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Single phonon excitations, with energies in the 1–100 meV range, are a powerful probe of light dark
matter (DM). Utilizing effective field theory, we derive a framework to compute DM absorption rates into
single phonons starting from general DM-electron, proton, and neutron interactions. We apply the
framework to a variety of DM models: Yukawa coupled scalars, axionlike particles with derivative
interactions, and vector DM coupling via gauge interactions or Standard Model electric and magnetic
dipole moments. We find that GaAs or Al2O3 targets can set powerful constraints on aUð1ÞB−L model, and
targets with electronic spin ordering are similarly sensitive to DM coupling to the electron magnetic dipole
moment. Lastly, we make the code, PHONODARK-ABS (an extension of the existing PHONODARK code which
computes general DM–single phonon scattering rates), publicly available.
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I. INTRODUCTION

Recent years have seen rapid development in dark matter
(DM) direct detection technology. As experimental con-
straints utilizing nuclear recoil, e.g., ANAIS [1], CRESST
[2–4], DAMA/LIBRA [5], DAMIC [6,7], DarkSide [8],
DM-Ice [9], KIMS [10], LUX [11–13], SABRE [14],
SuperCDMS [15–20], and XENON [21–25], continue to
increase sensitivity, and others, such as CDEX [26],
DAMIC [6,7,27–29], DarkSide [30–32], EDELWEISS
[33–35], SENSEI [36–38], SuperCDMS [20,39,40], and
XENON [41–43], are utilizing electronic excitations to
drive sensitivity to smaller DM masses. The lightest DM
mass the experiments utilizing electronic excitations are
sensitive to is set by the ionization energy in noble liquids,
Oð10 eVÞ, and the band gap in crystal targets, typically
OðeVÞ. While a scattering DM particle needs to be heavier
than an MeV to generate these electronic transitions, a DM
particle being absorbed may be much lighter, since the
energy deposited is approximately the DMmass. Therefore,

the lightest DM masses direct detection experiments are
currently sensitive to is OðeVÞ.
The same production mechanisms for OðeVÞ scale DM,

e.g., inflationary production [44], parametric resonance
[45,46], or misalignment mechanisms [47–49], also allow
for lighter, sub-eV scale DM candidates. Therefore, the
search for light DM should not end atOðeVÞ, and there have
been a variety of proposals to explore this sub-eV mass
region. Electronic excitations can be utilized in targets with
small excitation gaps such as superconductors [50–57],
Dirac materials [58–60], doped semiconductors [61], gra-
phene [62–64], narrow gap semiconductors [65], and spin-
orbit coupled targets [66,67].
Collective excitations, such as phonons [68–72] and

magnons [73–77], have also been proposed as an avenue
to detect light DM. These excitations have energies in the
Oð1–100 meVÞ range, and targets typically have Oð10Þ
modes, making them excellent prospects for direct detection
of sub-GeV DM. In addition to being kinematically
favorable, the experimental program for single phonon
detection is being actively pursued. The TESSARACT
experiment [78], currently in development, will utilize
single phonon excitations in GaAs and Al2O3 (sapphire)
targets. The combination of motivated DM models and a
maturing experimental program compels us to quantitatively
compute the reach of experiments to a broad range of
theoretically consistent DM models.
The theory of DM–single phonon scattering has been

well developed in the literature [70–72,77,79–82]. Recently,
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an effective field theory (EFT) approach was used to
compute the general DM–single phonon scattering rate [77],
building on the EFT framework first developed for general
DM-nucleus scattering [83–88]. However, in the absence of
external electromagnetic fields, DM absorption on single
phonons has only been computed for the kinetically mixed
dark photon DMmodel [70,89]. The purpose of this work is
to generalize the computation of DM absorption to any DM
model which has a Yukawa-like interaction Lagrangian of
the form

L ⊃ gϕΨ̄OΨ; ð1Þ

where g is a perturbatively small coupling constant; ϕ is the
DM field; Ψ∈ fe; p; ng is either an electron, proton, or
neutron Standard Model (SM) field; and O is an operator.
The simplest example of this interaction Lagrangian is when
O ¼ 1, and ϕ is a scalar field coupling to, e.g., electrons;
then, Eq. (1) is simply L ⊃ gϕēe. Equation (1) can also
apply to vector DM, Vμ, when O has a matching Lorentz
index, e.g., L ⊃ gVμēγμe and O ¼ γμ. This can be further
extended when the operator O is allowed to contain
momentum (derivatives) acting on the DM and SM fields,
such as for an axionlike particle (ALP), a, with derivative
coupling to electrons: L ⊃ g∂μaēγμγ5e. In momentum
space, this simply corresponds to O ¼ −iqμγμγ5, where
qμ is the four-momentum of the ALP field.
To compute the DM absorption rate for a general DM

model, we utilize the self-energy formalism developed in
Refs. [67,90–92] for electronic excitations. Using the
optical theorem, the absorption rate can then be computed
diagrammatically. Computing the single phonon absorption
rate involves similar diagrams to electron absorption,
although here the intermediate excitations are phonons
instead of electrons. This framework has two main benefits:
first, it automatically includes screening effects, which arise
from DM-photon mixing, and, second, setting up the
calculation as a Feynman diagram calculation allows for
straightforward generalizations to different DM models, by
simply changing the Feynman rules at the vertex. The
problem becomes finding Feynman rules of the DM-
phonon vertex, ascertained from a Lagrangian coupling
the DM to the ion displacement/phonon operator, u. We
develop a method to find this DM-phonon EFT Lagrangian
starting from a UV Lagrangian of the form of Eq. (1).
In addition to the general operators encompassed by

Eq. (1), we consider targets with and without fermionic spin
ordering, e.g., (anti)ferromagnets. We find that targets with
different spin orderings can be sensitive to different DM
models. For example, in the absence of spin ordering, ALP
DM does not couple to phonons via the derivative coupling;
however, in a spin ordered target, phonons can be excited.
We make the code used to compute the absorption rates

for all targets, PHONODARK-ABS (https://github.com/kpardo/
PhonoDark-abs), publicly available at [93]. This program

complements PHONODARK [77,94], which was developed to
compute general DM–single phonon scattering rates.
The paper is organized as follows. In Sec. II, we provide

a theoretical framework to compute the DM absorption rate
into single phonons via a general, Yukawa-like interaction
in the form of Eq. (1). This derivation will proceed in three
steps. First, in Sec. II A, we write the absorption rate in
terms of self-energy diagrams using the optical theorem.
Second, in Sec. II B, we compute the phonon contribution
to these diagrams, whose imaginary part leads to single
phonon absorption, in terms of vertex Feynman rules,
which are then derived in detail in Sec. II C. Before
computing the DM absorption rate into single phonons,
we compute the single phonon contribution to the dielectric
function in Sec. III A, which serves as both a cross-check of
the formalism and verification of the first principles
calculations of the target properties. In Secs. III B–III E,
we compute the DM absorption rate into single phonons for
different DM models and show the projected constraints.
Specifically, we consider scalar DM (Sec. III B), the
derivative coupling of ALP DM (Sec. III C), and two
models of vector DM, one which couples to the SM vector
currents (Sec. III D) and another which couples to the SM
particles electric and magnetic dipole moments (Sec. III E).

II. GENERAL SINGLE PHONON
ABSORPTION RATE

The purpose of this section is to compute DM–single
phonon absorption rates due to Yukawa-like interactions in
the form of Eq. (1). The derivation proceeds in three steps.
First, in Sec. II A, we use the optical theorem to write the
DM absorption rate in terms of in-medium self-energies.
Second, in Sec. II B, we write the phonon contribution to
the self-energies in terms of crystal form factors, F⃗ ,
describing how the DM field couples to phonons. These
form factors will depend on the properties of the ions at
each lattice site, e.g., the number of protons or the
electronic spin. Third, in Sec. II C, we detail how the form
factors are derived using nonrelativistic (NR) effective field
theory (EFT) starting from Eq. (1).

