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The attractive feature of supersymmetry is predictive power, due to the large number of calculable
properties and to coupling nonrenormalization. This power can be fully expressed in hidden sectors where
supersymmetry may be exact, as these sectors are secluded from the visible one where instead
supersymmetry must be broken. This suggests a new paradigm for supersymmetric dark sectors, where
supersymmetry is exact at the dark matter scale, implying that many properties of hidden supersymmetric
dark sectors can be fully computed. As a proof of concept we discuss a concrete example based onN ¼ 1

super Yang-Mills.
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I. INTRODUCTION

Supersymmetry [1–3] is arguably the most natural
extension of Minkowsky space-time symmetries, beyond
the Poincaré algebra [4]. It links bosonic and fermionic
particles, hence relating integer and semi-integer spins [5].
Furthermore, supersymmetric field theories enjoy special
properties that make for an exciting theoretical playground.
For instance, the nonrenormalization of a set of operators
[3,6] renders supersymmetry a prime candidate to explain
the quantumstability of scalarmasses [7], in particular for the
Higgs boson. As a second example, theories with extended
supersymmetries can be solved exactlywithout the need for a
perturbative expansion [8]. This idyllic theoretical situation
contrasts with the physical real world, where the Standard
Model of particle physics (SM) lacks any supersymmetric
feature, in primis a mirror fermion-boson symmetric particle
content. Henceforth, if supersymmetry is realized, it must be

at energy scales well beyond the ones already probed at
accelerators, like theLargeHadronCollider (LHC) atCERN,
or in secluded sectors, at most feebly connected to the SM.
However, there are phenomena that are not captured by the
SM, specifically the presence of dark matter (DM), which
constitutes 75% of the matter budget of the present-day
Universe [9]. The only DM direct evidence involves its
gravitational interactions, which have been observed at a
variety of scales: from galaxies, via the rotational velocity of
luminous stars and gas, to gravitational lensing of galaxy
clusters, to ultimately the global properties of the observable
Universe, revealed via the cosmic microwave background.
Many models propose a particle candidate to describe DM,
including particles predicted by (broken) supersymmetry
[10,11] and hidden sectors [12]. See Refs. [13–15] for
comprehensive reviews on DM models and properties. For
a long time, the minimal supersymmetric SM (MSSM) has
offered a standard DM candidate in the form of the lightest
supersymmetric particle (LSP), which is usually a neutralino
or gravitino. Its stability, however, is not guaranteed directly
by supersymmetry as it requires an imposedmatter symmetry
(R–parity), which is also used to forbid proton decay [16]. As
the DM candidate is the lightest partner of the SM states, its
mass and nature in the LSP picture is strongly related to the
breaking of supersymmetry. It should be remarked that a
more minimal solution to the proton decay problem in
supersymmetry is the imposition of baryon number
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conservation, hence without the emergence of a LSP DM
candidate. Furthermore, the neutralino LSP, having electro-
weak interactions, leads to detectable signatures both at
colliders and at direct detection experiments. The absence of
a signal so far has imposed severe constraints on the MSSM
parameter space.
In this article we propose a new paradigm of super-

symmetric DM (sDM), alternative to the LSP scenario, as it
is characterized by an almost exact supersymmetry at the
scale of the DM mass. The realization of the sDM scenario
requires the addition of a dark sector to the MSSM, while
R-parity could be explicitly broken or, if preserved, the LSP
may play the role of a subleading DM component with
small thermal relic abundance. In order to preserve the
supersymmetric properties of the sDM, the new super-
symmetric states in the dark sector must either be heavier
than the breaking scale of the MSSM, or be feebly coupled
to the MSSM fields. The latter possibility features a hidden
sector that has the advantage of benefiting from super-
symmetric properties, primarily its calculability. This
property is of particular interest if the new sector confines,
as it is the case for the simplest models involving new
gauge symmetries. Models of hidden supersymmetric
sectors have been considered in the literature under various
motivations [17–20]. Henceforth, the main model building
ingredient is a hierarchy between the supersymmetry
breaking scales in the visible sector, needed to be above
a few TeV due to collider bounds, and in the Dark sector,
where supersymmetry is assumed to be valid at the DM
mass scale. Also, the properties of the hidden supersym-
metric sector are disjointed from phenomenological
requirements related to the SM physics, opening a new
set of simple and attractive possibilities.

