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We compute the full one-loop radiative corrections for charged scalar pair production eþe− → HþH− in
the inert doublet model. The on-shell renormalization scheme has been used. We take into account both the
weak contributions as well as the soft and hard QED corrections. We compute both the real emission and
the one-loop virtual corrections using the Feynman diagrammatic method. The resummed cross section is
introduced to cure the Coulomb singularity which occurs in the QED corrections. We have analyzed the
parameter space of the inert doublet model in three scenarios after taking into account theoretical
constraints, the collider experimental bounds, and dark matter search bounds as well. It is found that the
weak interaction dominates the radiative corrections, and its size is determined by the triple Higgs coupling
λh0HþH− , which is further connected to the mass of the charged scalar. In the scenario where all the
constraints are taken into account, we find that for

ffiffiffi
s

p ¼ 250 GeV and
ffiffiffi
s

p ¼ 500 GeV, the weak
corrections are around −6% ∼ −5% and −10% ∼ −3%, respectively. While for

ffiffiffi
s

p ¼ 1000 GeV, the weak
corrections can reach −15% ∼þ25%. The new feature is that the weak corrections can be positive near the
threshold when the charged scalar is heavier than 470 GeV. Six benchmark points for future collider
searches have been proposed.

DOI: 10.1103/PhysRevD.109.015009

I. INTRODUCTION

The Standard Model (SM) particle spectrum has been
completed with the discovery of the Higgs boson on July 4,
2012, by the ATLAS and CMS experiments at CERN [1,2].
Furthermore, this discovery has confirmed that the SM of
particle physics is the underlying theoretical framework
valid at least for energies up to the electroweak (EW) scale.
The two collaborations also carried out several Higgs boson
couplings measurements at the Large Hadron Collider
(LHC) during run-1 and run-2 such as the couplings of

theHiggs boson to top quarks [3,4], tau leptons [5,6], bottom
quarks [7,8], and all the electroweak gauge bosons, includ-
ing the decays to ZZ� [9,10],WW� [11–14], and γγ [15]. In
addition, recently upper limits have been set on the h0 → γZ
signal strength [16,17] and on the Higgs boson production
cross section times branching fraction to muons [18,19].
The aforementioned measurements will be improved

at future experiments such as the High-Luminosity LHC
[20,21], scheduled to operate from 2029, where the Higgs
boson couplings are projected to be improved to a precision
level of 5–10%. In addition, the experimental uncertainties
will be further reduced in the clean environment of the
future lepton colliders, such as the International Linear
Collider (ILC) [22,23], the Circular Electron Positron
Collider (CEPC) [24], the Compact Linear Collider
(CLIC) [25–27], and the Future Circular Collider [28]. For
example, at the ILC, with a c.m. energy of about 250GeVand
a luminosity of 2 ab−1, some Higgs boson couplings will
most likely be measured at a precision level of 1% for
h0 → bb̄ and below 1% for h0 → ZZ;WW [29].
Although new physics beyond the SM has not yet been

established by the current LHC dataset, it is necessary in
order to understand several puzzles of the SM and the
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observed Universe, such as what is the nature of dark
matter, what is the origin of neutrino masses, how to
stabilize the vacuum of the SM, and so on. From the
viewpoint of effective theory, the success of the SM can
only be understood as the low energy limit of a more
fundamental theory. In this more fundamental theory, there
must be extra sectors not included by the SM. For example,
the Higgs sector of the SM is assumed to be minimal and
composed of only one Higgs doublet. In order to solve the
problem of CP violation, it is well motivated to extend
the Higgs sector of the SM by introducing one more
doublet [30] and the Higgs potential sector can be
extended, such a theory model is called the two Higgs
doublet model (2HDM). A comprehensive review of the
2HDM can be found in the Ref. [31].
In order to offer a dark matter candidate, a Z2 symmetry

is introduced into the 2HDM, which leads to the so-called
inert doublet model (IDM). In the IDM, the second doublet
does not develop a vacuum expectation value (VEV) nor
does it have a direct coupling to the SM fermions. In such a
Z2 symmetry, the fermions, gauge bosons, and the SM
Higgs doublet are invariant, and the second doublet is odd,
i.e. H2 → −H2. The Z2 symmetry ensures that this extra
doublet has no direct coupling to the SM fermions at both
tree and loop levels, and its lightest stable neutral compo-
nent may play the role of a dark matter candidate. The IDM
was proposed by E. Ma et al. [32] and it was initially
suggested for studies on electroweak symmetry breaking.
This model is very appealing because it can generate small
neutrino masses [33], can provide a dark matter candidate
[34–40] and can solve the naturalness problem [41]. The
phenomenology of the IDM has been extensively studied in
the literature in the context of the LHC and at future Higgs
factories such as the ILC or CLIC [42–80].
After the electroweak symmetry breaking, the IDM

possesses five physical scalars: One Higgs boson h0 which
is identified as the 125 GeV SM Higgs, two new neutral
physical scalarsH0,A0 and two charged physical scalarsH�.
BothH0 and A0 could be dark matter candidates. Obviously,
the discovery of a charged scalar bosonwould be a clear sign
of nonminimal Higgs sectors and precise knowledge of its
production properties would be useful to reconstruct the full
Higgs potential. Since all new IDM scalars are odd under the
Z2 symmetry, theymust be produced in pairs at the colliders.
Moreover, these new inert scalars only couple to the
electroweak gauge bosons and the Higgs boson of the
SM. Consequently, at the LHC they should be pair-produced
via processes of the Drell-Yan type: qq0 → W� → A0H�,
qq0 → W� → H0H�, and qq̄ → Z�ðγÞ → HþH−, or from
gg; qq̄ → h0

�
→ HþH− [53,72],whereq0 represents a differ-

ent quark flavor. Furthermore, the charged scalars in the IDM
could also be produced in the same-sign pair production
process pp → H�H�jj [52,81,82] or from vector boson
fusion-like production pp → H�H∓jj [53]. At lepton
colliders, charged scalars can be produced via the pair

production processeþe− → HþH− [43,49,50]. Futuremuon
colliders [83,84] may have better potential to cover a wide
range of the mass of charged scalars.
The discovery of a charged scalar would be clear

evidence of beyond the SM physics. In the case such a
discovery happens in eþe− collider, a subsequent precision
measurement of its properties will be crucial to determine
its nature. In order to obtain sufficient accuracy, one-loop
corrections to the various charged scalar production modes
and its couplings have to be considered. Recently, one loop
radiative corrections to eþe− → Zh0 [85–87] and eþe− →
H0A0 [85] in the IDM have been evaluated. In addition,
there are many other works dealing with radiative correc-
tions in the IDM either at one-loop order [85–96] or beyond
the one-loop level [97–99]. Full one-loop calculations to
eþe− → HþH− in nonsupersymmetric models such as the
2HDM and some supersymmetric models like the real
minimal supersymmetric standard model (MSSM) and
complex MSSM have been presented in Refs. [100–107].
For example, it has been found in the complex MSSM
[107] that radiative corrections to eþe− → HþH− can go
up to 20% or higher, hence a full one-loop contributions are
important for future linear colliders such as the ILC
or CLIC.
In this work, we present for the first time a full one-loop

analysis to eþe− → HþH− within the IDM. Besides the
full weak corrections, we include the soft and hard QED
radiation as well as the treatment of collinear divergences
and the Coulomb singularity. In our scan and numerical
analysis,wewill take into account all the existing constraints
on the IDM including the theoretical ones, the experimental
constraints from the LHC, such as the Higgs data from the
decay of the Higgs boson into two photons, the invisible
Higgs decay, the electroweak precision tests, as well as the
constraints from dark matter relic density in the Universe
and the direct bounds from themonojet searches at the LHC.
It should be mentioned that we have included the recast
results from LEP II data [108] in our scan and analysis.
Additional LHC recast results, such as dilepton and multi-
lepton final states, as well as vector boson fusion final states,
can be found in Refs. [62,63,109,110]. These recasts might
bring new limits to the IDM parameter space. However, in
this work, they are not taken into consideration.
We perform a scan over the whole parameter space of the

IDM in three scenarios: Scenario I assumes that the inert
scalars are degenerate in mass and has taken into account all
the constraints except the invisible Higgs decay and dark
matter constraints, scenario II is defined by imposing all the
constraints without dark matter ones and with a nondegen-
erate spectrum for the new inert scalars, and scenario III is
the same as scenario II but with dark matter constraints. We
find that the dark matter constraints can greatly reduce the
number of points in the parameter space. Furthermore, it is
found that QED corrections are rather small and radiative
corrections are dominated by theweak interactions. The size
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ofweak corrections depends on the coupling λh0HþH− , which
is further related to themass of charged scalar. In scenario III
we find that for

ffiffiffi
s

p ¼ 250 and
ffiffiffi
s

p ¼ 500 GeV, the weak
corrections are around −6% ∼ −5% and −10% ∼ −3%,
respectively. While for

ffiffiffi
s

p ¼ 1000 GeV, the weak correc-
tions can reach −15% ∼þ25%. The new feature is that the
weak corrections can be positive near the thresholdwhen the
charged scalar mass is larger than 470 GeV. We have
proposed six benchmark points for future lepton collider
searches.
The outline of this paper is as follows: In Sec. II, we

briefly describe the model, including its mass spectra, key
trilinear and quartic scalar couplings, and list various
theoretical and experimental constraints that we will take
into account in this work. In Sec. III, we provide the leading-
order (LO) formula for the cross sections of the eþe− →
HþH− process, introduce the on-shell renormalization
scheme for the IDM, and set up basic notations and
conventions. Moving on, we study the one-loop contribu-
tions to the eþe− → HþH− process and examine the
importance of soft and hard photon emission in order to
guarantee the cancellation of the infrared (IR) divergences at
the next-to-leading order (NLO) calculation. Furthermore,
we tackle the challenge posed by the Coulomb singularity
using efficient resummation techniques. We present our
numerical results in Sec. IV. In Sec. V, we propose some
benchmark points (BPs) and examine their radiative cor-
rections for future eþe− colliders. We end this work with
discussions in Sec. VI.

II. REVIEW OF THE INERT DOUBLET MODEL

A. A brief introduction to IDM

The IDM is one of the simplest extensions beyond the
SM. This model has an extra doublet H2 which is added to
the scalar sector of the SM. This doublet does not generate
any VEV and it does not have direct coupling to the
fermions of the SM. An unbroken Z2 symmetry is imposed
such that fermions, gauge bosons, and the SM doublet are
invariant while the additional scalar doublet is odd i.e.
H2 → −H2 under this symmetry. The parametrization of
the two doublets is given by

H1 ¼
� G�

1ffiffi
2

p ðvþ h0 þ iG0Þ
�
;

H2 ¼
� H�

1ffiffi
2

p ðH0 þ iA0Þ
�
; ð1Þ

where G0 and G� are the Goldstone bosons gauged out,
after electroweak symmetry breaking, by the longitudinal
components of W� and Z, respectively. The v denotes the
VEV of the SM Higgs doublet H1.

