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We study the implications of finite naturalness in Pati-Salam models where SUð3ÞC is embedded in
SU(4). For the minimal realization at low scale of quark-lepton unification, which employs the inverse
seesaw for neutrino masses, we find that radiative corrections to the Higgs boson mass are at least
δm2

h=m
2
h ∼Oð104Þ. The one-loop contributions to the Higgs mass are suppressed by four powers of the

hypercharge gauge coupling. We find that for the vector leptoquarks the naively leading part of the two-
loop corrections cancel. We assume the Dirac Yukawa couplings for neutrinos are equal to the up-type
quark Yukawa couplings as predicted in the minimal theory for quark-lepton unification. Despite these
findings, the two-loop corrections still dominate the finite naturalness bound. We mention a way to relax
the lower bound on the vector leptoquark mass and have δm2

h=m
2
h ∼Oð102Þ.

DOI: 10.1103/PhysRevD.109.015011

I. INTRODUCTION

The hierarchy problem (for some recent reviews see
Refs. [1,2]) has motivated many proposed extensions of the
standard model (SM), including technicolor and low energy
supersymmetry. This problem arises from the quadratic
dependence of the Higgs mass parameter on the momentum
cutoff. The absence of experimental evidence for new
particles at the Large Hadron Collider has cast doubt on
the relevance of this issue. The original description of the
hierarchy problem involved integrating out momentum
shells [3]. Although this is a compelling physical picture,
the quadratic divergences do not appear in all regulator
approaches, for example in dimensional regularization.
In extensions of the SM that contain particles with

masses (or fields with expectation values) much greater
than the weak scale there can be a quadratic dependence
of the Higgs mass on these quantities that is independent of
the regularization and subtraction scheme. Demanding that
these are not too large compared to the Higgs mass is the
principle of finite naturalness [4]. Since the hierarchy
problem is not a mathematical inconsistency, it might be
a red herring associated with how we approach the theory.
Nonetheless, in this paper we take finite naturalness as a
serious constraint on extensions of the SM.

An appealing extension of the SM is the SU(5) grand
unified theory [5]. Here, the strongest finite naturalness
constraints occur at tree level (the doublet-triplet splitting
problem). There are also problematic radiative corrections
to the Higgs mass from virtual super heavy gauge bosons.
Since the gauge couplings are known, these radiative
corrections give δm2

h=m
2
h ∼Oð1024Þ, which is clearly

unacceptable if finite naturalness is to be taken seriously.
Quark-lepton unification, introduced by Pati and

Salam [6,7], is also a very attractive extension of the SM.
They proposed that the standard model SUð3ÞC is
embedded in SU(4) where the leptons are interpreted as
the fourth color. In this theory, baryon number is conserved
and therefore the vector leptoquarks do not have to be
super heavy to satisfy the strong constraints on baryon
number violating processes. However, the vector lepto-
quarks do give rise to new flavor-violating processes that
are very constrained by experimental data. For example, in
the absence of large mixings, KL → μ�e∓ constrains the
mass of the vector leptoquarks to be above 1000 TeV [8].
Using the freedom in the unknown mixings between
quarks and leptons this bound can be reduced to around
100 TeV [9,10].
In this article, we study the implications of finite

naturalness on the minimal theory of quark-lepton uni-
fication based on the gauge group SUð4Þ ⊗ SUð2ÞL ⊗
Uð1ÞR [11] (see also Ref. [12]). To achieve a low-scale
breaking of SU(4), we use the inverse seesaw mechanism
for neutrino masses [12]. For 100 TeV vector leptoquarks,
we find that δm2

h=m
2
h ∼Oð104Þ, which is problematic from

the perspective of finite naturalness. In the two-loop
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corrections to the Higgs mass involving the vector lep-
toquark we show that the naively leading contributions
cancel. However, we find that the remaining parts still
dominate the overall radiative contribution to the Higgs
mass. An analogous effect happens in the two-loop con-
tributions of the new neutral gauge boson, in which the
naively leading corrections cancel. Finally, we discuss a
way to relax the bounds on the vector leptoquark mass and
have δm2

h=m
2
h ∼Oð102Þ.

