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The so-called Witten effect implies a close relationship between the axion and magnetic monopole. A

sound quantization in the presence of magnetic monopoles, called quantum electromagnetodynamics

(QEMD), was utilized to construct a more generic axion-photon Lagrangian in the low-energy axion

effective field theory. This generic axion-photon Lagrangian introduces the interactions between axion and

two four-potentials, and leads to new axion-modified Maxwell equations. The interface haloscopes place an

interface between two electromagnetic media with different properties and are desirable to search for high-
mass axions m, 2 O(10) peV. In this work, for the generic axion-photon couplings built under QEMD, we
perform comprehensive calculations of the axion-induced propagating waves and energy flux densities in

different interface setups. We also obtain the sensitivity to new axion-photon couplings for high-mass

axions.

DOI: 10.1103/PhysRevD.109.015026

I. INTRODUCTION

The strong CP problem in quantum chromodynamics
(QCD) arises from the severe constraint on the Chern-
Simons € term as source of CP violation from neutron
electric dipole moment measurement [1-8]. The most
famous solution is the Peccei-Quinn (PQ) mechanism with
a QCD anomalous U(1)pq global symmetry [9-12]. The
spontaneous breaking of U(1)p, introduces a pseudo-
Goldstone boson a called axion. It induces a coupling
—gawaF"”F W/t = gawalz’ - B between axion and electro-
magnetic fields in QED. The other motivation for axion is
that it can make up the total dark matter (DM) density
during phase transition in the early universe [13—15]. The
reasonable mass range of axion for a cold DM takes as
m, ~ O(10) peV. The success of such DM axion paradigm
pivots on the search for the conversion of axion into
electromagnetic field in cavity haloscope experiments
[16] such as ADMX [17]. They look for the axion-induced
radiation as a solution of axion-modified Maxwell equa-
tions, suppose the resonance is tuned to the right axion
mass. Theoretically, the axion mass is not limited on the
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above ADMX sensitive range. It is also desirable to search
for DM axion over the broader possible mass range [18].
For instance, m, < O(1) peV can be searched though
electronic LC circuit [19] such as ABRACADABRA
[20,21] and ADMX SLIC [22] or high-mass range of m, 2
O(10) peV through dish antenna [23] or dielectric halo-
scopes [24] such as MADMAX [25].

In 1979, E. Witten pointed out that a CP violating term
in the non-Abelian SO(3) theory provides an additional
electric charge for the 't Hooft-Polyakov monopoles in this
theory [26]. This is the so-called Witten effect which
implies the existence of relationship between axion
and magnetic monopole. Later on, W. Fischler et al. derived
this axion-dyon dynamics under the classical electromag-
netism [27]. In order to describe the axion-dyon dynamics
in quantum field theory (QFT), Ref. [28] recently con-
structed a more generic axion-photon Lagrangian in the
low-energy axion effective field theory (EFT). They uti-
lized a reliable quantization in the presence of magnetic
monopoles developed by J. S. Schwinger and D. Zwanziger
in 1960’s, called quantum electromagnetodynamics
(QEMD) [29-31]. This generic low-energy axion-photon
Lagrangian accounts for the Witten effect term as well and
introduces three more interesting interactions between
axion and two four-potentials [28,32]. This axion EFT
Lagrangian also leads to new axion-modified Maxwell
equations [28,32,33].