Then the renormalizable scalar potential can be given as

V ¼ μ21jH1j2 þ μ22jH2j2 þ λ1jH1j4 þ λ2jH2j4
þ λ3jH1j2jH2j2 þ λ4jH†

1H2j2

þ λ5
2
fðH†

1H2Þ2 þ H:c:g: ð2Þ

Note that because of the exact Z2 symmetry, the above
potential has no mixing terms like μ212ðH†

1H2 þ H:c.Þ.
In addition, since the potential must be Hermitian, all
λi; i ¼ 1;…; 4 are dimensionless and real whilst the phase
of λ5 can be absorbed by a suitable redefinition of the fields
H1 and H2. After spontaneous symmetry breaking of the
group SUð2ÞL ⊗ Uð1ÞY down to Uð1Þem, we have five
physical scalars: h0 which is the SM 125 GeV Higgs boson
and four inert scalars: H, A, H�. Their masses are given by

m2
h0 ¼ −2μ21 ¼ 2λ1v2;

m2
H0 ¼ μ22 þ λLv2;

m2
A0 ¼ μ22 þ λSv2;

m2
H� ¼ μ22 þ

1

2
λ3v2; ð3Þ

where λL;S are defined as

λL;S ¼
1

2
ðλ3 þ λ4 � λ5Þ: ð4Þ

From above relations, one can easily find the expressions of
λi as a function of physical masses:

λ1 ¼
m2

h0

2v2
;

λ3 ¼
2ðm2

H� − μ22Þ
v2

;

λ4 ¼
ðm2

H0 þm2
A0 − 2m2

H�Þ
v2

;

λ5 ¼
ðm2

H0 −m2
A0Þ

v2
: ð5Þ

The IDM involves eight independent parameters: five
λ1;…;5, μ1, μ2 and the VEV. One parameter can be
eliminated by using the minimization condition, while
the VEV is fixed by the Z boson mass, fine-structure
constant and Fermi constant GF. Finally, we are left with
six independent parameters, which we choose as follows

fμ22; λ2; mh0 ; mH� ; mH0 ; mA0g: ð6Þ

One alternative parametrization is to use λL or λS in place
of μ22, as can be seen from Eq. (3). The advantage of such
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parametrization is that it is directly connected to the
evaluation of the relic density.
For completeness, we list below the triple and quartic

scalar couplings that are needed in our numerical analysis:

h0H�H∓ ¼ −vλ3 ≡ vλh0H�H∓ ≡ vλh0SS;

H�H∓H�H∓ ¼ −4λ2;

G�H∓H0 ¼ v
2
ðλ4 þ λ5Þ;

G�H∓A0 ¼ � v
2
ð−λ4 þ λ5Þ: ð7Þ

It is clear that the triple coupling h0H�H∓ is propor-
tional to λ3 which in turn is proportional to ðm2

H� − μ22Þ as
given in Eq. (5).

B. The IDM parameter space and constraints

In this work, we study in the same parameter space as in
our previous work [85]. The parameter space is obtained by
scanning the whole space with certain theoretical and
experimental constraints. The constraints used are summa-
rized as follows:

1. Theoretical constraints

The parameters of the IDM are subject to several
theoretical constraints that we shall impose throughout
our numerical analysis.
(1) Perturbativity:

We require that each of the quartic couplings of
the scalar potential in Eq. (2) is perturbative:

jλij ≤ 8π: ð8Þ
(2) Vacuum stability:

In order to ensure vacuum stability, the potential V
should remain positive when the values of scalar
fields become extremely large [32]. From this
condition, we have the following set of constraints
on the IDM parameters (for a review, see [31]):

λ1;2 > 0 and λ3 þ λ4 − jλ5j þ 2
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
> 0 and

λ3 þ 2
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
> 0: ð9Þ

(3) Charge-breaking minima:
A neutral charge-conserving vacuum can be

guaranteed by demanding that [111]

λ4 − jλ5j ≤ 0: ð10Þ
(4) Inert vacuum:

We impose the following conditions in order to
insure that the inert vacuum is the global one [111]:

m2
h0 ; m

2
H0 ; m2

A0 ; m2
H� > 0 and v2 > −μ22=

ffiffiffiffiffiffiffiffiffi
λ1λ2

p
:

ð11Þ

(5) Unitarity:
As in the SM, the couplings of the IDM have to

satisfy certain relations in order to obey unitarity.
The tree-level perturbative unitarity is imposed on
the various scattering amplitudes of scalar bosons at
high energy. From the technique developed in [112],
we find the following set of eigenvalues:

e1;2 ¼ λ3 � λ4; e3;4 ¼ λ3 � λ5; ð12Þ

e5;6 ¼ λ3 þ 2λ4 � 3λ5;

e7;8 ¼ −λ1 − λ2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1 − λ2Þ2 þ λ24

q
; ð13Þ

e9;10 ¼ −3λ1 − 3λ2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ðλ1 − λ2Þ2 þ ð2λ3 þ λ4Þ2

q
;

ð14Þ

e11;12 ¼ −λ1 − λ2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1 − λ2Þ2 þ λ25

q
: ð15Þ

We impose perturbative unitarity constraint on all
eis: ei ≤ 8π; ∀ i ¼ 1;…; 12.

It is important to note that we did not take into account
higher-order corrections to the bounded from below, global
minimum, and perturbative unitarity constraints. We have
only included the constraints at lowest order. However, the
parameter space will change if we use those constraints at
NLO. For example, it has been shown in [113] that the
bounded from below conditions at one-loop level can
change the stability of the electroweak vacuum, and the
allowed parameter space for coexisting inert and inertlike
minima at NLO is larger compared to the one observed at
LO. Furthermore, for the unitarity constraints beyond the
lowest order that have been analyzed in the 2HDM [114], it
was found that perturbative NLO unitarity constraints are
stronger than the LO ones. Therefore, the allowed ranges of
the quartic λi couplings, the inert scalar masses, and their
mass differences will change if we use the NLO unitarity
conditions.

2. Experimental constraints

The parameter space of the scalar potential of the IDM
should also satisfy experimental search constraints. We will
consider the following experimental constraints (for further
details about these constraints see our previous published
work [85]):
(1) Higgs data at the LHC [115,116].
(2) The bound on the invisible Higgs decay [117].
(3) The direct collider searches from the LEP

[44,62,108,118].
(4) The indirect searches from electroweak precision

tests [41,119,120].
(5) The data from dark matter searches [61,64,121–131].
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III. RADIATIVE CORRECTIONS
TO e+ e− → H +H −

A. e + e− → H +H − at tree level

Due to the extremely small value of the electron mass
and the corresponding Yukawa couplings, it is numerically
justified to neglect the contributions proportional to the
mass of electron, such as Feynman diagrams involving
eþe−h0, eþe−G0, e−νeGþ, and eþνeG− vertices. For this
reason, the Feynman diagrams contributing to eþe− →
HþH− at the tree level are mediated by the γ and Z
s-channel exchange as shown in Fig. 1.
Using the covariant derivative of the Higgs doublet, one

can derive the scalar coupling to gauge bosons. We list
below a part of the Lagrangian needed for our study

LVHþH−;VVHþH− ¼
�
−ieAμ þ ie

ðc2W − s2WÞ
2cWsW

Zμ

�
Hþ

∂

↔

μH−

þ
�
e2AμAμ − e2

ðc2W − s2WÞ
cWsW

ZμAμ

�
HþH−;

ð16Þ

where e is the electric charge and cW ≡ cos θW
(sW ≡ sin θW) with θW being the Weinberg mixing angle.
It is clear from above equation that the interactions
involving charged scalar depend only on the electric charge
and the Weinberg mixing angle θW .
Let p1;2 and k1;2 be the momenta of incoming e� and

outgoing H�, respectively, and define the Mandelstam
variables as

s ¼ ðp1 þ p2Þ2 ¼ ðk1 þ k2Þ2;
t ¼ ðp1 − k1Þ2 ¼ ðp2 − k2Þ2;
u ¼ ðp1 − k2Þ2 ¼ ðp2 − k1Þ2: ð17Þ

The matrix elements at tree level for the two contributions
have the following form:

Mγ
0 ¼ −2

e2

s
vðp2Þ=k1uðp1Þ; ð18Þ

MZ
0 ¼ 2

e2gH
s −m2

z
ðgVv̄ðp2Þ=k1uðp1Þ − gAv̄ðp2Þ=k1γ5uðp1ÞÞ;

ð19Þ

with

gV ¼ 1 − 4s2W
4cWsW

; gA ¼ 1

4cWsW
; gH ¼ −

c2W − s2W
2cWsW

:

The total matrix element is then given by

M0 ¼ Mγ
0 þMZ

0 ; ð20Þ

and the total cross section can be written as

σ0 ¼ πα2β3

3s

�
1þ g2H

g2V þ g2A
ð1 −m2

Z=sÞ2
−

2gHgV
1 −m2

Z=s

�
; ð21Þ

where β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

H�=s
q

is the velocity of outgoingH� in

the c.m. frame. Note that the first term comes from the
photon exchange, the second term comes from the Z boson
exchange while the third one is the interference between the
photon and Z boson exchange.
This cross section is only related to themass ofH� and it is

independent of the other four parameters μ22; λ2; mH0 ; mA0 . It
should be reminded that, near the threshold regions, it drops
quickly due to the phase space suppression factor β3.
Lastly, as the collision energy is assumed to be 250 GeV

or even higher, the intermediate Z boson is always far away
from its mass shell. Hence, we have neglected the effects of
decay width of Z boson in this work.

B. e+ e − → H +H − at one loop

The ’t Hooft-Feynman gauge has been used to evaluate
both the weak corrections as well as the QED ones. The
generic Feynman diagrams for eþe− → HþH− are drawn
in Fig. 2, which can be put into six categories:
(1) One-loop corrections to the initial state vertices

eþe−V (V ¼ γ; Z) which are purely SM, G1 and G2.
(2) One-loop corrections to the vertices VHþH−

(V ¼ γ; Z), G3 to G11.
(3) One-loop corrections to photon and Z boson propa-

gators as well as γ–Z, G12 to G18. Note that the
mixing Z-G0 and γ-G0 in the s-channel contribution
was not included. Due to Lorentz invariance, such
mixing would be proportional to ðp1 þ p2Þμ, which
after contracting with the initial state eþe− will be
proportional to me and thereafter will vanish.

(4) Box contributions, G19 to G21.
(5) The various counterterms for initial and final states

and also the γ and Z propagators, γ − Z mixings are
also depicted in G22 to G24.

Moreover, we also add real photon emission eþe− →
HþH−γ which is depicted in diagrams G25 to G29. Note
that diagramG27 does not contain IR divergence but it is an
important piece for electromagnetic gauge invariance.

FIG. 1. Tree level Feynman diagrams for eþe− → HþH− are
shown.
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Let MV be the matrix element of all these diagrams, the
virtual corrections at NLO can be expressed as

dσV ∝ 2ReΣ̄ðM0M
†
VÞ:

Since we have omitted the decay width of the intermediate
Z boson in the leading order matrix element M0, at fixed
order we can only take into account the real part of MV .
This also means that we can neglect the imaginary parts of
diagrams G12 to G18, which contribute to the decay width
of the Z boson at higher orders when both vector bosons V
attached to the loop are Z bosons.
Calculation of the one-loop corrections will lead to

ultraviolet (UV) as well as IR divergences. The UV
singularities are treated in the on-shell renormalization
scheme after being regularized using dimensional regulari-
zation while the IR divergences arising from the diagrams
involving a photon are regularized with a small fictitious
photon mass λ and have to cancel with the ones from real
photon emissions.
The unbroken Z2 symmetry prevents the mixing

between the SM doublet H1 and the inert doublet H2

which significantly facilitates the renormalization of the
IDM. The full renormalization of this model has been

presented in [90]. In our work, we will use the on-shell
scheme developed first for the SM in [132–134], completed
by the on-shell renormalization scheme for the inert scalar
fields and their masses.
Concerning the renormalization of the SM parameters

and fields, we refer to [134,135]. For the renormalization of
charge, an αðmZÞ scheme is used, following the procedure
in Refs. [134,135]. The charge is first renormalized in the
Thomson limit and then switched effectively to mZ by
resumming large logarithms from light fermions, which
gives

αðmZÞ ¼
αð0Þ

1 − ðΔαðmZÞÞf≠top
; ð22Þ

with

ðΔαðmZÞÞf≠top ¼ Πf≠topð0Þ − ReΠf≠topðm2
ZÞ ð23Þ

and αð0Þ is the coupling constant renormalized in the
Thomson limit. More details about this renormalization
scheme can be found in Appendix A, where the uncer-
tainties from different schemes are also discussed.
Following the notation in PDG [120], Eq. (22) is regarded

FIG. 2. Generic one-loop Feynman diagrams for eþe− → HþH− are shown, where F stands for SM fermions; V stands for generic
vector bosons which could be γ, Z, or W�; and S could be either a Goldstone G0, G� or a Higgs boson h0, H0, A0, or H�.
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as an “on shell” definition of the running coupling constant
at the scale mZ.
For the renormalization of the inert scalar bosons, we use

a similar approach as in [134,135]. Because of the exact Z2

symmetry, there is no mixing between H� −W∓ and
H� −G∓, this makes the renormalization of the scalar
fields easier. The Higgs wave function renormalization
constant and mass counterterm are fixed by the two
following on-shell conditions:
(1) The on-shell condition for the physical mass mH� .
(2) The propagator of the charged scalar must have

residue 1 at the pole mass.
These requirements will lead, respectively, to

ReΣ̂H�H�ðm2
H�Þ ¼ 0;

Re
∂Σ̂H�H�ðk2Þ

∂k2

����
k2¼m2

H�

¼ 0; ð24Þ

where Σ̂H�H� is the one-loop renormalized charged scalar
self energy, i.e.