II. GENERAL FRAMEWORK

A schematic realization of the sDM scenario is illustrated
in Fig. 1: both the visible and hidden sectors consist of
supersymmetric theories, connected to each other via feeble
interactions (a similar setup was considered in [19]). Those
can consist of a small supersymmetric coupling [20] or
interactions due to a heavy mediator. As such, the dark
sector can be populated via the freeze-in mechanism [21] to
generate the correct DM relic density. Both sectors are
connected to the same supersymmetry breaking source
(SUSY), however the breaking is mediated by different
mechanisms. To generate a clear hierarchy between the
SUSY scales in the two sectors, we choose gravity
mediation [22–24] for the hidden sector and gauge media-
tion [25–27] for the visible sector. Hence, the model setup
proposed in Fig. 1 draws a connection between the Planck
scale MP ¼ 1019 GeV and the supersymmetry breaking
scales in the visible sector, mVS, and in the hidden sector,
mHS. We recall that the latter must be smaller than the DM
mass, mHS ≪ mDM. Assuming, as an illustration, that the

SUSY scale is generated via F-term breaking, the scales are
related as follows:

mHS ∼
hFXi
MP

; mVS ∼
g2G
16π2

hFXi
MG

; ð1Þ

where gG is the gauge coupling of the heavy gauge
mediators of mass MG, which needs to sit well below
the Planck scale for consistency. Structure formation
typically requires the DM mass to be above the 100 keV
scale [28,29]. Hence, imposing mHS < 100 keV and as a
sample scale mVS ∼ 1 TeV yields the following estimates:

hFXi ≲ 1015 GeV2; MG ≲ 1010 GeV; ð2Þ

for gG ∼ 1. We shall retain them as typical orders of
magnitude for the model building. Note that mVS also
contributes to mHS via the interactions between these two
sectors, thus requiring such interactions to be feeble. This
scenario potentially suffers from the cosmological gravitino
problem [30]. Gravitinos are the spin-3=2 super-partners of
gravitons, and they are produced in the early Universe via
gravitational interactions. Their presence at late times can
efficiently suppress structure formation. One possible
solution is to lower their mass at the eV scale [31], with
most recent bounds reading m3=2 ≲ 4.7 eV [32]. As
m3=2 ∼mHS, this mass limit fits well within our scenario if

hFXi≲ 1010 GeV2: ð3Þ

The sDM candidate, which is the lightest state in the hidden
supersymmetric sector, could decay into gravitinos, hence
repopulating them in the late universe. There are two kinds
of decays: channels involving the visible sector, doubly
suppressed by the Planck mass and the feeble interactions;

FIG. 1. Illustration of the different sectors of the model with a
hidden sDM. Purple circles are hidden sectors while the red circle
is the visible sector of the theory. The source of supersymmetry
breaking (SUSY) is transmitted to the visible and the hidden
sectors through gauge and gravity mediation, respectively. There
are also feeble interactions between the visible and the hidden
sectors.
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and decays among components of the same multiplet in the
hidden sector, suppressed by the small mass splitting and
on-threshold masses (as Δm ∼m3=2 ∼mHS). This deems
our sDM scenario generally free from the cosmological
gravitino problem.

III. HIDDEN SYM: AN EXAMPLE WITH
ULTRAVIOLET FREEZE-IN

As a concrete, simple and calculable example of the
hidden dark sector, we consider a N ¼ 1 supersymmetric
Yang-Mills (SYM) theory [3], based on the gauge sym-
metry SUðNcÞ. This class of theories possesses classical
scale-invariance, which is however broken at quantum level
(except forN ¼ 4 SYM, which is fully integrable). Hence,
like quantum chromodynamics, the theory is expected to
confine at low energies and generate a dynamical mass
scale Λ. This scale, which is fully supersymmetric, controls
the mass of the lightest states in the low energy theory. As
no SM states are charged under the hidden SUðNcÞ gauge
symmetry, heavy mediators need to be introduced to couple
the hidden sector to the visible one. As freeze-in is due to a
higher dimensional operator, the relic density is ultraviolet
sensitive [33] and will be determined by the reheating
temperature at the end of inflation, Trh. This observation
confirms the necessity of a very light gravitino mass, as
discussed in the previous section, else a strong upper bound
must be imposed on the reheating temperature to suppress
gravitino production.
As the hidden sector consists of pure gauge fields, the

