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It is well known that the SUð5Þ grand unified theory, with the standard model quarks and leptons unified
in 5̄ and 10 and the electroweak Higgs doublet residing in five-dimensional representations, leads to the
relation Yd ¼ YT

e between the Yukawa couplings of the down-type quarks and the charged leptons. We
show that this degeneracy can be lifted in a phenomenologically viable way when quantum corrections to
the tree-level matching conditions are taken into account in the presence of one or more copies of gauge
singlet fermions. The one-loop threshold corrections arising from heavy leptoquark scalar and vector
bosons, already present in the minimal model, and heavy singlet fermions can lead to realistic Yukawa
couplings, provided their masses differ by at least 2 orders of magnitude. The latter can also lead to a
realistic light neutrino mass spectrum through the type I seesaw mechanism if the color partner of the Higgs
stays close to the Planck scale. Most importantly, our findings demonstrate the viability of the simplest
Yukawa sector when quantum corrections are considered and sizable threshold effects are present.
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I. INTRODUCTION

After the remarkable realization of the potential unifica-
tion of the standard model (SM) gauge symmetries into a
single gauge symmetry nearly 50 years ago [1–3], it has
since become well established that the Yukawa sector of the
SM plays a pivotal role in determining the minimal and
viable configurations of grand unified theories (GUTs). The
latter’s potential to partially or completely unite quarks and
leptons, in conjunction with the simplest choice of the Higgs
field(s) in the Yukawa sector, often results in correlations
among the effective SM Yukawa couplings that are incon-
sistent with observations.
The most glaring and simplest example of the above is

the SUð5Þ GUTs with only five-dimensional (5 and 5̄)
Lorentz scalar(s) in the Yukawa sector in their ordinary
(supersymmetric) versions. Both lead to

Yd ¼ YT
e ; ð1Þ

at the scale of the unified symmetry breaking, namely,
MGUT, for the down-type quark and charged-lepton
Yukawa coupling matrices Yd and Ye, respectively. The

degeneracy between the two sectors predicted by Eq. (1) is
not supported by the GUT-scale extrapolated values of the
effective Yukawa couplings determined from the measured
masses of the down-type quarks and the charged leptons
[4,5]. The largest mismatch arises in the case of non-
supersymmetric theories in which the extrapolation of the
SM data implies yb=yτ ≈ 2=3, ys=yμ ≈ 1=5, and yd=ye ≈ 2,
at MGUT ¼ 1016 GeV.
Deviation from the degeneracy shown in Eq. (1) can be

achieved through several means: (a) expanding the scalar
sector [6–11], for instance, by introducing a 45-dimen-
sional Higgs field, or (b) incorporating higher-dimensional
nonrenormalizable operators [12–18], or (c) introducing
vectorlike fermions that mix with the charged leptons and/
or down-type quarks residing in the chiral multiplets of
SUð5Þ [19–28]. Each of these approaches alters the tree-
level matching condition, Eq. (1), and introduces new
couplings. These new couplings can be harnessed to obtain
effective Yukawa couplings compatible with the SM.
In this article, we present a rather simple approach to

alleviate the degeneracy between charged leptons and
down-type quarks. Our method involves incorporating
higher-order corrections to the tree-level matching condi-
tions for the Yukawa couplings. Nontrivial implications of
such corrections in the context of supersymmetric versions
of SOð10Þ GUTs have been pointed out in [29–31].1 In the
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1Nevertheless, the degeneracy, as in Eq. (1), is absent in these
models even at the tree level due to the presence of multiple
scalars containing the SM Higgs doublets.
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context of SUð5Þ, we show that the inclusion of such
corrections does not necessitate the introduction of new
fermions or scalars charged under the SUð5Þ for modifying
the tree-level Yukawa relations. This sets the present
proposal apart from the previous ones outlined as (a)–(c)
above. Specifically, we demonstrate that by expanding the
minimal nonsupersymmetric SUð5Þ framework to include
fermion singlets and accounting for threshold corrections to
the Yukawa couplings originating from these singlets, along
with the leptoquark scalar and vector components already
present in the minimal setup, a fully realistic fermion
spectrum can be achieved.