Σ̂H�H�ðk2Þ¼ΣH�H�ðk2Þ−δm2
H� þðk2−m2

H�ÞδZH� : ð25Þ

Here ΣH�H� is the one-loop unrenormalized charged scalar
self-energy.
All the SM renormalization constants defined above can

be found in [134,135]. Using the condition in Eq. (24) and
the relation in Eq. (25), one can prove that

δZH� ¼ −Re
∂ΣH�H�ðk2Þ

∂k2

����
k2¼m2

H�

: ð26Þ

The explicit expression for δZH� is presented inAppendixB.
For the counterterms, only two are new here comparing

with the SM. They are listed as follows:

δLAHþH− ¼ −ie
�
δZe þ δZH� þ δZAA

2
þ gH

δZAZ

2

�
AμHþ

∂

↔

μH−;

δLZHþH− ¼ −iegH
�
δZe þ δZH� þ δZZZ

2
−

δsW
ðc2W − s2WÞc2WsW

þ δZAZ

2gH

�
ZμHþ

∂

↔

μH−: ð27Þ

For the counterterms of the initial state vertices: eþe−γ and
eþe−Z, counterterm of the Z boson, the photon propaga-
tors, and their mixing; they are exactly the same as in the
SM and can be found in [134,135].
With such a “completely on-shell” renormalization

scheme, our results are totally independent of the renorm-
alization scale μr. As an alternative, they now depend on
the new scale introduced during the renormalization of
charge (set to mZ in this work).
As mentioned before, Feynman gauge is used in our

calculation. Strictly speaking, to ensure our results are
gauge invariant, calculation with another gauge is needed.
However this will lead to a totally different model file and/
or modifications in the automatic package, which is beyond
our abilities at present. Hence, we can only believe that this
is automatically ensured by the theory, and only check
those within our abilities (such as current conservation in
real emissions).
On the other hand, as already known in the renormaliza-

tion of 2HDM, improper treatment of tadpole contributions
may lead to gauge-dependent results (see e.g. [136–138]).
Fortunately, compared with the general 2HDM, the IDM is
simple on this issue since there is nomixing between the two
doublets. Hence, we can apply the same treatment as in the
SM and avoid such an issue.
Let us now discuss the treatment of the IR divergences,

which includes two parts, one is from virtual corrections,
the other is from real emission. As mentioned before, IR
divergences in this work are regularized by introducing a

small fictitious photon mass, λ. The IR divergences in
virtual corrections are present in four sources: (i) wave
function renormalization of charged particles such as
electrons and charged scalars; (ii) vertex corrections to
eþe−γ and eþe−Z, G1 in Fig. 2 with V ¼ γ, where
incoming electron and positron exchange a virtual photon
with each other; (iii) in the case of eþe− → HþH− vertex
corrections to γHþH− and ZHþH−: G6 in Fig. 2 with
V ¼ γ where the outgoing charged scalar pair exchanges a
virtual photon; and (iv) in case of eþe− → HþH− box
corrections: G20 and G21 in Fig. 2 with ðV; VÞ ¼ ðγ; γÞ or
ðV; VÞ ¼ ðγ; ZÞ where incoming fermions exchange one or
two virtual photons with outgoing charged scalars.
IR divergence in real emission comes from phase space

integration. Besides λ, two cutoffs ΔE and Δθ are intro-
duced to deal with the IR singularities in real photon
emission based on the two cutoff phase space slicing
method [139]. ΔE ¼ δs

ffiffiffi
s

p
=2 defines the soft photon

energy cutoff for the bremsstrahlung process. It can be
viewed as the photon energy cut that separates the soft and
hard regions. The angle Δθ further separates the hard part
into hard-collinear and hard-noncollinear regions. The
NLO corrections are then decomposed into the virtual,
soft, hard-collinear, and hard-noncollinear parts as follows:

dσ1 ¼ dσVðλÞ þ dσSðλ;ΔEÞ þ dσHCþCTðΔE;ΔθÞ
þ dσHC̄ðΔE;ΔθÞ: ð28Þ
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Here S,HC, and HC̄ denote the contributions of soft, hard-
collinear, and hard-noncollinear parts from real photon
emission, respectively. V denotes the virtual corrections
including loop and counterterm diagrams. CT in the third
term of rhs denotes the extra contribution arising from the
structure function of incoming electron and positron. More
details about the treatment of IR divergence are presented
in Appendix C, as well as the checks of our results for the
independence of cutoffs.
The total cross section at NLO σNLO, is the sum of LO

cross section σ0 and NLO corrections σ1, namely

σNLO ¼ σ0 þ σ1 ≡ σ0ð1þ ΔÞ; ð29Þ

where Δ is the relative correction.
As described in Sec. 3.1 of Ref. [140], the NLO

electroweak corrections can be safely grouped into two
gauge-invariant parts:
(1) The “QED” part, which includes all the diagrams

that contain an extra photon attached to the LO
diagrams. These diagrams can be easily found by
investigating the generic Feynman diagrams in Fig. 2
and we list them here:
(i) G1 when the vector boson connected with the

incoming electron pair is a photon.
(ii) G6 when the vector boson connected with the

outgoing charged scalar pair is a photon.
(iii) G8 andG9when thevector boson connectedwith

the outgoing charged scalar pair is a photon.
(iv) G19, G20, and G21 when either vector boson is a

photon.
(v) G25 to G29: all real emission diagrams.
Meanwhile, the photonics contribution to the wave
function renormalization of the electron and charged
scalar is also grouped into this part.

(2) The “weak” part, which contains all the remaining
contributions.

It should be noted that the “QED” part here is only a gauge-
invariant subgroup of the whole QED corrections. There
are remaining QED corrections in the “weak” part.
Actually, it is very hard, if not impossible in this process,
to separate the whole QED part because of γ − Z mixing.
The relative correction is then separated into two parts

correspondingly, i.e. we have

Δ ¼ Δweak þ ΔQED: ð30Þ

Similar to the pair production ofW bosons or top quarks,
the Coulomb singularity appears in one-loop corrections,
which is proportional to απ=β [141,142]. It gives an
important enhancement to the cross section near the
threshold. This effect is already well known and can be
resummed to all orders. After the resummation, the LO
cross section becomes

σ0 → σ0resum: ¼ jψð0Þj2σ0; ð31Þ

where we have used the “resum.” as the abbreviation of
resummed in the subscript to label the quantities after the
resummation. The factor jψð0Þj2, which was originally
obtained by Sommerfeld [143] and Sakharov [144], is
given by

jψð0Þj2 ¼ X
1 − e−X

¼ 1þ X
2
þ X2

12
þ � � � ; ð32Þ

where X ¼ απ=β.
Beyond LO, we assume that the resummed cross section

can still be written into the product of two parts, similar to
Eq. (31). The first part is a factor that resums all the Coulomb
singularities. Herewe use jψð0Þj2 as this factor sincewe only
resum the leading Coulomb singularities. The second com-
ponent represents a hard part which contains no more
Coulomb singularities and can be calculated order by order
perturbatively. Namely, we suppose

σresum: ¼ jψð0Þj2σH: ð33Þ

Here the label “H”denotes the hard part. Expanding the rhs of
Eq. (33) to LO in α and then matching it with LO cross
section σ0, it gives

σ0H ¼ σ0: ð34Þ

Thismeans that the LO resummed cross section in Eq. (31) is
correctly reproduced. Now expanding the rhs of Eq. (33)
again to NLO in α and matching it with NLO cross section
σNLO, it gives

σ0H þ X
2
σ0H þ σ1H ¼ σNLO: ð35Þ

InsertingEqs. (29) and (34) intoEq. (35) and solving σ1H from
it, it gives

σ1H ¼ σ0
�
Δ −

X
2

�
≡ σ0ΔH: ð36Þ

Here, ΔH represents the ratio of σ1H to σ0H. In our work,
numerical analysis has confirmed that ΔH does not exhibit
any further Coulomb singularities. This implies that Eq. (33)
works at least up to one-loop order. Then, the resummed
cross section at NLO is derived as follows:

σNLOresum: ¼ jψð0Þj2ðσ0H þ σ1HÞ ¼ jψð0Þj2σ0ð1þ ΔHÞ: ð37Þ

Expanding σNLOresum: to even higher in α, it gives

σNLOresum: ¼ σ0H þ
�
σ0H

X
2
þ σ1H

�
þ
�
σ0H

X2

12
þ σ1H

X
2

�
þOðα5Þ: ð38Þ
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The first three terms on the rhs are the contributions ofOðα2Þ,
Oðα3Þ, andOðα4Þ, respectively. The third term stands for two
different cases of Coulomb singularity at next-to-next-to-
leading order. σ0HX

2=12 corresponds to the exchange of two
soft photons in the final states, while σ1HX=2 corresponds to
the exchange of one soft photon in the final states. On the
other hand,ΔH can also be separated into its QED and weak
parts, similar to what is done for Δ in Eq. (30). This
separation is expressed as

ΔH ¼ ΔH;QED þ ΔH;weak: ð39Þ

Due to the fact that Coulomb singularity is caused by soft
photon exchange in the final states, it should belong to the
QED part, namely we have

ΔH;QED ¼ ΔQED −
X
2
; ΔH;weak ¼ Δweak: ð40Þ

It has also been confirmed numerically that ΔH;QED remains
finitewhen thevelocity of outgoing charged pair goes to zero.
Up to this point, we have effectively addressed the

treatment of Coulomb singularities and obtained resummed
cross sections. However, in this work, we are more
interested in relative corrections, not only the cross sec-
tions. Let Δresum: be the ratio of relative corrections after
resummation (σNLOresum:=σ0resum: − 1). Due to the fact that
jψð0Þj2 acts as a global factor in both LO and NLO cross
sections, Δresum: is always equal to the ratio of hard part,
ΔH. Correspondingly, we also have

Δresum:;QED ¼ ΔH;QED ¼ ΔQED −
X
2
;

Δresum:;weak ¼ ΔH;weak ¼ Δweak: ð41Þ

In order to show the effect of this resummation tech-
nique, we present in a certain case the cross section and
relative corrections before and after the resummation in
Table I. There are a few comments on the results in
the table:
(1) The relativeweakcorrections remainconstant bothbe-

fore and after resummation, meaning that Δresum:;weak
maintains its equality to Δweak throughout.

(2) The resummation mostly affects the results near the
threshold, i.e. the region where β is small and close
to 0. When β is varying from 0.9165 to 0.0283, it is
observed that the QED corrections can change from
1.628% to 42.143%.

(3) Before the resummation, the LO cross section can be
changed drastically by the QED corrections, espe-
cially near the threshold region. After the resumma-
tion, the QED corrections are small and well
controlled within a size around 1%. The LO cross
section is enhanced directly by the factor jψð0Þj2
during the resummation, which varies from 1.0134
to 1.4918 as β decreases. While the NLO cross
section is much more stable in this process. From the
data before and after the resummation we can see the
ratio is always around 1 (from 0.999 to 1.039 as β
decreases).

