
Minimal model of fermion FIMP dark matter

Carlos E. Yaguna1 and Óscar Zapata 2

1Escuela de Física, Universidad Pedagógica y Tecnológica de Colombia,
Avenida Central del Norte # 39-115, Tunja, Colombia

2Instituto de Física, Universidad de Antioquia, Calle 70 # 52-21, Apartado Aéreo 1226, Medellín, Colombia
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We investigate a simple extension of the standard model in which the dark matter consists of a feebly
interacting fermion, charged under a new Z4 symmetry, that is produced in the early Universe by the
freeze-in mechanism. The only other new particle included in the model is a singlet scalar, also charged
under the Z4, which couples to the fermion via Yukawa interactions and to the standard model Higgs. The
model is truly minimal, as it admits just five free parameters: two masses and three dimensionless
couplings. Depending on their values, the freeze-in mechanism can be realized in different ways, each
characterized by its own production processes. For all of them, we numerically study the relic density as a
function of the free parameters of the model and determine the regions consistent with the dark matter
constraint. Our results show that this scenario is viable over a wide range of couplings and dark matter
masses. This model, therefore, not only offers a novel solution to the dark matter problem, but it also
provides a minimal realization of freeze-in for fermion dark matter.
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I. INTRODUCTION

The observed dark matter abundance [1,2] could be
explained by a feebly interacting massive particle (FIMP)
[3,4] that was produced via the freeze-in mechanism. Freeze-
in assumes that the dark matter particle interacts so weakly
that it never reached equilibrium with the thermal plasma in
the early Universe [5], resulting in a simple and very
predictive framework. Indeed, once the particle physics
model is known, the FIMP relic density can be calculated,
within the standard cosmological model, without the need of
any extra parameters or hypotheses—just as for the conven-
tional freeze-out [6]. It is such the attention that freeze-in is
receiving lately in the literature that it has already been
incorporated into the computational codes used by the dark
matter community, including micrOMEGAs [7] and, more
recently, DarkSUSY [8]. FIMP dark matter may also be the
reason why no signal has so far been observed in dark matter
detectors [9].
Given that FIMPs are necessarily standard model (SM)

singlets, the minimal scenario that realizes freeze-in is the
singlet scalar model [10]. In it, the dark matter particle is a
real scalar (S) odd under a new Z2 symmetry that couples
directly only to the Higgs field (H)—via the quartic

interaction λHSS2H†H [11–13]. This model has only two
free parameters—λHS and the S mass—and is consistent
with the observed dark matter density for λHS ∼ 10−11. But,
when the dark matter is instead a fermion, the model cannot
be so simple. Since it is not possible to couple a dark matter
fermion to the SM via renormalizable terms, the model
would inevitably require extra fields. One possibility is to
add a scalar, even under a Z2 symmetry, that mixes with the
Higgs, as done in the singlet fermionic model [14–17].
Although consistent with freeze-in [18], this appealing
scenario contains seven free parameters, significantly more
than for scalar dark matter. It is natural to ask, therefore,
whether there exists a simpler realization of freeze-in for
fermion dark matter, one featuring a smaller number of free
parameters.
In this work, we study the dark matter (DM) model

proposed in Refs. [19,20] but in light of the freeze-in
mechanism, rather than the freeze-out considered there. This
minimal extension of the SM incorporates just two new
particles, a Dirac fermion and a real scalar, both SM singlets
though charged under a new Z4 symmetry. Remarkably,
only five free parameters—the two masses and three
dimensionless couplings—are allowed in this setup. We
show that, depending on the relation between the masses
and on the values of the couplings, freeze-in can be realized
in different ways within this model. For each of them, we
compute the relic density and determine the regions con-
sistent with the dark matter constraint. Hence, we demon-
strate that this attractive and viable scenario provides a
minimal realization of freeze-in for fermion dark matter.
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The rest of the paper is organized as follows. In the next
section the model is introduced and its free parameters are
identified. Section III qualitatively describes FIMP dark
matter and presents the possible realizations of the freeze-in
mechanism within this model. Our main results are obtained
and explained in Sec. IV. There, we determine, for each
realization of freeze-in, the regions of parameter space that
are consistent with current data. In Sec. V the Z4 model of
freeze-in is contrasted against related scenarios, and pos-
sible extensions are briefly discussed. Finally, we summa-
rize our results and present our conclusions in Sec. VI.