Very recently, there exist quite a few theoretical and
phenomenological works on the generic axion-photon
interactions under QEMD [32-36]. Reference [33] prop-
erly solved the new axion-modified Maxwell equations and
proposed new LC strategies to measure the new couplings
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for sub-peV axion. A more recent paper Ref. [36] also
studied the LC regime. References [34,35] applied the
Poynting theorem or quantum calculation to determine
how to obtain the sensitivity to new axion-photon couplings
for peV axions in resonant haloscopes. However, the for-
mulas and detection strageties of new axion-photon cou-
plings are still lacking for high-mass range of axions
m, Z O(10) peV based on interface haloscopes. The tradi-
tional interface haloscopes place a disc (or multiple discs)
between which there are two dielectric media with different
permittivity in a background magnetic field. The axion-
induced electric field on either side jumps at the interface
surface. Then, a propagating wave is produced to satisfy the
continuous boundary conditions and thus emits in both
perpendicular directions to the interface surface. The more
reliable dielectric haloscopes measure the energy flux density
of the propagating waves by setting a perfect mirror as well as
multiple interfaces [24,25]. In this work, for the generic
axion-photon couplings built under QEMD, we provide
comprehensive expressions for the axion-induced electro-
magnetic fields and the propagating waves in different
interface setups. We also apply the Poynting’s theorem to
calculate the energy flux densities and obtain the sensitivity

to new axion-photon couplings for high-mass axions.
This paper is organized as follows. In Sec. II, we
introduce the generic axion-photon interactions in QEMD
|

and derive the new axion modified Maxwell equations.
Their macroscopic form and the linearization of fields
and medium response are also performed. In Sec. III,
we obtain the axion-induced radiation at an interface
between two regions of different media. Then, we utilize
the Poynting’s theorem to obtain the energy flux density.
Possible new interface haloscopes are discussed in Sec. I'V.
We also show the numerical results of high-frequency
axion search potentials in terms of such interface halo-
scopes. Our conclusions are drawn in Sec. V.

II. THE MODIFIED MAXWELL EQUATIONS
OF AXION IN QEMD

A. The generic axion-photon interactions in QEMD

The QEMD framework introduces two four-potentials
A and B* to describe photon, instead of one four-potential
in the standard electromagnetism. The corresponding U(1)
gauge group of QEMD is replaced by U(1)g x U(1)y
whose conserved charges are electric and magnetic
charges. Based on the QEMD theory, a generic low-energy
axion-photon EFT can be built [28]. The Lagrangian
for the generic interactions between axion a and photon
in QEMD is' [28]

£:L{[n'(0/\8)}~[n~(0/\A)]—[n‘(0/\A)]-[n-(a/\B)]—[n-(a/\A)]z

2n?

_[n-@AB)2) —A—ltgaEEatr[(a AA)OAA)] —%gaMMatr[(()/\ B)(d A B)]

1 .
_zgaEMatr[(a/\A)(a/\B)]_je'A_jn1'B+‘CG7 (1)

where (0 A X)* = 0#X¥ — 0*X* for four-potential X =
At or BX, (0 A X)W = e°(d A X),,/2 as the Hodge dual
tensor with €y;03 = +1, n#* = (0,7) is an arbitrary fixed
spatial vector, and L is a gauge-fixing term. Note that we
ignore the term for Witten effect here. The electromagnetic
field strength tensors F** and F* are then introduced in the
way that

F=0AA-(n-9) (nAj,,

F=0AB+(n-0)"'(nnAj), (2)

where j, and j, are electric and magnetic currents,
respectively. Thus, the two four-potentials have opposite
parities. The first two dimension-five operators (g,rr and
gamm terms) are CP-conserving axion interactions. Their
couplings g,gg and g,y are given by the U(1)poU(1)g
and U(1)pqU(1)3; anomalies, respectively. Note that the
coupling g,zg is equivalent to the standard coupling g,,,.

As A" and B* have opposite parities, the third operator
(g9.py term) is a CP-violating one. Its coupling g,z 1S
determined by the U(1)pqU(1)gU(1)y anomaly.