II. YUKAWA RELATIONS AT ONE LOOP

The Yukawa sector of the model is comprised of three
generations of 10, 5̄, and N generations of the gauge singlet
1Weyl fermions and a Lorentz scalar 5H. The most general
renormalizable interactions between these fields can be
parametrized as

LY ¼ 1

4
ðY1Þij10Ti C10j5H þ

ffiffiffi
2

p
ðY2Þij10Ti C5̄j5�H

þ ðY3Þiα5̄Ti C1α5H −
1

2
ðMNÞαβ1TαC1β þ H:c:; ð2Þ

with i, j ¼ 1, 2, 3 and α ¼ 1;…; N denotes the generations
and C is the usual charge-conjugation matrix. We have
suppressed the gauge and Lorentz indices for brevity. The
symmetric nature of the first term implies Y1 ¼ YT

1 .
Additionally, MN is the gauge invariant Majorana mass
of the singlet fermions alias the right-handed (RH)
neutrinos.
The SM quarks and leptons residing in the SUð5Þ

multiplets are identified as 10ab ¼ 1ffiffi
2

p ϵabcuCc , 10am ¼
− 1ffiffi

2
p qam, 10mn ¼ − 1ffiffi

2
p ϵmneC, 5̄a ¼ dCa , 5̄m ¼ ϵmnln, and

1 ¼ νC, where a, b, and c denote the color while m and n
are SUð2Þ indices. For the scalar, we define a color triplet
Ta ≡ 5aH and an electroweak doublet hm ≡ 5mH [32].
Decompositions of Eq. (2) then lead to the following
Yukawa interactions with the color triplet and Higgs:

−LðTÞ
Y ¼ ðY1Þij

�
uCTi CeCj þ 1

2
qTi Cqj

�
T − ðY3ÞiαdCTi CνCαT

− ðY2ÞijðuCTi CdCj þ qTi CljÞT� þ H:c: ð3Þ

and

−LðhÞ
Y ¼ ðY1ÞijqTi CuCj h̃þ ðY2ÞijqTi CdCj h�

þ ðY3ÞiαlTi CνCα h̃þ ðYT
2 ÞijlTi CeCj h� þ H:c:; ð4Þ

where h̃ ¼ ϵh and we have suppressed the SUð3Þ and

SUð2Þ contractions. Matching of LðhÞ
Y with the SM Yukawa

Lagrangian at tree level leads to Yu ¼ Y1 and Yd ¼ YT
e ¼

Y2 at the renormalization scale μ ¼ MGUT.
For the matching at one loop, the Yukawa couplings

receive two types of contributions. The first arises from the
vertex corrections involving the color triplet or the lep-
toquark gauge boson in the loop. The interaction of the
latter with the SM fermions originates from the unified
gauge interaction, and it is given by [4,5]

−LðXÞ
G ¼ gffiffiffi

2
p X̄μ

�
dCiσ

μli − q̄iσ̄μuCi − eCiσ
μqi
�
þ H:c:; ð5Þ

where X transforms as ð3; 2;−5=6Þ under the SM gauge
symmetry. The second type of contribution to the Yukawa
threshold correction is due to wave function renormaliza-
tion of fermions and scalar involving at least one of the
heavy fields in the loop.
The one-loop corrected matching condition for the

Yukawa couplings at a renormalization scale μ is given by

Yf ¼ Y0
f

�
1 −

Kh

2

�
þ δYf −

1

2
ðKT

fY
0
f þ Y0

fKfCÞ; ð6Þ

where f ¼ u, d, e, ν. The details of the derivation of the
above expression are outlined in Appendix A. In Eq. (6),
δYf are the finite parts of one-loop corrections to the
Yukawa vertex Yf, while Kf;fC;h are the finite parts of the
wave function renormalization diagrams involving heavy
particles in the loops evaluated in the MS scheme. Y0

f

denotes the tree-level Yukawa coupling matrix. As men-
tioned earlier,

Y0
u ¼ Y1; Y0

d ¼ Y2; Y0
e ¼ YT

2 ; Y0
ν ¼ Y3; ð7Þ

at μ ¼ MGUT.
Next, we compute δYf using the interaction terms given

in Eqs. (3)–(5) and assuming massive color triplet scalar T,
vector leptoquark X, andN generations of the RH neutrinos
νCα . We find
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ðδYuÞij ¼ 4g2ðY1Þijf½M2
X; 0� þ ðY1Y�

2Y
T
2 þ Y2Y

†
2Y

T
1 Þijf½M2

T;0�;
ðδYdÞij ¼ 2g2ðY2Þijf½M2

X; 0� þ ðY1Y�
1Y2Þijf½M2

T; 0� þ
X
α

ðY2Y�
3ÞiαðYT

3 Þαjf½M2
T;M

2
Nα
�;

ðδYeÞij ¼ 6g2ðYT
2 Þijf½M2

X; 0� þ 3ðYT
2Y

�
1Y1Þijf½M2

T; 0�;
ðδYνÞiα ¼ 3ðYT

2Y
�
2Y3Þiαf½M2

T; 0�; ð8Þ

at the scale μ. Here,MNα
is the mass of νCα and f½m2

1; m
2
2� is

a loop integration factor, and it is given in Eq. (B1) in
Appendix B. It can be noticed that, other than the overall
color factor, δYd and δYe differ by the contribution from the
heavy RH neutrinos. Because of the tree-level Yukawa
couplings between dCi , ν

C
α , and T in Eq. (3), the Yd gets

threshold correction from the RH neutrinos and color triplet

scalar. It is noteworthy that the corrections δYf vanish in
the supersymmetric version of the model [33], due to the
perturbative nonrenormalization theorem for the super-
symmetric field theories [34,35].
The computations of the finite parts of wave function

renormalization for the light fermions and scalar at one
loop, involving at least one heavy fields in the loop, lead to

ðKqÞij ¼ 3g2δijh½M2
X; 0� −

1

2
ðY�

1Y
T
1 þ 2Y�

2Y
T
2 Þijh½M2

T; 0�;
ðKuCÞij ¼ 4g2δijh½M2

X; 0� − ðY�
1Y

T
1 þ 2Y�

2Y
T
2 Þijh½M2

T; 0�;
ðKdCÞij ¼ 2g2δijh½M2

X; 0� − 2ðY†
2Y2Þijh½M2

T; 0� −
X
α

ðY�
3ÞiαðYT

3 Þαjh½M2
T;M

2
Nα
�;

ðKlÞij ¼ 3g2δijh½M2
X; 0� − 3ðY†

2Y2Þijh½M2
T; 0�;

ðKeCÞij ¼ 6g2δijh½M2
X; 0� − 3ðY†

1Y1Þijh½M2
T; 0�;

ðKνCÞαβ ¼ −3ðY†
3Y3Þαβh½M2

T; 0�;

Kh ¼
g2

2
ðf½M2

X;M
2
T � þ g½M2

X;M
2
T �Þ; ð9Þ

at the scale μ. The loop integration factors are defined in
Appendix B. Again, only KdC receives a contribution from
the singlet fermions. As we show in the next sections, these
contributions from singlet fermions are crucial for uplifting
degeneracy between the charged lepton and down-type
quarks.

III. DEVIATION FROM Yd =YT
e

It is seen from Eqs. (6), (8), and (9) that the one-loop
corrections break the degeneracy between Ye and Yd.
Explicitly, we obtain at the GUT scale

ðYd − YT
e Þij ¼ −2g2ðY2Þijð2f½M2

X; 0� − h½M2
X; 0�Þ

− ðY1Y�
1Y2Þij

�
f½M2

T; 0� þ
5

8
h½M2

T; 0�
�

þ
X
α

ðY2Y�
3ÞiαðY3Þjα

�
f½M2

T;M
2
Nα
�

þ 1

2
h½M2

T;M
2
Nα
�
�
: ð10Þ

The above is the main result of this paper. It is noteworthy
that Eq. (10) not only suggests Yd ≠ YT

e , but also implies
that the difference between the two matrices is calculable in
terms of the masses of the heavy scalar, gauge boson, and
RH neutrinos and their couplings. The latter also deter-
mines the masses of other fermions and, hence, can be
severely constrained as we discuss in the next section.
Before assessing the viability of Eq. (10) in reproducing

the complete and realistic fermion mass spectrum, we
investigate its role for the third-generation Yukawa cou-
plings, namely, yb and yτ, through a simplified analysis.
Considering only one RH neutrino with MN1

¼ MN and
only the third generation, one finds from Eq. (10)

yb
yτ

≃ 1 − 2g2ð2f½M2
X; 0� − h½M2

X; 0�Þ

− 2y2t

�
f½M2

T; 0� þ
5

8
h½M2

T; 0�
�

þ y2ν

�
f½M2

T;M
2
N � þ

1

2
h½M2

T;M
2
N �
�
; ð11Þ
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at the GUT scale. Here, yt is the top-quark Yukawa
coupling and yν ¼ ðY3Þ31. For some sample values of yt,
yν, and μ ¼ MX ¼ 1016 GeV, the contours corresponding
to different values of the ratio yb=yτ on theMT −MN plane
are displayed in Fig. 1.
The GUT-scale extrapolation of the observed fermion