A. Absorption rate in terms of self-energies

Following Refs. [67,90–92], we start by deriving the DM
absorption rate in terms of in-medium self-energies, Π.
While this formalism was originally developed to compute
DM absorption on electrons, it is agnostic about the
underlying crystal degrees of freedom and can be similarly
applied to the case of phonon absorption. The optical
theorem states that the absorption rate of the λth polariza-
tion of the DM field, ϕ, is

Γλ ¼ −
1

mϕ
Im½Πλ

ϕϕ�; ð2Þ
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where mϕ is the DM mass and Πλ
ϕϕ is the self-energy

between two ϕ particles of the λth polarization. However,
when ϕ can mix with the photon field, A, this introduces
complications since one must include diagrams mixing ϕ
and A. The sum of all the diagrams can be succinctly
written in terms of one-particle irreducible diagrams by first
going to the “in-medium” basis, where the fields are no
longer mixed. When ϕ and A are perturbatively coupled,
the leading order self-energy of the in-medium “DM-like”
state, ϕ̂, is given by

Πλ
ϕ̂ ϕ̂

≃ Πλ
ϕϕ þ

X
η

Πλη
ϕAΠ

ηλ
Aϕ

m2
ϕ − Πη

AA
; ð3Þ

where we have introduced the self-energies polarization
components defined as Πλλ0 ≡ −eλμΠμνeλ

0�
ν , where eλμ are the

polarization vectors of the subscripted fields, e.g.,
Πλλ0

ϕA ¼ −eλϕ;μΠμνeλ
0�
A;ν. The polarization vectors are defined

to diagonalize the Πϕϕ and ΠAA self-energies, i.e.,
Πλλ0

AA ¼ Πλ
AAδ

λλ0 , and in general will differ from the vacuum
longitudinal and transverse polarization vectors. Given
Eq. (3), the total DM absorption rate is given by

Γλ¼−
1

mϕ
Im½Πλ

ϕ̂ϕ̂
�¼−

1

mϕ
Im

"
Πλ

ϕϕþ
X
η

Πλη
ϕAΠ

ηλ
Aϕ

m2
ϕ−Πη

AA

#
; ð4Þ

and the DM-polarization averaged absorption rate, per
target mass and exposure time, R, is then

R ¼ ρϕ
ρTmϕ

1

n

X
λ

Γλ; ð5Þ

where ρϕ is the DM density, taken to be 0.4 GeV=cm3; ρT
is target density; and n is the number of polarizations of the
DM field.

The absorption rate in Eq. (5) can be simplified further
if we assume that the photon self-energy is independent
of polarization, i.e.,Πλ

AA ≃ ΠAA, which is true in the isotropic
limit. To simplify the following analysis, we assume isotropy
and leave a study of anisotropic corrections to future
work. In this case, the sum over η can be performed exactly
using the completeness relation

P
η e

μ
A;ηe

ν;�
A;η ¼ −gμν.

Moreover, the Ward identity, QμΠμν ¼ 0, demands the
time components to be q-suppressed relative to the
spatial components. Therefore, −gμνΠ

λμ
ϕAΠνλ

Aϕ≈Πλi
ϕAΠiλ

Aϕ,
and Eq. (5) simplifies to

R ¼ −
ρϕ

ρTm2
ϕ

1

n

X
λ

Im

"
Πλ

ϕϕ þ
Πλi

ϕAΠiλ
Aϕ

m2
ϕ − ΠAA

#
: ð6Þ

This leads to our final absorption rate expressions for
(pseudo)scalar DM, RS, and vector DM, RV

1:

RS ¼ −
ρϕ

ρTm2
ϕ

Im

"
Πϕϕ þ

Πi
ϕAΠi

Aϕ

m2
ϕ − ΠAA

#
;

RV ¼ −
ρϕ

3ρTm2
ϕ

Im

"
Πii

ϕϕ þ
Πij

ϕAΠ
ji
Aϕ

m2
ϕ − ΠAA

#
: ð7Þ

When deriving the absorption rate for vector DM, we have
once again used the completeness relation of the polarization
vectors to perform the sum over the DM polarizations.
Notice how in both the scalar and vector cases we were able
to remove the dependence on the photon and DM polar-
izations, such that the problem of computing the absorption
rate has now shifted to deriving the spatial components of
the in-medium self-energies.
The in-medium self-energies receive contributions from

both electronic excitations, Πel, and phonon excitations,
Πph. For example, at one loop, the following graph
topologies will contribute:

ð8Þ

where the first diagram represents the phonon contribution, while the last two diagrams encode the contribution from
electronic excitations. Here, we will assume that the electronic band gap is much larger than the energy of phonon
excitations, such that no electron excitation can go on shell at energies relevant for DM absorption into phonons. As a result,
Im½Πel� ≃ 0, and

Π ≃ Πph þ Re½Πel�: ð9Þ

1Any directional q̂ dependence within the rate is averaged over; i.e., we compute R̄ ¼ 1
4π

R
dΩq̂Rðq̂Þ for both scalar and vector DM

models. Furthermore, we take q ¼ ωv0, where v0 ¼ 230 km=s.
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Therefore, to compute the absorption rates given in Eq. (7),
in addition to the phonon contribution to the self-energies,
one also has to compute the real contribution from
electronic excitations. The electron contribution to in-
medium self-energies has been extensively studied in
Refs. [57,67,90]; therefore, in the following, we will focus
on the novel phonon contribution and use the values of
Re½Πel� derived in these previous works.

B. Phonon contribution to self-energies

The phonon contributions to the diagrams in Πϕϕ;ΠϕA,
and ΠAA can all be understood from the same diagram:

whereQμ ¼ ðω;qÞ is the incoming four-momentum;Φ and
Φ0 can be either ϕ or A (the diagram inherits the Lorentz
indices of the field, e.g., ΠAA → Πμν

AA); and the central
double line is a phonon propagator. To compute the
diagram, the phonon propagator and vertex rule are needed.
The phonon propagator, DνkðωÞ, is given by [95]

Dνkðω; γνkÞ ¼
2iωνk

ω2 − ω2
νk þ iωγνk

; ð10Þ

where ν, k index the phonon branch and momentum within
the first Brillouin zone (1BZ), respectively; ωνk is the
phonon energy; and γνk is the phonon line width, or inverse
of the phonon lifetime. Assuming, for now, that the left and
right vertex rules are given by MΦ;νk and M�

Φ0;νk, respec-
tively, the self-energy is

iΠΦΦ0 ðQÞ ¼ 1

NΩ

X
νk

MΦ;νkDνkM�
Φ0;νk; ð11Þ

where V ¼ NΩ is the volume of the target, N is the number
of unit cells, andΩ is the unit cell volume. Analogous to the
self-energy, MΦ;νk will inherit the Lorentz indices of the
field Φ.
To separate the part of the vertex that depends on the

structure of the UV Lagrangian from the part that is
common among different UV interactions, we parametrize
the vertices for scalar and vector fields as

ð12Þ

ð13Þ

respectively, where S is a scalar field, V is a vector field,
and the double line indicates a phonon. We will summarize
the meaning of each term here and provide a detailed
derivation of MΦ;νk in Sec. II C. A factor of

ffiffiffiffi
N

p
has been

factored out to cancel the 1=N in Eq. (11) as well as the
momentum conservation factor δq;k. j indexes the ions in
each unit cell, and the sum indicates that all the ions in the
unit cell contribute to the generation of a phonon. Tjνk is
defined as the phonon transition matrix element,

Tjνk ¼
ffiffiffiffi
N

p
eik·x

0
ljhνkjuljj0i ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mjωνk

p ϵ�jνk; ð14Þ

ulj is the displacement operator,

ulj ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi
2Nmj

p X
νk

eik·x
0
ljffiffiffiffiffiffiffiffi

ωνk
p ðaνk þ a†νkÞϵjνk; ð15Þ

jνki ¼ a†νkj0i is a single phonon state at ν, k; x0
lj is the

equilibrium position of the jth ion in the lth unit cell;mj is
the mass of the jth ion; and ωνk and ϵjνk are the phonon
energies and polarization vectors, respectively. The phonon
transition matrix element, Tjνk, is coming from a j0i →
jνki transition in the vertex. Lastly, the form factors F S;j

and F μ
V;j are vectors that contain the information about

how the scalar, S, or vector field, V, couples to the
displacement operator, ulj, via macroscopic properties
of the ion, e.g., total number of electrons. These form
factors may contain contributions from each fermion type,
e, p, n at the lattice site j, and therefore can be further
decomposed as F j ¼

P
ψ F jψ , where ψ ∈ fe; p; ng. The

detailed derivation of these form factors is given in Sec. II C
and summarized in Table I for the DM models of interest.
Substituting Eqs. (10) and (14) into Eq. (11) gives the

final expression for the phonon contribution to the self-
energies,

ΠΦΦ0 ðQÞ ¼ 1

Ω

X
ν

 X
j

F j · Tjνq

!
2ων

ω2 − ω2
ν þ iωγν

×

 X
j

F j · Tjνq

!�
; ð16Þ

where the S, V index on F follows from directly
from the Φ;Φ0 particle type, e.g., when computing Πϕϕ

for scalar ϕ, F S;j should be used. We have also simplified
the phonon propagator since for absorption kinematics,
q ≪ ω, ωνq ≈ ων.

