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We investigate the consequences of generalized CP (GCP) symmetry within the context of the two
Higgs doublet model (2HDM), specifically focusing on the lepton sector. Utilizing the type-I seesaw
framework, we study an intriguing connection between the Dirac Yukawa couplings originating from both
Higgs fields, leading to a reduction in the number of independent Yukawa couplings and simplifying the
scalar and Yukawa sectors when compared to the general 2HDM. The constraints coming from CP
symmetry of class three (CP3) results in two right-handed neutrinos having equal masses and leads to a
diagonal right-handed Majorana neutrino mass matrix. Notably, CP symmetry experiences a soft breaking
due to the phase associated with the vacuum expectation value of the second Higgs doublet. The model
aligns well with observed charged lepton masses and neutrino oscillation data, explaining both masses and
mixing angles, and yields distinct predictions for normal and inverted neutrino mass hierarchies. It features
a novel interplay between atmospheric mixing angle θ23 and neutrino mass hierarchy: The angle θ23 is
below maximal for the normal hierarchy and above maximal for inverted hierarchy. Another interesting
feature of the model is inherent CP violation for the inverted hierarchy.

DOI: 10.1103/PhysRevD.109.015004

I. INTRODUCTION

The standard model (SM) of particle physics provides a
unified and well-tested theoretical framework for explain-
ing the interactions of known fundamental particles. It
explains how quarks and charged leptons acquire mass.
However, it cannot account for the nonzero mass of
neutrinos, which is necessary to explain observed neu-
trino oscillations. One way to explain nonzero neutrino
masses is by introducing SU(2) singlet right-handed
neutrinos into the particle content of the SM and allowing
them to have a Dirac mass term. However, this leads to a
very small Yukawa coupling Oð≈10−12Þ to explain small-
ness of the neutrino masses. To address this issue, in
addition to the Dirac mass term, one can introduce another
mass term by utilizing the right-handed neutrinos and their
charge-conjugated fields. This additional term is known as
the Majorana mass term, which violates lepton number.

Since the masses of these right-handed neutrinos do not
arise due to the Higgs mechanism, they can be very heavy
Oð1015Þ GeV. This, in turn, results in the left-handed
neutrinos being light, thereby accounting for the smallness
of the neutrino masses. This mechanism of neutrino mass
generation is referred to as the Type-I seesaw [1–5].
Extending beyond the Standard Model (SM), a natural

step involves adding another Higgs doublet, known as the
two Higgs doublet model (2HDM). Initially proposed to
address matter-antimatter asymmetry alongside the quark
mixingmatrix [6], the 2HDMdoesn’t explain neutrinomass.
The vacuum expectation values of these two SU(2) doublets
spontaneously break the CP symmetry contributing as an
extra source for generating matter-antimatter asymmetry [6].
Further, the need for a second Higgs doublet arises naturally
in the minimal supersymmetric standard model (MSSM) [7]
and axion models [8,9]. Another reason for considering
2HDM is that it preserves the ρ parameter [6], connecting the
mechanism of electroweak symmetry breaking with the
masses of SM gauge bosons [10].
Despite these characteristic features, 2HDMs have short-

comings, including the inability to explain neutrino mass,
dark matter, and the allowance of tree-level flavor changing
neutral currents (FCNC). The presence of FCNC arises
because both SU(2) scalar doublets can couple to fermions.
However, there are studies suggesting mechanisms to
mitigate FCNC interactions. For example:
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(1) FCNC interactions can be fine-tuned by carefully
selecting Yukawa couplings that are suppressed by
the heavy mass of the scalar boson responsible for
FCNC [11].

(2) FCNC can be eliminated by employing a global
symmetry, such as Z2, which restricts a given scalar
boson from coupling to fermions of different electric
charges [12,13].

(3) Tree-level FCNC can be eliminated by using a
global U(1) Peccei-Quinn symmetry [14].

In addition to addressing FCNC, there have been various
attempts to enhance 2HDMs to incorporate neutrino masses
[15–20] and dark matter [21–26].
However, 2HDM poses a challenge due to its large

number of free parameters, making it difficult to probe
through collider experiments like the LHC. In general, the
scalar potential of the 2HDM consists of 14 parameters and
can exhibit CP conserving or CP violating behavior
[11,27]. Consequently, additional constraints are necessary,
often derived from symmetry arguments, to establish
relationships among these parameters.
The study of generalized CP (GCP) transformations