mass data requires yb=yτ ≈ 2=3. As can be seen from Fig. 1,
this can be achieved only if either MT or MN is larger than
μ ¼ MX by at least 1–2 orders of magnitude. Moreover, yν
is also required to be large. For g; yt < 1, it is the third term
in Eq. (11) which is required to dominantly contribute to
uplift the degeneracy between yb and yτ, and, hence, the
largest possible value of yν is preferred. MT ≫ MGUT or
MN ≫ MGUT along with large yν are needed to overcome
the loop suppression factor of 1=ð16πÞ2. This simple
picture provides a clear and qualitative understanding of
the favorable mass scales of the color triplet scalar and RH
neutrino, and it also holds more or less when the full three-
generation fermion spectrum is considered as we show in
the next section.
It is noteworthy that the RH neutrino through its

coupling with the lepton doublet generates a contribution
to the light neutrino mass through the usual type I seesaw
mechanism [36–39]. It is obtained as mν ¼ v2y2ν=MN . If
this contribution is required to generate the atmospheric
neutrino mass scale, then one finds

MN ¼ 7.6 × 1016 GeV

�
yνffiffiffiffiffiffi
4π

p
�

2
�
0.05 eV

mν

�
: ð12Þ

Since MN cannot be much larger than MGUT in this case,
phenomenologically viable yb=yτ can be achieved only if
MT > MGUT. Conversely, when considering perturbative

values of yν and a situation where MN greatly surpasses
MGUT, the RH neutrino’s contribution to the light neutrino
mass is rather negligible. This inadequacy to reproduce a
viable atmospheric neutrino mass scale necessitates the
inclusion of an additional source of neutrino masses. We
also provide an example of this in the next section.

IV. VIABILITY TEST AND RESULTS

To establish if the Yu, Yd, and Ye are evaluated from
Eqs. (6), (8), and (9) can reproduce the realistic values of the
SMYukawa couplings and the quark mixing (CKM) matrix,
we carry out the χ2 optimization. Focusing on the minimal
setup, we first consider only one RH neutrino with mass
MN1

≡MN as mentioned in the previous section. The χ2

function (see, for example, [40,41] for the definition and
optimization procedure) includes nine diagonal charged
fermion Yukawa couplings and four CKM parameters.
For the input values of these parameters at the GUT scale,
we evolve the SM Yukawa couplings from μ ¼ Mt (Mt

being the top pole mass) to μ ¼ MGUT ¼ 1016 GeV using
the two-loop renormalization group equations (RGEs) in the
MS scheme following the procedure outlined in [41].
The two-loop SM RG equations have been computed using
the PyR@TE 3 package [42]. The values of the SM Yukawa
and gauge couplings at μ ¼ Mt are taken from [43]. The
RGE extrapolated values at the GUT scale are listed asOexp

in Table I. For the standard deviations, we use �30% in the
light quark Yukawa couplings ðyu;d;sÞ and �10% in the rest
of the observables as considered in the previous fits [41].
Using the freedom to choose a basis in Eq. (2), we set Y1

diagonal and real. The RH neutrino mass matrixMN in the
general N flavor case can also be chosen real and diagonal
simultaneously. Y2;3 are complex in this basis. Using
Eqs. (6), (8), and (9), we then compute the matrices
Yu;d;e and diagonalize them to obtain the nine diagonal
Yukawa couplings and quark mixing parameters. These
quantities are fitted to the extrapolated data at μ ¼ MGUT

by minimizing the χ2 function. We set MX ¼ MGUT and
g ¼ 0.53, which is an approximate value of the RGE
evolved SM gauge couplings at μ ¼ 1016 GeV. FixingMT

and MN to some values, we then minimize the χ2 along
with a constraint jðY1;2;3Þijj <

ffiffiffiffiffiffi
4π

p
on all the input

Yukawa couplings to ensure that they are within the
perturbative limits [44]. We repeat this procedure for
several values of MT and MN . The obtained distribution
of the minimized χ2 (≡χ2min) is displayed in Fig. 2.
Note that without one-loop corrections, i.e., with

Yd ¼ YT
e , the obtained value of χ2min is 53. Therefore, values

of χ2min < 53 show improvements due to quantum corrected
matching conditions in the model. In particular, for
χ2min < 9, it is ensured that no observable is more than
�3σ away from its central value and, therefore, can be