The above coupling coefficients can be calculated as

Ee? M g(z)
Yamm = P YaEM
JT ’UPQ

o Dego

= = 3
Y9aEE 4”2 UPQ ( )

47[21)PQ’
where vpq is the U(1)pq symmetry breaking scale, e is the
unit of electric charge, and g, is the minimal magnetic
charge with ¢y =2n/e under the Dirac-Schwinger-
Zwanziger (DSZ) quantization condition. £ and M are
the electric and magnetic anomaly coefficients, respec-
tively. D is the coefficient from mixed electric-magnetic

'We follow Ref. [36] to change the notation of couplings to

YaEE (: guyy)a YaEM> and Yamm - They are equivalent to 9aAA> 9aAB>
and g,pp in Ref. [28], respectively.
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CP-violating anomaly. They can be computed by following
Fujikawa’s path integral method [37] and integrating out
heavy PQ-charged fermions with electric and magnetic
charges. As the DSZ quantization condition tells g, > e,
according to Eq. (3), we have the hierarchy of the axion-
photon couplings as guyy > Juem > uEE-

B. The axion modified Maxwell equations
and their macroscopic form

According to the above Lagrangian for generic axion-
photon interactions, we can derive the classical equations of
motion for the photon field. By applying the Euler-
Lagrange equation of motion for the two potentials, one
obtains

1
—(n-on-0A¥ —n-00"n-A—n-on*d-A—n-oc,, ,n*0"B*)

n

_gaEEava(a/\A)W_gaEMaua(a/\B)W:ji’l’ (4)
1
—(n-0n-0B* —n-00"n-B—n-on*d-B+n-0e,, ,n* 0" A*)
n

~ 9arm0,a(0 N B —gupyd,a(0 NAM = fi,. (5)
In terms of the field strength tensors F* and F*, the

following axion modified Maxwell equations are obtained
(28]

ayFﬂy - gaEEa;taFﬂy + gaEMauaFlw = ]le/’ (6)
a,uFm/ =+ gaMMayaFﬂD - guEMayaFﬂb = ]Dmv (7)
where the term responsible for Witten effect is omitted. The
new Maxwell equations in terms of electric and magnetic

fields are then given by

- OE - > da
VxB——:jeJrgaEE(ExVa—a—‘;B)

ot
- = Jda -
+gaEM(BX Va—i—EE), (8)
— - 0B - - = da -
VXE4+—=j — BxV —F
X + ot Jm guMM< X a—+ ot >

> = Jda -
_gaEM<EX VQ_EB) )

— RN RN
VB=p,=9gaumE - Va+ gueuB-Va, (10)

= - — - —
“E=p,+gueB-Va-gunE-Va, (11)

<

where the magnetic charge p,, and current fm will be
ignored below as there is no observed magnetic monopole.

Next, we derive the macroscopic form of the above
Maxwell equations in order to deal with the propagating
wave in media. Let us first recall the classical electromag-
netism. In media, both the electric charge and the current
are composed of a free part and a bound part

-

Pe = Pe.f +pe,h’ Je = je,f + je,b' (12)
where the bound parts are given by

= = - = = 6136,
pe,b:_v'Pev je,b:vae_'_ ot (13)

Here 136 and M . denote the macroscopic polarization and
magnetization, respectively. Moreover, the free parts satisfy
the continuity equation

ape.f
ot

= =
—&-V-Je,f:O. (14)

The macroscopic electric displacement field D and the
macroscopic magnetic field H are defined as

B_E+h, H=E-il, (15)

After plugging them into QEMD Ampere’s law Eq. (8), we
obtain

— -

- 05 > = Jda -
VXxH-—=].s ExVa-—B
X ot Je.f+gaEE< X Va (3t>
- = oa -

The axion-photon interaction terms are not affected by the
medium response. Thus, the electromagnetic fields on the

right-hand side of the above equation are E and B but not D
and H. Similarly, the QEMD Gauss’s law can be rewritten as

- - -

— > =
V-D = Pe,f + 9ureB - Va — 9aemE - Va. (17)

There is no conventional source in Faraday’s law and the
divergence of B. Their equations thus remain unaffected.
Finally, we obtain the macroscopic form of axion Maxwell
equations in QEMD

_ oD - - 0a -
?XH—EZje’f—l—gaEE(Exva—a—jB>

- = oa -
+gaEM<BX Va—f—EE), (18)
— - 0B 5> = da -
VXE+—=- BxV —F
X E A= gaMM( xVa+— )

- oa -
—gaEM<EX§)a—a—C;B>, (19)
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-

— = kv
V-B=-g,umE-Va+ g,guB-Va, (20)

-

— - = S =
VD =p,;+gugeB-Va—gumE-Va. (21)

These are the macroscopic wave equations that we shall
solve below.