(4) Throughout the entire region, the QED corrections
decrease by at least one order of magnitude after
resummation. This observation strongly suggests
that the dominant factor contributing to the QED
corrections is the Coulomb singularity term.

All of this demonstrates that the resummation is necessary
and effective. In the following discussion, we will use σ or
Δ to refer to the resummed values, and for convenience, we
will omit the subscript “resum.”

TABLE I. Cross section and relative corrections before (second block) and after (third block) the resummation of the Coulomb
singularity with

ffiffiffi
s

p ¼ 500 GeV are demonstrated. The remaining IDM parameters are chosen as mH0 ¼ mA0 ¼ mH� , λ2 ¼ 2, and
μ22 ¼ 0. Quantities before resummation, σ0, σNLO, ΔQED, and Δweak, are obtained with Eqs. (21), (29), and (30). Quantities after
resummation, σ0resum:, σNLOresum:, Δresum:;QED, and Δresum:;weak, are obtained with Eqs. (31), (36), (37), and (41).

mH� (GeV) 100 150 200 225 245 249 249.9
β 0.9165 0.8000 0.6000 0.4359 0.1990 0.0894 0.0283
jψð0Þj2 1.0134 1.0153 1.0204 1.0282 1.0625 1.1425 1.4918

Before resummation
σ0 (fb) 95.320 63.392 26.744 10.254 0.976 0.0883 0.00280
σNLO (fb) 90.344 60.288 25.783 10.085 1.004 0.0970 0.00389
ΔQED × ð%Þ 1.628 1.711 2.101 2.731 5.738 12.911 42.143
Δweak × ð%Þ −6.859 −6.609 −5.695 −4.379 −2.869 −3.058 −3.175

After resummation
σ0resum: (fb) 96.593 64.362 27.291 10.543 1.037 0.1009 0.00418
σNLOresum: (fb) 90.256 60.230 25.756 10.075 1.003 0.0971 0.00401
Δresum:;QED × ð%Þ 0.299 0.189 0.071 −0.064 −0.384 −0.723 −0.933
Δresum:;weak × ð%Þ −6.859 −6.609 −5.695 −4.379 −2.869 −3.058 −3.175
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IV. NUMERICAL RESULTS

In the present work, the computation of all the one-loop
matrix elements and counter-terms is performed with the
help of FeynArts and FormCalc [145–147] packages. The scalar
integrals are numerically evaluated using LoopTools

[148,149]. The other parts are obtainedwith the help of FDC
[150] and BASES [151]. The cancellation of UV divergen-
ces are obtained both analytically and numerically. It should
be noted that the model file of IDM, including all needed
renormalization counter terms and renormalization con-
stants, is obtained by manually modifying the SM model
file. We have checked this model file with the output from
FeynRules and confirmed their agreement. Recently, an
automatic tool NLOCT [152], which can automatically
generate counter terms and calculate renormalization con-
stants, became available. It provides a model for 2HDM that
can be used in one-loopQCDandEWcalculation. However,
compared with the general 2HDM, IDM is simple because
there is no mixing between the two doublets. Hence, we use
our own model file mentioned above.

In this section, we present our numerical results for our
process eþe− → HþH−. It has been pointed out that the
triple Higgs couplings can cause a large (can go up to 30%)
radiative correction to the process eþe− → HþH−

[102,105] in the 2HDM. Below we examine the radiative
corrections to our process in the IDM and we expect that
the electroweak radiative corrections to eþe− → HþH−

would have some similarities with eþe− → H0A0 [85]. For
the QED corrections, we will study both soft photon
emission as well as the hard one.

A. Numerical input

We adopt the following numerical values of the physical
parameters from PDG [120]:
(1) The fine structure constant: αð0Þ ¼ 1=137.036,

αðmZÞ ¼ 1=128.943 with Δαð5ÞhadronðmZÞ ¼ 0.02764.
(2) The gauge boson masses: mW ¼ 80.379 GeV and

mZ ¼ 91.188 GeV.

(3) The fermion masses:

me ¼ 0.511 MeV mu ¼ 0.134 GeV mt ¼ 173.2 GeV;

mμ ¼ 0.106 GeV md ¼ 0.134 GeV mb ¼ 4.660 GeV;

mτ ¼ 1.777 GeV ms ¼ 0.095 GeV mc ¼ 1.275 GeV:

The masses of u and d are taken as effective

parameters to reproduce Δαð5ÞhadronðmZÞ with αðmZÞ.
They are obtained as mu ¼ md ¼ 0.134 GeV.

In the IDM, the CP even Higgs boson h0 is the only SM-
like Higgs boson observed by the LHC collaborations, and
we use mh0 ¼ 125.18 GeV. For the other IDM parameters,
we perform a scan over the whole parameter space, which
includes the physical masses mA0 , mH0 , and mH�, μ22, and
λ2 parameters. We take into account all the experimental
constraints as well as the theoretical requirements given in
the Sec. II B.
It is found that our numerical results are almost inde-

pendent of the λ2 parameter. Consequently, we will fix
λ2 ¼ 2 in the next part.
In the following, we will use the αðmZÞ scheme

described before to present our results.

B. Weak corrections in three scenarios

In our numerical analysis, we will consider three
scenarios, which are tabulated in Table II. They are
categorized in terms of degenerate/nondegenerate between
inert scalar boson masses, with/without invisible Higgs
decay, and with/without DM constraints. It is thought that

scenario I is the simplest one with only three free
parameters and is the easiest one to demonstrate the
one-loop corrections, while scenario III might be more
realistic after taking into account collider experimental
bounds and dark matter constraints and six benchmark
points are chosen from this scenario for the LHC and future
collider searches.

TABLE II. Scenarios and their conditions are tabulated. Sce-
nario I where all the inert scalars are degenerate is described by
three parameters which are ðmS ¼ mH0 ¼ mA0 ¼ mH�; μ22; λ2Þ,
scenarios II and III with a nondegenerate spectrum for the
inert scalars are described by five parameters, which are
ðmH� ; mH0 ; mA0 ; μ22; λ2Þ.

Scenario I Scenario II Scenario III

Theoretical constraints ✓ ✓ ✓
Degenerate spectrum ✓
Higgs data ✓ ✓ ✓
Higgs invisible decay open ✓ ✓
Direct searches from LEP ✓ ✓ ✓
Electroweak precision tests ✓ ✓ ✓
Dark matter constraints ✓
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Our numerical analysis begins with scenario I, which has
only three free parameters to consider. When λ2 is fixed,
there are only two free parameters (μ22 and mS ¼ mH0 ¼
mA0 ¼ mH�) to vary. Three typical collision energies
of future eþe− colliders, namely:

ffiffiffi
s

p ¼ 250 GeV,
ffiffiffi
s

p ¼
500 GeV, and

ffiffiffi
s

p ¼ 1000 GeV are chosen to expose the
effects of new physics.
It should be mentioned that when the charged scalar

mass is fixed, the h0HþH− coupling is simply determined
by the parameter μ22, as given in Eq. (5). Therefore, in
order to examine how the theoretical parameters like μ22 and
mH� can affect the cross section and how theoretical
constraints and experimental bounds can affect allowed
parameter space, we introduce five cases with different
values of μ22 given in Table III. These values of μ22
corresponding to five cases are chosen in the allowed
parameter space which have passed all theoretical and
experimental bounds and constraints, and we have labeled
these results by the labels IDM1-5 in Fig. 3. We have
deliberately introduced two with positive values and two
with negative values of μ22.
In Fig. 3, total cross section and relative corrections to

eþe− → HþH− as a function of the inert scalar masses mS
are shown in scenario I. It is observed that the allowed
ranges of mS are different when μ22 takes different

values. More explicitly, it is found that in the range of
100–500 GeV, the lower bounds of mS in the cases of
IDM1, IDM4, and IDM5 are constrained by the signal
strength of h0 → γγ at the LHC, whereas the upper bound
of mS in the case of IDM5 is constrained by the unitarity
condition. For example, in the IDM5 case, mS shall not be
smaller than 340 GeV, which explains why there is no
IDM5 in the plot with

ffiffiffi
s

p ¼ 500 GeV and there are no
IDM4 and IDM5 in the plot with

ffiffiffi
s

p ¼ 250 GeV.
Obviously, since the process eþe−→HþH− is s-channel

dominant, when the mass of charged scalar is fixed, the
cross section becomes smaller and smaller when the c.m.
energy increases from 250 GeV to 1 TeV. For a fixed c.m.
energy, the cross section drops quickly when the mass of
charged scalar increases to the kinematic end points. It is
noteworthy that a pair of light charged scalar (say 100 GeV
or so) can be copiously produced and the total cross
sections could be of the order of 100 fb which would lead
to more than 2 × 105 events at LC machines with

ffiffiffi
s

p ¼
250 GeV which can deliver about 2 ab−1 luminosity.
It can be read from the lower panel of Fig. 3 that the

ratio of weak corrections in the IDM can reach −6% atffiffiffi
s

p ¼ 250 GeV, which is almost independent of the mass
mS. In contrast, at the c.m. energy

ffiffiffi
s

p ¼ 1 TeV, the ratio
starts from −10% and can go up to 30% or higher. Such a
behavior can be attributed to the large corrections of the
h0HþH− coupling. For the degenerate scenario with μ22
fixed, when the parametermS ¼ mH� increases from 100 to
500 GeV or so, the h0HþH− coupling proportional to λ3
also increases almost monotonically, especially near the
end point region (say 350 GeV < mS < 500 GeV). Such a
h0HþH− coupling can contribute to the EW corrections

FIG. 3. The total cross section and the ratio of EW corrections to eþe− → HþH− as a function of the inert scalar massesmS with three
collision energies

ffiffiffi
s

p ¼ 250, 500, and 1000 GeVare shown in scenario I in the upper and lower panels, respectively. The corresponding
values of μ22 are given in Table III.

TABLE III. In scenario I, five cases with typical values of μ22
labeled as IDM1-5 are given.

IDM1 IDM2 IDM3 IDM4 IDM5

μ22ðGeV2Þ 40000 6000 0 −10000 −30000
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both linearly via the virtual corrections to ðγ; ZÞHþH−

vertices and quadratically via the wave function renorm-
alization of the charged scalar. WhenmS increases, the total
cross sections decrease due to the suppression of phase
space, while the ratio of EW corrections becomes larger
and larger, as shown in the last plot of the lower panel.
With these crucial lessons on weak corrections learned

from scenario I, we are ready to further explore the whole
parameter spaces of the IDM and illustrate the behavior of
weak corrections for all three scenarios, as shown in Fig. 4.
The upper panel of Fig. 4 is devoted to scenario I, where

the ratio of EW corrections to eþe− → HþH− as a function
of the inert scalar masses mS are shown, while the
λh0SS=v ¼ −λ3 coupling is labeled as a color bar. For the
c.m. energy

ffiffiffi
s

p ¼ 250 GeV, the parameter mS can be

measured in the range [80, 125] GeV, and the ratio Δσ can
change in the range ½−5.9%;−3.8%�; for the c.m. energyffiffiffi
s

p ¼ 500 GeV, the parameter mS is kinematically acces-
sible up to 250 GeV and Δσ can change in the range
½−7.8%; 1%�. For these two cases, the ratio of EW
corrections is not very significant, which is due to the fact
that the range of λ3 is limited to ½−3.5; 1.5�. In contrast, for
the c.m. energy

ffiffiffi
s

p ¼ 1 TeV, the parameter mS is kine-
matically accessible up to 500 GeV, which in turn implies a
larger range for λ3 ∈ ½−9; 2�. Then the ratio of EW correc-
tions can be in the range ½−13%; 38%�. In this case, the
relative corrections become substantial for mS close to the
threshold production, where the absolute values of λ3 can
be quite large (say jλ3j ∼ 9). Consequently, the relative size
of loop corrections increases and can reach 40%.

