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The nuclear reaction network within the interior of the Sun is an efficient MeV physics factory and can
produce long-lived particles generic to dark sector models. In this work we consider the sensitivity of
satellite instruments, primarily the RHESSI spectrometer, that observe the quiet Sun in the MeV regime
where backgrounds are low. We find that quiet Sun observations offer a powerful and complementary probe
in regions of parameter space, where the long-lived particle decay length is longer than the radius of the Sun
and shorter than the distance between the Sun and Earth. We comment on connections to recent model-
building work on heavy neutral leptons coupled to neutrinos and high-quality axions from mirror

symmetries.
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I. INTRODUCTION

Ithas long been recognized that the solar interior can serve
as an efficient factory for keV-scale physics beyond the
Standard Model (BSM), e.g., solar axions and dark photons
[1-8]. In addition to thermal production mechanisms,
nuclear reactions within the Sun may also source BSM
particles up to masses and energies of roughly 15 MeV
[4,9-14]. If a flux of long-lived particles (LLPs) in this
energy regime emanates from the solar interior, they may
transit toward Earth and their decay products can leave
detectable signatures. It is important to emphasize that LLPs
are generic consequences of a dark sector with relatively
light particles and feeble couplings to the Standard Model
(SM) [15-18]. As decay lengths become long, LLPs become
increasingly difficult to detect and strategies to attack this
“lifetime frontier” are valuable tools in the search for BSM
physics. This idea has been previously investigated, largely
considering FERMI-LAT, in the high energy, i.e.,
2100 MeV, regime for annihilating dark matter [19-22].

In this work we point out that existing data from the
RHESSI satellite spectrometer [23], which observed the
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quiet Sun,' can place interesting limits on dark sectors with
LLPs in the range of O(100 keV)-O(1 MeV). This is an
old idea, first proposed by Raffelt and Stodolsky in 1982 in
the context of a 200 keV axion [9]; however, it has remained
unexplored despite new data in the intervening decades
[24]. We illustrate the potential sensitivity of quiet Sun data
with a number of BSM examples, emphasizing different
production mechanisms that may operate in this mass
window. A conservative analysis of existing data from
RHESSI is capable of offering complimentary constraints
on production mechanisms involving neutrino upscattering
and can probe previously untouched regions of parameter
space for axionlike particles with masses close to ~1 MeV.
Upcoming missions, such as the COSI satellite [25,26],
may be able to substantially improve on the capabilities of
RHESSI by (i) taking advantage of a larger instrument
surface area, (ii) making use of dead time to carefully study
backgrounds, and (iii) taking advantage of distinctive
spectral features.

We focus on LLPs that decay primarily to photons2 and
have decay lengths 77 p that satisfy

Ro < 1p < do,s (1)

where R, is the radius of the Sun and d, is the distance
from the Sun to Earth. This allows an O(1) fraction of the

'"Time periods without intense surface activity such as solar
flares.

*We could also consider decays to e'e™ pairs, but an analysis
is complicated by the magnetic fields that surround Earth.
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LLPs to decay en route to the satellite instrument. In this
limit, the flux of LLPs will never reach any terrestrial
experiment since they will decay in flight and their
daughter photons will be absorbed in the upper atmosphere.
In this sense, quiet Sun observations are complimentary to
terrestrial searches for LLPs from the Sun, such as those
that have been performed by CAST [10] and Borexino [11].

We perform a straightforward (and conservative) rate-
only analysis, the details of which can be found at the end
of Sec. II. In the body of the paper, we organize our
discussion along the lines of specific BSM scenarios. We
discuss neutrino upscattering in Sec. II and solar axion
production in Sec. III. We also spend time focusing on
model-independent LLP constraints in Sec. IV. In Sec. V
we discuss the physics potential for dark sector searches
using future missions such as COSI. We close by summa-
rizing our results in Sec. VI.

II. NEUTRINO UPSCATTERING:
TRANSITION DIPOLE

We begin by considering a production mechanism
involving the upscattering of solar neutrinos transiting
through the Sun, e.g., vA — LLPA with A being a nucleus
such as hydrogen or helium (see, e.g., [13,14,27] for results
on neutrino upscattering in Earth). This mechanism lever-
ages the large solar neutrino flux, which is copious in the
few-hundred keV region and extends up to ~15 MeV.
Solar neutrinos have a small probability of being absorbed
in the SM because of the small charged current scattering
cross section at E, ~ MeV energies. It is, however, possible
to have BSM cross sections that exceed the weak inter-
action at low energies if neutrinos couple via a transition
magnetic dipole moment [28,29]. This can lead to sizable
conversion probabilities into an unstable right-handed
neutrino N (also called a heavy neutral lepton or HNL)
for neutrinos transiting from the center to the surface of the
Sun. As it is unstable, N may decay in flight, supplying a
broad flux of photons in RHESSI. Similar phenomena may
occur in the aftermath of SN1987A [30,31] leading to tight
limits below the supernova floor derived in [28].