simplest mediator fields consist in a set of matter super-
fields [34] F i and F̃ i in conjugate representations of
SUðNcÞ. To couple the mediators to the MSSM, we can
include an SUð2Þw doublet i ¼ Q and an up-type singlet
i ¼ U with superpotential couplingsZ

d2θ½MF ðFQF̃Q þFUF̃UÞ þ λMHuFQF̃U� þH:c: ð4Þ

where, for simplicity, we assume the same mass for both
multiplets. A similar scenario can be obtained with a down-
type singlet, i ¼ D, coupling to Hd. Integrating out the
massive multiplets, we obtain an effective coupling
between the SYM gauge superfields Wα and the singlet
superfield in the form of a dimension-6 operator at leading
order:

Ldim -6 ⊃
1

32π

Z
d2θ

�
ImðτTrWαWαÞ

×

�
1þ 1

Λ2
M
HuH

†
u þ � � �

��
: ð5Þ

A dimension-5 coupling can be obtained if the visible
sector consists of the NMSSM, i.e., the MSSM with an
additional gauge singlet N̂ [35]. In this case, only one

mediator is needed, singlet under the SM gauge inter-
actions, with superpotential couplingsZ

d2 θ½MF FF̃ þ λMN̂FF̃ � þ H:c: ð6Þ

Integrating out the massive multiplet, we obtain a leading
dimension-5 operator

Ldim-5 ⊃
1

32π

Z
d4θ

�
ImðτTr WαWαÞ

×

�
1þ 1

4πΛM
ðN̂ þ N̂†Þ þ 1

Λ2
M
N̂N̂† þ � � �

��
:

ð7Þ

In both Eqs. (5) and (7), the dots represent higher dimen-
sional operators, while the scale ΛM is defined as

1

ΛM
∼

λM
4πMF

: ð8Þ

In both cases, the effective scale ΛM determines the
production rate of the dark sector states from the thermal
bath of the visible sector. As the freeze-in production is
dominated by the reheating temperature, which we assume
to be higher than the condensation scale of the SYM sector
in order to be able to produce the DM states, to compute the
relic density we can use directly the Lagrangians in Eqs. (5)
or (7). The standard Boltzmann equation applies to the
evolution of the number density of states in the hidden
sector:

dnHS
dt

þ 3HnHS ≃
T

512π5

Z
∞

0

dsjMj2 ffiffiffi
s

p
K1ð

ffiffiffi
s

p
=TÞ; ð9Þ

where T is the temperature in the visible sector, H the
Hubble parameter and, in our model, the amplitude reads

jMj2 ¼ Nc

( s
4Λ2

M
for dim-5;

33s2

256Λ4
M

for dim-6:
ð10Þ

An approximate solution of the Boltzmann equation (9)
yields the following comoving number density

YHS ¼
nHS
se

≃

8<
:

45MPTrhNc

128π71.66gs�
ffiffiffiffi
gρ�

p
Λ2
M

ðdim-5Þ;
1485MPT3

rhNc

1024π71.66gs�
ffiffiffiffi
gρ�

p
Λ4
M

ðdim-6Þ:
ð11Þ

This quantity depends dominantly on the physics at high
scales, hence it can be computed directly in the SYM
theory, without knowledge of the dynamics at low energies.
Assuming that this number density is directly converted
into a number density of DM candidates, we estimate
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ΩDMh2 ≃

8<
:

0.134 × 1021Nc
TrhmDM
Λ2
M

ðdim-5Þ;