FIG. 4. Electroweak corrections to eþe− → HþH− for
ffiffiffi
s

p ¼ 250, 500, and 1000 GeV as a function of mS and the λhSS coupling
normalized to the VEVof the SM Higgs are shown. Plots in the upper panel show scenario I, and the middle and lower panels show the
nondegenerate scenario before (scenario II) and after applying dark matter constraints (scenario III), respectively.
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For scenario II, the theoretical parameters λ4;5 are non-
vanishing and could contribute to the vacuum stability and
unitarity constraints. Therefore, when compared with
scenario I, two more dimensions are added to the theo-
retical parameter space. Similar to scenario I, the parameter
λ3 should be constrained by the Higgs data, like the
branching fraction measurement of h0 → γγ, since a light
charged scalar can have a significant contribution to this
branching fraction. In the case with

ffiffiffi
s

p ¼ 250 GeV, as
shown by the plots of the middle row of Fig. 4, due to
kinematics, the range of charged scalar mass that the
machine can measure is [80, 125] GeV. It is found that
the diphoton signal strength puts a severe constraint on the
parameter λ3, which can only be within the range ½−1; 1�.
Thus, the effect of the h0HþH− coupling is as small as the
scenario I where the allowed ratio of radiative corrections
can spread from −6.5% to −3%. At

ffiffiffi
s

p ¼ 500 GeV, the
allowed parameter λ3 can be in the range ½−1.5; 3.5� and the
radiative corrections start from −10% and can go up to 2%
near the end point region of mH� . In contrast, in the case
with the c.m. energy

ffiffiffi
s

p ¼ 1 TeV, the allowed range of λ3
becomes wider, it can change from −10 to 2, which leads to
a significant enhancement for the ratio of EW corrections as
shown in the plot. The h0HþH− coupling can contribute
through the charged scalar wave function renormalization
and the triangle diagrams. The ratio of EW corrections is
large and can even go up to 50% near the end point (for a
charged scalar mass around mHþ ¼ 500 GeV).
For scenario III, we show the ratio of EW corrections in

the lower panel of Fig. 4, where we have taken into account
all existing constraints on the parameter space of the IDM,
especially the dark matter relic density, direct search
constraints, and collider search of dark matter candidates.
We can see that at

ffiffiffi
s

p ¼ 250 GeV the dark matter con-
straints shrink the allowed range of λ3 and the ratio of EW

corrections can only vary between −6% and −4.8%. Atffiffiffi
s

p ¼ 500 GeV, the ratio of EW corrections can only be
negative, and it can only change from −9% to −3%. Atffiffiffi
s

p ¼ 1 TeV, a larger theoretical parameter space can be
probed. Accordingly, a wider range of λ3 leads to a larger
ratio of EW corrections, which can spread from −15% to
30% near the end point region.
When the allowed points in the parameter space are

compared for scenarios II and III, it is noteworthy that the
dark matter constraints can kill almost 99% points, as
demonstrated in the lowest panels of Fig. 4, only sporadic
points are allowed for scenario III.
It should be pointed out that the ratio of EW corrections

could be large and can reach 20% or higher near the end
point region, like in the

ffiffiffi
s

p ¼ 1 TeV case, due to the small
cross section, the production rate might also be small. For
example, in the IDM5 case, when mH� ¼ 465 GeV, the
cross section is 2 fb or so. Nonetheless, when the integrated
luminosity is large enough (in the case of 2/ab, we can have
4000 signal events), there is a chance to examine this loop
induced effect if we could know the model parameters
precisely from other measurements. Finally, we would like
to point out that the EW corrections are rather significant
for high c.m. energy

ffiffiffi
s

p ¼ 1 TeV than they are for low
energy cases

ffiffiffi
s

p ¼ 250 TeV or 500 GeV. This is because
the contributions from the boxes are rather important for
high energy.

V. BENCHMARK POINTS

In Table IV we propose six benchmark points from
scenario III that are consistent with current collider experi-
ments and dark matter searches. It is important to mention
that several constraints from current long-lived particles
searches on the IDM exist in the literature [153,154].

TABLE IV. Benchmark points consistent with collider experiments and dark matter constraints on the relic density are proposed.
Decay information of H0, A0, and H� are also given.

BP BP1 BP2 BP3 BP4 BP5 BP6

mH� (GeV) 116.8 123.4 209.5 243.7 295.4 472.9
mH0 (GeV) 57.0 121.9 122.9 59.3 204.1 181.4
mA0 (GeV) 102.3 200.0 125.2 238.3 205.7 473.5
μ22 (GeV2) 3159.5 14723.8 15037.5 3558.6 41195.9 32220.8
λLð10−3Þ 1.537 2.416 1.151 −0.798 7.847 11.819
λS 0.124 0.427 0.011 0.900 0.019 3.246
Ωh2ð×10−2Þ 10.028 0.340 0.203 5.428 0.185 0.028
ΓH� (GeV) 5.87 × 10−4 5.48 × 10−12 6.77 × 10−2 2.58 2.18 × 10−1 1.86 × 101

ΓA0 (GeV) 1.06 × 10−4 1.23 × 10−2 5.19 × 10−11 2.00 8.85 × 10−12 1.79 × 101

Brðh0 → H0H0Þ 0.47% � � � � � � 0.10% � � � � � �
BrðA0 → W�ð�ÞH∓Þ � � � ∼76.5% � � � � � � � � � ∼0%
BrðA0 → Zð�ÞH0Þ 100% ∼23.5% 100% 100% 100% ∼100%
BrðH� → W�ð�ÞA0Þ ∼0% � � � ∼41.6% ∼0% ∼43.8% � � �
BrðH� → W�ð�ÞH0Þ ∼100% 100% ∼58.4% ∼100% ∼56.2% 100%
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However, we did not take them into account in the present
analysis. But as it has been discussed in [53], limits from
quasistable charged particle searches can be evaded if we
set an upper bound on the charged scalar lifetime of
τ ≤ 10−7 s, this implies a lower bound on the total decay
width of the charged scalar of ΓHþ ≥ 6.582 × 10−18 GeV,
which is respected by our BPs.
It should be mentioned that we assume that IDM alone is

not sufficient to accommodate the whole dark matter
content of the Universe, therefore, we only demand that
the relic density of IDM is smaller than the one required by
experiments. As a matter of fact, there might be other extra
sectors that can contribute to the relic density of the
Universe but have not been taken into account in this
work. One example is the right-handed neutrino sector,
another possible candidate for dark matter are the axion or
axionlike particles, and there could be others as well.
Coupling constants and decay information are also pre-
sented in the table. In order to examine the radiative effects
of weak interactions, we have deliberately proposed three
BPs, i.e. BP2, BP4, and BP6, which are close to the
threshold region of certain c.m. energies of 250 GeV,
500 GeV, and 1 TeV, respectively.
There are a few comments on the features of these

benchmark points. (1) According to our previous findings
given in [85], it is found that both A0 andH0 can be the dark
matter candidates. For the sake of simplicity, in these BPs,
we assume that the dark matter candidate is H0. (2) For
BP2, the charged scalar has a long life time, which can
trigger the signature of a displaced vertex caused by a
massive charged particle. For BP3 and BP5, the A0 has a
long life time, which can trigger the signature of a displaced
vertex caused by a neutral heavy particle. While for the rest
of BPs, both A0 and H� can promptly decay when
produced. (3) For BP1 and BP4, the extra invisible decay
mode h0 → H0H0 can be open, which will lead to a larger
invisible decay branching for the SM-like Higgs boson.
According to the CDR of CEPC [155] and a recent
Monte Carlo study [156], the future Higgs factory of
CEPC with

ffiffiffi
s

p ¼ 250 GeV could have the potential to
determine the branching fraction of the invisible decay of
h0 down to 0.3%. Therefore, it is possible to probe BP1 at
the CEPC with

ffiffiffi
s

p ¼ 250 GeV not only through e−eþ →
HþH− but also via the process e−eþ → Zh0.
Another comment is on the decay widths of charged

scalars. When decay widths are tiny, the narrow width
approximation is appropriate, as benchmark points 1–4 and
5 are narrow enough since decay widths are only 1% of
masses. For the case where decay widths are not tiny, as
benchmark point 6 demonstrated, where decay width is
around 4% of its mass, then the narrow width approxima-
tion might not be precise enough to describe the production
HþH− and the consequent decay products. A better method
to describe eþe− → HþH− → WþW−H0H0 is to include
the decay widths of H� in the matrix elements, instead of

producing eþe− → HþH− and then decaying H� to
W�H0. Nonetheless, when its decay width is 10% smaller
than its mass, our numerical calculation demonstrate, the
difference is acceptable. Only when its decay width is too
big, say larger than 20%, the cross section in this case
should be computed carefully. Furthermore, we have
explored the dependence of the decay width on the charged
scalar mass, and we have found that the total decay width of
the charged scalar over its mass in scenario III cannot
exceed 5%.
In Table V, weak corrections, QED corrections, the LO

and full one-loop cross sections of these BPs are provided.
Generally speaking, at

ffiffiffi
s

p ¼250GeV and
ffiffiffi
s

p ¼ 500 GeV,
the weak corrections are negative since the size (absolute
value) of the λh0HþH− coupling is small (say from −1.5 to
1.5), as shown in Fig. 4. Only when the charged scalar is
heavy enough (say 450 to 500 GeV) and the absolute value
of the λh0HþH− coupling can be large (say from −10 to 2 for
scenario II and from −8 to 1 for scenario III), the weak
corrections Δweak can be positive when the masses of
charged scalar are close to the threshold region whenffiffiffi
s

p ¼ 1000 GeV, as demonstrated by BP6. It should be
mentioned that the positive contribution comes from
diagrams with charged scalars in the loop.
From the above table, one can see that at the eþe−

colliders, in BP1, BP2, BP4, and BP6, eþe− → HþH−

would lead to WþW−H0H0 final state, which in turn could
lead to a final state with dileptons andmissing energy.While
for BP3 and BP5 one could have the following final states:
HþH− → WþW−H0H0 or HþH− → WþW−H0A0 →
WþW−Z0H0H0, which could give dilepton events as well
as multileptons.
At the LHC, the situation is slightly different because we

have the following production mechanisms for charged
scalar: pp → HþH−, pp → HþH0, and pp → HþA0. For
the charged scalar pair production, similar final states as
for eþe− → HþH− can be obtained. While the process

TABLE V. Weak corrections, QED corrections, the LO and full
one-loop cross sections of BPs are provided.ffiffiffi
s

p
(GeV) BP σ0 (fb) Δweakð%Þ ΔQEDð%Þ σNLO (fb)

250 BP1 23.940 −5.941 −0.138 22.484
BP2 2.300 −4.825 −0.475 2.178

500 BP1 86.733 −7.267 0.261 80.655
BP2 82.604 −6.373 0.247 77.543
BP3 20.593 −9.213 0.033 18.703
BP4 1.446 −2.842 −0.332 1.400

1000 BP1 28.563 −10.631 0.421 25.647
BP2 28.280 −9.360 0.409 25.749
BP3 23.284 −13.896 0.286 20.115
BP4 20.715 −10.987 0.249 18.491
BP5 16.365 −14.023 0.194 14.102
BP6 1.092 11.543 −0.174 1.216
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pp → HþH0 (respectively, pp → HþA0) would give
WþH0H0 (respectively, WþH0A0 → WþZ0H0H0), or
WþA0H0 → WþZ0H0H0 (respectively, WþA0A0 →
WþZ0Z0H0H0), which leads to final states with single/
multileptons and missing energy. At the LHC, it should be
pointed out that in order to pinpoint the electroweak
corrections, the QCD corrections should first be reliably
calculated, which are typically quite large.
Moreover, there are two more comments on our BPs:

(1) We have checked our BPs in Table IV and confirmed
that they can survive even in light of the new direct
detection results from the LUX-ZEPLIN Experiment
[157]. (2) For multicomponent dark matter situations, a
scaling factor is included in Ref. [56]; however, this factor
is not taken into account in our work. Such a factor will
ease the restrictions from direct search because we require
that the relic density from IDM is not greater than the one
from Planck data. Based on the fact that our BPs have
already passed all the constraints in our analysis, it is easy
to conclude that they will all survive if the factor is
included.