This “dipole portal” can dominate low energy phenom-
enology since it is a dimension-five operator as compared to
the dimension-six contact operator of the weak interaction.
Low energy cross sections are then proportional to d,
with d the dipole moment, vs G%E? for weak cross sections.
Therefore, dipole portal cross sections can be large at low
energies while simultaneously avoiding constraints from
higher energy experiments (e.g., accelerator neutrino experi-
ments and colliders). The effective Lagrangian is given by [28]

Lin DY dyF"No,, Py, (2)
a

Here, d,, represents the coupling between N and each of the
three SM neutrinos. In this work, we consider the cases

where N couples to a single flavor. This effective inter-
action has been studied recently in the context of accel-
erator, solar, atmospheric, and collider neutrinos, as well as
in the context of early Universe cosmology and constraints
from SN1987A [28,29,32-56].

Unlike the monoenergetic LLP cases discussed later in
this paper, the spectrum of E, (and hence E) and E,) spans
several orders of magnitude. For that reason, we implement
a Monte Carlo integration to sample neutrino energy,
production location, and upscattering location. We also
account for flavor transformation between the three SM
neutrino flavors during the neutrino propagation (both due
to adiabatic conversion and oscillations).

We consider the Sun to be solely composed of 'H
and “He with densities given by the standard solar model
[57-59]. Although larger nuclei would have a cross section
that scales as Z? due to coherent effects, the relative
abundances of these elements are small, so this remains
a subdominent effect [58]. Different solar models (i.e.,
[60]) only differ at the percent level or less, which is a
higher level of precision than considered in this paper. All
scattering is calculated to be off free nucleons, ignoring the
coherent enhancement due to helium. This only leads to an
~10% change in the bounds, which we will see is a much
smaller effect than uncertainty in the detector opening
angle/background. The cross section for scattering on a free
proton is given by dog, = do; + do,, with

d61 1 1
= a2d)*F? | — - —
g, *%9 1<E, E,
m3(E, —2E, —m,) my(E,—m,) 3)
4EZE,m, 8EZE!m? )’
and
dor _ w2 r2 [P (2E, — B2 -2
dE,_a Hnl's E12/ (( v r) - rmp>
E.—4E, m}
2 r v N
+ my B E,,E,]' (4)

Here, F'; and F, are electromagnetic form factors, u,, is
the magnetic moment of the nucleon in question, E, is the
recoil energy, and m,, is the proton mass [61,62]. Since the
neutrino energy is much less than the proton mass, the HNL
energy Ey is nearly identical to the neutrino energy E,.
Thus, the flux of HNLs has similar features to the solar
neutrino flux (see Fig. 1). Note that, for the parameters
considered, the flux of HNLs is ~7 orders of magnitude
below the solar neutrino flux, so we do not expect
upscattering to have a noticeable effect on solar neutrino
detection. The downscattering rate of HNLs will similarly
be small, so we do not consider any scattering after
production.

015020-2



LONG-LIVED PARTICLES AND THE QUIET SUN

PHYS. REV. D 109, 015020 (2024)

._
9
8]

my =0.75 MeV

Ldy =2x10~ 1T Mev—1

—_ —_

= 7
[=)) +
T

HNL Flux [cm~2s~ 'keV™!]
=
&
T

10710 N PP U . T |
102 10° 10*

Ey [keV]

FIG. 1. The flux of solar HNLs at Earth (ignoring decays) as
calculated through the dipole model Monte Carlo simulation,
where my = 0.75 MeV and d, =2 x 107" MeV~'.