C. Dark matter–phonon interaction form factors

In Sec. II A, we wrote the single phonon absorption rate
in terms of electron and phonon self-energies, and in
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Sec. II B, we wrote the phonon self-energies, Eq. (16), in
terms of some form factors, F j. These results were
independent of both the UV Lagrangian and target material,
whose dependence manifests within the aforementioned
form factors. In this section, we derive these form factors
starting from the UV Lagrangian in Eq. (1). Schematically,
the derivation proceeds as follows:

LUVðΨÞ ⟶NREFTLNRðψÞ⟶
hilj

LðuljÞ ⟶
j0i→jνki

F j: ð17Þ

The first step “NR EFT” (Sec. II C 1) (nonrelativistic
effective field theory) reduces the UV Lagrangian, LUV,
written in terms of the four-component Ψ fields, to the
NR Lagrangian, LNR, written in terms of two-component
fields, ψ , which describe the electron, proton, and neutrons
in the target. The NR expansion is appropriate when the
energy and momentum transfers are much smaller than the
fermion masses, which is certainly the case for absorption
processes.
While the NR Lagrangian is written directly in terms of

the particles constituting the target, it does not contain any
information about the target itself. In the case of a crystal,
the target state is simply a lattice of ions at positions
xlj ¼ x0

lj þ ulj, where x0
lj is the equilibrium position of

the ion, ulj are the displacement operators, and each site
indexed by lj, where l indexes the unit cell and j indexes
the ion inside the unit cell. This information is added in the
second step, labeled “hilj” in Eq. (17), or “Target
Expectation Value” (Sec. II C 2), which transforms the
DM-ψ interaction Lagrangian to DM coupling to the lattice
properties at each site, e.g., ϕψ†ψ →

P
lj ϕnjψ ðx − xljÞ,

where njψ is the number density of ψ particles on the jth
site, by summing the expectation values at each lattice site.
In the last step, “j0i → jνki” in Eq. (17), or “Form

Factor Calculation” (Sec. II C 3), the form factors, or vertex
rules in Eqs. (12) and (13), are derived from the interaction
Lagrangian, LðuljÞ, which is written in terms of the
displacement operators. This step is simply computing
quantum mechanical matrix elements of the transition
between an initial state with no phonon and incoming
DM particle, to a final state containing no DM particle and
a single phonon indexed by νk.
These three steps are described in the following sub-

sections. While the procedure to connect the UV
Lagrangian to the form factors is the same for each operator
O in Eq. (1), the details can differ. Therefore, to avoid
repetition, at each step in the derivation, we begin with a
general discussion and then provide an example calculation
for vector DM, V, coupling the (spatial part) of a vector
current, LUVðΨÞ ¼ gVμΨ̄γμΨ ⊃ −gViΨ̄γiΨ. The form fac-
tors for all of the DM models considered in Sec. III can be
found in Table I.

1. NR EFT

The purpose of finding the NR limit of a UV Lagrangian
is to isolate the dynamics of the two-component field, ψ ,
which satisfies the Schödigner equation, within the
Lagrangian containing two two-component fields inside
Ψ. Our starting point is the Dirac Lagrangian,

L ¼ Ψ̄ðiγμDμ −mΨÞΨ; ð18Þ

where Dμ is the gauge covariant derivative and mΨ is the
mass of the fermion. The problem becomes more clear after

TABLE I. DM-phonon interaction form factors, F j, Eqs. (12) and (13), for the DM model (UV Lagrangian)
shown in the left column. The leading order form factor is shown for targets with no spin ordering (middle column)
and targets with spin ordering (right column). For spin-1 DM, we write the i index on the vector FV;j to avoid
confusion with the μ index. Explicitly, F 0i

V;j (F
0
V;j) is the left component inside the parentheses, and F ki

V;j, the ith
component of the vectorF k

V;j, is the right component. Dashed lines indicate negligible, higher order responses. Note
the ψ index on the form factor has been dropped from N, S for simplicity. The “0” components of the spin-1 DM
form factors are related by the Ward identity, QμF

μ
V;j ¼ 0, where Qμ ¼ ðω;qÞ is the incoming DM four-

momentum.

Model (LO) form factors, F j
No spin ordering Spin ordering

Spin-0 DM (F S;j)

gϕΨ̄Ψ gNjq gNjq
g

2mΨ
∂μaΨ̄γμγ5Ψ � � � − igω2

mΨ
Sj

Spin-1 DM ðF μ
V;j ¼ F μi

V;j ¼ ðF 0i
V;j;F

ki
V;jÞÞ

gVμΨ̄γμΨ gNjðqi;ωδkiÞ gNjðqi;ωδkiÞ
dM
2
VμνΨ̄σμνΨ dM ω2

2mΨ
Njðqi;ωδkiÞ 2idMωðϵiabqaSbj ;−ϵbkiωSbj Þ

dE
2
VμνΨ̄σμνiγ5Ψ � � � 2idEðq · SjÞðqi;ωδkiÞ
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a change of variables, Ψ → e−imΨtΨ, which transforms
Eq. (18) to

L ¼ Ψ̄ðiγμDμ þ 2mΨP−ÞΨ; ð19Þ
where P� ¼ ð1� γ0Þ=2 are projection operators.
Equation (19) describes the dynamics of two two-
component fields, P�Ψ, where PþΨ is massless and
P−Ψ is massive. For this reason, we will refer to PþΨ
as the “light” field and P−Ψ as the “heavy” field. If there
were no terms in Eq. (19) which mixed the heavy and light
fields, then there would be no problem; the dynamics of the
two fields are decoupled.
However, the γiDi term mixes the heavy and light fields,

and therefore to isolate the dynamics of the light field, a
procedure to remove the heavy field needs to be performed.
This is the fundamental problem of nonrelativistic quantum
electrodynamics (NRQED), and nonrelativistic quantum
chromodynamics (NRQCD) [96–98], and there are many
different approaches. We will give a summary of two
methods that have been utilized in the context of DM direct
detection, Refs. [57] and [90], and refer the reader to these
references for more details.
Reference [57] used the “equation of motion” (EOM)

method, which is the most physically intuitive. One simply
solves for the EOM of the heavy field in terms of the light
field and then substitutes the heavy field back into the
Lagrangian. This generates a Lagrangian which only
depends on the light field. The NR limit of the interaction
Lagrangian in Eq. (1) is also readily found; to first order in
the DM coupling, one can simply substitute the heavy field
which satisfies the EOM when no DM field is present.
Including the OðgÞ dependence in the heavy field EOM
only introduces extra Oðg2Þ terms.
While physically straightforward, when integrating out

the heavy field, extra time derivatives enter, which require
careful field redefinitions to keep canonically normalized
fields. Another approach, used in Ref. [90] and known
more generally as a Foldy-Wouthuysen (FW) transforma-
tion [99–104], avoids this by removing the mixing with
consecutive field redefinitions at each order in 1=mΨ. That
is, one finds n Hermitian operators, fX0; X1;…; Xn−1g,
such that

Ψ → e−imΨt

�
exp

�
−i

X0

mΨ

�
… exp

�
−i

Xn−1

mn
Ψ

��
Ψ ð20Þ

removes all heavy/light field mixing to Oðm−n
Ψ Þ. One can

show that the operators

X0 ¼
1

2
γiDi; X1 ¼

i
4
γ0γi½D0; Di�; ð21Þ

remove the heavy/light field mixing to Oð1=m2
ΨÞ when

substituted into Eq. (20) and then Eq. (18). These operators
can then be used to simplify any Yukawa-like DM

interaction in Eq. (1), to Oðg=m2
ΨÞ, by simply substituting

Eq. (20) into Eq. (1),

Ψ̄OΨ ≈ ψ†Tr

�
Pþ

�
γ0Oþ i

mΨ
½X0; γ0O�

−
1

m2
Ψ
½X0; ½X0; γ0O�� þ i

m2
Ψ
½X1; γ0O�

��
ψ ; ð22Þ

where the Tr is performed over the 2 × 2 block diagonal
matrix and ψ , in the Dirac basis, is the upper two
components of Ψ on the right-hand side of Eq. (20).
Equation (22) gives the general form of the first step in
Eq. (17). Applying Eq. (22) to the example UV DM
Lagrangian, and keeping terms leading order in both
1=mΨ and absorption kinematics (q ≪ ω) yields

LUVðΨÞ¼−gViΨ̄γiΨ→LNRðψÞ≈−gViψ†
�
iDi

mΨ

�
ψ ; ð23Þ

which comes solely from the second term in Eq. (22)
using ½γi; γ0γj� ¼ 2δij.

