiffiffiffi
ϵ2

p þ ϵ2
ffiffiffiffiffi
ϵ1

p 1ffiffiffiffiffi
ϵ1

p ;

EII
γ ¼ −gaEEB0a0

ϵ1 − ϵ2
ϵ1

ffiffiffiffiffi
ϵ2

p þ ϵ2
ffiffiffiffiffi
ϵ1

p 1ffiffiffiffiffi
ϵ2

p ;

HI
γ ¼ HII

γ ¼ −gaEEB0a0
ϵ1 − ϵ2

ϵ1
ffiffiffiffiffi
ϵ2

p þ ϵ2
ffiffiffiffiffi
ϵ1

p ; ð68Þ

where ϵ1 ¼ n21 and ϵ2 ¼ n22. After plugging them into the
Poynting’s theorem, we obtain

S̄iγ ¼ ∓ 1ffiffiffiffi
ϵi

p ðgaEEB0a0Þ2
2

�
ϵ1 − ϵ2

ϵ1
ffiffiffiffiffi
ϵ2

p þ ϵ2
ffiffiffiffiffi
ϵ1

p
�

2

¼ ∓ 1ffiffiffiffi
ϵi

p ðgaEEB0a0Þ2
2

�
1ffiffiffiffiffi
ϵ2

p −
1ffiffiffiffiffi
ϵ1

p
�

2

; ð69Þ

where i ¼ I (upper sign) or II (lower sign), and we take
into account a factor of 1=2 to obtain the time-averaged
value. For Case 2, one just needs to make a replacement of
gaEEB0 → −gaEME0 in Case 1’s results.
The propagating waves in Case 4 are

HI
γ ¼ −gaMME0a0

μ1 − μ2
μ1

ffiffiffiffiffi
μ2

p þ μ2
ffiffiffiffiffi
μ1

p 1ffiffiffiffiffi
μ1

p ;

HII
γ ¼ gaMME0a0

μ1 − μ2
μ1

ffiffiffiffiffi
μ2

p þ μ2
ffiffiffiffiffi
μ1

p 1ffiffiffiffiffi
μ2

p ;

EI
γ ¼ EII

γ ¼ gaMME0a0
μ1 − μ2

μ1
ffiffiffiffiffi
μ2

p þ μ2
ffiffiffiffiffi
μ1

p : ð70Þ

After plugging them into the Poynting’s theorem, we obtain

S̄iγ ¼ ∓ 1ffiffiffiffi
μi

p ðgaMME0a0Þ2
2

�
μ1 − μ2

μ1
ffiffiffiffiffi
μ2

p þ μ2
ffiffiffiffiffi
μ1

p
�

2

¼ ∓ 1ffiffiffiffi
μi

p ðgaMME0a0Þ2
2

�
1ffiffiffiffiffi
μ2

p −
1ffiffiffiffiffi
μ1

p
�

2

: ð71Þ

IV. SENSITIVITY OF INTERFACE HALOSCOPES
TO NEW AXION COUPLINGS IN QEMD

In this section, based on the above energy flux density
and signal-to-noise ratio (SNR), we calculate the sensitivity
of interface haloscopes to the new axion couplings in
QEMD. Following Ref. [24], we assume an extreme case
with medium II being vacuum (n2 ¼ 1) and thus take the
interface as a perfect mirror to emit radiation into vacuum
region II. Moreover, as pointed out by Ref. [24], the axion-
induced electromagnetic wave can be boosted with a series
of parallel interfaces between different media. The out-
going wave then becomes a coherent superposition of the
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transmission and reflection at each interface. We follow
Refs. [24,25] to choose an experimental setup of 80 disks
and take a boost factor β to describe this effect. The signal
power can be given by

Psignal ¼ Aβ2ηS̄IIγ ; ð72Þ

where η ¼ 0.8 is power efficiency, and A ¼ 1 m2 is disk
area. To measure this signal, we choose HEMT amplifiers
with Tsys ¼ 8 K and the estimated noise is

Pnoise ¼ Tsys

ffiffiffiffiffiffi
Δν
Δt

r
; ð73Þ

where a suitable measurement time is Δt ¼ 1 day, and a
signal bandwidth is given by the frequency range Δν ¼
Δωa=2π ∼ 10−6ma=2π:β is obtained from area law:
β2Δνβ ¼ K with K being a constant associated with
experimental setup [24].
The SNR is required to satisfy

Psignal

Pnoise
> 5: ð74Þ

The total run time is given by ttot ¼ ðΔtþ tRÞ Δma
Δνβ

for a

suitable range of axion mass Δma starting from 40 μeV.
We take tR ¼ 1 day as a conservative estimated value of
readjust time before each detection and Δνβ ¼ 50 MHz
with ttot ¼ 5 years as a reasonable choice to balance the
total run time and detection range. This choice results in
β ≃Oð100Þ [24,25]. We keep this β value unchanged in
whole experimental process, and then plug the above
parameters into SNR formula to obtained the sensitivity
bound of new axion couplings. In Fig. 2, after taking a few
experimental setups for illustration, we show the sensitivity
bound of couplings gaEE, gaEM, and gaMM together with
their theoretical predictions. We find that the reasonable
setups of interface haloscopes with perfect mirror can probe
the theoretical predictions of gaEE, gaEM, and gaMM for
Oð10Þ μeV≲ma ≲Oð100Þ μeV. It turns out that a large
background electric field is needed to probe gaEM and
gaMM. The large static electric field could induce extra
currents/charges in the detector volume depending on the
design and therefore may influence the sensitivity. We leave
the experimental design to future study.

V. CONCLUSION

The so-called Witten effect implies the relationship
between axion and magnetic monopole. A sound QFT
theory called QEMD in the presence of magnetic monop-
oles was utilized to construct a more generic axion-photon
Lagrangian in the low-energy axion effective field theory.
This generic axion-photon Lagrangian introduces the
interactions between axion and two four-potentials. It
leads to new axion-modified Maxwell equations. To
search for high-mass axions ma ≳Oð10Þ μeV, the inter-
face haloscopes were proposed by placing an interface
between two electromagnetic media with different
properties.
In this work, for the generic axion-photon couplings built

under QEMD, we provide comprehensive expressions for
the axion-induced electromagnetic fields and propagating
waves in different setups of interface and background
fields. We also calculate energy flux densities, the sig-
nal-to-noise ratio and obtain the sensitivity to new axion-
photon couplings (gaEE, gaEM and gaMM) for high-mass
axions. We find

(i) The configuration of interface between two dielec-
tric regions and a parallel static magnetic (electric)
field can measure gaEE (gaEM) coupling.

(ii) The configuration of interface between two regions
with magnetic material and a parallel static electric
field can measure gaMM coupling.

(iii) A reasonable setup of interface haloscopes with
perfect mirror can probe the theoretical predictions
of gaEE, gaEM and gaMM for Oð10Þ μeV≲ma≲
Oð100Þ μeV.

FIG. 2. The expected sensitivity bounds of gaEE (red dashed
line), gaEM (blue dashed line) and gaMM (green dashed line). β ≃
275 for gaEM; gaMM and β ≃ 628 for gaEE. The theoretical
predictions of gaEE, gaEM , and gaMM (solid) are also presented.
Some existing or potential exclusion limits on conventional
coupling gaγγ are shown for reference, including ADMX (cyan)
[17], ORGAN Phase 1a (yellow) [38], and Phase 1b (orange)
[39], and the proposed MADMAX (pink) [25]. The existing
limits on gaMM from upconversion experiment UPLOAD (ma-
genta) [40] and gaEM from ORGAN experiment (purple) [41] are
also shown for comparison.
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