The HNL has decay channels N — v,y. We consider
the v to be massless and the decays to be isotropic in the
rest frame of the HNL.? Using the relativistic quantities

y = Ey/my and = /1 —m%/E%, the decay length is

calculated as

sl (5)

The Monte Carlo simulation samples locations for N
decays, along with the energy and direction of the decay
photon. This is used to calculate the resulting photon flux
with respect to energy and angle observed by RHESSI. We
consider opening angles for HNL decay photons of 1° and
90°, where we reject all photons arriving at larger angles.
The true opening angle is expected to be an energy-
dependent value between these two angles, but a full
analysis is beyond the scope of this paper. The background
flux observed by RHESSI is calculated by using the
reported number of counts and effective area of the front
segment (ignoring narrow peaks) [23]. We reject a param-
eter point if the flux from N decays exceeds the observed
flux at any energy (see Fig. 2). RHESSI has a good energy
resolution (3 keV FWHM at energies below 1 MeV and
similar resolutions at higher energies), so we expect the
effect to be noticeable even if the BSM photon flux only
exceeds the background flux for a small range of energies.

Our resulting exclusion curves from the RHESSI data are
shown in Fig. 3 for a muon neutrino dipole coupling. We
find that RHESSI data can offer a complimentary (and
direct) probe of regions of parameter space that are already

’In complete generality, the HNL may have some angular
correlation with its polarization, but this depends on the details of
the model, e.g., Dirac vs Majorana neutrinos [63] and we neglect
this in what follows.
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FIG. 2. The flux of photons at RHESSI from N decays calculated
using a Monte Carlo integration with a 90° opening angle,
compared with the RHESSI background in the front segment.
Since the flux from decays exceeds the background, we consider
my=0.75MeV, d,=2x 10" MeV~! to be excluded.

probed by SN1987A. Constraints are strongest in the low
mass region (sub-MeV), and this may also be probed using
coherent elastic neutrino nucleus scattering. We see that the
exclusions for the three neutrino flavors all have similar
values in Fig. 4. Although the solar neutrino energy extends
to ~15 MeV, the bounds end near my = 1 MeV. Beyond
this mass, the decay length becomes significantly smaller
than the radius of the Sun [as can be seen in Eq. (5)], so
HNLs are unable to escape before decaying.
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= CMB
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12 = SN 1987A
10~ e L
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FIG. 3. Excluded parameter space for a muon neutrino tran-

sition dipole moment. Along with our bounds, we show 90% C.L.
exclusions from Borexino e — v scattering [29,64], terrestrial
solar neutrino upscattering [14], Supernova (SN) 1987A [28], big
bang nucleosynthesis (BBN), and the cosmic microwave back-
ground (CMB) [29]. For RHESSI excluded parameter space, we
include exclusions from taking a 1° opening angle and a 90°
opening angle for photons from HNL decays. For both opening
angles, we use the same background. The star represents the
parameter point show in Figs. 1 and 2.
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FIG. 4. Excluded parameter space of a transition dipole mo-
ment for each of the three active neutrinos. We see that the
constraints all take a similar form, only varying by O(1) factors.

III. HEAVY SOLAR AXIONS

Another production mechanism is solar axions with
energies in excess of E, 2 500 keV. These energies are
too high to allow for thermal production (except for in
exponentially suppressed tails), and so the background
photon fluxes are much smaller than for typically considered
keV solar axion searches. The study of MeV-scale solar
axions has a long history, and they have been searched for in
terrestrial experiments such as Borexino and CAST [10,11].
As we discuss below, satellite measurements of the quiet Sun
provide a complimentary probe that excels for decay lengths
that are short relative to the Earth-Sun distance.

It is worth highlighting recent work on model building
for axions with an extended matter content [65-68]. These
models are motivated by the axion quality problem and
seek to protect the axion against Planck suppressed
corrections. The simplest mechanism to achieve this is
to simply break the canonical relation f,m, = f,m, and to
allow for m, to be “heavy” relative to predictions of
conventional  (i.e., Dine-Fischler-Srednicki-Zhitnitsky
[69,70] or Kim-Shifman-Vainshtein-Zakharov [71,72])
axion models. It is interesting to note that these indepen-
dent model-building considerations often push the mass
and couplings of the axion into regions of parameter space
that are well suited for solar axion detection; we will
comment on this in great detail below. For instance,
following the benchmark scenarios presented in [68],
one finds that masses in the ~10 MeV regime with axion
decay constants f, ~ 107> GeV~! fall squarely within the
“natural” window of parameter space, while simultane-
ously predicting a sizable coupling to nucleons and a decay
length that is a few times longer than the radius of the Sun.
For slightly lighter axions, solar production and detection is
a useful complimentary probe.