II. THE MODEL

We extend the SM with a new Z4 discrete symmetry and
two additional fields, a fermion (ψ) and a real scalar (S),
both singlets of the SM gauge group. Under the Z4, all the
SM particles are singlets, whereas the new fields transform
as S → −S and ψ → iψ . That is all.
The most general Lagrangian symmetric under SUð3Þ ×

SUð2Þ × Uð1Þ × Z4 contains the following new terms:

L ¼ −
1

2
μ2SS

2 −
1

4
λSS4 −

1

2
λSHjHj2S2 −Mψ ψ̄ψ

þ 1

2
½ysψcψ þ ypψcγ5ψ þ H:c:�S; ð1Þ

where H ¼ ½0; ðhþ vHÞ=
ffiffiffi
2

p �T , with h the SM Higgs
boson. Unlike the Higgs, the new scalar field S does not
acquire a vacuum expectation value. To guarantee that the
tree-level potential remains bounded from below, we require
λS > 0 and λSH þ 2

ffiffiffiffiffiffiffiffiffiffi
λHλS

p
> 0, where λH is the SM Higgs

quartic coupling.
The first two terms in the above Lagrangian involve only

S and correspond, respectively, to the usual mass term and
quartic interaction, while the third term is the so-called
Higgs portal interaction between S and the SM Higgs. The
three subsequent terms involve ψ and amount to a Dirac
mass term plus two Yukawa interactions between ψ and S.
Due to the Z4 invariance, these Yukawa terms feature a
Majorana-like structure (ψcψ), rather than the more conven-
tional Dirac one (ψψ). Notice that while S couples to the
Higgs, ψ does not couple to any SM fields—-only to S.
The free parameters of this model are just five (λS is

irrelevant to our discussion), which can be taken to be

MS;Mψ ; λSH; ys; yp; ð2Þ

where the S mass, MS, is given by

M2
S ¼ μ2S þ

1

2
λSHv2H: ð3Þ

For definiteness, ys and yp will be taken to be real in the
following. In addition, due to the analogous roles they play

in the Lagrangian equation (1), we will usually consider
them jointly in our subsequent discussions.
It follows from Eq. (1) that the fermion is automatically

stable, whereas the scalar can be stable, if MS < 2Mψ , or
unstable, ifMS > 2Mψ–decaying into two fermions via the
Yukawas. The model thus may accommodate one (ψ) or
two (ψ , S) dark matter particles. In this work, we will
consider both possibilities while focusing our attention on
the region of parameter space where the dark matter is
feebly interacting and is produced in the early Universe by
the freeze-in mechanism.
Recently, we investigated the above Lagrangian but

within the context of a two-component weakly interacting
massive particle (WIMP) dark matter framework [20], and
found that it gives rise to a consistent and testable scenario
for the dark matter. In Ref. [21], this Z4 model was extended
with a nonrenormalizable term and studied within a non-
standard cosmological model. The region of parameter
space considered in these previous works, as well as the
associated dark matter phenomenology, are, however, com-
pletely different from those we are going to investigate in
this paper. The phenomenological implications when the
scalar field gets a nonzero vacuum expectation value have
been studied in Refs. [22–24]. The Z4 as a stabilizing dark
matter symmetry was employed in Ref. [25], which features
a different particle content: two scalars, a singlet and a
doublet. A related model using a Z2 symmetry instead of a
Z4 was analyzed in Ref. [18] for freeze-in dark matter.
Besides the Z2 odd fermion, it includes a scalar that is even
under the Z2 and mixes with the Higgs boson. Though
viable, this Z2 model contains two additional parameters in
the scalar potential, so it is not as simple or predictive as the
Z4 we are proposing here.

III. FIMP DARK MATTER

We are interested in the case where the dark matter is,
totally or partially, explained via the freeze-in mechanism.
The fundamental characteristic of freeze-in is that the dark
matter particle interacts so feebly that is unable to ever
reach thermal equilibrium in the early Universe—unlike for
freeze-out. Thus, FIMPs are necessarily singlets of the SM
gauge group and usually feature tiny couplings in their
interactions with the SM particles. Through such inter-
actions, FIMPs are gradually produced from the thermal
plasma (assuming renormalizability1), with their abundance
steadily increasing as the Universe expands. This process
continues until a freeze-in occurs at a temperature close to
the FIMP mass [5]. Hence, it is the production, rather than
the annihilation, processes that ultimately determine the
FIMP relic density.

1The so-called ultraviolet freeze-in, in contrast, invokes non-
renormalizable interactions between the dark and SM sectors [26].
In this work we reserve the term freeze-in for the infrared-
dominated production mechanism [5].
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In the Z4 model we are studying, both S and ψ can be
FIMPs. If the Yukawa interactions are suppressed, ys;p ≪ 1,
ψ will be a FIMP and, due to its stability, a dark matter
particle. If, instead, it is the Higgs portal interaction that is
suppressed, λHS ≪ 1, both S and ψ will be FIMPs. Indeed,
once S is feebly interacting, ψ will automatically inherit that
trait, as a result of its couplings. In this second scenario, S
may or not be a dark matter particle, contingent on its
stability.
Within freeze-in, the specific processes that generate the

FIMP dark matter abundance are model dependent, being
1 → 2 decays and 2 → 2 scatterings the most common
ones. In this model, we have identified four distinctive ways
through which the freeze-in mechanism can be realized,
each featuring its own production mechanisms. These four
cases, which depend on S reaching or not thermal equilib-
rium and on its stability, are as follows:
(1) Case 1: S is unstable and reaches thermal equilib-

rium in the early Universe. The production of dark
matter, ψ , occurs via the decay S → ψ þ ψ. The
Yukawa couplings are tiny in this case, ys;p ≪ 1.