II. MINIMAL THEORY FOR QUARK-LEPTON
UNIFICATION

We consider the simplest Pati-Salam type extension of
the SM, based on the gauge group [11,12]

GPS ≡ SUð4Þ ⊗ SUð2ÞL ⊗ Uð1ÞR: ð1Þ

The quarks and leptons are unified in the following
representations:

FQL ¼
�
uL νL

dL eL

�
∼ ð4; 2; 0ÞPS;

Fu ¼ ð uR νR Þ ∼ ð4; 1; 1=2ÞPS;
Fd ¼ ð dR eR Þ ∼ ð4; 1;−1=2ÞPS: ð2Þ

Each of these comes in three copies. These representations
contain the SM fermions plus (three) right-handed neu-
trinos. Since GPS is a product of three gauge groups, this
theory has three gauge couplings, g4, g2, and gR, which are
determined by the SM gauge couplings g3, g2, and gY .
The gauge group GPS is connected to the SM gauge

group through one breaking step, where an electrically
neutral component of a nontrivial representation of SU(4)
gets a vacuum expectation value (VEV). This representa-
tion should be a singlet under SUð2ÞL, which is the same
as the SUð2ÞL in the SM. We will focus on the simplest
scalar representation able to trigger such a breaking,
χ ¼ ðχα; χ4Þ ∼ ð4; 1; 1=2ÞPS, and take hχAi ¼ δA4vχ=

ffiffiffi
2

p
.

Here α is a color index (α ¼ 1; 2; 3) and A is a SU(4)
index (A ¼ 1; 2; 3; 4). The standard model hypercharge is
given by

Y ¼ Rþ
ffiffiffi
6

p

3
T15; ð3Þ

where R is the Uð1ÞR charge, and T15 is the SU(4) generator

T15 ¼
1

2
ffiffiffi
6

p diagð1; 1; 1;−3Þ: ð4Þ

A. The quark-lepton unification angle

In this section, we summarize some aspects of minimal
quark-lepton unification. Once χ gets a VEV, the new
massive vectors associated with the broken generators of
SU(4) acquire mass through the covariant derivative of χ

Dμχ ¼ ∂
μχ þ ig4TaV

μ
aχ þ i

gR
2
Bμ
Rχ; ð5Þ

with Ta being the generators of SU(4), normalized in the
standard fashion, i.e., TrðTaTbÞ ¼ 1

2
δab. The mass of the

vector leptoquarks, Xμ ∼ ð3; 1; 2=3ÞSM, is given by

m2
X ¼ 1

4
g24v

2
χ : ð6Þ

The new neutral massive gauge boson, Z0
μ, is a linear

combination of the V15μ gauge boson associated to the
broken SU(4) generator T15 [see Eq. (4)] and the Uð1ÞR
gauge boson, BRμ. Its mass comes from the χ kinetic term,

L ⊃ ðDμχÞ†ðDμχÞ

⊃
v2χ
8
ðV15μ BRμ Þ

0@ 3g2
4

2
− 3gRg4ffiffi

6
p

− 3gRg4ffiffi
6

p g2R

1A�Vμ
15

Bμ
R

�
: ð7Þ

The rotation matrix that brings the gauge bosons to their
mass eigenbasis is�

V15μ

BRμ

�
¼
�

cos θS sin θS
− sin θS cos θS

��
Z0
μ

Bμ

�
; ð8Þ

where the quark-lepton unification angle θS is given by

sin θS ¼
gRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2R þ 3
2
g24

q ; cos θS ¼
g4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
3
g2R þ g24

q : ð9Þ

The hypercharge gauge coupling is g1 ¼ gR cos θS, while
the strong gauge coupling is g3 ¼ g4. Thus, the quark-
lepton unification angle can be written as a function of
standard model gauge couplings and the weak angle

sin2 θS ¼
2

3

αem
αs

1

cos2 θW
: ð10Þ

The mass of the gauge boson Z0 is given by the trace of the
mass matrix (the hypercharge gauge boson is massless in
the electroweak symmetric phase),

m2
Z0 ¼ 1

4

�
3

2
g24 þ g2R

�
v2χ : ð11Þ

Therefore,

m2
X

m2
Z0
¼ 2

3
cos2 θS < 1: ð12Þ
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B. One-loop corrections to the Higgs mass

The Higgs boson is a singlet under SU(4). However, it
carries R ¼ 1=2 charge, H1 ∼ ð1; 2; 1=2ÞPS, and therefore
couples to the Z0

μ. From the lower bound on the vector
leptoquark mass mentioned in the introduction, Eq. (12)
implies mZ0 > 130 TeV.
The standard model Higgs couples to the Z0