FIG. 1. Contours of yb=yτ ¼ 3=2 (red lines), yb=yτ ¼ 1 (orange
lines), and yb=yτ ¼ 2=3 (green lines) drawn using Eq. (11) for
yt ¼ 0.427, g ¼ 0.53, and μ ¼ MX ¼ 1016 GeV and for yν ¼ffiffiffiffiffi
4π

p
(solid lines) and yν ¼ 2.7 (dashed lines).
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considered to lead to viable charged fermion mass spectrum
and the quark mixing.
As can be seen from Fig. 2, a very good fit of the entire

charged fermion mass spectrum and the quark mixing
parameters can be obtained if MT or MN ≥ 1017.2 GeV.
These results are in very good agreement with the limits on
MT and MN obtained for yb=yτ ≲ 2=3 in a simplified case
discussed earlier and shown in Fig. 1.
The three-generation χ2 analysis also reveals that

all the underlying 13 observables can be fitted within
their �1σ range (corresponding to χ2min ≤ 3) provided
(i) MT ≤ 1014.5 GeV and MN ≥ 1017.2 GeV or (ii) MT ≥
1018.2 GeV. While the second leads to MT alarmingly close
to the Planck scale, making the doublet-triplet splitting
problem [45–47] more severe, the possibility (i) is concep-
tually allowed and technically a safe choice. Since MN is a
scale independent of MGUT in the present framework, the
large hierarchy between them is permitted. Also,MT can be
significantly smaller than MGUT, provided it satisfies the
proton lifetime limit, MT ≳ 1011 GeV [48]. We list explic-
itly one benchmark solution from region (i) which is

FIG. 2. The distribution of minimized χ2 for different
values of MT and MN . The green, yellow, and red regions
correspond to χ2min ≤ 3, 3 < χ2min ≤ 9, and χ2min > 9, respec-
tively. For the fits, we set μ ¼ MX ¼ 1016 GeV and g ¼ 0.53
and impose jðY1;2;3Þijj <

ffiffiffiffiffi
4π

p
.

TABLE I. The benchmark best-fit solutions obtained for three example cases as discussed in the text. Oexp denote the extrapolated
values of the underlying observables at μ ¼ 1016 GeV. The reproduced values through χ2 minimization are listed under Oth, and
corresponding pulls are given for each solution. The optimized values of the masses of leptoquark scalar and RH neutrinos are listed at
the bottom of the table.

Solution I Solution II Solution III

Observable Oexp Oth Pull Oth Pull Oth Pull

yu 2.81 × 10−6 2.92 × 10−6 0 2.81 × 10−6 0 2.81 × 10−6 0
yc 1.42 × 10−3 1.42 × 10−3 0 1.42 × 10−3 0 1.42 × 10−3 0
yt 4.27 × 10−1 4.35 × 10−1 0.2 4.30 × 10−1 0.1 4.28 × 10−1 ∼0
yd 6.14 × 10−6 3.60 × 10−6 −1.2 2.85 × 10−6 −1.8 2.91 × 10−6 −1.8
ys 1.25 × 10−4 1.26 × 10−4 ∼0 1.24 × 10−4 ∼0 1.25 × 10−4 ∼0
yb 5.80 × 10−3 5.77 × 10−3 ∼0 6.09 × 10−3 0.5 5.79 × 10−3 ∼0
ye 2.75 × 10−6 2.76 × 10−6 0.2 2.81 × 10−6 0.2 2.82 × 10−6 0.3
yμ 5.72 × 10−4 5.71 × 10−4 ∼0 5.65 × 10−4 −0.1 5.71 × 10−4 ∼0
yτ 9.68 × 10−3 9.83 × 10−3 0.2 9.06 × 10−3 −0.6 9.70 × 10−3 ∼0
jVusj 0.2286 0.2303 0.1 0.2292 ∼0 0.2291 ∼0
jVcbj 0.0457 0.0461 0.1 0.0458 ∼0 0.0458 ∼0
jVubj 0.0042 0.0043 ∼0 0.0042 ∼0 0.0042 ∼0
sin δCKM 0.78 0.78 0 0.78 0 0.78 ∼0
Δm2

sol½eV2� 7.41 × 10−5 � � � � � � 7.53 × 10−5 ∼0 7.51 × 10−5 ∼0
Δm2

atm½eV2� 2.511 × 10−3 � � � � � � 2.586 × 10−3 ∼0 2.572 × 10−3 ∼0
sin2 θ12 0.303 � � � � � � 0.303 ∼0 0.303 ∼0
sin2 θ23 0.572 � � � � � � 0.558 −0.2 0.571 ∼0
sin2 θ13 0.02203 � � � � � � 0.02194 ∼0 0.02201 ∼0
δMNS½°� 197 � � � � � � 192 −0.2 197 ∼0