(2) Case 2: S is unstable and does not reach thermal
equilibrium in the early Universe. Dark matter
production is a two step process in this case. First,
S is produced either by scatterings of SM particles in
the thermal plasma (e.g., Wþ þW− → Sþ S) or, if
kinematically allowed, via Higgs decays (h → SS).
Second, S decays into dark matter particles
(S → ψ þ ψ) through the Yukawa interactions.
The tiny coupling in this case is the Higgs por-
tal, λHS ≪ 1.

(3) Case 3: S is stable and reaches thermal equilibrium
in the early Universe. S and ψ are both dark matter

particles, with the former being a WIMP while the
latter a FIMP. S undergoes the usual freeze-out while
ψ is produced from S via Sþ h → ψ þ ψ and
Sþ S → ψ þ ψ̄ . This production mechanism, unlike
the previous ones, is specific to multicomponent
dark matter scenarios, and will be dubbed FIMP
from WIMP in the following.2 The Yukawa cou-
plings are again tiny in this case, ys;p ≪ 1.

(4) Case 4: S is stable and does not reach thermal
equilibrium. In this case the fermion cannot be
produced in any significant amount, so S is the dark
matter FIMP and the model effectively reduces to the
already known freeze-in realization of the singlet
scalar [7,8,10]. For this reason, we will not consider
this possibility any further.

To emphasize that these cases constitute really independent
situations rather than just different ways of generating the
dark matter, they are displayed in matrix form in Fig. 1. In
the following section, we will analyze in detail cases 1 to 3
so as to determine the regions of parameter space where the
observed dark matter density can be explained.

IV. RESULTS

In this section we present our main results. For each case,
we will first identify the relevant dark matter production
processes and study quantitatively the dependence of the
relic density on the free parameters of the model. Then, the
viable regions will be obtained and illustrated. For our
numerical findings we will rely on micrOMEGAs, which since
its version 4.1 [30] was extended to multicomponent dark

FIG. 1. The four possible realizations of freeze-in within the Z4 model. In this diagram by “S thermal” (“S nonthermal”) we mean that
S was able (unable) to thermalize with the plasma at some point in the early Universe. In the first row, ψ is the dark matter whereas in the
second row ψ and S are both dark matter particles—they both contribute to the observed dark matter density. In case 4 the contribution
from ψ turns out to be entirely negligible, however.

2See Refs. [27–29] for two-component FIMP-WIMP scenarios.
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matter scenarios (case 3), and since its version 5.0 [7]
incorporated freeze-in. In micrOMEGAs, the different proc-
esses that contribute to the dark matter density, including
decays and scatterings, are automatically taken into account,
and the corresponding Boltzmann equations are numerically
and accurately solved. To implement the Z4 model into
micrOMEGAs, we used LanHEP [31].

A. Case 1

This case is realized for MS > 2Mψ , yp; ys ≪ 1 and a
λSH large enough to allow S to reach thermal equilibrium at
high temperatures. ψ , the dark matter particle, is feebly
interacting and is dominantly produced via S decays. These
decays can happen while S is in thermal equilibrium (the
freeze-in contribution) or after S freezes-out (the super-
WIMP contribution). The total dark matter density will then
be the sum of these two contributions, which we now
discuss separately.

1. The freeze-in contribution

Since ψ has a direct coupling to S (via the Yukawa
couplings), it will be produced by the decay of S while
it is in equilibrium with the thermal bath. As long as
MS > 2Mψ , the scalar decays into a pair ψψ or ψcψc, with
a total rate given by

ΓðS → 2ψÞ≡ ΓðS → ψψ þ ψcψcÞ

¼ MS

8π

�
jysj2

�
1 −

4M2
ψ

M2
S

�
3=2

þ jypj2
�
1 −

4M2
ψ

M2
S

�
1=2

�
; ð4Þ

≈
MS

8π
½jysj2 þ jypj2�; ð5Þ

with the last expression being valid far from the threshold.
Equivalently, the S lifetime, τS, can be written as

τS ≃ 10−9 sec

�
100 GeV

MS

��
10−8

jys;pj
�

2

: ð6Þ

The ψ yield, Yψ ðTÞ ¼ nψðTÞ=sðTÞ, is computed by
solving the following Boltzmann equation [5]

sT
dYψ

dT
¼ −

γS→2ψ ðTÞ
HðTÞ ; ð7Þ

where s is the entropy density of the Universe, HðTÞ is the
expansion rate of the Universe at a given temperature and
γS→2ψðTÞ is the thermal averaged FIMP production rate,