[28–30] within the scalar sector of 2HDM is an example of
imposing additional symmetries [31,32]. GCP transforma-
tions can be categorized in various ways. In Ref. [31], they
are classified into three categories: CP1, CP2, and CP3.
CP1 and CP2 correspond to discrete transformations, while
CP3 is a continuous transformation that can be extended to
the fermionic sector [32], and they have applied this to the
quark sector. Furthermore, the CP symmetries of the scalar
sector in the 2HDM have been thoroughly investigated
using the basis invariant bilinear formalism [33–38] in
many works [34–37].
The idea of implementing GCP symmetry to obtain the

lepton mixing parameters is widely recognized. GCP
symmetry has been used in various models in combination
with the flavor symmetry of the leptons to obtain the lepton
mixing parameters and to explain CP violation [39–46].
There are models that use the concept of remnant CP
symmetries to obtain the lepton mixing parameters
[47–51]. The use of multiple Higgs formalism is common
in supersymmetry (SUSY) models. Many attempts have
been made to explain the neutrino data in SUSY models
[52–57]. Apart from SUSY, there are also beyond the
Standard Model (BSM) neutrino mass models with two
Higgs doublets, which use some symmetry, such as Z2, to
constrain their Yukawa couplings and hence the parameter
space [15–26]. In our work, we have used GCP symmetry
to study the implications of GCP on neutrino phenom-
enology and to study CP violation. In particular, we’ve
extended CP3 to the 2HDM’s leptonic Yukawa sector,
introducing CP violation through the second Higgs’s vev
phase. Neutrino masses are generated via the Type-I seesaw
relation involving right-handed neutrinos.
The paper is structured as follows: In Sec. II, we present

the basic formalism of 2HDM. Section III elaborates on

extending CP3 to the neutrino Yukawa sector within the
Type-I seesaw mechanism. We discuss our numerical
analysis in Sec. IV. Finally, in Sec. V, we summarize
our conclusions.

II. TWO HIGGS DOUBLET MODEL UNDER
GENERALIZED CP SYMMETRY

In 2HDMs, the Standard Model’s field content enlarges
with the addition of an extra Higgs doublet, denoted as Φ2,
which possesses the same charge assignments as the
Higgs field in the SM. However, this minimal expansion
in the scalar sector results in an increased number of free
parameters. To address this parameter growth, it becomes
imperative to introduce specific symmetries. In this context,
the generalized CP (GCP) symmetry is considered. Under
GCP, scalar doublets undergo transformations as elucidated
in [31]:

Φa → ΦGCP
a ¼ XaαΦ�

α; ð1Þ

where X is an arbitrary unitary CP transformation matrix.
There always exists a choice of basis for which most

general GCP transformation matrix can be brought to the
form [58]

X ¼
�

cos θ sin θ

− sin θ cos θ

�
; ð2Þ

where 0 ≤ θ ≤ π=2. So, we have three distinct classes with
respect to the parameter θ as mentioned in [31]:
(1) When θ ¼ 0, the symmetry is referred to as CP

symmetry of class one (CP1).
(2) For θ ¼ π=2, the symmetry is known as CP sym-

metry of class two (CP2).
(3) In the range 0 < θ < π=2, the symmetry is labeled

as CP symmetry of class three (CP3), and impor-
tantly it constitutes a continuous symmetry.

The most general scalar potential with two Higgs
doublets can be written as

VH ¼ m2
11Φ

†
1Φ1 þm2

22Φ
†
2Φ2 − ½m2

12Φ
†
1Φ2 þ H:c:�

þ 1

2
λ1ðΦ†

1Φ1Þ2 þ
1

2
λ2ðΦ†

2Φ2Þ2

þ λ3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ þ λ4ðΦ†
1Φ2ÞðΦ†

2Φ1Þ

þ
�
1

2
λ5ðΦ†

1Φ2Þ2 þ λ6ðΦ†
1Φ1ÞðΦ†

1Φ2Þ

þ λ7ðΦ†
2Φ2ÞðΦ†

1Φ2Þ þ H:c:

�
; ð3Þ

having total 14 parameters. Here, m2
11, m

2
22 and λ1 through

λ4 are real parameters, whilem2
12, λ5, λ6 and λ7 are generally

complex.
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Based on the findings in Refs. [31,32], it is established
that, in addition to the standard CP symmetry CP1, CP3 is
the only symmetry that can be extended to the Yukawa
sector for leptons. To maintain CP3 invariance within
the scalar potential, certain conditions must be satisfied.
Specifically, we must have m2

11 ¼ m2
22, m

2
12 ¼ 0, λ2 ¼ λ1,

λ6 ¼ 0, λ7 ¼ 0, and λ5 ¼ λ1 − λ3 − λ4, which must be a real
parameter.
To avoid the presence of Goldstone bosons following

spontaneous symmetry breaking, it is necessary to intro-
duce soft CP3 symmetry breaking. Therefore, we will
consider m2

11 ≠ m2
22 and R½m2

12� ≠ 0. This softly broken
CP3 symmetric potential also leads to a CP-violating
vacuum expectation value (VEV) for the second Higgs
doublet, which assumes a crucial role in the exploration of
CP violation in the lepton sector, as we will delve into in
the upcoming sections.