0.185 × 1021Nc
T3
rhmDM

Λ4
M

ðdim-6Þ:
ð12Þ

After repopulation by freeze-in, the dark sector undergoes a
nontrivial thermal history, characterized by thermalization
via self-interactions and the confinement phase transition
[36]. We checked that a more accurate treatment of these
effects leads to results similar to our naive estimate. By
matching Eq. (12) to the measured value, we can relate the
required DM mass to the reheating temperature and
mediation scale ΛM, as shown in Fig. 2. The region in
lilac is excluded as the required DMmass is larger than Trh.
In the gray region, the dark sector is produced thermally in
the early Universe instead of via freeze-in, corresponding to
the model-independent bound mDM ≳ 0.4 keV [33].
Finally, we highlighted by a red line the region where
mDM ¼ 1 MeV, as below this line the DM is too light to
allow effective structure formation [28,29]. This leaves an
allowed band in the parameter space, with DM masses
between the MeV and the reheating scale. Finally, we
checked that the SUSY scale in the hidden sector remains
stable under radiative corrections within the relevant
parameter space in Fig. 2. A contribution to mHS comes
at loop level, giving in both cases

δmHS ≈
λ2MSSM

16π2
m3

VS

Λ2
M

; ð13Þ

for a generic MSSM coupling λMSSM. For λMSSM ∼ 1 and
mVS ∼ 1 TeV, δmHS ≲ 1 eV as long as ΛM ≳ 108 GeV.

IV. LOW ENERGY DYNAMICS
OF THE HIDDEN SYM

At low energy, where the DM mass is dynamically
generated, DM interactions are described by an effective

field theory where the SYM gluons and gluinos are
confined into massive bound states. The original construc-
tion by Veneziano and Yankeliowicz (VY) only included
one superfield S, corresponding to the supersymmetric
gluino-ball states [37]. Later the model was generalized to
include glue-ball states in terms of a chiral superfield χ
(gVY). The Lagrangian for the model reads [38,39]:

LgVY ¼ 9N2
c

α

Z
d4θðS†SÞ13ð1þ γ χχ†Þ

þ 2Nc

3

Z
d2 θ

�
S

�
log

�
S
Λ3

�
Nc

− Nc

�

−NcS log

�
−e

χ

Nc
log χNc

��
þ H:c: ð14Þ

Besides the number of colors Nc and the confinement scale
Λ, the interactions depend on two parameters: α and γ (e is
the Euler’s number). The former, mainly controls the
overall strength of the couplings. The latter, instead,
crucially controls the spectrum of the theory, which can
be obtained from the action in Eq. (14) [39] (see the
appendix for further details). After diagonalization, the two
mass eigenvalues can be written as

mL=H ¼ αΛμL=HðγÞ; ð15Þ

where αΛ sets the scale, while the mass ratio and the
mixing between the light (L) and heavy (H) supersym-
metric multiplets only depend on the parameter γ. For
γ → 0, the glue-ball states decouple and the light state
consists of pure gluino-balls (as in the original VY model)
with mass mL ≡mS ¼ 2=3 αΛ, while for larger γ a mixing
is always in place. In principle, γ is not a free parameter as it
is fully determined by the dynamics of the SYM inter-
actions. Large-Nc arguments support that the gluino-balls
should be lightest [39], pointing toward small γ ≲ 1. On the

FIG. 2. Suitable values of Trh and ΛM for obtaining the observed DM relic density via ultraviolet freeze-in in the SYM model for
Nc ¼ 3. The left panel corresponds to the dim-6 operator, while the right one to the dim-5 operator. For different values of Nc, mDM is
rescaled to keep Nc mDM fixed. The preferred region lies between the red line and the lower edge of the lilac region.
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other hand, perturbative arguments suggest lightest glue-
balls [40,41]. Lattice results are available for Nc ¼ 2
[42,43] and Nc ¼ 3 [44], however unable to resolve the
question yet [45]. Note that SUSY effects can be included
in the form of a gaugino mass [46,47], however as
mHS ∼ eV, this effect can be neglected for our work.
The ratio of the twomasses only depends on γ, as shown in