γS→2ψðTÞ ¼ gS
M2

ST
2π2

K1ðMS=TÞΓðS → 2ψÞ; ð8Þ

with K1ðxÞ the Bessel function of the second kind. It
follows that

Yψ ≡ Yψ ðT0Þ ¼ gS
M2

S

π2
ΓðS → 2ψÞ

Z
TR

T0

dTK1ðMS=TÞ
HðTÞsðTÞ ;

≈ 0.685
gSMP

M2
S

ΓðS → 2ψÞ
�
1þ 1=3g0s
g1=2ρ gs

�
T¼MS=3

; ð9Þ

where sðTÞ ¼ 2π2gsT3=45, HðTÞ ¼ 1.66 ffiffiffiffiffigρp T2=MP, and
K1ðxÞ ∼ 1=x for x ≪ 1. For high temperatures, T > MS,
we obtain

dYψ

dT
≈ −5 × 103 GeV3

�
MS

1 TeV

�
2
�
ys;p
10−8

�
2

T−4: ð10Þ

Therefore, on the one hand we have that at T > MS the
yield always scales as the square of the scalar mass and of
the Yukawa coupling ys;p. On the other hand, at T ≲MS the
scalar particle abundance becomes Boltzmann suppressed
and the production of dark matter is no longer efficient. As
a result we have

YψðT ≲MSÞ ≈ 10−4
�
1 TeV
MS

��
ys;p
10−8

�
2

: ð11Þ

The relic density of dark matter, Ωψh2, is related to the
asymptotic value of Yψ at low temperatures by

Ωψh2 ¼ 2.744 × 108
Mψ

GeV
YψðT0Þ; ð12Þ

where T0 ¼ 2.752 K is the present day cosmic microwave
background (CMB) temperature. It is this quantity that
should be compared with the observed dark matter density
as measured by WMAP [1] and Planck [2]. For dark matter
production via the freeze-in mechanism, the ψ relic
abundance can be estimated as

Ωψh2 ≈ 0.3

�
Mψ

0.1 GeV

��
1 TeV
MS

��
ys;p
10−10

�
2

; ð13Þ

where we used Eqs. (11) and (12). Notice that this
expression has the expected dependence on MS, ys;p,
and Mψ .
Figure 2 displays the freeze-in relic density as a function

of the dark matter mass (Mψ ) for different values of the
Yukawa couplings, from 10−9 (solid) to 10−12 (dotted). Let
us stress that the results shown in this and all the following
figures were obtained with micrOMEGAs and not with the
analytical expressions obtained in the text, which serve
instead as a check and illustrate the functional dependence
with the different parameters. From Fig. 2 we can see that
Eq. (13) indeed gives an excellent approximation to the relic
density. The only exception is very close to the decay
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threshold, where the kinematic factors of ð1 − 4M2
ψ=M2

SÞn
from the rate—see Eq. (4)—become important, changing
the behavior of the relic density withMψ . For this figure, we
took yp ¼ ys and MS ¼ 2 TeV, which fixes the maximum
allowed value of Mψ to 1 TeV. The only other parameter of
the model is λHS, which was assumed to be large enough to
ensure that S reaches thermal equilibrium—its precise value
being inconsequential for the freeze-in relic density. For
comparison, the allowed value of the relic density [1,2] is
displayed as a horizontal (cyan) band. As expected, small
values of the Yukawa couplings are required to be consistent
with the observed dark matter density.
Having computed the relic density, we can now proceed

to obtain the viable regions for this case—that is, the regions
of the parameter space where the relic density is consistent
with the valued determined by Planck. Figure 3 shows these
viable regions for different values of MS, from 10 GeV
(bottom line) to 10 TeV (top line). In this figure we
considered two different possibilities for the Yukawa
couplings: (i) ys ≠ 0, yp ¼ 0 (solid lines), and (ii) ys ¼ 0,
yp ≠ 0 (dashed lines). Notice that these two possibilities—
scalar and pseudoscalar interactions, respectively—differ
only very close to the decay threshold, as expected from
Eqs. (4) and (13). The value of the Yukawa couplings
required to explain the relic density via freeze-in thus lies
approximately between 10−12 and 10−9, depending on the
ratio Mψ=MS. Such small Yukawas guarantee that ψ does
not reach thermal equilibrium in the early Universe, as

assumed in the freeze-in mechanism. To remain consistent
with warm dark matter bounds, the range of Mψ can be
extended down to the ∼10 keV range [32,33] (not shown in
Fig. 3). The corresponding value of the couplings can be
easily obtained by extrapolating from the figure, or directly
from Eq. (13).