III. CP3 IN YUKAWA SECTOR
WITH TYPE-I SEESAW

In our study, we have extended the SM with the addition
of second Higgs doublet ϕ2 and three right-handed neu-
trinos denoted as NR. Within the framework of the Type-I
seesaw mechanism, the relevant Yukawa Lagrangian res-
ponsible for generating the masses of both charged leptons
and neutrinos1 is expressed as follows

−LY ¼ L̄LΓaΦalRþ L̄LYaΦ̃aNRþ
1

2
Nc

RMNRþH:c:; ð4Þ

where LL, lR are Standard Model SU(2) left-handed
doublets and right-handed singlets, Φa (a ¼ 1, 2) are
Higgs doublets, and NR are right-handed neutrino singlets.
Γa and Ya are the Yukawa coupling matrices for charged
leptons and neutrinos, respectively, andM is lepton number
violating Majorana mass term for right-handed neutrinos.
Now we will extend the GCP symmetry to the leptonic
Yukawa sector.
The fields involved in Eq. (4) transforms under GCP

symmetry as

Φa → ΦGCP
a ¼ XabΦ�

b;

Φ̃a → Φ̃GCP
a ¼ X�

abðΦ̃†
bÞT;

LL → LGCP
L ¼ iXζγ

0CL̄T
L;

lR → lGCPR ¼ iXβγ
0Cl̄TR;

NR → NGCP
R ¼ iXγγ

0CN̄T
R;

9>>>>>>=
>>>>>>;
; ð5Þ

where γ0 is Dirac gamma matrix, and C is charge
conjugation matrix, and X, Xζ, Xβ, and Xγ are CP trans-
formation matrices.

For Lagrangian to remain invariant under these CP
transformations, we find Yukawa coupling matrices to
transform as

Γ�
b ¼ X†

ζΓaXβXab; ð6Þ

Y�
b ¼ X†

ζYaXγX�
ab; ð7Þ

and Majorana mass matrix to transform as

M� ¼ XT
γMXγ; ð8Þ

where

M ¼

0
B@

M11 M12 M13

M12 M22 M23

M13 M23 M33

1
CA: ð9Þ

The CP transformation matrices involved are given by

Xζ ¼

0
B@

cos ζ sin ζ 0

− sin ζ cos ζ 0

0 0 1

1
CA; ð10Þ

Xβ ¼

0
B@

cos β sin β 0

− sin β cos β 0

0 0 1

1
CA; ð11Þ

Xγ ¼

0
B@

cos γ sin γ 0

− sin γ cos γ 0

0 0 1

1
CA: ð12Þ

It was found in Ref. [32] that CP3 symmetry with θ ¼
π=3 (ζ ¼ β ¼ γ ¼ π=3) can be extended to Yukawa sector
producing correct quark masses. Under these conditions,
the forms of Yukawa coupling matrices given in Eqs. (6)
and (7) become

Γ1 ¼

0
B@

ia11 ia12 a13
ia12 −ia11 a23
a31 a32 0

1
CA;

Γ2 ¼

0
B@

ia12 −ia11 −a23
−ia11 −ia12 a13
−a32 a31 0

1
CA; ð13Þ

Y1 ¼

0
B@

ib11 ib12 b13
ib12 −ib11 b23
b31 b32 0

1
CA;

Y2 ¼

0
B@

ib12 −ib11 −b23
−ib11 −ib12 b13
−b32 b31 0

1
CA; ð14Þ

1For quark masses, see Ref. [32].
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where all a’s and b’s are real parameters. The choice of
θ ¼ π=3 alongside ζ ¼ β ¼ γ ¼ π=3 in the leptonic sector
stems from the similarity in GCP transformation properties
between quarks and leptonic fields, as outlined in Eq. (5).
Now, we need to solve constrains given by Eq. (8), which