μ gauge boson
through the Higgs covariant derivative1 resulting in the
following Feynman rules:

ð13Þ

ð14Þ

Therefore, the Z0
μ contributes to the Higgs boson mass

through the following one-loop diagrams

ð15Þ

and

ð16Þ

where we used Feynman gauge and set the subtraction
point equal to the Higgs mass. In this paper, we neglect
scheme-dependent terms that do not contain the large
logarithm. Adding up both contributions, we find that
the one-loop correction to the Higgs boson mass is given by

���� δm2
h

m2
h

���� ¼ 3

4

g2Rsin
2 θS

16π2
m2

Z0

m2
h

log

�
m2

Z0

m2
h

�
;

≃ 4 × 102
�

mZ0

130 TeV

�
2
�
logðm2

Z0=m2
hÞ

13.9

�
: ð17Þ

Note that the above result is suppressed by four powers of
the hypercharge coupling since

g2Rsin
2 θS ¼

8π

3

α2em
cos4 θWαs

�
1 −

2

3

αem
αscos2 θW

�
−1
;

≃ 6 × 10−3: ð18Þ

C. Two-loop corrections to the Higgs mass

The dominant two-loop corrections to the Higgs mass
contain interactions of the vector leptoquarks and the Z0
gauge boson with the fermions. We will give an estimate
of the size of these contributions by computing only the
diagrams involving the vector leptoquarks.
Because of the vertex of the Z0 gauge boson with the

Higgs, there are extra two-loop diagrams contributing to the
corrections involving the neutral gauge boson. We do not
consider these contributions given that they are propor-
tional to powers of the weak coupling rather than the strong
coupling.
In quark-lepton unification, the Higgs Yukawa couplings

predict the following mass matrix relations

Md ¼ Me; and Mu ¼ MD
ν : ð19Þ

The main corrections to the Higgs mass will involve the top
quark and the neutrinos, and therefore we focus on the
Mu ¼ MD

ν prediction. The other relation in Eq. (19) will be
addressed in the next section.
To correct the Mu ¼ MD

ν identity, we assume the
neutrinos get mass through the inverse seesaw [13,14],
adding three left-handed singlets NL, which allows for the
following interactions [12]

−L⊃ Y1F̄QLH̃1FuþY5F̄uχNLþ
1

2
μNT

LCNLþH:c:; ð20Þ

where H̃1 ¼ iσ2H�
1. In the broken phase, the mass matrix in

the basis ðνL; ðνRÞc; NLÞ is given by0B@ 0 MD
ν 0

ðMD
ν ÞT 0 MD

χ

0 ðMD
χ ÞT μ

1CA; ð21Þ

whereMD
ν ¼ Y1v=

ffiffiffi
2

p
,MD

χ ¼ Y5vχ=
ffiffiffi
2

p
, and v ¼ 246 GeV

is the electroweak VEV. We assume the following hierarchy
μ ≪ MD

ν ≪ MD
χ , which ensures that the light neutrinos are

mostly νL. We work in the limit μ → 0 and MD
ν ≪ MD

χ ,

1The models of Refs. [11,12] contain two Higgs doublets that
live in two different representations of the GPS. However, the
results in this section are not affected.

FINITE NATURALNESS AND QUARK-LEPTON UNIFICATION PHYS. REV. D 109, 015011 (2024)

015011-3



where the heavy neutrino mass eigenstates are approxi-
mately Dirac and are obtained by diagonalizing MD

χ .
In the mass eigenbasis, choosing the left-handed neu-

trinos to align with the left-handed up-type quarks, the
relevant interactions and mass terms are

−L ⊃ −
g4ffiffiffi
2

p Xμ

�
ūLγμνL þ ūRγμWRνR

�
þ

ffiffiffi
2

p

v
h
�
ūLM̂uuR þ ν̄LM̂uWRνR

�
þ ν̄RM̂

D
χ NL þ ūLM̂uuR þ H:c:; ð22Þ

where M̂u ¼ U†
RMuUL ¼ diagðmu;mc;mtÞ, and the diago-

nal Dirac neutrino mass matrix dMD
χ ¼ V†

RM
D
χ VL. In the

above equation, WR ¼ U†
RVR.

