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We present an exploratoryNf ¼ 2 lattice QCD study of ψ2ð3823Þ → γχc1 at a pion massmπ ≈ 350 MeV.
The related two-point and three-point functions are calculated using the distillation method. The
electromagnetic multipole form factor V̂ð0Þ ¼ 2.083ð11Þ for J=ψ → γηc is consistent with previous lattice
results. The form factors Ê1ð0Þ, M̂2ð0Þ, and Ê3ð0Þ for Γðχc2 → γJ=ψÞ have the same hierarchy as that
derived from experiments, and the predicted decay width Γðχc2 → γJ=ψÞ ¼ 368ð5Þ keV is in excellent
agreement with the Particle Data Group value 374(10) keVand previous lattice QCD results in the quenched
approximation. The same strategy is applied to the study of the process ψ2ð3823Þ → γχc1, and the partial
decay width is predicted to be 337(27) keV. According to the BESIII constraints on the ψ2ð3823Þ decay
channels and some phenomenological results, we estimate the total width Γðψ2ð3823ÞÞ ¼ 520ð100Þ keV.
DOI: 10.1103/PhysRevD.109.014513

I. INTRODUCTION

Charmonium states are usually thought of as the bound
states of charm quark and antiquark (cc̄) in the conven-
tional quark model. Since the charm quark is relatively
heavy, a nonrelativistic description of the internal structure
of charmonium is acceptable to some extent, especially for
the low-lying states. In the nonrelativistic potential model, a
charmonium state can be assigned to a n2Sþ1LJ state, where
n, S, and L are the radial quantum number, the total spin of
the cc̄ pair, and the orbital angular momentum, respec-
tively. Consequently, it gives the JPC quantum number of
the state. For n ¼ 1, the S-wave charmonium (J=ψ and ηc)
and the P-wave charmonium (hc and χc0;1;2) have been well
established, but the D-wave supermultiplet ð11D2; 13D1;2;3)
is not complete yet. Experimentally, apart from the vector
charmonium ψð3770Þ that is assigned to be (predominantly)
the 13D1 state, other 1D charmonium have escaped from the
experimental search for a long time. In 2013, the Belle
Collaboration reported the first evidence for a 2−− charmo-
niumlike state Xð3823Þ of a mass 3823.1� 1.8� 0.7 MeV
in the χc1γ invariant mass spectrum of the decay processes
B → χc1γK [1]. In 2015, the BESIII Collaboration also
observed Xð3823Þ in the γχc1 system with a statistical

significance of 6.2σ in the process eþe− → πþπ−χc1γ [2].
The mass of Xð3823Þ is measured to be 3823.7�
1.3� 0.7 MeV, which is consistent with that measured
by Belle and confirms the existence of Xð3823Þ. The
properties of Xð3823Þ, such as its mass and decay modes
χc1;2γ [3], are consistent with the theoretical expectations for
those of the 1D state 13D2. Now Xð3823Þ is named by
ψ2ð3823Þ in Particle Data Group (PDG) [4]. The observa-
tion of ψ2ð3823Þ in the process eþe− → π0π0ψ2ð3823Þ by
BESIII [3,5] provides a further support of its quantum
number JPC ¼ 2−−. Recently, the LHCb Collaboration
observed a new charmonium state Xð3842Þ near the DD̄
threshold using proton-proton collision data [6]. Its mass
mXð3842Þ ¼ 3842.72� 0.16� 0.12 MeV and the very small
width ΓXð3842Þ ¼2.79�0.51�0.35MeV suggest Xð3842Þ
to be a candidate for the 13D3 charmonium state (named as
ψ3 in PDG). Thus, the 1D spin triplet is in space, while the
spin singlet 1D state ηc2 is still missing.
The width of ψ2ð3823Þ is expected to be very small since

it lies a little higher than the DD̄ threshold but lower than
DD̄� andD�D̄� threshold. However, ψ2ð3823Þ cannot decay
into DD̄ whose permitted quantum numbers are JPC ¼
ðevenÞþþ and ðoddÞ−−. Thus, its major decay modes should
be radiative and hadronic transitions into other charmonium
states. Phenomenological studies predict the partial widths
Γðψ2 → γχc1Þ ∼ 200–300 keV, Γðψ2 → γχc2Þ ∼ 60 keV
[7,8], and Γðψ2 → J=ψππÞ ∼ 160 keV [9]. (However,
BESIII gives the upper limits Γðψ2ð3823Þ → πþπ−J=ψÞ=
Γðψ2ð3823Þ → γχc1Þ < 0.06 and Γðψ2ð3823Þ→ π0π0J=
ψÞ=Γðψ2ð3823Þ→ γχc1Þ< 0.11, which are in striking
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contrast to the theoretical expectation.) This indicates ψ2 →
γχc1 might be the most important decay channel. Experi-
mentally, LHCb gives an upper bound Γψ2