In this section we will parametrize constraints in terms of
low energy constants of the effective theory describing

axion interactions with nucleons and photons. This may be
parametrized by the Lagrangian

Lin C gawF"”FW + g::N (0,a)Ny*z3N. (6)
N

We focus on the isovector coupling because of the M1
transition relevant for phenomenology in the Sun. We will
allow g,,,, the coupling controlling the rate of a — yy, to
vary independent of the isovector coupling of axions to
nucleons, gs,n. In @ UV completion these parameters will
be tightly correlated and expressible in terms of the axion
decay constant f,. A reasonable order of magnitude
estimate is that gs,y ~my/fs and g, Nﬁfl“, however,
details are model dependent and we do not discuss them
further.

The primary production mechanism for heavy solar
axions is the pd — Hey reaction, which takes place in
the solar pp chain. Other mechanisms are energetically
allowed, such as M1 transitions in the CNO chain [73] and
ete™ annihilation from ®B neutrinos in the solar interior,
however, we find that the production rates are sufficiently
small so as to be uninteresting.

The flux of axions (prior to decay) can be related to the
flux of pp neutrinos and depends on the isovector coupling
of axions to nucleons gs,y [74]. The axions must first
escape the Sun and then decay before reaching Earth. The
escape probability depends both on axion absorption and
decay processes. Putting all of this together and setting
BR,,, =1, we arrive at the flux of axions arriving at a
detector orbiting Earth,

() PAE
L= 0.54|g3, |2[_“} eRolfm _ e=do/tus], (7)
q)l(/PP) | 3aN py [ ]

where £L = &3 + €3k with £3p as the averaged mean
free path in the Sun and 74, as the axion decay length. The
coupling g;,n is the isovector coupling strength of the
axion to nucleons, and p,/ p, is the ratio of three-momenta
between an axion and photon emitted with E = 5.49 MeV.
The pp neutrino flux is given by ®"”) =6x 100 cm=2s~".
We account for axion absorption, Primakoff scattering, and
axion electron scattering in our calculation of #ykp. The
resulting photon flux will be constant in energy over the
kinematically allowed photon energies.

Our results are shown in Fig. 5. We note that our
exclusions depend on the axion nucleon coupling, captured
by g3an. and the decay constant g,,,. If g,, vanishes at
some scale y = g, but g, # 0, then an effective g,,, ~
(a/47)gaee/m. will be generated via a one-loop triangle
diagram, and in this way one can recast our limits* in terms

“This requires accounting for the branching ratio to photons, as
well as adjusting the decay length.
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FIG.5. Contours of g3,y for which the solar axion flux of photons

would overwhelm the RHESSI background measurements for the
front segments. Sensitivity is exhausted for gs,y ~ 1 x 107>,
however, further reach can be obtained with better data and/or a
more sophisticated analysis. To compare with constraints from
supernovae [77] and rare kaon decays [79-81], one can use a naive
estimate of g3,n = my/f, and Gayy = ﬁﬁ, and note that 3 x
10* < f, <3 x 10° GeV is allowed by the above constraints (see,
e.g., the “conservative” curves in Fig. 9 of Ref. [68]). As an
illustration taking m, = 1 MeV and f, = 3 x 10* GeV, one finds
Gayy ~2x 107 and g3,y ~3 x 107°.

of those on g¢,,,. We do not include exclusions from
SN1987 typically plotted in the m,-g,, plane because
the values of gs,y that are required to produce a sufficient
axion flux in the Sun lead to axion trapping within a core-
collapse supernova [75). This is an important distinction
between the hadronically coupled axion models we con-
sidered here vs an axionlike particle which couples exclu-
sively to photons (see, e.g., [76]). The solar axion
constraints we discuss here are therefore complimentary
to supernova cooling ones. If the axion nucleon coupling
gay 18 large enough to evade SN1987 bounds via self
trapping, then it is also large enough to be probed with
RHESSI data. Low energy supernova observations have
been used to place constraints on axions that decay in
flight and deposit energy to the ejecta [77]. Additionally,
axions produced in neutron star mergers have been con-
strained using x-ray observation [78]. These constraints
also disappear in the strong coupling regime, i.e., for

. <3x10° GeV, and are complimentary to ours.
Constraints from NA62 [79], E787 [80], and E949 [81]
are subject to O(m}/mj}) hadronic uncertainties in the
prediction of K — ax [68,82]. These constraints require

.= 3 x 10*. Finally, our constraints on Jayy lie above
the ceiling of searches performed with the Borexino
Collaboration [11] because we are sensitive to decay

>This occurs because axion-nucleon scattering leads to mean
free paths much shorter than the typical size of a supernova,
trapping the axions.