the bottom panel of Fig. 3. Only within the range 0.59≲
γ ≲ 0.92 the heavy state cannot decay into two light ones,
hence themodel would predict a two-componentDMmodel.
This region is highlighted in red in the figure. For all other
values of γ, theDM is constituted purely of the lightest states.
One-flavor QCD can be used to estimate the mass ratio, as
suggested in Ref. [39], giving the value of γQCD ∼ 0.29,
which we could consider as a benchmark value for γ.
The supersymmetric Lagrangian in Eq. (14) contains

self-interactions which are mainly controlled by α and γ.
The DM self scattering is bound by the Bullet cluster
observation, providing a generic upper limit σDM

mDM
≤ 2 cm2 ·

g−1 [48], where σDM contains all 2 → 2 self-scattering at
low velocity. In our model, it is sufficient to consider the
self-scattering of the lightest mass eigenstate, φL. Hence,
we computed all the scattering cross sections of the scalar
components, σðφLφ

†
LÞ, σðφLφLÞ and σðφ†

Lφ
†
LÞ to all

allowed final states. Assuming that the DM halo has an
equal distribution of all DM components, σDM is replaced
by the average of the cross sections, as detailed in the
appendix. The final cross section has the form

σDM ¼ α6

N4
c

jÃðγÞj2
128πm2

L
; ð16Þ

where the effective amplitude in the numerator is a pure
function of γ, depending on the nontrivial mixing between

the two states in the gVY model. Hence, the Bullet cluster
observation imposes a lower limit onmL, which is shown in
the top panel of Fig. 3 for α ¼ 1 and Nc ¼ 3, as a function
of γ. Due to the scaling of the cross section, the limit for
other parameters can be obtained by keeping N4=3

c mL=α2

constant. The features appearing at the edge of the red band
are due to the resonant contribution of the heavy state,
when mH ∼ 2mL, enhancing the cross section.
SYM also suffers from the presence of domain walls due

to the Nc degenerate minima [49]: their surface tension,
proportional to σ ∝ N2

cΛ3 ∼ ðN2
c=α3Þm3

DM, is bound to be
below the MeV scale [50], in order not to dominate the total
energy of the Universe. An alternative solution would be to
lift the degeneracy of the minima by adding a constant term
to the superpotential: as a consequence, the domain walls
become unstable and source gravitational waves at late
times [51,52]. If the constant term is related to the gravitino
mass, in order to cancel the contribution to the cosmologi-
cal constant [53], the peak frequency of the gravitational
waves can be directly related to the gaugino mass. In our
case, for large reheating temperatures andm3=2 ≲ 1 eV, the
predicted frequencies are below 10−2 Hz and well within
the reach of the LISA experiment [51].
Hence, a nontrivial limit on the DM mass is imposed by

the sizeable self-interactions of the lightest DM state and by
domain walls, which further reduce the available parameter
space in Fig. 2 and limits the DM mass to be around the
MeV. Heavier resonances could also contribute to the self-
scattering, however this effect crucially depends on the
mass spectrum. One-flavor QCD on the lattice suggests the
presence of relatively light spin-1 resonances [54]. SYM
has also been considered as a model for inflation [55],
however requiring a too large composite scale to also
provide a good DM candidate.

V. CONCLUSION AND OUTLOOK

The general proposal depicted in Fig. 1 has been
illustrated with a simpleN ¼ 1 SYM theory. This scenario
can support a variety of other hidden supersymmetric
sectors to generate a sDM candidate, hence providing a
phenomenological application to many different theories.
For instance, by extending the supersymmetry to the
maximal type in four dimensions, N ¼ 4 [56], the theory
can feature a superconformal phase [57]. Furthermore, this
theory is believed to be solvable and a lot of theoretical
studies are ongoing [58], including applications of the
AdS=CFT duality [59,60]. The case of conformal thermal
DM has been studied in general in Ref. [61], finding a good
description of the DM relic density for masses around the
MeV. Another interesting class of theories yields calculable
low energy interactions by using duality properties: the
prime examples are N ¼ 2 Seiberg-Witten theories
[62,63]. Furthermore, SQCD has been considered as a
source of self-interacting DM [20] to solve puzzles in