Now, we can proceed with the discussion of the two-loop
contributions of the X leptoquarks to the Higgs mass.
We will first take all the couplings equal to one and
ignore combinatorial factors. We identify two diagram
topologies involving the vector leptoquarks and the fer-
mions that give radiative corrections to the Higgs mass. We
call IA the two-loop integral corresponding to topology A,
given by

ð23Þ

while the two-loop integral associated with topology B is given by

ð24Þ

We work in the limit where the relevant mass is the gauge
boson mass (M), and consider the fermions massless.
Notice that we include a projector in the trace to account
for the chirality characterizing the fermionic line. For the
purposes of this paper we treat γ5 as anticommuting with all
other γ matrices. We evaluate the above expressions in d ¼
4 − ϵ dimensions. To assess the finite naturalness of this
model we need to compute the leading scheme-independent
finite parts of the radiative corrections to the Higgs mass.
By dimensional analysis, we expect all these diagrams to

be proportional to

M2−2ϵ ≃
ϵ→0

M2

�
1 − ϵ logM2 þ ϵ2

2
log2M2

�
:

The 1=ϵ2 contribution from each diagram multiplying
the above generates a divergent term of the form
ð1=ϵÞM2 logðM2Þ. Should such term survive in the sum
of all the diagrams it would require nonanalytic counter-
terms. Hence we expect no residual 1=ϵ2 dependence in the
overall amplitude. As a consequence, the leading finite part
will depend linearly rather than quadratically on logM2.
We explicitly checked that this cancellation occurs.

First, consider the diagrams

ð25Þ

The diagram where the left-handed neutrino ν3L pairs with
the top quark gives

δm2
hjAX;1 ¼ 3 × 2 × g24

�
2m2

t

v2

�
IA; ð26Þ

where the factor 3 comes from color, and the 2 is a
combinatorial factor that arises from possible ways of
contracting the fields. The diagram involving right-handed
neutrinos νRj leads to the following amplitude

δm2
hjAX;2 ¼ 3 × 2 × g24

�
2m2

t

v2

� X3
i¼1

jW3i
R j2
!
IA: ð27Þ
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Similarly, the Higgs couples to the neutrinos, as the
following diagrams display:

ð28Þ

The diagram where the ν3L couples with the vector lep-
toquark gives

δm2
hjAX;3 ¼ 3 × 2 × g24

�
2m2

t

v2

� X3
i¼1

jW3i
R j2
!
IA; ð29Þ

where we sum over the right-handed neutrinos (i ¼ 1; 2; 3).
The diagram where the right-handed neutrinos couple to
the vector leptoquark also gives

δm2
hjAX;4 ¼ 3 × 2 × g24

�
2m2

t

v2

�
×

 X3
i;j;k¼1

ðW�
RÞijWik

R ðW�
RÞ3kW3j

R

!
IA; ð30Þ

where we sum over right-handed neutrinos and right-
handed up-type quarks. Adding all contributions of top-
ology A, i.e., diagrams (25) and (28),

δm2
hjAX ¼ δm2

hjAX;1 þ δm2
hjAX;2 þ δm2

hjAX;3 þ δm2
hjAX;4;

¼ 24g24

�
2m2

t

v2

�
IA: ð31Þ

One also expects the following diagrams:

ð32Þ

which give

δm2
hjBX ¼ 2 × 3 × 2 × g24

�
2m2

t

v2

� X3
i¼1

jW3i
R j2
!
IB; ð33Þ

where, as in the previous cases, the factor 3 comes from
color, a factor 2 comes from field contractions, and a factor
2 comes from the two contributions in diagram (32).
The overall contribution involving the X vector lepto-

quarks from both topologies is then proportional to

2IA þ IB ¼ 1

32π4
m2

X log

�
m2

X

m2
h

�
þ � � � : ð34Þ

As expected by general arguments and explicitly shown
above, the leading scheme-independent piece scales lin-
early with the logarithm.
Therefore, we find

δm2
hjX ¼ δm2

hjAX þ δm2
hjBX;

¼ i
3αs
π3

m2
t

v2
m2

X log

�
m2

X

m2
h

�
: ð35Þ

Hence,���� δm2
h

m2
h

���� ¼ 5 × 104
�

mX

100 TeV

�
2
�
logðm2

X=m
2
hÞ

13.4

�
: ð36Þ

Analogously to the vector leptoquark case, it can be
shown that the leading contribution (proportional to g23)
coming from the same topologies involving the Z0 scales
linearly with the logarithm of the heavy neutral gauge
boson mass. However, this is slightly smaller than the
X-boson radiative correction. The heavier mass of the Z0
boson is indeed compensated by the prefactors from the
SUð4Þ generators [see Eq. (4)] and the cosine of the quark-
lepton unification angle.