C. Decomposition and linearization

Next, we decompose and linearize the fields in the above
macroscopic axion Maxwell equations. Because the axion
couplings are expected to be small, as a good perturbative
approximation, we can expand the fields in Egs. (18)—(21)
(denoted by X = H, D, B, E) in terms of order of axion
couplings. The decomposition is thus X = f(o + )?w where
}_fo is the large static electromagnetic fields and }_fya = )_fy +
)?a corresponds to the homogeneous axion-induced fields
X, and the propagating waves )?y. The electric charge
density p, ; and current density fe,f can also be decom-
posed as the part causing the large background fields and
ihe axion iource term, ie., p,r= p(e)_ it Pl 7 and
Jef = ;8 st j;,f. Thus, the static background fields satisfy
the ordinary Maxwell equations

V x By——2 =70 2
X Dy o Je.f (22)
. 0B
V x E,+ 20—, (23)
ot
= -
V-B, =0, (24)
- -
V-Ey=p) (25)

Next, we assume that the static fields EO and EO are ideally
provided and perfectly homogeneous. Thus, both Egs. (22)
and (25) turn to be approximately equal to zero, i.e.,
V X ]§0 - % ~0 and V . EO ~ 0. After keeping only the
leading terms on the right-hand side, in terms of the static
external electromagnetic fields EO and EO, we have

= - oD da -
XH—ai Jef+gaEE onva—FBo
- — da -
+ 9aEM <Bo X Va‘FEEo)’ (26)
.7 aB . —  oa-
V x E a[ = —9aMM (BO X Va +EEO>

- — oa -
— YuEM <Eo x Va- EBO> ) (27)

— - - —_— N —
V-B=—gumEo- Va+ guuBy- Va, (28)

- - , > = > =
VD =p,;+ gugeBo- Va— guemEo- Va.  (29)
Applying a time derivative on the last two equations gives

- 5 > = > =
V-B=—gumEo-V a+g;emBo-V a, (30)

= 4 o - = - =
V-(D+jey) = 9aeeBo- V a—=gumEo-Va. (31)

These equations are now linear for all times-space
dependent quantities. We then perform a Fourier expansion
for the quantities in form of plane waves given
i(wt— kx)

by e~

A A
>

+ gaEM(EO x ka —w&EO)a (32)

— Jaem(Eo X k& +waB,), (33)
k-B = _gaMMk . an + gaEMk . Boé\l, (34)

. Ay s o -
k- (@D +ij, ;) = gupp®k - Boat — gupy@k - Eoa, (35)

where a, H, D, E,
and k.

A A N

B, and z,.f are all amplitudes as a

function of w

III. QEMD AXION-INDUCED RADIATION
AT AN INTERFACE

We set up a configuration of interface between two
reglons I and 1 with a parallel static electromagnetic field
BO or EO The two regions are filled by media with different
dielectric constant ¢ or magnetic permeability u. As the
propagating waves and the axion-induced electromagnetic
fields are all parallel to the interface plane, we have the
following continuity requirements between the two differ-
ent regions

-

I =) =} =1
Ey=E .  H =H|. (36)

The general form of continuity in terms of the electromag-
netic fields is

E'+ E + El,
H” +H” +H(I)1’ (37)

E +E +E) =
H. + H, + Hy =

where we include the external static electromagnetic fields
to account for the possibility of their direction the same as
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others or sudden change at the interface. In Fig. 1, we show A. The radiation at an interface between two regions
the induced electromagnetic fields in two regions for R R
four cases. 1. Case 1: By #0, Eg=0, ¢; # €, and p=1

In this section, we discuss the above equations in
different setups of the media for the two regions between
the interface and the axion-induced radiation in QEMD.