can be rewritten as

M� − XT
γMXγ ¼ 0: ð15Þ

Using Eqs. (9) and (12) in Eq. (15), the set of constraints
are

M�
11 −M11 cos2 γ −M22 sin2 γ þM12 sin 2γ ¼ 0; ð16Þ

M�
12 −M12 cos 2γ þ ð−M11 þM22Þ sin γ cos γ ¼ 0; ð17Þ

M�
22−M22 cos2 γ−2M12 cosγ sinγ−M11 sin2 γ ¼ 0; ð18Þ

M�
13 −M13 cos γ þM23 sin γ ¼ 0; ð19Þ

M�
23 −M23 cos γ −M13 sin γ ¼ 0; ð20Þ

M�
33 −M33 ¼ 0: ð21Þ

In Eqs. (16), (17), and (18), the real part can be separated
out as0
B@

1−cos2 γ sin2γ −sin2 γ

−cosγ sinγ 1− cos2γ cosγ sinγ

−sin2 γ −2cosγ sinγ 1−cos2 γ

1
CA
0
B@
R½M11�
R½M12�
R½M22�

1
CA¼ 0;

ð22Þ
and the imaginary part can be separated out as0
B@
−1−cos2 γ sin2γ −sin2 γ

−cosγ sinγ −1−cos2γ cosγ sinγ

−sin2 γ −2cosγ sinγ −1−cos2 γ

1
CA
0
B@
I½M11�
I½M12�
I½M22�

1
CA¼0:

ð23Þ
Further, from Eqs. (19) and (20) we have, for real part,�

1 − cos γ sin γ

− sin γ 1 − cos γ

��
R½M13�
R½M23�

�
¼ 0; ð24Þ

and, for imaginary part,�−1 − cos γ sin γ

− sin γ −1 − cos γ

��
I½M13�
I½M23�

�
¼ 0: ð25Þ

For γ ¼ π=3, we have0
BBB@

3
4

ffiffi
3

p
2

−3
4

−
ffiffi
3

p
4

3
2

ffiffi
3

p
4

−3
4

−
ffiffi
3

p
2

3
4

1
CCCA
0
B@

R½M11�
R½M12�
R½M22�

1
CA ¼ 0; ð26Þ

0
BBB@

−5
4

ffiffi
3

p
2

−3
4

−
ffiffi
3

p
4

− 1
2

ffiffi
3

p
4

−3
4

−
ffiffi
3

p
2

− 5
4

1
CCCA
0
B@

I½M11�
I½M12�
I½M22�

1
CA ¼ 0; ð27Þ

and  
1
2

ffiffi
3

p
2

−
ffiffi
3

p
2

1
2

!�
R½M13�
R½M23�

�
¼ 0; ð28Þ

 
− 3

2

ffiffi
3

p
2

−
ffiffi
3

p
2

− 3
2

!�
I½M13�
I½M23�

�
¼ 0: ð29Þ

In Eqs. (27), (28), and (29), the determinant of the square
matrix is nonzero, implying a unique solution where
I½M11�, I½M12�, I½M22�, R½M13�, R½M23�, I½M13�, and
I½M23� all equal zero. On the other hand, in Eq. (26), the
determinant of the square matrix is zero, indicating arbi-
trary solutions, with R½M12� equal to zero and R½M11�≡
M1 equal toR½M22�. Furthermore, Eq. (21) leads toI½M33�
being zero, leaving only R½M33�≡M3 as the relevant
parameter.
It is worth noting that the CP3 constraint results in two

right-handed neutrinos having equal masses, leading to a
diagonal matrix M, described as follows:

M ¼

0
B@

M1 0 0

0 M1 0

0 0 M3

1
CA: ð30Þ

After spontaneous symmetry breaking (SSB), both
Higgs doublets get VEVs, given by

hΦ1i ¼
�

0
v1ffiffi
2

p

�
; hΦ2i ¼

�
0

eiα v2ffiffi
2

p

�
; ð31Þ

with condition that v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

p
≈ 245 GeV, where v is

the standard model VEV. Consequently, the charged
leptons mass matrix becomes

Ml ¼
1ffiffiffi
2

p ðv1Γ1 þ eiαv2Γ2Þ; ð32Þ

¼ 1ffiffiffi
2

p ðcosϕΓ1 þ eiα sinϕΓ2Þv; ð33Þ

and for neutrinos we have the Dirac mass matrix given by

MD ¼ 1ffiffiffi
2

p ðv1Y1 þ e−iαv2Y2Þ; ð34Þ

¼ 1ffiffiffi
2

p ðcosϕY1 þ e−iα sinϕY2Þv; ð35Þ

where ϕ is defined as tanϕ ¼ v2=v1.
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The charged lepton mass matrix can be diagonalized as

Ml ¼ UlmdiagU
†
R; ð36Þ

where Ul and UR are 3 × 3 unitary matrices, and mdiag ¼
diagðme;mμ; mτÞ is diagonal matrix with positive real
entries giving mass eigenvalues of electron, muon, and
tau, respectively. So, we have