χ2min 2.0 4.0 3.1

MT [GeV] 1012 7.7 × 1017 1013

MN1
[GeV] 4.7 × 1018 4.1 × 1016 5.6 × 1012

MN2
[GeV] � � � 2.3 × 1012 6.9 × 1017

MN3
[GeV] � � � � � � 1.2 × 1013
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displayed as solution I in Table I. The fitted values of the
corresponding input parameters are given in Appendix C.
Although the RH neutrino is introduced to reproduce the

viable charged fermion mass spectrum, its mass and
couplings are not constrained from the requirement of
the light neutrino masses and mixing parameters. To
account for both the solar and atmospheric neutrino mass
scales, one needs at least two RH neutrinos in the minimal
realization. The light neutrino masses are then generated
through the usual type I seesaw mechanism:

Mν ¼ −v2YνM−1
N YT

ν : ð13Þ

Here,Mν is a 3 × 3 light neutrino mass matrix, whileMN is
a 2 × 2 heavy neutrino mass matrix. Yν is a 3 × 2 matrix
which can be computed using Eqs. (6), (8), and (9). The
above leads to one massless light neutrino.
We extend the χ2 function to include the solar and

atmospheric squared mass differences, three mixing angles,
and a Dirac CP phase to assess if Eq. (13) along with
Eqs. (6), (8), and (9) can provide a realistic spectrum of
quarks and leptons. For the input values of neutrino
observables, we use the results of the latest fit from [49]
and set �10% uncertainty as earlier. The RGE effects in
neutrino data are neglected, as they are known to be small
[50–53] and within the set uncertainty for normal hierarchy
in the neutrino masses which is the case considered here.
The result of χ2 minimization for this case is shown in

Table I as solution II, and the optimized values of
parameters are listed in Appendix C. As can be seen, we
find very good agreement with all the fermion masses and
mixing parameters with χ2min ¼ 4. The resulting values of
MN1

andMN2
are smaller thanMGUT, which requiresMT >

1017.2 GeV as anticipated from Fig. 2.
As a simple extension of the possibilities discussed

above, it is straightforward to anticipate a case in which
there are more than two RH neutrinos present. At least one
of them is strongly coupled with the SM fermions and has a
mass greater than MGUT. It leads to the required threshold
corrections for a viable charged fermion spectrum; how-
ever, its contribution to the neutrino masses is subdominant.
The other RH neutrinos have sub-GUT-scale masses and
can lead to a realistic light neutrino spectrum without
significantly altering the threshold corrections. This sce-
nario is exemplified by solution III in Table I. In this case,
N3, with MN2

> MGUT, couples to the SM leptons with
large couplings and gives the required threshold corrections
to the down-type quark sector. Notably, in this context, it is
evident that the color triplet scalar need not approach
Planck-scale values to fulfil its role.

V. CONCLUSION

This article demonstrates that the seemingly unviable
relationship Yd ¼ YT

e , predicted by the simplest and most

minimal Yukawa sector of nonsupersymmetric SUð5Þ GUT,
can be rendered viable when accounting for one-loop
corrections to the tree-level matching conditions. This is
accomplished by introducing one or more copies of fermion
singlets. While they do not alter the tree-level matching
conditions at the scale of unification, they can yield
significant corrections at the one-loop level through their
direct Yukawa interactions with the down-type quarks and
the color triplet scalar. Sizable nondegeneracy among the
singlet fermions, color triplet scalar, and leptoquark vector
can, thus, impart large enough threshold corrections ensur-
ing the compatibility of the minimal Yukawa sector with the
effective SM description.
Our quantitative analysis reveals that achieving a realistic

spectrum for the charged fermion Yukawa couplings and
quark mixing necessitates either a significantly larger mass
for the color triplet scalar (MT ≫ MX) or vastly higher
masses for the RH neutrinos (MNα

≫ MX), under the
assumption that the mass of the leptoquark gauge boson
(MX) defines the unification scale. The latter possibility is
disfavored if the same fermion singlets are expected to
generate a viable light neutrino spectrum through the
conventional type I seesaw mechanism. Nonetheless, the
scenario of MNα