In this case, there is no static charge density causing an
external electric field and the material is purely dielectric in
the two regions. After applying the ordinary equations for

Case 1 Case 2

= Trm

Region Il .
€ Region |
€1

T

Region |
€1

Y

Case 3 Case 4

L= 1T

Region | Region Il Region |

Region Il
T3] H2 w

M2

K

N AR R RNl R RRRRNAAR

FIG. 1. The induced electromagnetic fields in two regions for four cases.
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static fields, the macroscopic Maxwell equations in a Fourier
expansion become

k x I?Iya + a)g + i?elyf = gaEEw&EO + gaEMEO X /_é&,
k x i?ya - wi}ya = —gaMMéo x ka —gaEwalEo,
lz‘ §ya = gaEM]_é : Eo@
k- (@D +ij.;) = guspak - Boa. (38)

As Z?O = 0, we can define the following relation in the media

5, Eya SN s s .
H,= p wD+ij, j=wD,,+ij, ;=weE,,, (39)

where p is the magnetic permeability and e is the total
effective dielectric permittivity taking into account all
electric effects. Using these relations, we get the linearized
macroscopic axion equations

A
>

- B A 5 5 N
kx4 4 wek,, = g,ppwaBy + gupmBo X k a,

kxE,, —oB,; = —gaumBo X ka —g,ey®aB,,
k- B,, = guemk - Bod,
€k - E}/a = gaEEk : BO&» (40)

where k is a general symbol of wave vector which should be
specified for particular fields below.

Then, in the limit of k, = 0, we obtain the axion-induced
electromagnetic fields

. 1 -

Ea([>zggaEEB0a(t)ﬂ B, (t) =puH (1) = guemBoa(1),
(41)
as well as the propagating wave equations
k, x H, + weE, = 0, (42)

-

k, x E, —wB, = k, X E, — wuH, = 0, (43)

where I%, denotes the wave vector of a propagating
electromagnetic field with k2 = n’w? and n® = eu. Here
and below, we work in the approximation of axion with
zero velocity /2a =0 and frequency w, ~ m,. The axion

DM field can be given by

a(t) = age™™m!, (44)

where ay = \/2ppm/m, with ppy = 0.4 GeV em™ being
the local DM density.

For the case of different dielectrics with €; # €,, we
obtain the axion-induced electromagnetic fields

- o 1 - .
Hy = Hy = = gapyBoage™",
U
ol(I1) 1 R —imyt
Eu - _gaEEBane “ (45)
€1(2)

and the field values from continuity conditions become
El + El+ Ey = EI' + El} + E{],
[ _ gl €1 pr _ €2 i
H,=H, = —n—lEy = n—zEy . (46)
where H, is produced in the direction perpendicular to E,.
Inserting the obtained axion-induced fields to the above

two equations, the solutions of propagating waves in the
two regions are

E;:HEQI_EHE{{—E{)]ﬁ’
E) = -[E/ - E, + E{f - E‘[)]elnzel%z"l’
H;:_[ELI_E{lJrE(I)]—E(I)]ﬁ’

where

= (2= L asetoan (48)

€ €

Thus, in this case, the external static magnetic field B, can
be set to measure g,gy coupling.