2. Target expectation value

Given the NR Lagrangian in terms of the electron,
proton, and neutron fields, ψ , the DM-phonon interaction
Lagrangian is simply a sum over the expectation value at
each lattice site,

LðuljÞ ¼
X
lj

hLNRðψÞilj: ð24Þ

These expectation values will then be written in terms of the
target properties at each site, e.g.,

hψ†ψilj ¼ njψ ðx − xljÞ; ð25Þ

where njψ is the number density of the ψ field. This step is
analogous to the EFT calculation performed in Ref. [77] for
DM–single phonon scattering. However, in Ref. [77], it
was the scattering potential, V, which was written as a
sum of the scattering potential at each lattice site,
V ¼PljhVilj. Further simplifications were made assum-
ing that the scattering potential only depends on xlj in the
same way as Eq. (25), i.e., V ¼Plj Vljðx − xljÞ. This
simplified calculations by allowing the xlj dependence to
be factored out in the Fourier transform of the scattering
potential, Ṽð−qÞ ¼Plj e

iq·xlj Ṽljð−qÞ.
Since we are only concerned with single phonon exci-

tations in the q ≪ ω limit here, we perform a different
simplification of these expectation values than in Ref. [77]
by focusing on the terms that are linear in ulj. The other
terms will not enter the matrix element calculations of the
form factors performed in Sec. II C 3 and avoid the
exponential dependence on xlj. Additionally, the derivation
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performed here will keep expectation values that are OðωÞ
which were subdominant in for the scattering EFT and
implicitly dropped when assuming V ¼Plj Vljðx − xljÞ.
As an example, the linear order in ulj term in Eq. (25) is

hψ†ψilj → −uilj∇injψ ðx − x0
ljÞ: ð26Þ

An additional simplification can be made when we consider
that these expectation values multiply the DM field inside
the Lagrangian LNR. Therefore, we can integrate by parts
and move the derivative acting on the number density to the
DM field and convert to momentum space with qμ ¼ i∂μ,

hψ†ψilj → iqiuiljnjψ ðx − x0
ljÞ: ð27Þ

Similar simplifications can be performed for the spin
density, sijψ ,

hψ†σiψilj → 2iqkukljs
i
jψðx − x0

ljÞ; ð28Þ

where the factor of 2 enters from the definition of
spin, S ¼ σ=2.
More complicated operators can be simplified using

Ehrenfest’s theorem. For example, consider hψ†kiψilj;
Ehrenfest’s theorem states that

ki ¼ imΨ½H0; xi�; ð29Þ

and therefore

hψ†kiψilj ¼ imΨhψ†½H0; xi�ψilj
¼ mΨðh∂0ψ†xiψilj þ hψ†xi∂0ψiljÞ
¼ imΨωhψ†xiψilj
→ imΨωuiljnjψ ðx − x0

ljÞ; ð30Þ

where we have used the Schrödinger equation,
H0ψ ¼ i∂0ψ , and, similarly to q previously, ω represents
a time derivative acting on the DM field. With one exception
that will be discussed later, the operators, 1; σi, and ki are
the only operators needed to compute the form factors for
all the models discussed here. Furthermore, we assume that
there are no background vector gauge fields, and there-
fore hψ†iDiψilj ¼ hψ†kiψilj.
With these target expectation values, computing

the example DM-phonon interaction Lagrangian from
Eq. (23) is trivial,

LNRðψÞ ≈ −gViψ†
�
iDi

mΨ

�
ψ → LðuljÞ

≈ −igωVi
X
lj

uiljnjψðx − x0
ljÞ: ð31Þ

3. Form factor calculation

The last step in the derivation is to identify the form
factor from the DM-phonon interaction Lagrangian. This is
done by computing the matrix elements from Eqs. (12)
and (13),

iMS;νk ¼ i
Z

d3xeiq·x
�
νk

���� δLðuljÞ
δϕ

����0
	

¼ −
ffiffiffiffi
N

p
δq;k
X
j

F S;j · Tjνk ð32Þ

iMμ
V;νk ¼ i

Z
d3xeiq·x

�
νk

���� δLðuljÞ
δVμ

����0
	

¼ −
ffiffiffiffi
N

p
δq;k
X
j

F μ
V;j · Tjνk; ð33Þ

respectively, where the δ=δϕ (δ=δVμ) simply removes the
scalar field, ϕ (vector field, V), from the interaction vertex,
leaving only a function of the phonon operators, ulj.
It is easiest to understand this formula in practice, and
similar simplifications hold for all DM-phonon interaction
Lagrangians. Consider the example LðuljÞ in Eq. (31); in
this case, we have

iMk
V;νk ¼−gω

1ffiffiffiffi
N

p
X
lj

Tk
jνke

−ik·x0lj

Z
d3xeiq·xnjψðx−x0

ljÞ;

ð34Þ

where we have written the displacement operator matrix
element in terms of the phonon transition matrix element
with Eq. (14). The integral in Eq. (34) can be related to the
total particle number, Njψ ,Z

d3xeiq·xnjψðx−x0
ljÞ ¼ eiq·x

0
lj ñjψ ðqÞ≈ eiq·x

0
ljNjψ ; ð35Þ

and the sum over l enforces momentum conservation
within the crystal,

P
l e

iðq−kÞ·xl ¼ Nδq;k. After these
simplifications, one can isolate the form factor,

F ki
jψ ¼ gωδkiNjψ ; ð36Þ

where the k index corresponds to the spatial part of μ and i
corresponds to the index of the vector, F μ

V;j, i.e., what gets
contracted with Tjνk in Eq. (12).

III. APPLICATIONS

In this section, we apply the formalism developed in
Sec. II to compute DM absorption rates into single phonon
excitations for a variety of targets and DM models. Our
focus will be on four classes of DM models with Yukawa-
like interactions: scalar DM with couplings of the form
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ϕΨ̄Ψ (Sec. III B); pseudoscalar DM with ALP derivative
couplings, ∂μaΨ̄γμγ5Ψ (Sec. III C); vector DM from
spontaneously broken gauge theories coupling to the vector
current, VμΨ̄γμΨ (Sec. III D); and lastly vector DM
coupling to the SM electric, VμνΨ̄σμνiγ5Ψ, and magnetic,
VμνΨ̄σμνΨ dipole (Sec. III E). The absorption rate for each
of these models can be easily computed with the help of the
form factors in Table I. Specifically, for each DM model,
we derive the phonon contribution to the in-medium self-
energy by substituting the form factors given in Table I into
Eq. (16). These self-energies are then substituted into
Eq. (7) to compute the total absorption rates.
The phonon transition matrix elements, Tjνk, are com-

puted from first principles in two steps. First, using first
principles density functional theory (DFT) [105] calcula-
tions within VASP [106–110], the lattice is relaxed to its
equilibrium position, and the equilibrium positions, x0

lj, are
found. Each ion is then displaced from its equilibrium
position, and the forces on the ion are computed, which
generates the spring constants between the ions. VASP is
also used to compute the high-frequency dielectric con-
stant, ε∞. These three pieces of information are contained
in the POSCAR, FORCE_SETS, and BORN files output from
VASP (or similar DFT software). Second, these files are then
input to the PHONOPY program [111] which diagonalizes
the system and calculates the phonon energies, ωνk, and
eigenvectors, ϵjνk.