2. The super-WIMP contribution

Since the Yukawa couplings are tiny in this case, S is
metastable and undergoes a freeze-out before decaying and
disappearing completely from the hot plasma in the early
Universe. This late decay, S → ψψ , takes place at T ≲
MS=20 and constitutes an additional source of dark matter
called the super-WIMP contribution (ΩsWIMP

ψ ) [34,35].
Notice that all of the S particles remaining after freeze-
out will end up being converted into dark matter through
the decay. Thus,

ΩsWIMP
ψ ¼ Mψ

MS
2Ω̃fo

S ; ð14Þ

where Ω̃fo
S is the relic abundance of S, obtained via the

usual freeze-out mechanism, if it were stable. The crucial
point for us is that while Ω̃fo

S depends on λHS but not on
ys;p, it is the other way around for the freeze-in contribu-
tion. Consequently, we can usually find a value of λHS such
that ΩsWIMP

ψ ≪ ΩDM and freeze-in accounts for most of the
dark matter. Taking λHS ¼ 1, for instance, ensures that
Ω̃fo

S < ΩDM for all MS ≲ 7 TeV.

FIG. 3. The regions consistent with the relic density for case 1.
Only the freeze-in contribution is shown. The solid (dashed) lines
correspond to the value of ys (yp) assuming that yp ¼ 0 (ys ¼ 0).

ys = yp
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FIG. 2. The freeze-in relic density as a function of the dark
matter mass for different values of the Yukawa couplings—from
10−9 (top) to 10−12 (bottom). For this plot the scalar mass was set
to 2 TeV and ys ¼ yp was assumed. For illustration, the allowed
range of the relic density is shown as a horizontal band.
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B. Case 2

This case features MS > 2Mψ and λSH ≲ 10−6, which
results in both S and ψ being feebly interacting, but since
S is unstable, only ψ contributes to the dark matter. The
production of dark matter is now a two-step process.
First, S is slowly produced (at T ≳MS) via scattering of
SM particles or Higgs decays, just as in the singlet scalar
model [10]. Then, once S has been produced, it will
necessarily (and immediately) decay into fermions (the
dark matter) via the Yukawa interactions. A crucial differ-
ence with respect to case 1 is that the precise value of the
Yukawa couplings does not affect the dark matter density—
two ψs are produced for each S irrespective of ys;p. In fact,

Ω ¼ Mψ

MS
2Ω̃fi

S ; ð15Þ

where the factor 2 comes from S → ψψ , and Ω̃fi
S is the S

freeze-in relic density if it were stable—i.e., the one
computed in the singlet scalar model. Consequently, the
relevant parameter space consists of MS, Mψ , and λHS.
Figure 4 shows, as a function of Mψ , the contributions to

the dark matter density from different initial states: bb̄
(dotted orange line),WþW− (dash-dotted magenta line), ZZ
(dashed green line), and hh (dotted cyan line). The total
relic density is the solid (red) line. For this figure we set
MS ¼ 3Mψ and λHS ¼ 10−11. Below the Higgs resonance
(MS < Mh=2 or equivalently Mψ < Mh=6) the production
is entirely dominated by the bb̄ initial state—dark matter is
generated via bþ b̄ → Sþ S (a Higgs-mediated process)

followed by S → ψ þ ψ. Above the Higgs resonance,
instead, theWþW−, ZZ, and hh initial states all give sizable
contributions to the relic density. These results are consistent
with those already known from the singlet scalar model.
Indeed, the drop in the value of Ωh2 at the Higgs resonance
as well as its constant behavior at high dark matter masses
are well-known features of this model. Since Mψ=MS is

constant in this figure, Ω is simply proportional to Ω̃fi
S , in

agreement with Eq. (15)—see, e.g., Refs. [7,8,10].
The regions consistent with the dark matter constraint are

displayed in Fig. 5. The left panel shows the values of
ðMS; λHSÞ that yield Ωh2 ¼ 0.12 for different dark matter
masses: 1 GeV (dotted), 10 GeV (dashed), 100 GeV (dash
dotted), and 1 TeV (solid). The first two clearly illustrate
the effect of the Higgs resonance discussed in the previous
figure. Since MS > 2Mψ , the minimum allowed value of
MS increases with Mψ—from top to bottom. Notice that,
for the range of masses displayed, λHS varies between 10−9

and 10−12. In the right panel the viable regions are instead
projected onto the plane ðMψ ; λHSÞ for different values of
MS: 10 GeV (solid), 100 GeV (dotted), 1 TeV (dashed), and
10 TeV (dash dotted). As a consequence of the Higgs
resonance, the line for MS ¼ 10 GeV (below the reso-
nance) is farther apart from the other three lines (above the
resonance). In this figure, the maximum value of Mψ is
given by MS=2 whereas its minimum value could be
stretched down to about 10 keV, as in case 1.