2. Case 2: E‘o # 0, §0=0, €1 #€yand p=1

In this case, after applying the ordinary equations for
static fields, the macroscopic Maxwell equations in a
Fourier expansion become

>

S -

k x Hya wD + l]ef = gaEEEO X ka _gaEMa)EO&v

+

X Eya - wBya = Jamm@Eoa — gupmEo X ka,

1

-

k- Bya = _gaMMk ' EO&7

L > =
k- (a)D + l]e,f) = _gaEMa)k - Epa. (49)

As E’O = 0, we can also define the following relation in the
media
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2, gya Ay % S =
Hya:ﬂ, oD +ij, =wD,,+ij, f=weE,,. (50)

Then, we get the linearized macroscopic axion equations

. B N L B,
k x /Z“ + weE,, = gupEo X k& —g,pywEod.
k x E}/a - wBya = gaMMwEO& = JaemEo X ka,
k- Bya = _gaMMk : EO&v
€k . E},a = _gaEMk . an (51)

In the limit of I:a =0, we obtain the axion-induced
electromagnetic fields

. 1 .
Ea(t> = _ggaEMan(t)’
éa(t> = ﬂﬁa(t> = _gaMMEOa(t)v (52)

as well as the propagating wave equations also apply here.
For the case of different dielectrics with €¢; # €,, we
obtain the axion-induced electromagnetic fields

im,t
9

- 1 -
H,=H = _l_lgaMMEOaOe_

1 - .
a = - gaEMEOaOe_lmut’ (53)
€1(2)

and the field values from continuity conditions become
E! + EL + E) = E' + EIl + EY/,

I gl €1 pp €2 g
Hy = Hil = = LE) = 2B (54)

Inserting the obtained axion-induced fields to the above
two equations, the solutions of propagating waves in the
two regions are

E£ = HIES — Eo o By - B e1n2€2-lill€2n1 ’
Eél = B~ Eo + B - B emjl-lilzezm ’
H£ = B~ Eo + B - B e1n2€f2€2n1 ’
H}l/l - _[Efll B Eé * E([)I a E(I)] €1n2€f2€2n1 ’ (55)
where
[-]=- (é - é) 9aemEoay. (56)

Thus, in this case, the external static electric field £ can be
set to measure g,g) coupling.

3. Case 3: B(,;éO EO

In this case, we obtain the macroscopic Maxwell
equations in a Fourier expansion as

0, py #py and e=1

- 5 5 2>l
kxH,,+ oD, +ij.y= gaEEa)aBo + gaEMBO X ka

k x Eya - O)Bya = _gaMMBO X k& _gaEMw&Bov
k- Bya = gaEMk : BO&’
- A - o
k- (a)Dya + l.]e.f) - gaEEwk : BOa' (57)

They are exactly the same as those in case 1 and the

solutions of Ea and Ea are also the same.

For the case of different magnetic materials with p; # u,
and ¢; = ¢, =¢, we have the axion-induced electro-
magnetic fields

-

I Pl
E, =E,;

1 - )
= EgaEEBOaOe‘””u’,

- 1 - .
Hi(”) = ——gaemBoage™" ", (58)
Hi(2)

and the field values from continuity conditions are
H! + H + H{ =H + HI + H]!,
_ K

'“1 H f[” 5
— 9
ny - ny ( )

El EI 1

The solutions of propagating waves in the two regions are

1 pl
HL = 4 |mt — gt B _Bo| __mom
! Ho  H1] pinp + pony
r 1 pl
mi— — g gty Bo _Bol  mma
! Ho  pi] ping + pong
r 0 pl
B — —|gi— gt 4 Bo By By HiHo
o Hy | Han + pony
r BII BI'
Ell = —|gl - g 420 _20) B2 60
L Mo pi] pang + pong
where
1 1 1 1
[]= <———> (9aemBoao +Bo) = <———> By.  (61)
M2 My M2 My

In this case, the propagating waves are approximately
independent of the axion coupling and thus cannot be
used to measure it because the external magnetic field is
embedded in the H continuity condition.
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4. Case 4: EO #0, l§0=0, H1 #F 1y and €e=1

In this case, the macroscopic Maxwell equations in a
Fourier expansion are

- 5 5 —»/
k x Hya + C‘)Dya + l]e J = gaEEE() X ka gaEMwE()a

»

k x Eya - wBya = guMMa)EO& - gaEMEO X k&,
k- By = _gaMMk . E()a,
EY

k (wDya + l]e f) = _gaEMa)k : EOa (62)