U†
l MlM

†
l Ul ¼ m2

diag: ð37Þ

In order to work in the basis wherein the charged lepton
mass matrix is diagonal, we use the matrix Ul to rotateMD
into the required basis; i.e.,

Mnew
D ¼ U†

l MD: ð38Þ

Using Type-I seesaw, the effective light neutrinos mass
matrix is given by

Mν ¼ −Mnew
D M−1ðMnew

D ÞT; ð39Þ

¼ −ðU†
l MDÞM−1ðU†

l MDÞT; ð40Þ

which is a complex symmetric matrix. This matrix is
related to Yukawa coupling matrices Y1 and Y2 through
Eq. (35). The effective light neutrino mass matrix can be
diagonalized by 3 × 3 unitary matrix U as

U†MνU� ¼ m; ð41Þ

where mik ¼ miδik, mi > 0 ði; k ¼ 1; 2; 3Þ.
We will now move forward with the numerical deter-

mination of charged lepton masses and the parameters
governing neutrino oscillations. This process entails the
variation of free parameters to ascertain the permissible
parameter space within the model.

IV. NUMERICAL ANALYSIS AND DISCUSSION

In our numerical analysis, we generated random numbers
uniformly for the VEV-phase α in the range of 0 to 2π. We
also generated random numbers uniformly for the masses
of the right-handed neutrinos M1 and M3, which ranged
from 1011 to 1013 GeV and from 1.1 × 1013 to 1015 GeV,
respectively. We considered two cases for the VEV v1, as
discussed in the following subsections.

A. When v1 ≪ v2
In this scenario, we examined the influence of a very

small VEV on our parameter space. To emphasize the
dominance of VEV v2, we randomly varied v1 in the range
of ð0 − 5Þ × 10−6 GeV. The value of v2 is subsequently
determined using the equation v2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − v21

p
GeV. We

then determined the masses of charged leptons and the

parameters governing neutrino oscillations, which we
discuss in the following subsections.

1. Charged lepton masses

To compute the masses of charged leptons, we varied the
Yukawa coupling parameters within the range specified in
Table I. We then proceeded to numerically diagonalize the
mass matrix MlM

†
l , as described in Eq. (37), to obtain the

squared masses of charged leptons (m2
e; m2

μ; m2
τ ). Through

this analysis, we identified parameter values that consis-
tently yielded the correct charged lepton masses for both
normal (m1 < m2 < m3) and inverted (m3 < m1 < m2)
hierarchies of neutrinos. The benchmark points are listed
in the second column of Table II. With these parameter
values, we calculated the charged lepton masses, as
presented in Table III, which closely align with experi-
mentally observed values.

2. Neutrino oscillation parameters

To find the neutrino mixing angles and mass-squared
differences, we first rotated the neutrino mass matrix using
the previously derived Ul. The matrix Mν, described in
Eq. (40), generally contains Yukawa couplings Y1 and Y2,
as given in Eq. (14). We then introduced random variations

TABLE I. The ranges of Yukawa couplings used in numerical
analysis for charged leptons.

Yukawa coupling
parameter

When v1 ≪ v2
range

When v1 ranges from
(10–17) Gev range

a11 3 × 10−5 − 6 × 10−5 2 × 10−5 − 3 × 10−5

a12 8 × 10−5 − 1 × 10−4 6 × 10−5 − 8 × 10−5

a13 6 × 10−3 − 8 × 10−3 6 × 10−3 − 7 × 10−3

a23 6 × 10−3 − 8 × 10−3 8 × 10−3 − 9 × 10−3

a31 4 × 10−4 − 6 × 10−4 4 × 10−4 − 6 × 10−4

a32 1 × 10−4 − 2 × 10−4 1 × 10−4 − 2 × 10−4

TABLE II. Benchmark points for both the cases (i) v1 ≪ v2
(second column) (ii) v1 ranges from (10–17) GeV (third column),
yielding correct values of charged lepton masses.

Parameters
(Units)

When v1 ranges from (10–17) GeV

When v1 ≪ v2 NH IH

a11 5.740882 × 10−5 2.692411 × 10−5 2.692412 × 10−5

a12 9.066478 × 10−5 7.993756 × 10−5 7.993757 × 10−5

a13 7.124930 × 10−3 6.382725 × 10−3 6.382726 × 10−3

a23 7.377109 × 10−3 8.028028 × 10−3 8.028028 × 10−3

a31 5.843790 × 10−4 5.945601 × 10−4 5.945602 × 10−4

a32 1.377038 × 10−4 1.065540 × 10−4 1.065540 × 10−4

v1 (GeV) 3.287415 × 10−6 11.00 15.30
v2 (GeV) 245 244.75 244.52
α (°) 197.54 177.68 170.20
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to these Yukawa coupling parameters within the specified
ranges presented in the second column of Table IV, con-
sidering both normal (NH) and inverted (IH) hierarchies.
This process allowed us to identify a benchmark point that
consistently yielded values for the neutrino oscillation
parameters [59]. These values are listed in the second
column of Table V for reference. The corresponding values
of the mixing angles and mass-squared differences can be
found in the second column of Table VI.