D. Fermion masses

As manifest in Eq. (19), quark-lepton unification (with
one Higgs) predicts the same mass matrix for the down-
type quarks and charged leptons, which we have not
addressed yet. Within the context of the GPS gauge group
and demanding quark-lepton unification, there are two
ways to correct the mass relation above at the renormaliz-
able level2:
(1) Adding extra scalars. The simplest option of this

class is to add a single scalar representation in the
adjoint of SU(4),

Φ15 ¼ ð15; 2; 1=2ÞPS ¼
�Φ8 Φ3

Φ4 0

�
þ

ffiffiffi
2

p
H2T15;

ð37Þ

which contains a colored doublet Higgs boson
Φ8 ∼ ð8; 2; 1=2ÞSM, two scalar leptoquarks Φ3 ∼
ð3; 2;−1=6ÞSM andΦ4 ∼ ð3; 2; 7=6ÞSM, and a second
Higgs boson H2 ∼ ð1; 2; 1=2ÞSM. The quantum

2We do not consider corrections from Planck suppressed
operators as we expect the scale of quark-lepton unification to
be considerably lower than MPl so that their effect should be
irrelevant.
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numbers of Φ15 allow Yukawa-type couplings with
the standard model fermions

−L ⊃ Y1F̄QLH̃1Fu þ Y2F̄QLΦ̃15Fu þ Y3F̄QLH1Fd

þ Y4F̄QLΦ15Fd þ H:c:; ð38Þ

where Φ̃15 ¼ iσ2Φ�
15. Because Φ15 is in the adjoint

of SU(4), unlike the Higgs bosonH1, it distinguishes
quarks and leptons and allows for a splitting in their
masses, such that

Mu ¼ Y1

v1ffiffiffi
2

p þ 1

2
ffiffiffi
3

p Y2

v2ffiffiffi
2

p ; ð39Þ

MD
ν ¼ Y1

v1ffiffiffi
2

p −
ffiffiffi
3

p

2
Y2

v2ffiffiffi
2

p ; ð40Þ

Md ¼ Y3

v1ffiffiffi
2

p þ 1

2
ffiffiffi
3

p Y4

v2ffiffiffi
2

p ; ð41Þ

Me ¼ Y3

v1ffiffiffi
2

p −
ffiffiffi
3

p

2
Y4

v2ffiffiffi
2

p : ð42Þ

The VEVs are defined as hHa
1i ¼ δa2v1=

ffiffiffi
2

p
and

hHa
2i ¼ δa2v2=

ffiffiffi
2

p
, where a ¼ 1; 2 is a SU(2) index.

The scalar potential that only contains the Higgs
doublets is given by

V ¼ m2
11H

†
1H1 þm2

22H
†
2H2

−m2
12

�
H†

1H2 þH†
2H1

�þOðλÞ; ð43Þ

whereOðλÞ terms arise from quartic interactions that
we neglect for simplicity. The masses of the standard
model Higgs, mh, and the heavier Higgs, mH, after
applying the minimization conditions of the poten-
tial, are given by

m2
h ¼ Oðλv2Þ and m2

H ¼ m2
12v

2

v1v2
; ð44Þ

where v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

p
¼ 246 GeV is the electro-

weak scale. Taking the determinant of the mass-
squared matrix of the Higgs boson,�

m2
11m

2
22 −m4

12

�
≃m2

hm
2
H: ð45Þ

The hierarchy mH ≫ mh can be achieved when
m2

22 ≫ m2
12 ≫ m2

11, which leads to v2 ≪ v1. Here
we neglect the quartic terms in the scalar potential
for simplicity. In the discussion below we will show
that the radiative corrections to m22 are proportional
to the mass of the heavy gauge boson.
The complete scalar potential for quark-lepton

unification with χ, H1, and Φ15 can be found in

Refs. [12,15–17]. It is straightforward to see that
assuming small couplings for the terms enhanced
by the VEV of χ is enough to avoid fine-tuning
problems. For example,