They are exactly the same as those in case 2 and the

solutions of Ea and Ea are also the same.
The axion-induced electromagnetic fields are then

E,=E] =
1

1?12(”) = __gaMMEOGOe_imnt' (63)
Hi(2)

1 - .
- EgaEMEOaOe_lmal’

and the field values from continuity conditions are
Hy + H} + H{ = H]' + HI! + H{,

H1 H2
-—Hl="—=HI(64)

E,=E =
n ny

The solutions of propagating waves in the two regions are

B! B! n
Hl =+ |HI - gl 420 20 Aol
Ho g1 ping + pony
r 1 p
HI = —|HI - H1+B ﬁ e L B
! Ho  Hi] iy + Hony
r 1 pI
El = —|HY - H’+B S L R
L Mo M1 piny + Hony
r BI[ BI'
Ell= |l - gl 420 _20) R )
Ho  pi| ping + pony
where
1 1
[} =————)9ammEoao- (66)
H2 M1

Thus, in this case, the external static electric field E, can be
set to measure g, coupling.

B. Poynting’s theorem and the energy flux density

The energy flux density of an EM propagating field is
given by the Poynting’s theorem as

S:y = I_fy X I?Iy. (67)

Next, we give the results of energy flux density for the
above viable cases (case 1, 2, and 4).
The propagating waves in Case 1 are

E €1 — € 1
=49 7
aEEOOel\/6+€2\/—\/—
€ —¢€ 1
gl — _ B 1~ € ’
7 GaEE 0610—61\/5+€2\/a—\/€—2
€1 — €
Hy = Hy! = _gaEEBOaOW’ (68)

where €, = n} and e, = n3. After plugging them into the
Poynting’s theorem, we obtain

Si— T €1 — € )2
! VeEi 2 €1\/€2 + €2, /€1

_ 1 (gageBoao)® (1 1\?2
ECE <\/— f) )

where i = I (upper sign) or /I (lower sign), and we take
into account a factor of 1/2 to obtain the time-averaged
value. For Case 2, one just needs to make a replacement of
9ueeBo = —9.emEo in Case 1’s results.

The propagating waves in Case 4 are

i 1 (gareBoao)® (

H} = ~gaumEoao — :
¢ M1 \/_+ﬂ2\/_\/_
1
H =g Eyag —
4 aMM Ui \/_+ﬂ2\/_\/_
El = B!l = gymEoay—2—"2—  (70)
14 14 aMM Ml\/_+/42\/_

After plugging them into the Poynting’s theorem, we obtain

o 1 (gaileano)2 < M — K2 >2
YR 2 \aym i

1 (gaMMEOaO)2 1 1?2
VR 2 (wT } ﬁf) |

(71)

IV. SENSITIVITY OF INTERFACE HALOSCOPES
TO NEW AXION COUPLINGS IN QEMD

In this section, based on the above energy flux density
and signal-to-noise ratio (SNR), we calculate the sensitivity
of interface haloscopes to the new axion couplings in
QEMD. Following Ref. [24], we assume an extreme case
with medium II being vacuum (n, = 1) and thus take the
interface as a perfect mirror to emit radiation into vacuum
region II. Moreover, as pointed out by Ref. [24], the axion-
induced electromagnetic wave can be boosted with a series
of parallel interfaces between different media. The out-
going wave then becomes a coherent superposition of the
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transmission and reflection at each interface. We follow
Refs. [24,25] to choose an experimental setup of 80 disks
and take a boost factor f to describe this effect. The signal
power can be given by

Psignal = Aﬂzﬂgllv (72)

where 7 = 0.8 is power efficiency, and A = 1 m? is disk
area. To measure this signal, we choose HEMT amplifiers
with T, = 8 K and the estimated noise is

Av
Po.=T — 73
noise SyS At ( )

where a suitable measurement time is At = 1 day, and a
signal bandwidth is given by the frequency range Av =
Aw,/2m ~10%m,/2x.p is obtained from area law:
ﬂzAuﬁ = K with K being a constant associated with
experimental setup [24].