FIG. 3. Lower limit on mDM ¼ mL stemming from the bullet
cluster bound on the self-scattering cross section, as a function of
γ and for α ¼ 1 and Nc ¼ 3 (top panel). The bound is compared
to the ratio of the mass eigenvalues (bottom panel). The red band
corresponds to a two-component DM case, where the bullet
bound should be considered as a conservative estimate. The
vertical line marks the QCD-inspired benchmark value of γ.
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structure formation. All these theories imbue the dark
sector with clear predictive power, which has not been
fully exploited for the DM phenomenology, yet.
In conclusion, our general proposal opens up a new

avenue for the constructions of models that may explain the
presence of dark matter in the universe. Supersymmetry
imbues the dark sector with calculability and predictive
power, also motivating a detailed study of supersymmetric
theories on the lattice. In the supersymmetric dark matter
scenario, both spins are always present with degenerate
masses. This could lead to observable features in cosmol-
ogy and astrophysics. For instance, Bose-Einstein con-
densation may occur in high density regions due to the
presence of bosons degenerate with the fermionic partners
[64,65]. Bose-Einstein condensate have also been consid-
ered as the source for DM itself [66]. Furthermore, if the
sDM candidates can be effectively captured by neutron
stars, its presence could be revealed in neutron star merger
events [67]. The spin of the DM particles may give
characteristic modifications to the neutron star elasticity,
hence giving testable effects on the multi-messenger signals
coming from the merger [68]. Finally, an indirect signature
may stem from cosmological gravitational waves, produced
during the confinement phase transition or by domain walls,
with frequencies determined by the DM properties. In this
workwehave explored a simple coupling between thevisible
and hidden sectors, however other possibilities remain to be
explored, providing potential links between the supersym-
metric dark sector with inflation and baryogenesis.
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APPENDIX: THE SYM MODEL IN THE
CONFINED PHASE

Below the confinement scale Λ, the N ¼ 1 SYM model
is described by a generalized Veneziano-Yankielowicz
(gVY) supersymmetric Lagrangian [38,39]. It contains
the following Kähler potential:

KðS̃; S̃†; χ; χ†Þ ¼ 9N2
cΛ2

α
ðS̃†S̃Þ13ð1þ γ χ†χÞ; ðA1Þ

and a superpotential

WðS̃; χÞ ¼ 2NcΛ3

3
S̃

�
log S̃Nc − Nc

− Nc log

�
−e

χ

Nc
log χNc

��
; ðA2Þ

where we have defined a dimensionless gluino-ball field
S̃ ¼ S=Λ3. The superpotential implies the presence of a
supersymmetric vacuum, characterized by

∂W

∂S̃
¼ 0;

∂W
∂χ

¼ 0; ðA3Þ

whose solutions describe theNc vacua of SYM theories [38]:

χ0 ¼
1

e
exp

�
−2πi

k
Nc

�
; S̃0 ¼ exp

�
−2πi

k
Nc

�
;

where k ¼ 0;…Nc − 1: ðA4Þ

In the following, we will consider the vacuum with k ¼ 0.
For our purposes, it suffices to study the spectrum and

interactions of the scalar components, as the properties of the
fermionic partners are tied by supersymmetry. Expanding the
superfield Lagrangian, one obtains the standard formula

Lscalars ¼ ∂μφ
lglm∂μφ†;m −

∂W
∂φl g

lm ∂W†

∂φ†;m ; ðA5Þ

where m; l ¼ S̃; χ labels the two superfields and

glm ¼ ∂
2K

∂φl
∂φ†;m ; gl;m ¼ ðg−1l;mÞT; ðA6Þ

are the Kähler metric and its inverse, respectively. To obtain
the mass eigenstates, it suffices to expand the above
Lagrangian, diagonalize and normalize the kinetic term,
and finally diagonalize the resulting mass term, as described
in Ref. [38]. Finally, one obtains the following masses

mL;H ¼ αΛμL;HðγÞ; ðA7Þ

where the dimensionless functions μL;H only depend on γ.
The numerical values are shown in Fig. 4. In the limit γ → 0,
the glueball field χ decouples (it becomes an auxiliary field
with no kinetic term), and the only remaining state (gluino-
ball) has mass