TABLE III. The values of the charged lepton masses obtained
using benchmark points given in Table II.

Masses (MeV)
When
v1 ≪ v2

When v1 ranges from (10–17) Gev

NH IH

me 0.510 0.511 0.511
mμ 105.66 105.66 105.66
mτ 1776.87 1776.85 1776.85

TABLE IV. The ranges of Yukawa couplings used in numerical analysis for normal and inverted hierarchies of
neutrinos.

When v1 ≪ v2 range When v1 ranges from (10–17) Gev range

Yukawa coupling parameter NH IH NH IH

b11 6 × 10−2 − 8 × 10−2 7 × 10−2 − 2 × 10−1 6 × 10−2 − 8 × 10−2 8 × 10−2 − 9 × 10−2

b12 1 × 10−2 − 5 × 10−2 2 × 10−3 − 4 × 10−3 2 × 10−2 − 3 × 10−2 2 × 10−3 − 3 × 10−3

b13 7 × 10−1 − 9 × 10−1 3 × 10−1 − 5 × 10−1 6 × 10−1 − 8 × 10−1 1 × 10−1 − 2 × 10−1

b23 1 × 10−4 − 5 × 10−4 4 × 10−1 − 6 × 10−1 1 × 10−3 − 2 × 10−3 4 × 10−1 − 6 × 10−1

b31 1 × 10−4 − 5 × 10−4 3 × 10−2 − 5 × 10−2 1 × 10−2 − 2 × 10−2 3 × 10−2 − 5 × 10−2

b32 4 × 10−2 − 6 × 10−2 3 × 10−2 − 5 × 10−2 4 × 10−2 − 6 × 10−2 6 × 10−2 − 7 × 10−2

TABLE V. The benchmark points yielding correct neutrino phenomenology (i.e., neutrino mixing angles and
mass-squared differences are within 3σ experimental range [59]) for normal and inverted hierarchical neutrino
masses.

When v1 ≪ v2 When v1 ranges from (10–17) Gev

Parameter (Units) NH IH NH IH

b11 7.244577 × 10−2 1.066963 × 10−1 6.009812 × 10−2 8.006565 × 10−2

b12 1.498695 × 10−2 3.644816 × 10−3 2.334813 × 10−2 2.601354 × 10−3

b13 8.560231 × 10−1 4.519143 × 10−1 6.935666 × 10−1 1.522807 × 10−1

b23 1.033423 × 10−4 5.112375 × 10−1 1.791234 × 10−3 4.531115 × 10−1

b31 1.356340 × 10−4 4.546001 × 10−2 1.655557 × 10−2 3.909223 × 10−2

b32 5.796197 × 10−2 4.435139 × 10−2 4.880238 × 10−2 6.157254 × 10−2

M1 (GeV) 2.447917 × 1012 6.721219 × 1012 3.066113 × 1012 4.417490 × 1012

M3 (GeV) 2.222544 × 1014 5.140671 × 1014 2.748449 × 1014 6.211162 × 1014

TABLE VI. The values of the neutrino oscillation parameters obtained using benchmark points given in Table V
for normal and inverted hierarchical neutrino masses.

When v1 ≪ v2 When v1 ranges from (10–17) Gev

Parameters (Units) NH IH NH IH

θ13 (°) 8.44 8.85 8.86 8.22
θ12 (°) 31.70 34.30 32.10 31.80
θ23 (°) 43.76 47.09 42.96 48.14
Δm2

21 (eV2) 7.61 × 10−5 7.33 × 10−5 7.64 × 10−5 7.04 × 10−5

Δm2
31 (eV2) 2.58 × 10−3 2.48 × 10−3 2.49 × 10−3 2.43 × 10−3
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For these parameter values, the effective Majorana
neutrino mass takes the values jmeej ¼ jPi U