C. Case 3

In this case,MS < 2Mψ , so that both, S and ψ , are stable
and contribute to the dark matter density—it is a two-
component dark matter scenario. The dark matter constraint
then reads

Ωψ þΩS ¼ ΩDM: ð16Þ

An important quantity in these scenarios is the fractional
contribution of each particle to the total dark matter density:

ξψ ;S ≡ Ωψ ;S

ΩDM
: ð17Þ

Thus, the dark matter constraint can be written as
ξψ þ ξS ¼ 1.
Because λSH ≳ 10−6 and yp; ys ≪ 1, ψ is a FIMPwhile S

is a WIMP, yielding a mixed FIMP-WIMP scenario. A
consequence of the S relic density being the result of a
freeze-out is that the strong constraints from direct detec-
tion experiments apply to it, just as in the singlet scalar
model. In fact, the viable regions necessarily lie either at the
Higgs resonance, MS ∼Mh=2, or in the multi-TeV range,
MS ≳ 3 TeV. Here, we will focus on the first possibility,
setting MS ¼ 62.5 GeV in the following.

FIG. 4. The contributions of the different initial states to the
relic density as a funcion of Mψ . In this case, S is pair produced
from SM particles and subsequently decays into ψ .
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Figure 6 shows the viable parameter space (solid red line)
at the Higgs resonance in the plane ðλHS; ξSσSIS Þ. Notice that
values of λHS close to 1 are excluded by direct detection
limits (yellow region, top), whereas λHS ≲ 10−4 leads to an

ΩS larger than the observed dark matter density (cyan
region, left). The vertical (magenta) dashed lines indicate
the values of λHS for which S gives a contribution to the dark
matter density of 50%, 10%, and 1%, respectively (from left
to right). Accordingly, both particles (S and ψ) contribute
significantly to the dark matter density if λHS lies between
10−3 and 10−4.
Regarding the ψ relic density, which is the result of a

freeze-in, two processes contribute to it: Sþ S → ψ þ ψ̄
and Sþ h → ψ þ ψ (plus its conjugate: Sþ h → ψ̄ þ ψ̄ )
—see Fig. 7. In the following, we will label these
processes, respectively, as conversion and same-charge
pair production. Curiously, S appears in the initial state for
both processes. Thus, we have a production mechanism in
which FIMPs (ψ) are generated from WIMPs (S). From
their Feynman diagrams, one can see that Ωψ ∝ y4 for
conversions while Ωψ ∝ y2 for same-charge (SC) pair
production. The left panel of Fig. 8 shows the ψ relic
density as a function of the Yukawa couplings, which
are assumed equal, for different values of Mψ : 100 GeV

FIG. 6. The viable parameter space at the Higgs resonance.
The solid line shows ξSσ

SI
S as a function of λSH for MS ¼

62.5 GeV. The left part of the figure is excluded because ΩS >
ΩDM while the top region is inconsistent with direct detection
limits. The vertical magenta lines correspond, respectively, to
ξS ¼ 0.5, 0.1, 0.01.

FIG. 5. The regions consistent with the relic density for case 2 projected onto the planes ðMS; λHSÞ and ðMψ ; λHSÞ. The lines differ in
length due to the condition MS > 2Mψ . As explained in the text, the values of ys and yp are irrelevant in this case.

FIG. 7. Dark matter production processes in case 3: same-
charge pair production (left) and conversion (right).
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(solid line), 1 TeV (dash-dotted line), and 10 TeV (dashed
line). For Mψ ¼ 100 GeV, the relic density increases
quadratically with ys;p, indicating that it is entirely domi-
nated by Sþ h → ψ þ ψ. A similar result is observed for
Mψ ¼ 1 TeV, except for large Yukawa couplings (> 10−6),

where the slope becomes steeper due to the contribution
from Sþ S → ψ þ ψ̄ . For Mψ ¼ 10 TeV the transition
from SC pair production to conversions is more marked
and takes place at smaller values of the Yukawas. To
emphasize this point, we separately display, in the right
panel, the contributions from SC pair production (dotted
line) and conversions (dashed line) to the total relic density
(solid line) for Mψ ¼ 10 TeV. Notice that SC pair produc-
tion dominates for y < 10−7 whereas conversion do so
for y > 10−6.
Figure 9 illustrates, in the plane ðMψ ; ys;pÞ, the regions

consistent with the dark matter constraint for this case. The
minimum value of Mψ is determined by MS

2
¼ 31.25 GeV,

while its maximum value was set to 10 TeV. For definite-
ness, we have considered the scalar (yp ¼ 0) and pseudo-
scalar (ys ¼ 0) scenarios for two different values of ξψ∶0.5,
0.9. The respective values of ξS are therefore 0.5 and 0.1,
which set the value of λHS according to Fig. 6. In agreement
with the previous figures, the Yukawas tend to increase
with Mψ , lying in the interval ð10−8; 10−6Þ for the range
examined. The reason this interval spans couplings larger
than in cases 1 and 2 is twofold, depending on the dominant
process for dark matter production. When it is dominated
by SC pair production, there is an additional suppression
coming from λHS ∼ 10−4, and when it is dominated by
conversions, the y4 dependence (rather than y2) of the
production cross section permits larger Yukawa couplings.
In any case, note that at a given mass the allowed values of
the Yukawas differ by at most a factor of 2 or so among the
different lines.