V ⊃ λH†
1H1χ

†χ ð46Þ

does not require any cancellation if λ<αsπm2
h=m

2
X ≃

6×10−7ð100TeV=mXÞ2, which is of similar order
as the electron Yukawa coupling.
Unlike in the case where there is only a Higgs

doublet, singlet under SU(4), here the vector lep-
toquarks contribute at one-loop to the Higgs mass
through the mixing between the standard model
Higgs withH2. DespiteH2 being a color singlet, it is
embedded in a representation that carries SU(4)
charge. The covariant derivative of an adjoint rep-
resentation involves the commutator of the SU(4)
vector bosons and the representation itself. The
kinetic term, TrfðDμΦÞ†DμΦg, predicts the follow-
ing interaction:

L ⊃
2

3
g24X

†
μXμH†

2H2: ð47Þ

Using this term in the Lagrangian, the one-loop
contribution of the vector leptoquarks to the Higgs
mass is suppressed by the mixing angle between the
two Higgs bosons

ð48Þ

The mixing angle, θ, is defined by h ¼ cos θReðH2
1Þþ

sin θReðH2
2Þ. When v2 ≪ v1, θ and thus δm2

h are sup-
pressed. However, v2 cannot be arbitrarily small since it
plays the role of correcting the Me ¼ Md relation. For
perturbative Yukawa couplings, v2 ≳OðGeVÞ is required
to reproduce the observed masses for the bottom quark
and tau lepton. Such a hierarchy allows a H as heavy as
mHv ∼m11m22ðv1=v2Þ without requiring any tuning. It
also allows to relax the one-loop correction to the Higgs
mass in Eq. (48) to����δm2

h

m2
h

����¼ 20

�
mX

100 TeV

�
2
�
v2=v1
10−2

�
2
�
logðm2

X=m
2
hÞ

13.4

�
: ð49Þ

Notice that Eq. (47) implies a large radiative correction
to m22 consistent with the hierarchy m2

22 ≫ m2
12 ≫ m2

11

required for v2 ≪ v1.
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In this theory, both Y3 and Y4 are needed to correct the
charged leptons and down-type quark masses and allow for
a light (100 TeV) X vector leptoquark. In the limit where
v2 ≪ v1, the relation Mu ¼ MD

ν is preserved. We expect
that the amount of tuning required in this limit is still given
by the two-loop processes discussed earlier.
(2) Adding extra fermions. Another possibility consists

of adding vectorlike fermions with quantum num-
bers such that their mixing with the standard model
fermions is allowed. Thus, the mass matrix relation
Md ¼ Me can be corrected to match the observed
values of the charged leptons and down-type quarks.
Notice that the above relation can be corrected, as
shown for example in Ref. [18], without modifying
the quark-lepton unification prediction Mu ¼ MD

ν .
Additionally, the lower bound on the vector lepto-
quark massmX, and consequentlymZ0 [see Eq. (12)],
can be considerably relaxed, as the unitarity con-
dition on the mixing matrices is lifted. See Ref. [18]
for a recent study on this possibility. The bound on
the vector leptoquark mass in this case can be as low
as a few TeV, which would also relax the tuning from
the two-loop contributions���� δm2

h

m2
h

���� ¼ 1 × 102
�

mX

6 TeV

�
2
�
logðm2

X=m
2
hÞ

7.7

�
: ð50Þ

III. CONCLUDING REMARKS

The hierarchy problem, arising from the quadratic
dependence of the Higgs mass parameter on the momentum
cutoff, has motivated many proposed extensions of the SM.
However, the absence of new particle discoveries at the
LHC has raised doubts about the relevance of this issue.
While quadratic divergences do not appear in all regulator
approaches, certain extensions of the SM exhibit a

quadratic dependence of the Higgs mass on the other
masses of the theory, independent of the regularization
scheme. This motivates the principle of finite naturalness,
which demands that these quantities are not too much larger
than the Higgs mass.
In this article, we explored whether Pati-Salam models

with SUð3ÞC embedded in SU(4) respect the principle of
finite naturalness. We showed that the minimal realization
of quark-lepton unification leads to radiative contributions
to the Higgs boson mass squared δm2

h=m
2
h ≳Oð104Þ,

which is problematic regarding finite naturalness. We
computed the two-loop corrections to the Higgs mass
involving the vector leptoquark and showed that the naively
leading contributions from these corrections cancel in the
minimal theory for quark-lepton unification. Something
analogous happens for the expected dominant contributions
from the two-loop corrections involving the new neutral
gauge boson, which cancel out. We also briefly mentioned
extensions of the minimal model containing extra fermions
where the level of tuning can be relaxed to δm2

h=m
2
h ∼

Oð102Þ by lowering the bound on the heavy gauge boson
masses.
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