2
eimij ¼

0.02693 eV and jmeej ¼ 0.04952 eV for NH and IH of
neutrinos, respectively. The masses m1, m2, and m3

exhibited significant degeneracy in the case of NH, while
for IH, there was an order of magnitude difference between
the lightest mass and the other heavier masses. A linear
correlation between jmeej and the lightest neutrino mass
(m1 for NH and m3 for IH) is evident in Fig. 1.
CP violation in the leptonic sector remains unobserved to

date. Consequently, it will be instructive to scrutinize the
model’s predictions for CP violation. In our model, CP
violation, effectively, seeds from the complex VEV <
Φ2 > via its phase α. CP violation can be understood in
a rephasing invariant way by defining Jarlskog parameter
JCP ¼ IðUμ3U�

e3Ue2U�
μ2Þ [60–62]. For the present case,

i.e., v1 ≪ v2, we find that JCP and δ (the phase of the Ue3
element in U) are exceedingly small, regardless of the
neutrino mass hierarchy and whether the VEV-phase α is
equal to zero or nonzero (see Fig. 2). Figure 2 clearly
illustrates that when v1 ≪ v2, the model predicts a effective
CP conserving scenario, regardless of the value of the
VEV-phase α.
Furthermore, in this parameter space region, the mixing

angle θ23 falls within the lower octant (θ23 < 45°) for the

normal hierarchy (NH) and the upper octant (θ23 > 45°)
for the inverted hierarchy (IH), as illustrated in Fig. 3.
Specifically, we note that the mixing angle θ23 is approx-
imately 44° for the normal hierarchy and 47° for the
inverted hierarchy. In the subsequent section, we will
explore an alternative scenario by increasing the VEV v1
to observe its impact on CP violation in the leptonic sector.

B. When VEV v1 is in the GeV range

In this specific scenario, we randomly varied the VEV v1
within the range of 10 to 17 GeV to analyze the influence of
both VEVs on the parameter space. Once again, in this
case, v2 is determined by the relation v2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − v21

p
GeV.

The predictions obtained for masses and other parameters
will be discussed as follows.

1. Charged lepton masses

In this case, we have randomly varied the Yukawa
couplings in range as shown in third column of Table I,
and after diagonalizing the mass matrix MlM

†
l numerically

using Eq. (37), we have obtained squared-masses of the
charged leptons. The benchmark point and prediction for
the masses of charged leptons are listed in third column of
Tables II and III, respectively.

FIG. 1. Predictions for effective Majorana mass jmeej for normal (left) and inverted (right) hierarchy when v1 ≪ v2.

FIG. 2. δ − JCP correlation with VEV-phase α ¼ 0 and α ≠ 0 for normal (left) and inverted (right) hierarchies.
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2. Neutrino oscillation parameters

The ranges of Yukawa couplings considered in the numeri-
cal analysis are presented in the third column of Table IV. In
both normal and inverted hierarchies of neutrinos, we have
identified the benchmark point and obtained the values of the
mixing angles and mass squared differences, as shown in the
third column of Tables V and VI, respectively.
For these values, we have determined that jmeej is

approximately 0.01191 eV for NH and 0.04726 eV for

IH. Even with the increased value of v1, the massesm1,m2,
and m3 follow the same trend as in the previous case
when v1 ≪ v2.
The correlation plots, in Fig. 4, are shown for NH (first

row) and IH (second row) cases. It can be seen from Fig. 4
that jmeej is strongly correlated tom1 [Fig. 4(a)] and Jarlskog
invariant JCP ∈ ð−0.006 → 0.006Þ [Fig. 4(b)] for NH.
For IH, jmeej∈ ð4.67 → 4.83Þ × 10−2 eV [Fig. 4(c)] and
JCP ∈ ð−0.021 → −0.018Þ ⊕ ð0.018 → 0.021Þ [Fig. 4(d)].

FIG. 3. Correlation between the mixing angles θ13 and θ23 for normal (left) and inverted (right) hierarchies.

FIG. 4. Correlation plots between the effective neutrino mass jmeej and lightest neutrino mass, as well as between JCP and CP-
violating phase δ, for both normal (first row) and inverted (second row) hierarchies when the VEV v1 ranges from 10 to 17 GeV.
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It is interesting to note that in case of IH, the CP violating
phase δ ¼ 0 is disallowed, thus making this scenario
necessarily CP violating. Another characteristic feature
of the model is predicted correlation between yet unknown
θ23-octant and neutrino mass hierarchy. In Fig. 5, we have
shown allo (θ13 − θ23) plane. It is evident from these
plots that, for NH (IH), mixing angles (θ13 − θ23) exhibit
negative (positive) correlation. Thus, θ23 resides in the lower
octant for NH and in higher octant for IH; see Fig. 5. Further,
the model exhibit a sharp prediction for θ23 approximately
equal to 43° (48°) for NH (IH). Similarly, θ13 is found to be
around 8.8° (8.24°) for NH (IH). The correlations predicted
by the model between δ and (θ23, α), for NH and IH, are
shown in Figs. 6(a)–6(d).