-7
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FIG. 6. Comparison of photon fluxes for different ¢ production
scenarios. The fluxes are normalized so that the total production
rate is N, = 10% s7!, and the decay length is A = 10R, at
E; =1 MeV. We consider m,, to be negligibly small.

lengths much shorter than dg. This is demonstrative of
the way in which constraints from solar axions may
compliment existing search techniques using accelerator-
based experiments, underground detectors, and astrophysi-
cal constraints.

Constraints from BBN will generically apply both
because the axions we consider have lifetimes in the
vicinity of a few seconds and because the same reaction,
pd — Hey, is a key driver of BBN. In the absence of any
additional dark sector decay modes, measurements of N
will generically exclude axions with masses below 5 MeV
or so. These constraints can be alleviated if the dark sector
contains additional degrees of freedom, see, e.g., [68].
Searches for gamma rays from the quiet Sun offer a
complimentary direct probe of axion (or other light
particle) production that is independent of early Universe
cosmology.

We consider a 90° opening angle for our signal, meaning
all decays between the Sun’s surface and Earth’s orbit
contribute. The monoenergetic nature of the axion means
the photon flux is constant in energy (see Sec. IV for more
details on monoenergetic production). We demand that this
flux exceed 1.8 x 1073 s™! cm™2 keV~! for photon energies
above 1 MeV so that this flux is above the observed
RHESSI background flux in the front segments.

IV. MODEL-INDEPENDENT SEARCHES

We have explored two well-motivated models of long-
lived particles which can be probed with RHESSI obser-
vations (see the Appendix for other LLP models which are
produced too inefficiently to be probed). Let us now
consider a model-independent production of LLPs (here
called ¢) which decay via ¢ — yy. In this simplified model,
we consider all production to occur at the solar center,
and ¢ only interacts with SM physics through its decay,

015020-5
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FIG. 7. Exclusion of ¢ production for some of the special cases considered. Production rates above the lines are excluded. In all cases, the
mass is considered negligible, and there is no production below 10 keV (E, = 10 keV). (a) Monoenergetic ¢ production; ¢ production
(b) uniform in energy (¢ = 0), (c) with a linear dependence on energy (¢ = 1), and (d) inversely proportional to energy (¢ = —1).

s0 we ignore any possible scattering or absorption. We also
assume there is no preferential direction for decay in
the rest frame of ¢, so the flux of photons is a uniform

distribution between E, ., and E where E, oy /min =

1/2x(E,+\/Ej—mj). Inverting this equation, we find
Ey>E, +my/(4E,) (we will call this lowest energy
E 4 min)- Therefore, if we know the rate of production R,
and decay length 4 as a function of Ej, then we can
determine the BSM flux of photons at Earth,

y.max»

dd 2 e ~Ro/MEy) _ a=do/MEy) dR
T e ®
dEy 47l'do Eyp min Eé _ ngb dE¢

One particularly well-motivated morphology is where ¢
has a monoenergetic production spectrum. We have already

seen an example of this in the case of monoenergetic axions
considered in Sec. III. This would also occur if ¢ is
produced via a two-body decay y — ¢X or via annihilation
xx — ¢X for v, <1 and y and X are some generic
particles. Performing the integral in Eq. (8) with a delta-
function distribution leads to a flux of photons that is
constant in energy between E, i, and E, ..

Remaining more agnostic to the source of ¢ production,
we may consider a power-law distribution with respect to
energy for E, <E, <E,,

R,

power

For m;, < E,, E; the photon flux is calculable in closed
form,
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do,
dE,

2R, [[/RoE\*® RoE RoE
= 5] —_— F —C,—= _F —C,—=
drdy [\ AE, AE,

_ <%TE><F<—C‘;°TE> —r(—c,%)ﬂ, (10)

where I'(a,x) is the incomplete gamma function, E; =
max{Ey, Ey i}, and 7 is the decay length at characteristic

power

energy E. We normalize to the total rate of ¢ produced, N P
For the monoenergetic case, we have Ny = R, while for
the power-law production, we have

N¢(C+l)

, , for ¢ # —1
E§‘+1_EL)+1 ’

Ro= " (11)
Tog(E./E;) for ¢ = —1.