The SNR is required to satisfy

Pgional
T 5, (74)
Pnoise
ool ORGANA—~ ~— UPLOAD |
Qk\\\\\ 1
o 10 77
|
>
) -
= 10— |ORGAN Phase 1b g4
z P
> ]
- e ——"’____——"
E 10121 / ———‘____ -
> — i
= i
w
o
O 10t
] - Eo=2x10' kV/m, u=1120
- / - Eo=1x10*kV/m, e=25
—By=17T,e=25
1.x107° (-3.><“l[)'51.><‘10’5 5.x‘10_51.x‘10>4 5.x‘10'4 0.001
m, [eV]

FIG. 2. The expected sensitivity bounds of g,zr (red dashed
line), g,g) (blue dashed line) and g,,, (green dashed line). f ~
275 for gupm»>9amm and f=~628 for g,pp. The theoretical
predictions of g,zg, gaem, and guu (solid) are also presented.
Some existing or potential exclusion limits on conventional
coupling g,,, are shown for reference, including ADMX (cyan)
[17], ORGAN Phase la (yellow) [38], and Phase 1b (orange)
[39], and the proposed MADMAX (pink) [25]. The existing
limits on g,y from upconversion experiment UPLOAD (ma-
genta) [40] and g,x), from ORGAN experiment (purple) [41] are
also shown for comparison.

The total run time is given by f, = (Ar+ tR)AA’—Z‘; for a

suitable range of axion mass Am, starting from 40 peV.
We take tp = 1 day as a conservative estimated value of
readjust time before each detection and Avy = 50 MHz
with #,,, = 5 years as a reasonable choice to balance the
total run time and detection range. This choice results in
p~0O(100) [24,25]. We keep this  value unchanged in
whole experimental process, and then plug the above
parameters into SNR formula to obtained the sensitivity
bound of new axion couplings. In Fig. 2, after taking a few
experimental setups for illustration, we show the sensitivity
bound of couplings g,zr, 9urm> and g,y together with
their theoretical predictions. We find that the reasonable
setups of interface haloscopes with perfect mirror can probe
the theoretical predictions of g,rgr, 9uem> and g,y for
O(10) peV S m, < O(100) peV. It turns out that a large
background electric field is needed to probe g,g) and
gamm- The large static electric field could induce extra
currents/charges in the detector volume depending on the
design and therefore may influence the sensitivity. We leave
the experimental design to future study.

V. CONCLUSION

The so-called Witten effect implies the relationship
between axion and magnetic monopole. A sound QFT
theory called QEMD in the presence of magnetic monop-
oles was utilized to construct a more generic axion-photon
Lagrangian in the low-energy axion effective field theory.
This generic axion-photon Lagrangian introduces the
interactions between axion and two four-potentials. It
leads to new axion-modified Maxwell equations. To
search for high-mass axions m, 2 O(10) peV, the inter-
face haloscopes were proposed by placing an interface
between two electromagnetic media with different
properties.

In this work, for the generic axion-photon couplings built
under QEMD, we provide comprehensive expressions for
the axion-induced electromagnetic fields and propagating
waves in different setups of interface and background
fields. We also calculate energy flux densities, the sig-
nal-to-noise ratio and obtain the sensitivity to new axion-
photon couplings (9,zrs Garm and guppe) for high-mass
axions. We find

(i) The configuration of interface between two dielec-
tric regions and a parallel static magnetic (electric)
field can measure ¢,z (9,£m) coupling.

(i) The configuration of interface between two regions
with magnetic material and a parallel static electric
field can measure g, coupling.

(iii) A reasonable setup of interface haloscopes with
perfect mirror can probe the theoretical predictions
of Gapes Gaem and gupy for O(10) peV <m,<
O(100) peV.
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