PHONODARK-ABS [93] is used to compute all absorption
rates shown here. PHONODARK-ABS performs the second
step (calling PHONOPY) internally, and therefore one simply
needs to supply the DFT input files (POSCAR, FORCE_SETS,
and BORN), for any target material, to compute the
absorption rate. PHONODARK-ABS is publicly available
at [93].
Before computing DM absorption rates, in Sec. III A, we

apply our formalism to compute the long-wavelength
dielectric function, εðωÞ. This calculation serves a variety
of purposes. First, it is needed to compute the screened
contribution to the DM absorption rates in Eq. (7), as the
dielectric function is related to the self-energy of the photon
via ΠAA ¼ ω2ð1 − εðωÞÞ. Second, it provides a cross-check
of our formalism since it allows us to compare our results
with previous calculations of the dielectric function in terms
of the low-energy electronic and phononic responses [112].
Finally, by comparing our results with experimentally
measured values of the dielectric, we can tune the phonon
widths, γν, in the phonon propagator in Eq. (10).
In Secs. III B–III E, we compute the DM absorption

rates into GaAs, Al2O3 (sapphire), and SiO2 (quartz)
targets. GaAs was the first studied due to the simple
structure of its unit cell [70], while Al2O3 is desirable for
its large number of resonances and directionality [71]
and ready availability in terms of fabrication of ultrapure
single crystals. Both of these targets will be used in the

TESSERACT experiment [78]. SiO2 has been previously
identified as an optimal target in terms of reach to light DM
scattering off phonons [72]. The DFT input files for GaAs,
Al2O3, and SiO2 are identical to those used in previous
works [72,76,77,81,113]. These targets have no spin
ordering; i.e., the fermion spins are not periodically
aligned, Sljψ ≠ Sjψ . Note that spin ordering includes both
ferromagnetic and antiferromagnetic ordering. The lack of
spin ordering limits the DM models that can be reached.
Specifically, without spin ordering, only scalar DM, vector
DM with gauge interactions, and vector DM with magnetic
dipole interactions (at a detrimentally suppressed rate) can
be targeted. Targets with no spin ordering have no
sensitivity to ALP DM, one of the most theoretically
motivated DM candidates, although this can be alleviated
if the sample is placed in an external B-field [76,114].
Therefore, we also consider a magnetically ordered

target, FeBr2. This magnetic target was chosen because
the first-principles calculations of its phonon properties are
publicly available [115–118]; its purpose is to serve as an
example calculation, not promote this specific target as a
detector concept. The Fe2þ ion has a magnetic moment of
μ ≈ 3.9μB [119], where μB is the Bohr magneton. Assuming
that the 3d electrons are orbitally quenched, as is common
for transition metal electrons due to crystal field effects, the
spin quantum number is S ≈ 1.8. While FeBr2 is ferro-
magnetically ordered within the unit cell [117], it is
antiferromagnetically ordered in adjacent cells [120].
Since this target is only meant to serve as an example,
we will treat it as a ferromagnet and take Se ≈ ½0; 0; 1.8� on
the Fe2þ lattice site.

A. Dielectric function

The long-wavelength (q ≈ 0) dielectric function, εðωÞ,
receives contributions from both the electron and phonon
degrees of freedom in a crystal. This can be understood
simply in terms of two contributions to the photon self-
energy, ΠAA ¼ Πel

AA þ Πph
AA, where Πel

AA is the electronic
response and Πph

AA is the phononic response. Well below the
band gap, the electronic contribution is directly related to the
“high-frequency” dielectric constant, Πel

AA ¼ ω2ð1 − ε∞Þ,
encoding the response of the electrons if the lattice ions
were not allowed to move, or “clamped.” Using this, and the
definition of the total dielectric function defined in terms of
the total photon self-energy, ΠAA ¼ ω2ð1 − εðωÞÞ, we can
write the dielectric function as

εðωÞ ¼ ε∞ −
1

ω2
Πph

AA: ð37Þ

With the help of Table I and Eq. (16), we can then compute
Πph

AA to obtain
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εðωÞ ¼ ε∞ þ e2

3Ω

X
ν

2ων

ω2
ν − ω2 − iωγν

×

 X
j

QjTi
jνq

! X
j

QjTi
jνq

!�
; ð38Þ

where the sums over ψ have been simplified in terms of
the total electric charge of the ion,

P
ψ gψNjψ ¼ eNj;p−

eNj;e ≡ eQj, since gp ¼ −ge ¼ e in the QED Lagrangian,
LQED ⊃ −eAμēγμeþ eAμp̄γμp, following the convention
in Ref. [121] where e ¼ −jej. The factor of 3 comes from
taking the isotropic limit and averaging over the spatial
components, ΠAA;ph ¼ Πii

AA;ph=3. This agrees with the
standard result in, e.g., Ref. [112], providing a validation
of the formalism.2

In Fig. 1, we compare the imaginary part of the dielectric
function (top row) and energy loss function (ELF),
Im½−1=εðωÞ� (bottom row), computed from first principles
with Eq. (38), to measured data from Ref. [89] for the non-
spin-ordered targets GaAs, Al2O3, and SiO2. The computed
dielectric function is shown for different assumptions
about the phonon widths, γν ∈ f10−3ων; 10−2ων; 10−1ωνg.
Smaller widths correspond to a larger resonance peak and
smaller off-resonance behavior, and vice versa for larger
widths. We find that the measured data can be well
reproduced with phonon widths in this range, with slight
shifts to the exact locations of the resonances. More
sophisticated models of the widths as a function of energy
could further improve these fits. For the results shown in
Secs. III B–III E, we use γν ¼ 10−2ων.
It is known that the absorption rate on phonons of some

DMmodels, e.g., the kinetically mixed dark photon [70,89]
and ALPs (in an external magnetic field [114]) can be
related to the measured ELF shown in Fig. 1. That first
principles calculation can reproduce the measured ELF
further validates the first principles approach of computing
single phonon absorption rates in these models as studied
in, e.g., Ref. [76]. In Fig. 4, we explicitly compare the
constraints on the kinetically mixed dark photon model
from the measured and calculated ELFs, whose differences
are due to the differences shown in Fig. 1.

FIG. 1. Comparison of the imaginary part of the dielectric function, Im½εðωÞ� (top row), and energy loss function, Im½−1=εðωÞ�
(bottom row), from first principles calculation using Eq. (38) (solid lines) and measurements from Ref. [89] (dotted lines) for
GaAs, Al2O3 (sapphire), and SiO2 (quartz). Solid lines correspond to γν ¼ 10−2ων, and the boundaries of the shaded regions assume
γν ¼ 10−1ων and γν ¼ 10−3ων.

2Equation (38) is derived assuming that the electronic
wave functions do not distort under ionic motion. These
effects can be incorporated by loosening the assumption,
hψ†γ0ψilj ≈ nlj;eðx − xljÞ þ δnlj;e, where δnlj;e ≡ iqiδZik

j u
k
lj,

and δZik
j ≡ Zik

j −Qj, where Zik
j are the “Born effective charges.”

The spatial component, hψ†γiψilj, follows a similar simplifica-
tion by the Ward identity. This adds a form factor to the photon-
electron coupling, δF μi

je ¼ ðqmδZmi
j ;ωδZki

j Þ, replacingQjTi
jνq →

Zik
j T

k
jνq in Eq. (38). See Ref. [72] for more details.
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B. Scalar DM

The first model we consider is scalar DM, ϕ, whose
couplings to electrons and nucleons are given by the
Lagrangian,

L ⊃
X

Ψ∈ fe;p;ng
gΨϕΨ̄Ψ → LNR ¼

X
ψ

gΨψ†ψ þOð1=m2
ΨÞ:

ð39Þ
Using Table I, the relevant self-energies are easily com-
puted,

Πϕϕ ¼ −i
X
ν

DνðωÞ
Ω

 X
jψ

gΨNjψqiTi
jνq

!

×

 X
jψ

gΨNjψqiTi
jνq

!�
; ð40Þ

Πi
ϕA ¼ −ieω

X
ν

DνðωÞ
Ω

 X
jψ

gΨNjψqkTk
jνq

!

×

 X
jψ

QjψTi
jνq

!�
−
ge
e
ωqið1 − ε∞Þ; ð41Þ

and Πel
ϕA ¼ Πel

Aϕ. Since only the imaginary component of
Πϕϕ enters in the absorption rate given in Eq. (7), we have
ignored the electron contribution to Πϕϕ as it is purely real.
This will also apply to the self-energies discussed in
Secs. III C–III E. The electron contribution to ΠϕA was
derived in Refs. [57,67] and is given by the last term
in Eq. (41).3

While the general absorption rate is given by substituting
Eqs. (40) and (41) into Eq. (7), it is illuminating to study
specific combinations of the coupling constants. For
example, if the gΨ coefficients are “photonlike”, i.e.,
gp ¼ −ge ¼ g; gn ¼ 0, then all the self-energies are propor-
tional to ΠAA (assuming an isotropic target), indicating that
the total absorption rate can be written in terms of the ELF:

R ≈
g2

e2
q2

ω2

ρϕ
ρT

Im

�
−1
εðωÞ

�
ðphotonlikeϕÞ: ð42Þ

Since the absorption rate can be written in terms of the ELF,
it can also be related to the dark photon absorption rate,
Rdp ¼ ðρϕ=ρTÞκ2Im½−1=εðωÞ� [89]. Therefore, the con-
straints on g can be related to the constraints on the mixing
parameter, κ, of the dark photon model:

g ∼ 4 × 10−14
�

κ

10−16

�
: ð43Þ

When the couplings are proportional to the particle
masses, gΨ ¼ gmΨ, the ions are shaken in phase, and
therefore optical, or out-of-phase, oscillations are not
excited. Therefore, as optical phonons are the only ones
that can match DM absorption kinematics, this leads to a
vanishing absorption rate. This effect, sometimes referred
to as the “coupling to mass” effect [70,71,76,80], math-
ematically corresponds to the statement thatX

j

mjTi
jνq ≈ 0; ð44Þ

in the absorption kinematics limit. While the cancellation is
exact for couplings gΨ ∝ mΨ, it is also important even when
the couplings are approximately proportional to the
masses. For example, consider only coupling to the electron
number on each site in GaAs, NGa;e ¼ 28, NAs;e ¼ 36.
Parametrically, one would expect F j ∝ Nje; however,
because the masses are mGa ¼ 69.7 u; mAs ¼ 74.9 u, when
one subtracts off the contribution which vanishes due to the
coupling to mass effect, F j → F j − m̂j

P
j F jm̂j, where

m̂j ¼ mj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j m
2
j

q
, the form factors are roughly a factor of

10 smaller than Nje.
The scalar DM models affected by the coupling to mass

effect are fairly generic. This is because both the proton and
neutron masses are dominantly dependent on the same
quantity, the QCD scale. Therefore, scalar DM models
which couple to the QCD field strength kinetic term [122] or
the benchmark hadrophilic DM model [123] satisfy
gp;n ¼ gmp;n, and single phonon excitations will have
limited reach due to the coupling to mass effect. Because
of this, and since constraints on DMmodels with photonlike
couplings can be trivially related to dark photon constraints,
we focus on a DM model with only coupling to electrons,
which suffers less from the coupling to mass effect, as
discussed previously.
In Fig. 2, we compare the constraints on the electron

coupling derived in this work to stellar cooling [92,124]
and fifth force [125,126] constraints assuming no back-
grounds and a kg · yr exposure. To facilitate the comparison
with other conventions for the coupling constant, we show
the constraints both on ge, defined in Eq. (39), and the
commonly adopted parametrization de ¼ geΛ=me, where
Λ ¼ MPl=

ffiffiffiffiffiffi
4π

p
and MPl is the Planck mass. Note that, due

to the mixing term in Eq. (7), the resonance structure of the
constraints in Fig. 2 does not necessarily match the
resonance structure of the self-energies, which have reso-
nances at ων. This is analogous to the difference in the
resonance structure between the top and bottom rows of
Fig. 1. The resonances of Im½εðωÞ� at ων are inherited from
the propagator in Eq. (10), which differ from the resonances
in the ELF.

3As discussed in Ref. [57], the Oðk2=m2
eÞ term in the electron

NR Lagrangian, Eq. (39), is important when computing the
electron contribution to Im½Πϕϕ�. However, when computing the
electron contribution toΠϕA, the contribution from theOðk2=m2

eÞ
term is suppressed relative to the first term in Eq. (39). See
Ref. [67] for more details.
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C. Axionlike particle DM

The QCD axion [127–130] is one of the most theoreti-
cally motivated DM candidates since it also provides a
solution to the strong-CP problem. The canonical QCD
axion DM candidate, with an abundance set by the post-
inflationary misalignment mechanism [131–135], is pre-
dicted to have a mass in the 10−6 eV≲ma ≲ 10−5 eV
range, well below the scale of gapped phonon excitations in
crystal targets. However, nonstandard production mecha-
nisms, as well as ALPs that do not necessarily solve the
strong-CP problem, can prefer larger values of the axion
mass [136–156].
Our focus will be on the derivative ALP couplings,4

L ⊃
X

Ψ∈ fe;p;ng

gaΨΨ
2mΨ

∂μaΨ̄γμγ5Ψ → LNR

≈ −i
X
ψ

gaΨΨ
2m2

Ψ
ωaψ†σ · ðiDÞψ : ð45Þ

Naively, the leading order term in the NR Lagrangian
seems to be higher order than the “axion wind” term,
∝ gaΨΨaq · σ=mΨ. However, when evaluating the target
expectation value of the “wind” term, an additional factor
of q enters the form factor via Eq. (28). Therefore, the form
factor for the wind term is order q2=mΨ, which is much
smaller than the form factor for the term in Eq. (45) (see
Table I). More generally, when the leading order term in the
Lagrangian is Oðq=mΨÞ, it is important to check if at next-
to-leading order in the Oð1=m2

ΨÞ NR expansion there are
terms which dominate. For example, a term of the form
ωk=m2

Ψ, where k is the fermion momentum, is dominant
compared to the q=mΨ term. This feature will also appear
when discussing the dipole DM models in Sec. III E.
While the phonon contribution to the self-energies is

straightforward to derive using the form factor in Table I,
simplifying the electron contribution to ΠaA in a spin
ordered target requires an additional approximation. This
can be understood physically: the high-frequency dielectric
corresponds to the electronic response to an electric field,
which couples identically to all electrons in the target.
Therefore, for any effect to be related to the high-frequency
dielectric, it must affect all the electrons in the same way;
i.e., all the electrons have the same spin such that the spin
density is proportional to the number density, sie ¼ ŝiene.
However, while all the electrons must be spin polarized for
an exact correspondence, ΠaA may be approximately
written in terms of ε∞ as long as the electrons which give
the dominant contribution to ε∞ are spin polarized. Under
these approximations, the relevant self-energies are

Πaa ¼ −iω4
X
ν

DνðωÞ
Ω

 X
jψ

gaΨΨ
mψ

SijψT
i
jνq

!

×

 X
jψ

gaΨΨ
mψ

SijψT
i
jνq

!�
ð46Þ

Πi
aA ¼ −eω3

X
ν

DνðωÞ
Ω

 X
jψ

gaΨΨ
mψ

SkjψT
k
jνq

!

×

 X
jψ

QjΨTi
jνq

!�
þ igaeeω3

eme
ŝieð1 − ε∞Þ; ð47Þ

and Πel
aA ¼ −Πel

Aa.
Similarly as in Sec. III B, the absorption rate can be

simplified with specific combinations of the coupling
constants. For example, if the target is a ferromagnet,
and gapp ¼ −mpgaee=me; gann ¼ 0, then the absorption
rate can be expressed in terms of the ELF (and dark
photon absorption rate) as

R ≈
1

4

gaee
e

ω

me

ρϕ
ρT

Im

�
−1
εðωÞ

�
ðphotonlike aÞ: ð48Þ

FIG. 2. Projected 95% C.L. constraints (3 events) on de ¼
geΛ=me [Eq. (39), Λ ¼ MPl=

ffiffiffiffiffi
4π

p
], utilizing single phonon

excitations in GaAs (solid red), Al2O3 (solid blue), and SiO2

(solid green) targets, assuming a kg · yr exposure and no back-
grounds. Dashed lines correspond to projected constraints from
absorption on electrons in small band-gap targets, i.e., Al
superconductors (“Al-SC”, purple) [52,57], and spin-orbit
coupled targets ZrTe5 (turquoise) [67]. Shaded regions corre-
spond to constraints from fifth force experiments (teal) [125,126]
and stellar cooling bounds from red giants (“RG”, pink) [92] and
white dwarfs (“WD”, orange) [124].

4The Lagrangian in Eq. (45) is equivalent to
L ⊃ −

P
Ψ gaΨΨaΨ̄iγ5Ψ. Both forms of the Lagrangians give

the same form factor in Table I, but one needs to expand to
Oð1=m2

ΨÞ when taking the NR limit of the aΨ̄iγ5Ψ Lagrangian.
The equivalence can be shown explicitly using the relationship in
Eq. (59). See Sec. III E for more details.
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In this case, the constraints on gaee can be related to the
constraints on the dark photon coupling κ:

gaee ∼ 10−9
�
100 meV

ω

��
κ

10−16

�
: ð49Þ

Additionally, if
P

ψ gaΨΨSjψ=mψ ∝ mj, then the coupling
to mass selection rule in Eq. (44) applies, and the
absorption rate vanishes. While the coupling combinations
are more contrived than for the scalar DM models, these
two scenarios serve as benchmark points to understand
different limits of the theory.
In Fig. 3, we compute the projections (assuming a kg · yr

exposure and no backgrounds) for three models, where the
only nonzero coupling is the one plotted. We compare these
to stellar cooling bounds [124,157–159], the canonical
Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) and Kim-
Shifman-Vainshtein-Zakharov (KSVZ) QCD axion model
[160] predictions. The solid line in the left panel corre-
sponds to the ferromagnetic FeBr2 target. The dashed lines,
labeled GaAs� and Al2O�

3, do not correspond to real targets;
GaAs and Al2O3 do not have electron, neutron, or proton
spin ordering. We show these curves to illustrate what the
projections might be in similar targets with proton or
neutron spin ordering, which can be achieved in the
presence of a strong magnetic field [161].
We find that single phonon absorption is weaker than

stellar cooling bounds for all couplings, especially gapp and
gann. We note that the reach on gapp and gann is severely
affected by the coupling to mass effect. If the proton or
neutron spins could antialign on different sites, to avoid the

coupling to mass selection rule, the reach would improve.
However, this seems experimentally unfeasible. While the
gaee constraint from Al2O�

3 is competitive with the
XENONnT bounds [41], and nearly reaches the DFSZ
band, the white dwarf [124] and red giant [157,158] cooling
bounds are stronger by roughly an order of magnitude on
resonance. However, recently there has been some uncer-
tainty surrounding the stellar cooling bounds on gaee [162],
which may reopen the parameter space. Absorption into
magnons via the wind coupling [76] is still the dominant
process in electron spin ordered targets. This is because the
magnon response from the wind coupling does not suffer
the extra q suppression that the phonon response does, as
discussed previously. However, the strict selection rules
governing that process [76] severely limit the number of
useful modes in simple targets, especially in the absence of
an external magnetic field, and single magnon readout is
still a developing technology.

D. Vector DM: Gauge coupling

Next, we consider vector DM, V, coupled to the SM
fermion vector currents,

L ⊃
X

Ψ∈ fe;p;ng
gΨVμΨ̄γμΨ → LNRðψÞ ≈ −gViψ†

�
iDi

mΨ

�
ψ ;

ð50Þ

generally arising from Uð1Þ gauge theories. The self-
energies are straightforwardly computed,

FIG. 3. Projected 95% C.L. constraints (three events) on the ALP couplings gaee; gann; gapp, Eq. (45), shown in the left, middle, and
right panels, respectively, utilizing single phonon excitations in a variety of targets assuming a kg · yr exposure and no backgrounds.
FeBr2 (solid orange) is a ferromagnetic target with polarized electronic spins on the Fe site. In each panel, the dotted curves labeled
GaAs� (blue) and Al2O�

3 (red) correspond to a GaAs and Al2O3 target whose total fermionic spin at each lattice site has been set to
Sj;e ¼ ½0; 0; 0.5�;Sj;p=n ¼ Nj;p=n½0; 0; 0.5�, where fe; p; ng correspond to the left, middle, and right panels, respectively. Since these are
not real targets, their purpose is to give an estimate of a target that does have nonzero spin ordering. As in Fig. 2, dashed lines correspond
to projected constraints from absorption on electrons in small band-gap targets, i.e., Al superconductors (“Al-SC”, purple) [52,57] and
spin-orbit coupled targets ZrTe5 (turquoise) [67]. In the left panel, the shaded gray region corresponds to constraints from solar axion
searches with the XENONnT experiment [41], and the shaded light blue region corresponds to white dwarf (“WD”) cooling constraints
[124]. The red line corresponds to constraints from red giant (“RG”) cooling [157,158], which have come under recent scrutiny [162]. In
the middle and right panels, the shaded teal region corresponds to neutron star (“NS”) cooling [159]. Tan lines correspond to the
prototypical KSVZ and DFSZ QCD axion models [160], assuming 0.28 ≤ tan β ≤ 140 in the DFSZ model.
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Πii
VV ¼ −iω2

X
ν

DνðωÞ
Ω

 X
jψ

gΨNjψTi
jνq

!

×

 X
jψ

gΨNjψTi
jνq

!�
ð51Þ

Πik
VA ¼ −ieω2

X
ν

DνðωÞ
Ω

 X
jψ

gΨNjψTi
jνq

!

×

 X
jψ

QjψTk
jνq

!�
−
ge
e
ω2δikð1 − ε∞Þ; ð52Þ

and Πel
VA ¼ Πel

AV .
For gp ¼ −ge ¼ κe, and gn ¼ 0, we recover the kineti-

cally mixed dark photon model [164], where κ is the kinetic
mixing parameter. As shown in Refs. [70,89], the absorp-
tion rate for this model is directly related to ELF shown in
Fig. 1. Interactions of the form given in Eq. (50) also arise
in models where global symmetries of the SM are gauged at
some high energy scale, and then subsequently broken to
introduce a mass to the DM. Two common examples of
interest here are Uð1ÞB and Uð1ÞB−L, where B is baryon
number. However, due to the coupling to mass effect, the
Uð1ÞB gauge field cannot be absorbed into single phonon
excitations. Therefore, we focus on the Uð1ÞB−L model,
which behaves identically to a Uð1ÞL model.

In Fig. 4, we compute projected constraints on the
kinetically mixed dark photon model (left panel) and
Uð1ÞB−L model (right panel) assuming a kg · yr exposure
and no backgrounds. In the Uð1ÞB−L, we also compare our
results to the constraints from fifth force experiments [163].
Since the constraints on the kinetically mixed dark photon
model have been computed previously, the main purpose of
this figure is to compare our results with the ones derived
by using the ELF. We see that absorption into single
phonons in any of the GaAs, Al2O3, or SiO2 targets can be
far superior not only to fifth force constraints in the
30 meV≲mV ≲ 100 meV mass window but also absorp-
tion into small gap electronic excitations.

E. Vector DM: Electric and magnetic dipole

The last DM models we consider are again vector DM
models, but this time with a magnetic or electric dipole
coupling to SM fermions. We will refer to these models as
MDM and EDM models, respectively. These models were
studied in Refs. [90,165,166] in the context of DM with
mass mV ≳ keV, where it was shown that production could
occur via the standard freeze-in mechanism [165] but is
dominated during reheating due to the dimension five
nature of the operators. Other production mechanisms
could produce the DM nonthermally with the MDM/
EDM couplings at much smaller masses [44–49], and
therefore it is interesting to study the constraints on these
models below the eV scale where constraints from elec-
tronic excitations begin [90].

FIG. 4. Projected 95% C.L. constraints (three events) on κ ¼ −ge=e ¼ gp=e (left panel) and gB−L, Eq. (50), in GaAs (solid red), Al2O3

(solid blue), and SiO2 (solid green) targets utilizing single phonon excitations assuming a kg · yr exposure and no backgrounds.
Projected constraints on the kinetically mixed dark photon model have also been shown in Ref. [89]; the purpose of the comparison here
is to illustrate the good agreement between the first principles calculation performed here and the data-driven approach (dotted lines)
utilizing the ELF [89], also compared in Fig. 1. Dashed lines are projected constraints from targets utilizing electronic absorption: doped
Si (orange) [61], Al superconductors (“Al-SC”, purple) [52,57], and the spin-orbit coupled target ZrTe5 (turquoise) [67]. Fifth force
constraints are from Ref. [163].
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The UV Lagrangians of the MDM and EDM models are

LM ⊃
X

Ψ∈ fe;p;ng

dΨM
2

VμνΨ̄σμνΨ ð53Þ

LE ⊃
X

Ψ∈ fe;p;ng

dΨE
2
VμνΨ̄σμνiγ5Ψ; ð54Þ

respectively, where Vμν ≡ ∂μVν − ∂νVμ. The coupling
to the spatial part of the vector DM can be further
simplified as

1

2
VμνΨ̄σμνΨ ⊃ ViðiωΨ̄σ0iΨþ iqjΨ̄σijΨÞ ð55Þ

1

2
VμνΨ̄σμνiγ5Ψ ⊃ ViðiωΨ̄σ0iiγ5Ψþ iqjΨ̄σijiγ5ΨÞ; ð56Þ

and the NR Lagrangians are

LM;NR ≈
X
ψ

dΨM
iω
mΨ

Viψ†
�
ðσ × ðiDÞÞi þ i

2mΨ
½D0; Di�

�
ψ

ð57Þ

LE;NR ≈
X
ψ

dΨEV
iψ†
�
−iωσi þ i

mΨ
ðσiðq · ðiDÞÞ

− ðiDiÞðq · σÞÞ
�
ψ : ð58Þ

Two terms are kept in the NR limit of the MDMmodel: the
first is the leading order response when the target is spin
ordered, and the second is the leading order response when
the target is not spin ordered. The NR limit of the EDM has
multiple terms due to contributions of similar order from
the NR limit of Ψ̄σ0iiγ5Ψ and Ψ̄σijiγ5Ψ in Eq. (56). Note
that all terms in Eq. (58) will contribute at the same order
in the form factors.
Before continuing to the self-energies, we comment on

the target expectation value of ½D0; Di�, which is a bit
subtle. We assume that the SM fermions are bound at the
lattice site by the temporal component of the gauge fields.
For example, the electrons are bound by the potential eA0,
which is simply the electrostatic potential generated by the
ion. Assuming that the protons and neutrons are bound by
similar strong forces, then D0 ¼ ∂