We show example photon fluxes for various values of ¢ in
Fig. 6. Constraints on the number of ¢ produced per second
in the Sun are shown in Fig. 7. Constraints are set as
described at the end of Secs. II and III.

V. FUTURE PROSPECTS

In the above discussion, we have found that repurposing
existing RHESSI data is able to provide interesting con-
straints on light dark sectors with MeV-scale LLPs.
Our analysis should be viewed as a proof of principle
and certainly underestimates the sensitivity of experiments
like RHESSI to new physics models. The major limitations
in our analysis are a lack of reliable peak-subtracted spectra
and the ability to suppress backgrounds (see [83,84] for
recent work in the keV regime for more sophisticated
statistical analyses). For example, much of the background
for RHESSI comes not from solar activity but rather from
cosmic ray interactions with Earth’s atmosphere, i.e., the
radiation comes from the rear rather than the forward field
of view. Much of this background can presumably be
suppressed (or perhaps eliminated) with a future instru-
ment, especially if a dedicated search is performed. As our
current analysis is systematically limited, an experiment
with 10% of RHESSI’s background (or with the same
background but modeled to a 10% uncertainty) would be
10 times more sensitive to a BSM flux of photons. In what
follows, we sketch potential improvements using a near-
term MeV telescope. For concreteness we will anchor our
discussion around the COSI satellite.®

RHESSI operated with minimal shielding to minimize
weight. This made the instrument an effectively “all sky”
observation with a high level of cosmic ray background
activity. In contrast, COSI will operate with active

®We thank Albert Shih for pointing out the COSI mission to us.

shielding, and its further use of Compton kinematic
discrimination offers further background reduction [85].
Moreover, ongoing work to better understand gamma ray
emission from the quiet Sun will further improve on
irreducible backgrounds [86,87].

Other strategies that could be pursued with a future
instrument are to go beyond the rate-only analysis
presented above. For example, COSI will have 25%
sky coverage and excellent angular resolution. One could
image the MeV photon flux differential in both energy
and angular position. Depending on the lifetime of LLPs,
a “halo” of photons could be searched for outside the
solar corona. The shape of the photon distribution will be
model dependent, but can be computed using the
Monte Carlo simulations outline above. Similarly, taking
advantage of COSI’s large field of view, other local
planetary systems could be used to search for LLPs.
This was suggested recently in the context of Jupiter
where the capture of light dark matter is better moti-
vated [22,88].

Finally, let us comment on a second channel of interest:
LLP — e*e™. This may occur for a dark vector that
dominantly decays via V — e"e™ and has recently been
considered (in the context of large volume underground
detectors) for the same pd — >Hey reaction considered here
[89]. A search for electrons and/or positrons would require
accurate modeling for propagation through magnetic fields
in the vicinity of Earth.

VI. CONCLUSIONS AND OUTLOOK

We have discussed simple particle physics models that
predict an MeV flux of photons produced by the Sun. The
generic requirement is the existence of some LLP that can
efficiently transport energy from the interior (fueled by
nuclear reactions) to beyond the Sun’s surface. Provided
the LLP has a sizable branching ratio to final states
including at least one photon, e.g., yy, vy, and/or ete™y
final states, one can search for energetic gamma rays
emanating from the quiet Sun.

We find that constraints from existing data from
RHESSI, with a very conservative analysis strategy, can
probe small pockets of untouched parameter space for both
MeV-scale axions and a neutrino dipole portal. In both
cases, the RHESSI analysis provides complimentary cover-
age to existing search strategies (including cosmological
probes such as BBN).

Our major motivation is a simple proof of principle that
MeV-scale LLPs with decay lengths larger than the radius of
the Sun can be efficiently searched for using solar tele-
scopes. The analysis presented here is conservative and
fairly crude; we define exclusions by the condition that the
BSM signal prediction exceeds the toral signal observed in
any energy window by RHESSI. Constraints and/or dis-
covery potential could be substantially improved with a
better understanding of instrument backgrounds and more
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sophisticated analysis techniques. For example, one could
make use of angular profiles of incident photons to search for
new physics, as an LLP flux will produce a photon flux
outside the stellar corona with a predictable angular shape/
morphology. We encourage future missions with MeV-scale
instrumentation below the cutoff of Fermi-Lat, such as COSI
[25,26], to consider searches for BSM particles, with the Sun
being a well-motivated engine for MeV-scale LLPs.
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APPENDIX: INEFFICIENT
PRODUCTION MECHANISMS

In this appendix, we discuss production mechanisms that
we have found to be too inefficient to allow for detection
prospects with our RHESSI analysis.