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

FIG. 4. Function of γ defining the mass eigenvalues of the two
states in the gVY model. The horizontal line corresponds to the
pure gluino-ball mass, achieved for γ ¼ 0, as μLð0Þ ¼ 2=3.
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mS ¼
2

3
αΛ: ðA8Þ

To estimate the self-interactions of the DM candidate, we
focus on the self-scattering of the scalar mode of the
lightest mass eigenstate. Here, we will assume that the DM
halo is equally populated by the various components,
including their antiparticles, and that the cross sections
involving fermions are related to those with pure scalars by
supersymmetry. Hence, the effective DM cross section will
be an average of all the possible scalar self-scattering:

σDM ¼ 2σðφLφ
†
LÞ þ σðφLφLÞ þ σðφ†

Lφ
†
LÞ

4

¼ σðφLφ
†
LÞ þ σðφLφLÞ

2
; ðA9Þ

where we include all possible final states, and we use the
identity σðφLφLÞ ¼ σðφ†

Lφ
†
LÞ. The potential generates both

quartic and trilinear interactions. The ones relevant for our
purpose can be parametrized as

L ⊃ C31ðφ3
Lφ

†
L þ H:c:Þ þ C22φ

2
Lðφ†

LÞ2
þmLðc21φ2

Lφ
†
L þ H:c:Þ

þmHðcH20φ2
Lφ

†
H þ cH11φLφ

†
Lφ

†
H þ H:c:Þ: ðA10Þ

An explicit calculation shows that the couplings Cx and

cðHÞ
x can be written as

Cx ¼
α3

N2
c
FxðγÞ; cx ¼

ffiffiffiffiffiffi
α3

N2
c

s
fxðγÞ;

cHx ¼
ffiffiffiffiffiffi
α3

N2
c

s
fHx ðγÞ; ðA11Þ

where F, f and fH are functions of γ only. The values of
these functions are shown numerically in Fig. 5. The
amplitudes for the φLφ

†
L scattering processes at zero

velocity are given by

iAðφLφ
†
L → φLφ

†
LÞ ¼

α3

N2
c

�
4F22 þ

20

3
f221 þ 4ðfH20Þ2 þ 4ðfH11Þ2

�
1 −

1

4ζ − 1

��
; ðA12Þ

iAðφLφ
†
L → φLφLÞ ¼

α3

N2
c

�
6F31 þ

20

3
f221 þ 2fH20f

H
11

�
2 −

1

4ζ − 1

��
; ðA13Þ

iAðφLφ
†
L → φ†

Lφ
†
LÞ ¼ iAðφLφ

†
L → φLφLÞ; ðA14Þ

where ζ ¼ m2
L=m

2
H, being a pure function of γ. For the φLφL scattering, we have

iAðφLφL → φLφLÞ ¼
α3

N2
c

�
4F22 þ

20

3
f221 − 4ðfH20Þ2

�
1

4ζ − 1

�
þ 8ðfH11Þ2

�
; ðA15Þ

iAðφLφL → φLφ
†
LÞ ¼ iAðφLφ

†
L → φLφLÞ: ðA16Þ

Finally,
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FIG. 5. Functions of γ defining the quartic (left) and trilinear (right) couplings of the scalar components, relevant for the self-scattering
of the lightest state.

HIDDEN SUPERSYMMETRIC DARK SECTORS PHYS. REV. D 109, 015024 (2024)

015024-7



σðφLφ
†
LÞ ¼

X
f

jAðφLφ
†
L → fÞj2

128πm2
L

;

σðφLφLÞ ¼
X
f

jAðφLφL → fÞj2
128πm2

L
; ðA17Þ

where the sum runs over all allowed final states. As
mentioned above, the average of these cross sections is used
to estimate the bound onmL from the Bullet cluster. The two
cross sections are plotted in Fig. 6 as a function of γ and in
units of themass.While σðφLφLÞ clearly shows the presence
of the two resonances in the s-channel, where mH ¼ 2mL,
one resonance is missing for σðφLφ

†
LÞ. This is due to the fact

that, in the latter, the s-channel is proportional to the coupling
cH11, which vanished at the resonance, as shown in Fig. 5.
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