Multi-Higgs models often lead to significant flavor-
changing neutral currents (FCNC) [63]. One approach to
reduce these couplings is by aligning all right-handed
fermions to interact with a single Higgs. This alignment
can be achieved through an additional global Z2 sym-
metry [12,13]. Alternatively, it can result from adjusting
the ratio of the VEVs v2=v1. In our study, we are
investigating the consequences of generalized CP (GCP)
symmetry without imposing additional symmetry con-
straints on the most general Yukawa couplings and their
corresponding neutrino phenomenology. Within the
model, it is possible that the Higgs responsible for
FCNC is very heavy and thus produces vanishing
FCNCs. The examination of FCNC effects in the current

FIG. 5. Correlation between the mixing angles θ13 and θ23 for normal (left) and inverted (right) hierarchies.

FIG. 6. Correlation of δ with θ23 and VEV-phase α for NH (first row) and IH (second row).
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model is beyond the scope of this study and will be
explored in future research.
In the present work, we have assumed the renormalization

group evolution (RGE) effects on the parameters to be
negligible. In fact, the literature extensively explores the
impact of renormalization group (RG) effects on multiple
Higgs doublet models. In Ref. [31], the authors have
considered the impact of imposing generalized CP sym-
metries on the Higgs sector of the two-Higgs doublet model
and identified three classes of symmetries (CP1, CP2, and
CP3). They have, also, examined the vacuum structure and
renormalization in the presence of these symmetries showing
that the basis invariant condition (in their paper, D ¼ 0),
defining these symmetries, is RG invariant. Also, the effects
of RGE have, also, been studied in Ref. [64] within two
Higgs doublet models (considered in the present work). In
particular, the authors have examined the RG equations of
the quartic Higgs-potential parameters and found that the
symmetries of this model are preserved by the RGEs.
Furthermore, in Ref. [65], the authors investigated renorm-
alization of the neutrino mass operators in the multi-Higgs-
doublet. Considering representative models, they have
shown that the corrections in the parameters are in general
negligible, with the possible exception of a degenerate
neutrino mass spectrum. In the present work, we, also, have
obtained the mass spectrum to be hierarchical and not
degenerate. Thus, we expect that RG effects to be negligible
in our model as well.

V. CONCLUSIONS

In extended theoretical frameworks beyond the Standard
Model, the count of free parameters increases compared to
those at low energy. By introducing additional symmetry
into the Lagrangian, we can substantially reduce the
number of free parameters. In this study, we investigated
the impact of GCP symmetries in the leptonic sector within
the context of the 2HDM model. To incorporate nonzero
neutrino masses, we have extended the lepton sector by
introducing right-handed neutrinos through the Type-I
seesaw mechanism.
The scalar potential of the 2HDM model typically

involves 14 free parameters. However, due to the GCP

symmetry we impose, this number reduces to four in the
unbroken CP3 case and six in the softly broken CP3
symmetry case. Consequent to GCP, the charged lepton
[Eq. (13)] and neutrino Yukawa coupling [Eq. (14)] matri-
ces contain 12 independent parameters, six each in charged
lepton and neutrino sectors. Also, Majorana mass term have
two real parameters [Eq. (30)].
This model exhibits a rich phenomenology and reveals

strong correlations among neutrino oscillation parameters.
The complex VEV phase α is the sole source of CP
violation in the model. We consider two distinct phenom-
enological scenarios:
(1) In the first scenario, where VEV v1 is much smaller

than v2, CP is conserved regardless of the value of
the VEV-phase α (see Fig. 2). This scenario provides
a unique phenomenology for normal and inverted
hierarchies of neutrinos. Notably, the model pre-
cisely predicts the neutrino mixing angles, particu-
larly the atmospheric mixing angle θ23.

(2) In the second scenario, where v1 is in the GeV range,
the atmospheric mixing angle θ23 is below (for NH)
or above (for IH) maximality, approximately ≈43°
and ≈48°, respectively (see Fig. 5). The Dirac CP
phase δ is tightly constrained to be within the range
of −10° to 10° for the NH case. However, if the
neutrino masses follow an inverted mass spectrum,
the model inherently exhibits CP violation with δ
approximately equal to �40°.
In summary, our investigation into the 2HDM

model with GCP symmetries reduces the number of
free parameters, leading to precise predictions for
neutrino mixing angles and distinct CP-violating
scenarios, shedding light on its unique phenom-
enology.
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