VI. CONCLUSIONS AND DISCUSSIONS

IDM is a simple model that can solve the problem of dark
matter. Such a model predicts a charged scalar in its
spectrum. The observation of such charged scalar either
at LHC or at the future eþe− colliders would be a
conclusive evidence of physics beyond SM.
Future eþe− colliders would provide an opportunity to

measure the charged scalar cross section and its properties
precisely. Following the standard renormalization scheme
of the SM, in this work, we study the radiative corrections
of the new physics process e−eþ → HþH− in the IDM.
The dimensional regularization is used to evaluate the one-
loop Feynman amplitudes in the Feynman–’t Hooft gauge.
We employed comprehensive on-shell scheme renormali-
zation, which means that not only the particle masses and
fields, but also the coupling constant, were renormalized
using on-shell conditions. As a consequence, our predic-
tions are totally independent of the renormalization scale
μr. Nevertheless, a new scale mZ is introduced via Eq. (22)
where the large logarithms from light fermions are
absorbed into the redefinition of the running coupling
constant. The running coupling constant is changed from
1=137.036 to 1=128.943 correspondingly. This yields a
13% difference in the LO predictions. But this new scale
dependence is greatly reduced at the NLO.
We have considered the QED corrections and checked

that the IR divergences cancel when we add the virtual and
real photon emissions. We have also used the resummed
cross section to cure the well known Coulomb singularity.
In addition, collinear divergences in our calculation appear
as terms proportional to logðmeÞ. After including the
counter term from the structure function of an electron,
such divergent terms should vanish in the final result.

In order to check this, we vary the mass of the electron
by a factor of k from 2−6 to 26, namely me is taken
k × 0.511 MeV. It is found that the result remains
unchanged when k varies.
We have examined the size of the weak corrections for

three representative c.m. energies:
ffiffiffi
s

p ¼ 250,
ffiffiffi
s

p ¼ 500,
and

ffiffiffi
s

p ¼ 1000 GeV. After taking into account the theo-
retical constraints and experimental bounds for the scenario
III, we have found that the weak corrections are still sizable;
i.e. the weak corrections are around −6% ∼ −5% forffiffiffi
s

p ¼ 250 GeV, −10% ∼ −3% for
ffiffiffi
s

p ¼ 500 GeV, and
−15% ∼þ25% for

ffiffiffi
s

p ¼ 1000 GeV, as shown in Fig. 4.
The origin of those sizable corrections is the h0HþH−

coupling which could become large for some configuration
of the parameters. We have shown that the size of the
radiative corrections, are typically of the order 5–25%,
which makes their proper inclusion in any phenomenologi-
cal studies and analyses for eþe− colliders indispensable.
From those allowed parameter points, we have proposed

six benchmark points as given in Table IV for future lepton
collider searches. We provide the parameters, the total
decay width, as well as the branching fractions of the
neutral and charged scalars. According to those BPs, we
have also discussed the signature of eþe− → HþH−

followed by the charged scalar decays and show that it
would lead to a final state with multileptons and missing
energy. At the LHC, one can get similar signatures through
pp → H�H∓;H�A0;H�H0 production.
It was noteworthy that initial state radiation can reduce

the production rate of the process eþe− → Zh0 for
ffiffiffi
s

p ¼
240=250 GeV by a factor of 10% or so [158], according to
the simulation done with the public code WHIZARD [159].
For the process eþe− → HþH−, the NLO cross section σ1

satisfies σ1 ¼ jM0 þM1j2 ≈ jM0j2 þ 2ReðM0M1�Þ, hence
the initial state and final state radiations are simply linearly
summed in the matrix element of M1. Therefore, at the
OðαÞ order, the initial state radiation of the process eþe− →
HþH− is just the same as that of the process eþe− → Zh0,
i.e. such a reduction in the production rate also holds for
the process eþe− → HþH− for

ffiffiffi
s

p ¼ 240=250 GeV. The
reduction can be around−10% in theMZ scheme, as shown
in Ref. [160] for

ffiffiffi
s

p ¼ 240 GeV. While for the cases
ffiffiffi
s

p ¼
500 GeV and

ffiffiffi
s

p ¼ 1 TeV, due to the effects of radiative
return [161–163], it is expected that the initial state
radiation can enhance the cross section of eþe− →
HþH− when mH� is small, as in the cases of BP1 and BP2.
Meanwhile, at the OðαÞ order, the initial state radiation

and final state radiation can be treated individually. In order
to cure the Coulomb singularity arising from the final state
interaction, the final state radiations can be partially
resumed, and the cross section can be modified as given
in Eq. (37). In terms of our numerical results given in
Table I, the Coulomb singularity can be reliably removed.
And the resummation effect is represented by the factor
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jϕð0Þj2. Thus the final state radiation can be correctly
evaluated, which can increase the total cross section by a
factor from 1% to 49%. It reaches its maximum when
the invariant mass of the pair of charged scalar approaches
the total collision energy, as shown in Table I forffiffiffi
s

p ¼ 500 GeV.
For higher order OðαÞ corrections, there exist interfer-

ence terms between initial state radiation and final state
radiation, appropriate treatment of these two radiations is
beyond the scope of current work.
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APPENDIX A: DETAILS ABOUT THE
RENORMALIZATION OF CHARGE

As mentioned in the main text, we have used an “on-
shell” renormalization scheme not only for the masses and
fields of particles but also for the charge. By adopting this
approach, our results are independent of the renormaliza-
tion scale μr. However, in order to resum the large
logarithms arising from light fermions vacuum polariza-
tion, a new scale Q ¼ mZ is introduced. Further details are
presented below.
The electric charge renormalization is carried out follow-

ing Refs. [134,135]. The renormalization constant is
obtained in the Thomson limit with the condition by
imposing the condition

ūðpÞΓ̂eeγ
μ ðp; pÞuðpÞjp2¼m2

e
¼ ieūðpÞγμuðpÞ; ðA1Þ

which gives

δZeð0Þ ¼ −
1

2
δZAA −

sW
cW

1

2
δZZA

¼ 1

2
Πð0Þ − sW

cW

P
AZ
T ð0Þ
m2

Z
; ðA2Þ

where the renormalization constants are defined as follows
(bare quantities are denoted by a subscript “0”):

e0με ¼ Zeeμεr ¼ ð1þ δZeÞeμεr;�
Z

A

�
0

¼
�
1þ 1

2
δZZZ

1
2
δZZA

1
2
δZAZ 1þ 1

2
δZAA

��
Z

A

�
: ðA3Þ

Here ε≡ ð4 −DÞ=2 with D being the space-time dimen-
sion, μ is the arbitrary mass parameter introduced for bare
charge, μr is the renormalization scale of charge, e0 is the
bare dimensionless charge and e is the renormalized one.
For the remaining quantities in Eq. (A2), “Π” is defined as

Πðk2Þ≡
P

AA
T ðk2Þ
k2

;

Πð0Þ ¼ lim
k2→0

P
AA
T ðk2Þ
k2

¼ ∂
P

AA
T ðk2Þ
∂k2

����
k2¼0

; ðA4Þ

and
PAAðAZÞ

T denotes the transverse part of the AAðAZÞ
self-energy. This is just the “zero-momentum” scheme in
Ref. [152].
It should be noted that in the calculation of Πð0Þ,

nonperturbative strong interaction effects cannot be
neglected. In order to treat them properly, we first introduce
a universal quantity:

ΔαðQÞ≡ Πð0Þ − ReΠðQ2Þ ðA5Þ

to denote the difference of Πs when the external photon is
on shell and off shell, respectively. Here Q satisfies
Q2 ¼ k2 where k is the momentum of an off-shell external
photon. At the one-loop level, it is easy to separate this Δα
into several parts according to the particles inside the
photon’s self energy, i.e.

Δα ¼ ðΔαÞf þ ðΔαÞb; ðA6Þ
where the labels “f” and “b” are used to denote the
contributions from fermions and bosons. For the conven-
ience of discussion below, the ðΔαÞf part can further be
expressed as

ðΔαÞf ¼ ðΔαÞl þ ðΔαÞð5Þq þ ðΔαÞtop ðA7Þ
and the labels “l,” “q,” and “top” are used to denote the
contributions from leptons, light quarks and top quarks,

respectively. Here “5” in ðΔαÞð5Þq refers to the number of
quark flavors. Π can also be separated in the same way, so
we will also apply the labels to Π.
Since we are trying to treat the nonperturbative effects

in Πð0Þ, we focus on the “q” part here, which can be
expressed as

ðΔαÞð5Þq ðQÞ ¼ Πð5Þ
q ð0Þ − ReΠð5Þ

q ðQ2Þ: ðA8Þ

Although Πð5Þ
q ð0Þ can be calculated perturbatively, it is

unreliable due to its nonperturbative nature at low energy
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regions. Hence we try to exact it from data. At the scale
Q ¼ mZ, the lhs of Eq. (A8) can be obtained from
experiment measurements using the dispersion relation, i.e.

ðΔαÞð5Þq ðmZÞ ¼ ðΔαÞð5ÞhadronðmZÞ: ðA9Þ

Here ðΔαÞð5ÞhadronðmZÞ is the experimental data and its value

can be found from PDG [120] as Δαð5ÞhadronðmZÞ ¼ 0.02764.

Meanwhile at this scale Πð5Þ
q ðm2

ZÞ, the second term on the
rhs of Eq. (A8), can be reliably computed by the perturba-
tion expansion. Combing these with Eq. (A8), we have

Πð5Þ
q ð0Þ ¼ ReΠð5Þ

q ðm2
ZÞ þ Δαð5ÞhadronðmZÞ; ðA10Þ

in which the nonperturbative effects have been properly
included. Then Πð0Þ is obtained as

Πð0Þ ¼ Πð5Þ
q ð0Þ þ Πrestð0Þ

¼ ReΠð5Þ
q ðm2

ZÞ þ Δαð5ÞhadronðmZÞ þ Πrestð0Þ: ðA11Þ

Here “rest” denotes the contribution of “l,” “top,” and
“b” parts.
Once Πð0Þ is determined by Eq. (A11), the renormal-

ization of charge defined by Eq. (A2) corresponds to the
electromagnetic fine-structure constant obtained in the
Thomson limit: αð0Þ ¼ 1=137.036.
As pointed out in Sec. 8.2.1 of Ref. [134], the above

renormalization of charge [labeled as αð0Þ scheme for
convenience] is carried out at zero momentum transfer,
where the relevant scale is set by the masses of fermions.
They are much smaller than the relevant scales in high
energy experiments. Hence, when working on processes in
high energy experiments, such as this work, the large ratio
of these different scales will cause large logarithms. These
large logarithms can be summarized in the universal
quantity introduced above, ΔαðQÞ.
The leading logarithms in Δα arise from fermionic

contributions and can be correctly resummed to all orders
in perturbative theory by the replacement:

1þ ðΔαÞLL →
1

1 − ðΔαÞLL
; ðA12Þ

where a label “LL” is used to denotes the leading
logarithms.
Meanwhile, since not only the leading logarithms but

also the whole fermionic contributions are gauge invariant,
we can resum the latter, i.e.