1. Mass-mixing portal for HNLs

Another BSM model involving HNLs has N couple
directly to active neutrinos through added elements in the
Pontecorvo-Maki-Nakagawa-Sakata matrix [13,48,90-111].
Active neutrinos contain a small admixture of the HNLs along
with the three known mass states,

3
Vg = UaNN+ Z Uail/i’
i=1

(A1)

where U,y represents the coupling of HNLs to active
neutrinos. Since the Sun only has nuclear reactions that
produce electron neutrinos, our constraint is on U, y. The N
flux from upscattering is subdominant by orders of magnitude
to that from direct production. Therefore, the flux is given by
rescaling the neutrino flux,

Oy = |UNe|2q)u \/ 1- mIZV/EIZV

(A2)

10!
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L 1073
3
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107 — BeEST
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my [MeV]
FIG. 8. Excluded parameter space for HNLs in the mass-mixing

model. The dashed line shows the RHESSI exclusion, while shaded
regions come from BeEST [90], PIENU [91], and Borexino [92].

For the masses considered here, there are only three decay
channels: (i) N — 3v, (i) N = vy, and (iii)) N — veTe™. As
with other production mechanisms, we only consider signals
from photons. The geometry of this decay (into a massless
neutrino and photon) is identical to the case of the dipole
portal. The decay rate for each of the processes follows the
general form

Cyosy &« GE[Uoy[Pmy, (A3)
which has the steep power-law dependence on mass typical of
weak decays. We find that, since decay lengths are always
long enough to fall outside the range given in Eq. (1),
sensitivity from RHESSI is subdominant to searches at
Borexino (which benefits from a large detector volume)
and from direct laboratory searches (see Fig. 8).

2. Captured dark matter in the Sun

If heavy dark matter y has interactions beyond gravity, it
may scatter within large celestial bodies and become
gravitationally captured. The Sun, being by far the most
massive object in the solar system, is a strong candidate in
searching for the signals from captured y [21,112-128].

For the case of symmetric dark matter with a long-lived
particle mediator, there is the interaction yy — LLPs. The
energies of these final observable particles are O(m,).
However, as discussed in [115], for thermal relic annihilation
cross sections, short range interactions with SM, and m,
below a few GeV, most of the y evaporates from the Sun
before annihilating. Even Jupiter, which has a cooler core
than the Sun, would have evaporation be the dominant effect
for m, < 0.7 GeV [129], far above the energy sensitivity of
RHESSI. We note that, in the presence of long-range y — SM
interactions, evaporation may be suppressed [22,88].
However, this is a model-dependent scenario and is not
considered in this work.

015020-8



LONG-LIVED PARTICLES AND THE QUIET SUN

PHYS. REV. D 109, 015020 (2024)

We also considered the case of asymmetric dark matter
with self-interactions via a scalar ¢ with a Yukawa-like
interaction £ C yy¢. As there is no annihilation, in the
absence of evaporation, the y population grows indefi-
nitely. Virialized dark matter passing through the Sun
can scatter on the trapped overdensity and produce LLPs
via the bremsstrahlunglike reaction yy — yy¢. In order
to produce MeV gamma rays, we require heavy dark
matter, m, 2 1 TeV, such that there is sufficient available

kinetic energy mlvf( >1MeV.” In order to produce

"Dark matter nucleon scattering cannot induce MeV brems-
strahlung (i.e., via yN — yN¢), because the available kinetic
energy is set by myvZ ~ 1 keV x (v,/107%)2 This is most easily
seen in the rest frame of the heavy dark matter.

a sufficiently large flux of LLPs, we require a sizable
xx — xy cross section. This can only be achieved
with a light mediator for TeV-scale (or heavier) dark
matter. The cross section relies on a small momentum
transfers. Nonrelativistic kinematics, however, demand
a parametrically larger momentum transfer in the brems-
strahlunglike reaction than for elastic scattering. For
example, demanding E,~ O(MeV) bremsstrahlung,
requires a momentum transfer on the order of Ap?~
m,Ey ~ (1 GeV)?. Because of this kinematic suppres-
sion, we find that RHESSI is incapable of setting
competitive limits even with the most generous/optimistic
model-building choices to maximize the bremsstrahlung-
like cross section.
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