FIG. 8. Left: the ψ relic density as a function of ys ¼ yp for different values of Mψ . Right: the separate contributions of conversion
processes (dashed cyan) and same-charge pair production (dotted brown) to the relic density (solid) for Mψ ¼ 10 TeV.

FIG. 9. The regions consistent with the relic density for case 3
(MS ¼ 62.5 GeV). The lines correspond to scalar and pseudo-
scalar cases for two different values of ξψ∶0.5, 0.9. The value of
λHS is fixed by the dark matter constraint.
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V. DISCUSSION

As we have seen, the Z4 model of fermion FIMP dark
matter provides a viable and compelling realization of
freeze-in. Let us now show that it is also simpler than
other scenarios with the same particle content—one
fermion and one scalar—that are based on an arbitrary
ZN symmetry [36,37]. In the Z2 model, the scalar must be
even (a singlet), so it mixes with the Higgs boson,
resulting in a model with two additional parameters in
the scalar potential [18]. For the case N ¼ 3n, with n as an
integer, the scalar potential allows for the inclusion of a
trilinear self-interaction term μ3S3, enlarging the set of free
parameters. If, instead, N ¼ 4n, the resulting symmetry is
equivalent to a Z4. In this scenario, the charges of the
fermion ψ and the scalar S are given by Z4nðψÞ ¼ wn

4n ¼ i
and Z4nðSÞ ¼ w2n

4n ¼ −1, respectively. Finally, when
N ≠ 4n, the scalar must be a complex field, introducing
an extra degree of freedom in the spectrum. We conclude,
therefore, that among the ZN symmetries [38–40], the Z4

we have studied indeed leads to the minimal model.
Given the small couplings that characterize the viable

regions of this model, no dark matter signals are foreseen
in any current or planned experiment—a rather generic
feature of FIMP dark matter. Hence, if a signal were
actually found, one could immediately exclude this
scenario as the correct explanation of the dark matter.
Cosmology offers, nonetheless, an indirect way of probing
some regions of parameter space. In scenarios where the
interactions between the SM sector and a hidden sector
involving a scalar field S are weakly coupled, such as in
our case 2, the S primordial condensate can act as a second
mechanism for dark matter production, and it may also
generate isocurvature perturbations [41,42].3 In addition,
it would be interesting to explore the conditions under
which the scalar field S could potentially drive cosmic
inflation, reheat the Universe, and produce the observed
abundance of fermion FIMP dark matter. Such consid-
erations might involve the introduction of sizeable non-
minimal curvature couplings or other mechanisms to
facilitate the desired cosmological evolution [46,47].
Studying these aspects may provide valuable insights into
the model’s broader cosmological implications, but it is
unlikely it will alter the conclusions reached in the
previous section. In any case, such analysis lies beyond
the scope of this work.
A simple and motivated extension of the model we

discussed can be attained by promoting the Z4 symmetry to
aUð1Þ0 gauge symmetry. In that case, the scalar field would
become complex and the Lagrangian would be given by

L¼ −
1

4
F0
μνF0μν þ ψ̄ðiγμ∂μ − g0qψγμA0

μ −MψÞψ
þ jð∂μ þ ig0qSA0

μÞSj2 − μ2SjSj2 − λSjSj4 − λSHjHj2jSj2

þ 1

2
½ysψcψSþ ypψcγ5ψSþH:c:� þ ϵFYμνF0μν; ð18Þ

where qS ¼ −2qψ . In order to achieve fermion FIMP dark
matter, both the Uð1Þ0 gauge coupling g0 and the kinetic
mixing parameter ϵ must satisfy g0; ϵ ≪ ys;p, which ena-
bles the scenarios discussed in the previous section (cases
1–3). However, it is important to note that if g0 ∼ ys;p and ϵ
is sizeable, the A0 gauge boson may also contribute
significantly to the fermion relic abundance through the
decay A0 → ψ þ ψ. In such cases, additional considera-
tions and constraints are necessary to accurately determine
the contributions of both the scalar S and the A0 to the
overall dark matter abundance.

VI. CONCLUSIONS

We studied a new realization of the freeze-in mecha-
nism for fermion dark matter. The model is quite simple as
it extends the SM with just a Z4 symmetry and two new
fields, S and ψ , charged under it. In fact, only five
parameters—MS, Mψ , yp, ys, and λHS—determine its
phenomenology. Within this scenario, which had not been
studied before in the context of FIMP dark matter, we
identified three independent instances of freeze-in, each
featuring its own dark matter production mechanism:
(i) the decay S → ψ þ ψ while S is in equilibrium; (ii) pair
production of S from scatterings or Higgs decays followed
by the decay of S (into dark matter) while out of
equilibrium; and (iii) FIMP from WIMP via the processes
Sþh→ψþψ and SþS→ψþ ψ̄ . The first two cases
feature FIMP dark matter whereas the third one is a
two component mixed FIMP-WIMP scenario. For each of
these cases we studied the relic density as a function of the
parameters of the model and determined the regions of
parameter space that are consistent with the observed dark
matter abundance. Our results demonstrate that this
scenario offers a phenomenologically rich setup that is
viable over a wide range of masses and couplings. In
addition, it furnishes a minimal model of freeze-in for
fermion FIMP dark matter.
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Lineros, J. Cosmol. Astropart. Phys. 09 (2023) 015.