1þ Δα ¼ 1þ ðΔαÞf þ ðΔαÞb
→

1

1 − ðΔαÞf
þ ðΔαÞb: ðA13Þ

On the other hand, the large logarithms in Δα originate
from the renormalization constant δZeð0Þ given in
Eq. (A2); hence they will appear wherever α appears in
lowest order and can be taken into account by replacing the
lowest order α by a running αðQÞ as

αlowest ¼ αð0Þ → αðQÞ ¼ αð0Þ
1 − ðΔαðQÞÞf

: ðA14Þ

Here a subscript “lowest” is used to denote the lowest order
α. This replacement can be taken as an effective renorm-
alization of α at momentum transferQ2. More details about
this part can be found in Refs. [134,135]. In our work, we
set the relevant scale Q to mZ and resum over the
contribution from light fermions, namely the running
coupling constant is defined as

αðmZÞ ¼
αð0Þ

1 − ðΔαðmZÞÞf≠top
; ðA15Þ

Here the label “f ≠ top” denotes the contributions from
light fermions, which are just the sum of ðΔαÞlepton and

ðΔαÞð5Þq in Eq. (A7). This is how our αðmZÞ scheme is
introduced. And it is regarded as an “on-shell” definition of
the running coupling constant at the scalemZ following the
notation in PDG [120]. Corresponding renormalization
constants can be derived easily with Eq. (A15), which is

δZeðmZÞ ¼ δZeð0Þ −
1

2
ðΔαðmZÞÞf≠top: ðA16Þ

The above discussion is based on our choice of physical
parametrization, fα; mW;mZg. Sometimes people use the
Fermi constant GF as an input. Here we try to discuss
the uncertainties arising from different input schemes. The
relationship between GF and above parameters is already
well known, which is

GF ¼ παð1þ ΔrÞffiffiffi
2

p
m2

W

�
1 − m2

W
m2

Z

	 : ðA17Þ

Δr can be calculated perturbatively. It vanishes at LO and
its expression at NLO can be found in Ref. [134]. Here we
take GF as an observable, which is used to extract the value
of certain renormalized physical parameter(s). The renorm-
alization scheme in this case is exactly the same as the αð0Þ
scheme.
If the input scheme is fα; GF;mZg, then this means the

mass of W boson has to be extracted with Eq. (A17).
However, there are some difficulties in this extraction:
(1) There are new physics contributions in Δr, which

make it vary in the IDM parameter space.
(2) Δr itself also depends on mW .
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Hence, we use its SM value Δr ¼ 0.03652 [120] as an
approximation to estimate mW , which leads to

mW ¼mZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
−
παð1þΔrÞffiffiffi

2
p

GFm2
Z

svuut ≈80.382GeV: ðA18Þ

It is very close to the value of mW we use in the
fα; mW;mZg scheme, which means the four inputs are
precisely consistent. This indicates that the difference
between these two schemes is negligible.
If the input scheme is fGF;mW;mZg, then the situation

is similar, since we have verified the consistency of the four
inputs. However, in this case, similar to what we have done
in Eq. (A14), we can introduce another effective coupling
constant, which is

αGF
¼ α

1 − Δr
≈ αð1þ ΔrÞ: ðA19Þ

The value of αGF
can be obtained directly from Eq. (A17),

with no more approximation. We replace all the α with this
αGF

in our calculation. This can also be taken as an effective
renormalization of α, with the renormalzation constant

δZejGF
¼ δZeð0Þ −

1

2
Δr: ðA20Þ

Since Δr also contains Πð0Þ, it will cancel with the one in
δZeð0Þ. Hence δZejGF

no longer contains Πð0Þ, and the
large logarithms discussed above are also resummed in this
αGF

scheme.

We list all the cases discussed above in Table VI. Cases 3
and 4 are very similar to case 1 due to the precise
consistency among the four inputs. Hence, we skip them
and consider the others. We choose a certain point in the
IDM parameter space and calculate the cross section in
three renormalization schemes. The results are shown in
Table VII. It can be observed that scheme dependence is
greatly reduced at the NLO. However, it should be pointed
out that the difference in the relative corrections is quite
large, which originates from the difference in the LO
results. Hence, when focusing on relative corrections,
the difference in the LO results should be considered.
And this can be easily estimated by the values of α in the
table. For example, the relative correction in αðmZÞ scheme
can be converted to αð0Þ (αGF

) scheme approximately by
adding an extra piece of 12.9% (5.1%). After this, it can be
seen that the difference in the remaining parts is around 1%,
and is consistent with the difference in the NLO cross
sections.

APPENDIX B: WAVE FUNCTION
RENORMALIZATION

At the end of this section, we provide the explicit
expression for δZH�, the only needed renormalization
constant from the inert section in this work. It can be
separated into four parts according to the boson inside the
self-energy, namely

δZH� ¼ δZW=G
H� þ δZZ=G

H� þ δZγ
H� þ δZh

H� ; ðB1Þ

with

TABLE VI. Several cases with different input and renormalization schemes are defined.

Case 1 2 3 4 5

Input fα; mW;mZg fα; mW;mZg fα; GF;mZg fGF;mW;mZg fGF;mW;mZg
Renormalization αð0Þ αðmZÞ αð0Þ αð0Þ αGF

TABLE VII. Cross sections and relative corrections in different renormalization schemes are presented. The unit
of cross sections is fb. IDM parameters are chosen as mH ¼ mA ¼ mH� ¼ 200 GeV, λ2 ¼ 2, and μ22 ¼ 0. Values of
the four inputs are taken as αð0Þ ¼ 1=137.036, mW ¼ 80.379 GeV, mZ ¼ 91.1876 GeV, and
GF ¼ 1.1663787 × 10−5 GeV−2.

Case Scheme α−1 σ0 σ1QED σ1WEAK σ1 σNLO Δð%Þ
1 αð0Þ 137.036 23.678 0.468 1.528 1.996 25.674 8.43
2 αðmZÞ 128.943 26.744 0.562 −1.523 −0.961 25.783 −3.59
5 αGF

132.184 25.448 0.522 0.128 0.650 26.098 2.55
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δZW=G
H� ¼ α

4π
×

1

4s2W
fðB0½m2

H� ; m2
A0 ; m2

W � þ B0½m2
H� ; m2

H0 ; m2
W �Þ − 2ðB1½m2

H� ; m2
A0 ; m2

W � þ B1½m2
H� ; m2

H0 ; m2
W �Þ

− 2m2
H�ðB0

1½m2
H� ; m2

A0 ; m2
W � þ B0

1½m2
H� ; m2

H0 ; m2
W �Þ þ ½ðm2

A0 þm2
H�Þ − ðm2

A0 −m2
H�Þ2=m2

W �B0
0½m2

H� ; m2
A0 ; m2

W �
þ ½ðm2

H0 þm2
H�Þ − ðm2

H0 −m2
H�Þ2=m2

W �B0
0½m2

H� ; m2
H0 ; m2

W �g;
δZZ=G

H� ¼ α

4π
× g2HfB0½m2

H� ; m2
H� ; m2

Z� − 2B1½m2
H� ; m2

H� ; m2
Z� þ 2m2

H�B0
0½m2

H� ; m2
H� ; m2

Z� − 2m2
H�B0

1½m2
H� ; m2

H� ; m2
Z�g;

δZγ
H� ¼ α

4π
× fB0½m2

H� ; 0; m2
H�� − 2B1½m2

H� ; m2
H� ; 0� þ 2m2

H�B0
0½m2

H� ; 0; m2
H�� − 2m2

H�B0
1½m2

H� ; m2
H� ; 0�g;

δZh
H� ¼ α

4π
×
−ðm2

H� − μ22Þ2
m2

Ws
2
W

B0
0½m2

H� ; m2
h0 ; m

2
H��; ðB2Þ

and

B0
i½m2

H� ; m2
1; m

2
2�≡ ∂Bi½k2; m2

1; m
2
2�

∂k2

����
k2¼m2

H�

: ðB3Þ

Here the two-point functions B0 and B1 are defined as

B0½p2
1; m

2
1; m

2
2� ¼

ð2πμrÞ4−D
iπ2

Z
dD

1

ðq2 −m2
1Þððqþ p1Þ2 −m2

2Þ
;

B1½p2
1; m

2
1; m

2
2� ¼

1

2
fA0½m2

1� − A0½m2
2� − ½p2

1 þm2
1 −m2

2�B0½p2
1; m

2
1; m

2
2�g ðB4Þ

with μr being the renormalization scale and A0 being the
one-point function given by

A0ðm2
1Þ ¼

ð2πμrÞ4−D
iπ2

Z
dDq

1

q2 −m2
1

: ðB5Þ

In our work, as shown in Eq. (A3), the mass parameter μ in
bare charge is replaced by μr after the renormalization.
Consequently, μr appears instead of μ in above one- and
two-point functions.

APPENDIX C: MORE DETAILS ABOUT
TREATMENT ON IR DIVERGENCES

As mentioned in the main text, IR divergences in this
work are regularized with a small fictitious photon mass λ.
Meanwhile, two cutoffs, ΔE and Δθ, are introduced to deal
with the IR singularities in real correction processes based
on the two cutoff phase space slicing method [139]. The
three-body phase space of the real correction process
eþe− → HþH−γ is then divided into three parts:
(1) Soft (S) part: Where the energy of photon Eγ is

smaller than ΔE.

(2) Hard collinear (HC) part: Where Eγ ≥ ΔE and the
angle between photon and the beam θγ is smaller
than Δθ.

(iii) Hard noncollinear (HC̄) part: The remaining, which
is finite.

The full NLO corrections are then separated into four parts,
as given in Eq. (C1):

dσ1 ¼ dσVðλÞ þ dσSðλ;ΔEÞ þ dσHCþCTðΔE;ΔθÞ
þ dσHC̄ðΔE;ΔθÞ: ðC1Þ

Here dσV denotes the virtual correction, including loop
diagrams and counter terms from renormalization. And CT
in the third term of rhs denotes the extra contribution
arising from the structure function of the incoming electron
and positron.
In our work, the first two parts, dσV and dσS, are

obtained using FeynArts and FormCalc [145–147] packages,
in which numerical evaluations of the scalar integrals are
done with LoopTools [148,149]. The other two parts,
dσHCþCT and dσHC̄, are obtained with the help of FDC
[150] and BASES [151].
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The soft part is calculated in the soft limit. After the phase space integration of the soft photon, it can be expressed as the
product of a factor and the LO result. The result of this part can be found in the literature [102,106]. For completeness, we give
the analytical expressions here:

dσS ¼ −
α

π
dσ0 ×



4 log

2ΔE
λ

− 2 log
2ΔE
λ

log
s
m2

e
þ log

m2
e

s
þ π2

3
þ 1

2
log2

m2
e

s

þ 1þ β2

β
log

2ΔE
λ

log

�
1 − β

1þ β

�
þ 1

β
log

�
1 − β

1þ β

�
þ 1þ β2

β

�
Li2

�
2β

1þ β

�
þ log2

�
1 − β

1þ β

��

þ 4 log
2ΔE
λ

log
m2

H� − u

m2
H� − t

þ 2

�
Li2

�
1 −

sð1 − βÞ
2ðm2

H� − tÞ
�
þ Li2

�
1 −

sð1þ βÞ
2ðm2

H� − tÞ
�

−Li2
�
1 −

sð1 − βÞ
2ðm2

H� − uÞ
�
− Li2

�
1 −

sð1þ βÞ
2ðm2

H� − uÞ
���

; ðC2Þ

where Li2 represents the known dilogarithm function.
FormCalc has the option to include soft bremsstrahlung
automatically when calculating the virtual corrections. We
have confirmed that the results from FormCalc are consistent
with the above expression. Meanwhile, by varying the value
of λ inside FormCalc, we confirm the λ independence of our
results.
The hard noncollinear part, dσHC̄, needs no more special

treatment. It is obtained using traditional Monte Carlo
integration techniques with the FDC package, in which
BASES [151] is used for multidimensional numerical
integration.
The hard collinear part is obtained in the collinear

limit as

dσHC¼
α

2π

�
1þ z2

1−z
log

Δθ2þ4m2
e=s

4m2
e=s

−
2z
1− z

Δθ2

Δθ2þ4m2
e=s

�
×dσ0ðzp1Þdzþðp1⇔p2Þ: ðC3Þ

Here z denotes the energy fraction of the electron (positron)
after the emission of collinear a photon; hence, 0 ≤ z ≤
1 − δs. We have used a dimensionless parameter δs ¼
2ΔE=