≫ MX remains a plausible option if
neutrinos acquire their masses through other means. This
also includes the type I seesaw mechanism with additional
copies of RH neutrinos with sub-GUT-scale masses and
comparatively smaller couplings with the SM leptons.
It is noteworthy that the inclusion of quantum corrections

can substantially alter the conclusions regarding the min-
imal Yukawa sector within the framework of an underlying
grand unified theory. These findings provide motivation for
conducting analogous investigations in the context of
supersymmetric variants of SUð5Þ,2 as well as both the
ordinary and supersymmetric versions of SOð10Þ GUTs,
which feature more diverse particle spectra for threshold
corrections and, simultaneously, more stringent symmetries
that engage in intricate interplays.
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2Radiative corrections to Yd ¼ YT
e arising from the super-

partners of the SM fields in the loop have been considered in
[54,55]. This, however, requires nonminimal supersymmetry-
breaking trilinear terms.
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APPENDIX A: GENERAL FORMULA
OF ONE-LOOP MATCHING

In this appendix, we show an explicit derivation of the
one-loop matching relation, Eq. (6), for the Yukawa
coupling matrices. Computation of Yukawa thresholds is
carried out for the first time in [19,33,56,57] following
the analogous procedure developed for the gauge couplings
in [58,59]. We closely follow [33] and outline the treatment
for the Yukawa couplings for completeness.
Consider chiral fermions ψ i, χi, and a scalar ϕ with the

following gauge and Yukawa interactions in the full theory:

L¼ iψ̄ i=Dψ i þ iχ̄i=Dχi þDμϕ
†Dμϕ− fYijψ

T
i CχjϕþH:c:g:

ðA1Þ

Let ψ i, χi, and ϕ decompose in the light fields, namely, ψ li,
χli, and ϕl and the heavy fields ψhi, χhi, and ϕh, respec-
tively. Integrating out the heavy fields, the effective
Lagrangian of the light fields is given by

Leff ¼ iψ̄ li=DðZψ Þijψ lj þ iχ̄li=DðZψ Þijχlj þDμϕ
†
l ZϕDμϕl

− fỸijψ
T
liCχljϕl þ H:c:g þ � � � ; ðA2Þ

where � � � denotes the nonrenormalizable operators induced
because of the integrated-out fields. The Z parameters can
be parametrized as

ðZψ ;χÞij ¼ δij þ ðKψ ;χÞij; Zϕ ¼ 1þ Kϕ; ðA3Þ

where Kψ ;χ;ϕ can be evaluated using the wave function
renormalization of the corresponding light field at one loop
involving at least one heavy field in the loop. Similarly, Ỹ in
Eq. (A2) can be written as

Ỹ ¼ Y þ δY; ðA4Þ

where δY is the one-loop Yukawa vertex correction with
heavy fields in the loop.
Canonical normalization of the kinetic terms requires

field redefinitions. To achieve this, we define

ψ li ¼ ðUψ Z̃
−1=2
ψ U†

ψÞijψ̃ lj; χli ¼ ðUχZ̃
−1=2
χ U†

χÞijχ̃lj;
ϕl ¼ Z−1=2

ϕ ϕ̃l: ðA5Þ

Here, Z̃ψ ;χ ¼ U†
ψ ;χZψ ;χUψ ;χ are diagonal matrices. Sub-

stitution of the above in Eq. (A2) leads to canonically
normalized kinetic terms for the light fermions ψ̃ li and χ̃li
and the scalar ϕ̃l as can be verified easily. Furthermore, the
effective Yukawa couplings in the new basis can be
determined by substituting Eq. (A5) in the last term in
Eq. (A2). We then find

Leff ⊃ ðYeffÞijψ̃T
liCχ̃ljϕl þ H:c:; ðA6Þ

with

Yeff ¼ U�
ψ Z̃

−1=2
ψ UT

ψ ỸUχZ̃
−1=2
χ U†

χZ
−1=2
ϕ : ðA7Þ

Using the definitions Eq. (A3), one can express

Z̃−1=2
ψ ;χ ¼ ð1þ K̃ψ ;χÞ−1=2 ≃ 1 −

1

2
K̃ψ ;χ ; ðA8Þ

where K̃ψ ;χ ¼ U†
ψ ;χKψ ;χUψ ;χ are diagonal and real matrices

with ðK̃ψ ;χÞii < 1. Similarly, Z−1=2
ϕ ≃ 1 − 1

2
Kϕ. Substituting

these in Eq. (A7) and keeping only the leading-order terms
in δY and K, we find

Yeff ¼ Y

�
1 −

1

2
Kϕ

�
þ δY −

1

2
KT

ψY −
1

2
YKχ : ðA9Þ

The above can be used as a one-loop corrected matching
condition at a renormalization scale μ by replacing δY and
Kψ ;χ;ϕ by their finite parts defined in the MS scheme.
Equation (A9) then provides the one-loop corrected expres-
sion for the effective Yukawa couplings in terms of the
original Yukawa couplings of the full theory and the
leading corrections arising from the heavy particles.