0 þ iV, where V is the
binding potential; e.g., the electromagnetic part of V is
simply eA0. The NR Lagrangian of the SM fermions is then
simply the Schrödinger equation with this potential,
H ¼ p2=2mΨ þ V. Furthermore, assuming that the target
expectation value of the spatial part of the gauge fields
vanishes (i.e., the spatial part of the gauge fields does not
significantly impact binding), then ½D0; Di� → ½H; ki�, and
therefore

hψ†½D0; Di�ψilj ¼ ωhψ†kiψilj; ð59Þ

which can then be straightforwardly written in terms of the
displacement operator with Eq. (30).
In the case of no spin ordering, only the MDM self-

energies are nonzero,

Πii
M;VV ¼ −i

ω6

4

X
ν

DνðωÞ
Ω

 X
jψ

dΨM
mψ

NjψTi
jνq

! X
jψ

dΨM
mψ

NjψTi
jνq

!�
ð60Þ

Πik
M;VA ¼ −ie

ω4

2

X
ν

DνðωÞ
Ω

 X
jψ

dΨM
mψ

NjψTi
jνq

! X
jψ

QjψTk
jνq

!�
−
deM
e

ω4

2me
δikð1 − ε∞Þ; ð61Þ

where the M subscript denotes the MDM model (and the E subscript denotes the EDM model) and Πel
M;VA ¼ Πel

M;AV . For
targets with spin ordering, both MDM and EDM have self-energies,

Πii
M;VV ¼ −4iω4

X
ν

DνðωÞ
Ω

 X
jψ

dΨMϵ
imkSmjψT

k
jνq

! X
jψ

dΨMϵ
imkSmjψT

k
jνq

!�
ð62Þ

Πik
M;VA ¼ −2eω3

X
ν

DνðωÞ
Ω

 X
jψ

dΨMϵ
imnSmjψT

n
jνq

! X
jψ

QjψTk
jνq

!�
þ 2i

deM
e

ω3ϵikmŝme ð1 − ε∞Þ ð63Þ

Πii
E;VV ¼ −4iω2

X
ν

DνðωÞ
Ω

 X
jψ

dΨEq
mSmjψT

i
jνq

! X
jψ

dΨEq
mSmjψT

i
jνq

!�
ð64Þ
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Πik
E;VA ¼ −2eω2

X
ν

DνðωÞ
Ω

 X
jψ

dΨEq
mSmjψT

i
jνq

!

×

 X
jψ

QjψTk
jνq

!�
þ 2i

deE
e
ω2qmŝme δikð1 − ε∞Þ;

ð65Þ

and Πel
M=E;VA ¼ −Πel

M=E;AV .
In Fig. 5, we focus on models with only an electron

coupling, which were the focus of Ref. [90,165].
Projections are computed assuming a kg · yr exposure with
no backgrounds, and the line labeled “Therm.” corresponds
to the minimum coupling needed to not thermally produce
the vector DM in a universe that reheats right before big
bang nucleosynthesis. That is, we require Γ≲H at
T ¼ MeV, where H is the Hubble constant, Γ ¼ n̄VσE=M
is the interaction rate, n̄V is the equilibrium number density
of V particles, and σE=M ∼ d2E=M [165]. In addition to the
thermalization bound, we also show projected constraints
from an aluminum superconductor and ZrTe5 target.
Reference [90] showed that the electronic absorption rate
of the MDM model could be related to Im½εðωÞ�, and
therefore the constraints on gaee can simply be rescaled
accordingly. We see that spin ordering is crucial to be able
to probe either of these models, since targets without spin
ordering have no EDM response and an MDM N response
only at higher in 1=mΨ. In these spin ordered targets, single

phonon excitations are able to probe new parameter space
for the MDM model.

IV. CONCLUSIONS

Single phonon excitations are an exciting avenue for
direct detection of light DM with sub-eV thresholds. In
Sec. II, using effective field theory techniques, we provided
a framework for computing the DM absorption rate
into single phonons starting from a fairly general UV
Lagrangian [Eq. (1)]. This complements previous work
which computed general DM–single phonon scattering
rates [70–72,77,79–82] and further illustrates the variety
of DM models that can excite single phonon excitations.
Then, in Sec. III, we applied this formalism to compute the
DM absorption rate of five DM models (Secs. III B–III E)
on spin ordered, e.g., FeBr2, and non-spin-ordered, GaAs,
Al2O3, and SiO2, targets. Additionally, in Sec. III A, we
used the formalism to compute the dielectric function
which allows for a direct comparison between first prin-
ciples calculation and experimental data. In Fig. 1, we find
good agreement between both the dielectric function, εðωÞ,
and the ELF, Im½−1=εðωÞ�, in GaAs, Al2O3, and SiO2

targets, indicating the reliability of the first principles
calculations. Moreover, this comparison allows for a
data-driven approach to set the only (theoretically) free
parameter, the phonon mode widths, γν.
In addition to providing a theoretical framework to

compute general DM absorption rates into single phonon

FIG. 5. Projected 95% C.L. constraints (three events) utilizing single phonon excitations on the MDM coupling to electrons, dM, and
the EDM coupling to electrons, dE, in the left and right panels, respectively, assuming a kg · yr exposure and no backgrounds.
Constraints from GaAs (solid red), Al2O3 (solid blue), and SiO2 (solid green) targets are weak due to the response in a non-spin-ordered
target coming at higher order. Similarly as in Fig. 3, we also consider a target with ferromagnetic ordering, FeBr2 (solid orange), and use
GaAs� (dotted red) and Al2O�

3 (dotted blue) as an example for other targets with ferromagnetic ordering. Projected constraints from
small band-gap electronic absorption in Al superconductors (“Al-SC”, purple) [52,57] and spin-orbit coupled target, ZrTe5, [67], shown
as dashed lines, have been rescaled according to Ref. [90]. The shaded red region (“Therm.”) is excluded cosmologically; couplings in
this region would overproduce DM via freeze-in, even at a reheat temperature of ∼MeV [90,165].
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excitations, we developed PHONODARK-ABS. PHONODARK-
ABS is an extension of PHONODARK [77,94], which com-
putes general DM–single phonon scattering rates (see
Refs. [72,77,81,113,167,168] for examples) and numeri-
cally computes the DM absorption rate for any target
material, given the input DFT files discussed in Sec. III.
Currently, PHONODARK-ABS can reproduce all the results
shown here, and future work will further extend its
capabilities and integrate it with PHONODARK completely.
PHONODARK-ABS is publicly available at [93].
Using PHONODARK-ABS, we find that, assuming a kg · yr

exposure and no backgrounds, single phonon excitations in
GaAs, Al2O3, and SiO2 can probe new parameter space
when DM is the gauge boson of a broken Uð1ÞB−L
symmetry (Fig. 4) and when DM couples to the electron
magnetic dipole moment in spin ordered targets, e.g., the
ferromagnetic FeBr2 (Fig. 5).5 For the latter projected
constraints, the spin ordering is crucial; without spin
ordering, the target response is much higher order, and
therefore normal targets, e.g., GaAs and Al2O3, project
rather weak constraints. While the projected constraints for
the scalar, Fig. 2, and ALP, Fig. 3, DM models coupling to
electrons are competitive with targets utilizing small band-
gap electronic transitions, e.g., Al superconductors
[52,56,57], ZrTe5 [67], and doped Si [61], strong stellar
cooling and fifth force constraints are still superior in this
parameter space. Furthermore, the projected constraints for
ALP DM coupling to protons and neutron spin with

hyperpolarized targets are much weaker than the neutron
star cooling.
The theoretical framework here may be useful for other

other collective excitations, e.g., magnons [73–77,169].
Formulating the absorption rate in terms of self-energies
and using NR EFT, as done in Secs. II A and II C 1, has the
advantage of being independent of the internal excitations
and therefore may be used to understand general DM
absorption into magnon excitations. Additionally, while
only targets with particle number and spin ordering were
considered, more novel targets may have, e.g., angular
momentum ordering, hLilj ¼ hLij, as considered in
Ref. [76], or anisotropic responses, which could have
interesting consequences for DM absorption rates.
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