ffiffiffi
s

p
to replace ΔE. We have used dσ0 ≡

dσ0ðp1; p2Þ, dσ0ðzp1Þ≡ dσ0ðzp1; p2Þ, and dσ0ðzp2Þ≡
dσ0ðp1; zp2Þ for convenience.
It is found that in the limit Δθ2 ≫ m2

e=s, the hard
collinear part given in Eq. (C3) can be expressed in a
simpler form as given below

dσHC ⟶
Δθ2≫m2

e=s α

2π

�
1þ z2

1 − z
log

Δθ2s
4m2

e
−

2z
1 − z

�
× ½dσ0ðzp1Þ þ dσ0ðzp2Þ�dz: ðC4Þ

We will use the form given in Eq. (C4) as our default
formula to compute the full cross section given in Eq. (C1).
It is interesting to explore the difference between the results

of Eqs. (C3) and (C4), and we will explore this issue near
the end of this section.
One-loop radiation correction includes collinear singu-

larities, which lead to terms proportional to logðmeÞ. Some
of them are canceled when summing up virtual and real
corrections. Some of them are absorbed into the redefini-
tion of the running coupling constant, as shown in
Eq. (A15). But there are still some remaining. To deal
with this, the structure function approach [164] is applied.
According to the approach, the cross section of eþe−
annihilation can be expressed as

dσ̄eþe−ðp1; p2Þ ¼
X
ij

dx1dx2fieþðx1; Q̄2Þfje−ðx2; Q̄2Þ

× dσijðx1p1; x2p2Þ: ðC5Þ

Here fiaðx; Q̄2Þ is the so-called structure function, which
denotes the possibility to find parton iwith energy faction x
from particle a at scale Q̄. In Eq. (C5), all remaining
collinear singularities are absorbed into the structure
functions and resummed there. The parton-level cross
section dσij is then free of those large logarithms. The
particle-level cross section dσ̄eþe− is obtained by convolut-
ing the partonic cross section with the structure functions.
This factorization theorem is extended from QCD with
i; a∈ feþ; e−; γg. Strictly speaking, what we are studying
in this work is the parton-level cross section of HþH−

production only. Since we are interested in the NLO
corrections in the whole parameter space, this is sufficient.
But if we want to study the exact cross section of
production, convolution with the structure functions is
needed.
In QED, all the structure functions fiaðx; Q̄2Þ are

perturbatively calculable. They can be expanded into a
series of α, namely

fiaðx; Q̄2Þ ¼ f0iaðx; Q̄2Þ þ f1iaðx; Q̄2Þ þOðα2Þ: ðC6Þ
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Meanwhile it is obvious that the first term in above
expansion always takes the form

f0iaðx; Q̄2Þ ¼ δð1 − xÞδia: ðC7Þ

Based on this, in this work up to one-loop level, Eq. (C5)
can be rewritten into (using fee ≡ fe−e− ¼ feþeþ)

dσ̄eþe−ðp1; p2Þ ¼ dx1dx2feeðx1; Q̄2Þfeeðx2; Q̄2Þ
× dσeþe−ðx1p1; x2p2Þ: ðC8Þ

Expanding both sides of Eq. (C8) to NLO and applying
Eq. (C7), it is easy to find

dσ̄0eþe−ðp1;p2Þ¼ dσ0eþe−ðp1;p2Þ;
dσ̄1eþe−ðp1;p2Þ¼ dσ1eþe−ðp1;p2Þ

þdx1f1eeðx1; Q̄2Þdσ0eþe−ðx1p1;p2Þ
þdx2f1eeðx2; Q̄2Þdσ0eþe−ðp1;x2p2Þ; ðC9Þ

which leads to

dσ1eþe−ðp1; p2Þ ¼ dσ̄1eþe−ðp1; p2Þ
− dzf1eeðz; Q̄2Þ½dσ0eþe−ðzp1; p2Þ
þ dσ0eþe−ðp1; zp2Þ�: ðC10Þ

The latter term on the rhs is just the counterterm men-
tioned above.
On the other hand, fee satisfies following equation [164]:

feeðx; Q̄2Þ ¼ δð1 − xÞ þ
Z

Q̄2

m2
e

αðQ̄2
1Þ

2π

dQ̄2
1

Q̄2
1

Z
1

x

dz
z
Pþ
eeðzÞ

× fee

�
x
z
; Q̄2

1

�
; ðC11Þ

with

Pþ
eeðzÞ ¼

1þ z2

ð1 − zÞþ
þ 3

2
δð1 − zÞ; ðC12Þ

being the regularized Altarelli-Parisi splitting function.
This equation can be solved recursively according to the
power of α, which leads to

f1eeðx; Q̄2Þ ¼ α

2π
log

Q̄2

m2
e
Pþ
eeðxÞ: ðC13Þ

In this work, the scale Q̄ is taken as the energy of beam in
the center-of-mass frame, Q̄ ¼ ffiffiffi

s
p

=2. The CT parts are
finally obtained via Eqs. (C10) and (C13) as [after same
notations as in Eq. (C3) are taken]

dσCT ¼ −
α

2π
log

s
4m2

e
Pþ
eeðzÞ½dσ0ðzp1Þ þ dσ0ðzp2Þ�dz;

ðC14Þ

with 0 ≤ z ≤ 1.
The combination of dσHC and dσCT can be separated into

two parts according to the range of z, dσHCþCT ¼
dσ�HCþCT þ dσSC. In the range 0 ≤ z ≤ 1 − δs, it gives

dσ�HCþCT ¼ α

2π

�
1þ z2

1 − z
logΔθ2 −

2z
1 − z

�
× ½dσ0ðzp1Þ þ dσ0ðzp2Þ�dz; ðC15Þ

while in the range 1 − δs ≤ z ≤ 1, it gives (only dσCT
contributes to this part)

dσSC ¼ −
α

π
log

s
4m2

e

�
3

2
þ 2 log δs

�
dσ0: ðC16Þ

Now all the parts in Eq. (C1) are available.
It should be stressed that ΔE (δs) and Δθ are unphysical

cutoffs we introduced to deal with IR and collinear
singularities. Our final results should not depend on them.
In order to check this, we choose a certain point (same as
the one used in Table VII) in the IHDM parameter space
and compare the NLO corrections σ1 obtained with differ-
ent cutoffs. The results are shown in Fig. 5, with corre-
sponding data in Tables VIII and IX.
From the first subfigure, it can be seen that the

independence on δs is found in a wide range and δs ¼
10−3 is used as our default choice.
Collinear divergences in our calculation appear as terms

proportional to logðmeÞ. After including the counterterm
from the structure function of an electron, such divergent
terms should vanish in the final result. In order to check
this, we vary the mass of the electron by a factor of k from
2−6 to 26, namely me is taken k × 0.511 MeV. The
cancellation is shown in the second subfigure of Fig. 5,
from which we can see that the result remains unchanged as
k varies. Furthermore, singular terms appear only in the
σVþS and σSC parts.
In the third subfigure, we can see that the result becomes

cut dependent when Δθ is smaller than 10−4. It can be
attributed to the fact that Eq. (C4) can only hold when
Δθ ≫ me=

ffiffiffi
s

p
∼ 2 × 10−6.

It is interesting to compare the results computed by using
Eqs. (C3) and (C4), which are provided in Table IX. It is
clear that the result which is labeled by a superscript
“origin.” is almost independent of the values of Δθ (when
Δθ is small enough), and the difference between the results
calculated by using Eqs. (C3) and (C4) is tiny when Δθ is
chosen appropriately (say Δθ ∼ 10−3 or larger). In our
practical computation, we choose Δθ ¼ 10−3 in this work.
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In addition to the above checks for independence on λ,
δs, Δθ, and logðmeÞ, our results also passed many other
self-checks:
(1) The IDM model used in FDC is generated with its

own code. We have confirmed that both FDC and
FormCalc give the same results at LO.

(2) The soft part dσS has been calculated individually and
checked with analytic results, as mentioned before.

(3) The other parts of real emission, dσHCþCT and dσHC̄,
obtained with FDC are also tree-level calculations.
This part of FDC has been used in many other
calculations (see e.g. [165,166]).

TABLE VIII. Data used in the checks on the independence of δs andme in unit of fb are shown. The third column is obtained by using
Eq. (C4). Numbers in the brackets are integration errors to the last digits of the data.

δs σVþS σ�HCþCT σSC σHC̄ SUM

10−1 −6.364ð0Þ −1.047ð0Þ 5.371(0) 1.118(0) −0.922ð0Þ
10−2 −14.621ð0Þ −5.074ð1Þ 13.338(1) 5.399(0) −0.958ð1Þ
10−3 −22.878ð0Þ −9.531ð1Þ 21.304(1) 10.144(1) −0.961ð2Þ
10−4 −31.135ð0Þ −14.031ð2Þ 29.270(2) 14.935(1) −0.961ð3Þ
10−5 −39.392ð0Þ −18.536ð3Þ 37.237(2) 19.730(2) −0.961ð4Þ
k σVþS σ�HCþCT σSC σHC̄ SUM
2−6 −29.641ð0Þ −9.531ð1Þ 28.067(2) 10.144(1) −0.961ð2Þ
2−4 −27.387ð0Þ −9.531ð1Þ 25.813(1) 10.144(1) −0.961ð2Þ
2−2 −25.132ð0Þ −9.531ð1Þ 23.558(1) 10.144(1) −0.961ð2Þ
2−1 −24.005ð0Þ −9.531ð1Þ 22.431(1) 10.144(1) −0.961ð2Þ
20 −22.878ð0Þ −9.531ð1Þ 21.304(1) 10.144(1) −0.961ð2Þ
21 −21.751ð0Þ −9.531ð1Þ 20.177(1) 10.144(1) −0.961ð2Þ
22 −20.624ð0Þ −9.531ð1Þ 19.050(1) 10.144(1) −0.961ð2Þ
24 −18.370ð0Þ −9.531ð1Þ 16.795(1) 10.144(1) −0.962ð2Þ
26 −16.115ð0Þ −9.531ð1Þ 14.541(1) 10.144(1) −0.961ð2Þ

TABLE IX. Data used in the checks on the independence of Δθ in unit of fb are shown. The seventh column and the eighth column
with the superscript “origin.” denote the results by using Eq. (C3). In contrast, the third column and the sixth column denote the results
by using Eq. (C4). Numbers in the brackets are integration errors to the last digits of the data.

Δθ σVþS σ�HCþCT σSC σHC̄ SUM σ�;origin:HCþCT SUMorigin:

10−1 −22.878ð0Þ −3.605ð0Þ 21.304(1) 4.214(0) −0.965ð1Þ −3.605ð0Þ −0.965ð1Þ
10−2 −22.878ð0Þ −6.568ð1Þ 21.304(1) 7.180(1) −0.962ð2Þ −6.568ð1Þ −0.962ð2Þ
10−3 −22.878ð0Þ −9.531ð1Þ 21.304(1) 10.144(1) −0.961ð2Þ −9.531ð1Þ −0.961ð2Þ
10−4 −22.878ð0Þ −12.495ð2Þ 21.304(1) 13.107(1) −0.962ð2Þ −12.494ð2Þ −0.961ð2Þ
10−5 −22.878ð0Þ −15.458ð2Þ 21.304(1) 16.019(1) −1.013ð2Þ −15.406ð2Þ −0.961ð2Þ
10−6 −22.878ð0Þ −18.421ð2Þ 21.304(1) 17.459(2) −2.536ð3Þ −16.845ð2Þ −0.960ð3Þ

FIG. 5. One-loop corrections of eþe− → HþH− as functions of δs, k, and Δθ are demonstrated.
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(4) FormCalc is a public package that has been
used in many one-loop EW calculations (see e.g.
[167,168]) as well as in our previous works
[85,160].

(5) We have also checked our model file using the
output from FeynRules.

However, it should be noted that further cross-checks are
still important and welcome.
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