APPENDIX B: LOOP INTEGRATION FACTORS

The loop integration factors appearing in Eqs. (8) and (9)
are given by

f½m2
1; m

2
2� ¼ −

1

16π2

 
m2

1 log
m2

1

μ2
−m2

2 log
m2

2

μ2

m2
1 −m2

2

− 1

!
; ðB1Þ

h½m2
1; m

2
2� ¼

1

16π2

 
1

2
log

m2
1

μ2
þ

1
2
r2 log r − 3

4
r2 þ r − 1

4

ð1 − rÞ2
!
;

ðB2Þ

and

g½m2
1; m

2
2� ¼

1

16π2

r3
6
− r2 þ r

2
þ r log rþ 1

3

ð1 − rÞ3 ; ðB3Þ

where r ¼ m2
2=m

2
1 in the last two equations.

APPENDIX C: EXAMPLE NUMERICAL
SOLUTIONS

In this appendix, we give the fitted values of the Yukawa
coupling matrices Y1;2;3 corresponding to the benchmark
solutions I, II, and III, as listed in Table I, obtained at
μ ¼ 1016 GeV. For solution I, we find
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Y1 ¼

0
BBB@

2.79 × 10−6 0 0

0 1.41 × 10−3 0

0 0 4.36 × 10−1

1
CCCA; Y3 ¼

0
B@

6.63 × 10−2

−3.46
2.93

1
CA;

Y2 ¼

0
B@

−4.24 × 10−6 − i1.07 × 10−5 −1.84 × 10−4 þ i4.81 × 10−5 1.24 × 10−4 − i4.0 × 10−5

8.98 × 10−5 þ i7.71 × 10−5 2.76 × 10−4 − i7.98 × 10−5 −3.57 × 10−4 þ i3.84 × 10−4

−7.58 × 10−4 − i7.53 × 10−4 8.60 × 10−3 − i1.45 × 10−3 −1.15 × 10−3 − i2.55 × 10−3

1
CA: ðC1Þ

In the case of solution II, we get

Y1 ¼

0
B@

2.78 × 10−6 0 0

0 1.40 × 10−3 0

0 0 −4.24 × 10−1

1
CA; Y3 ¼

0
B@

2.96 × 10−1 −2.43 × 10−2

−3.44 8.92 × 10−3

−3.50 −4.25 × 10−2

1
CA;

Y2 ¼

0
B@

−1.54 × 10−6 þ i4.92 × 10−6 −2.65 × 10−5 − i1.05 × 10−4 1.39 × 10−5 − i1.20 × 10−4

−2.45 × 10−5 − i3.34 × 10−5 9.05 × 10−4 þ i2.73 × 10−5 5.95 × 10−4 − i1.33 × 10−4

3.31 × 10−4 þ i4.24 × 10−4 −6.19 × 10−3 þ i4.74 × 10−3 2.15 × 10−3 þ i3.98 × 10−3

1
CA: ðC2Þ

Similarly, for solution III, we find

Y1 ¼

0
B@

2.79 × 10−6 0 0

0 1.41 × 10−3 0

0 0 −4.28 × 10−1

1
CA; Y3 ¼

0
B@

3.40 × 10−2 9.83 × 10−2 1.98 × 10−2

−4.23 × 10−3 3.50 −2.64 × 10−1

−5.33 × 10−2 −3.44 9.50 × 10−2

1
CA;

Y2 ¼

0
B@

6.10 × 10−6 − i6.22 × 10−7 4.33 × 10−5 − i1.62 × 10−4 −3.93 × 10−5 þ i1.27 × 10−4

1.26 × 10−5 þ i4.40 × 10−5 8.54 × 10−4 − i4.19 × 10−4 −5.30 × 10−4 þ i5.20 × 10−4

2.26 × 10−4 − i4.77 × 10−4 −7.03 × 10−3 þ i9.19 × 10−4 8.49 × 10−4 − i5.74 × 10−3

1
CA: ðC3Þ

For all the solutions, we have used g ¼ 0.53 as the value of unified coupling at the GUT scale andMX ¼ 1016 GeV. The
optimized values of the masses of the color triplet scalar and gauge singlet fermions are listed in Table I in the case of each
solution.
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