[45] M. Becker, E. Copello, J. Harz, J. Lang, and Y. Xu,
arXiv:2306.17238.

[46] T. Tenkanen, J. High Energy Phys. 09 (2016) 049.
[47] J. P. B. Almeida, N. Bernal, J. Rubio, and T. Tenkanen,

J. Cosmol. Astropart. Phys. 03 (2019) 012.

CARLOS E. YAGUNA and ÓSCAR ZAPATA PHYS. REV. D 109, 015002 (2024)

015002-10

https://doi.org/10.1088/0067-0049/208/2/19
https://doi.org/10.1088/0067-0049/208/2/19
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1142/S0217751X1730023X
https://doi.org/10.1140/epjc/s10052-021-09703-7
https://doi.org/10.1007/JHEP03(2010)080
https://doi.org/10.1103/PhysRevD.86.023506
https://doi.org/10.1103/PhysRevD.86.023506
https://doi.org/10.1016/j.cpc.2018.04.027
https://doi.org/10.1007/JHEP02(2022)110
https://doi.org/10.1038/s41586-018-0542-z
https://doi.org/10.1007/JHEP08(2011)060
https://doi.org/10.1016/0370-2693(85)90624-0
https://doi.org/10.1103/PhysRevD.50.3637
https://doi.org/10.1016/S0550-3213(01)00513-2
https://doi.org/10.1016/S0550-3213(01)00513-2
https://doi.org/10.1103/PhysRevD.75.115012
https://doi.org/10.1088/1126-6708/2008/05/100
https://doi.org/10.1088/1126-6708/2008/05/100
https://doi.org/10.1016/j.physletb.2012.07.017
https://doi.org/10.1016/j.physletb.2012.07.017
https://doi.org/10.1103/PhysRevD.88.075017
https://doi.org/10.1103/PhysRevD.88.075017
https://doi.org/10.1088/1475-7516/2013/11/039
https://doi.org/10.1088/1475-7516/2013/11/039
https://doi.org/10.1007/JHEP01(2016)087
https://doi.org/10.1103/PhysRevD.105.095026
https://doi.org/10.1103/PhysRevD.105.095026
https://arXiv.org/abs/2012.11969
https://doi.org/10.1103/PhysRevD.76.083519
https://doi.org/10.1103/PhysRevD.76.083519
https://doi.org/10.1103/PhysRevD.83.063504
https://doi.org/10.1103/PhysRevD.83.063504
https://doi.org/10.1007/JHEP12(2018)007
https://doi.org/10.1103/PhysRevD.106.095019
https://doi.org/10.1103/PhysRevD.106.095019
https://doi.org/10.1007/JHEP03(2015)048
https://doi.org/10.1007/JHEP03(2015)048
https://doi.org/10.1140/epjc/s10052-017-5221-y
https://doi.org/10.1007/JHEP07(2022)091
https://doi.org/10.1007/JHEP07(2022)091
https://doi.org/10.1007/JHEP12(2022)165
https://doi.org/10.1007/JHEP12(2022)165
https://doi.org/10.1016/j.cpc.2015.03.003
https://doi.org/10.1016/j.cpc.2016.01.003
https://doi.org/10.1088/1475-7516/2021/10/045
https://doi.org/10.1088/1475-7516/2021/10/045
https://doi.org/10.1088/1475-7516/2022/03/041
https://doi.org/10.1103/PhysRevD.68.063504
https://doi.org/10.1103/PhysRevD.68.063504
https://doi.org/10.1103/PhysRevLett.91.011302
https://doi.org/10.1103/PhysRevLett.91.011302
https://doi.org/10.1007/JHEP03(2020)109
https://doi.org/10.1007/JHEP03(2020)109
https://doi.org/10.1007/JHEP10(2021)185
https://doi.org/10.1007/JHEP10(2021)185
https://doi.org/10.1103/PhysRevD.83.035006
https://doi.org/10.1088/1475-7516/2012/04/010
https://doi.org/10.1088/1475-7516/2014/06/021
https://doi.org/10.1088/1475-7516/2015/11/001
https://doi.org/10.1088/1475-7516/2015/11/001
https://doi.org/10.1088/1475-7516/2016/06/022
https://doi.org/10.1088/1475-7516/2016/06/022
https://doi.org/10.1088/1475-7516/2022/12/017
https://doi.org/10.1088/1475-7516/2022/12/017
https://doi.org/10.1088/1475-7516/2023/09/015
https://arXiv.org/abs/2306.17238
https://doi.org/10.1007/JHEP09(2016)049
https://doi.org/10.1088/1475-7516/2019/03/012