< 5.2 MeV [10],
while a recent BESIII measurement decreases this limit to be
Γψ2

< 2.9 MeV at the 90% confidence level [11]. So
reliable determination of the partial width ψ2ð3823Þ →
γχc1 is very helpful to estimate the total width of ψ2ð3823Þ.
A first-principle calculation of ψ2ð3823Þ decays is

desired two fold. First, charmonium states are located at
the intermediate energy scale of QCD, where both pertur-
bative and nonperturbative physics are present, and char-
monium states are considered as an ideal test ground for
quantum chromodynamics (QCD). Second, the comparison
of the quark model predictions and the first-principle
calculation can indicate to what extent the quark model
describes the properties of charmonium. The numerical
lattice QCD calculation is known as an ab initio approach to
solve the low energy problems of QCD and has been
extensively applied to the study of radiative transition
between various charmonium [12–28].
In this simulation, we calculate the radiative transition

decay width of ψ2 → χc1γ in the framework of Nf ¼ 2

lattice QCD. We compute related two-point and three-point
correlation functions by the implementation of the distil-
lation method [27,29,30]. This smearing technique helps us
use optimized operators of definite momentum at both
source and sink as well as insert a vector current operator of
definite momentum. Therefore, it has efficiently decreased
the errors of physical quantities extracted from the corre-
lation functions. As a calibration of possible systematic
uncertainties with our lattice setup, we also calculate the
radiative transition decay width of J=ψ → ηcγ and χc2 →
J=ψγ and compare them with previous lattice results and
experimental values.
This paper is organized as follows. Section II introduces

the strategies for computing the form factors for radiative
decays. In Sec. III, we explain the numerical details such
as the gauge ensembles and the calculation of two-point
and three-point functions using the distillation method.
Section IV presents the lattice results of the transition
processes J=ψ → ηcγ, χc2 → J=ψγ and ψ2 → χc1γ, as well
as the related discussions. Section V is the summary of
this work.

II. FORMALISM

For a radiative transition process iðpiÞ → γfðpfÞ,
the partial decay width can be expressed in terms of
the electromagnetic multipole form factors FkðQ2Þ at
Q2 ¼ 0, namely,

Γði → fγÞ ¼ 1

2Ji þ 1
α
jqj
m2

i

X
k

jFkð0Þj2; ð1Þ

where α ¼ 1=137 is the fine structure constant at the charm
quark scale; q is the momentum of the photon in the final

state with jqj ¼ ðm2
i−m

2
fÞ

2mi
and Q2 ¼ −q2 ¼ ðpi − pfÞ2. The

multipole form factors FkðQ2Þ are encoded in the matrix
element of the electromagnetic current Jemμ ð0Þ between the
initial and final hadron states, namely,

hf; pf; rfjJemμ ð0Þji; pi; rii
≡X

k

αkμðpi; pf; ϵðrfÞ;�; ϵðriÞÞFkðQ2Þ; ð2Þ

where ϵðrÞ refers to the polarization vectors (tensors) of the
initial and the final hadron states; αk are known functions of
pi; pf; ϵðri;fÞ that are determined through the multipole
decomposition [12,14,16].
The matrix element on the left-hand side can be extracted

from the following three-point correlation functions with an
insertion of the local current Jemμ ðxÞ, i.e.,

Gfμiðtf; t;pf;piÞ ¼
X
x;y

e−ipf ·xeiq·y

× hΩjTOfðtf;xÞJemμ ðt; yÞ
×O†

i ð0; 0ÞjΩi; ð3Þ

where Ofðtf;xÞ and O†
i ð0; 0Þ are interpolating operators

for the final and the initial hadron states, respectively, q ¼
pi − pf is the momentum of the (virtual) photon, and Jemμ is
the electromagnetic vector current whose explicit form is

Jemμ ðxÞ ¼
X
q

QqψqðxÞγμψqðxÞ

→
2e
3
cðxÞγμcðxÞ

¼ 2e
3
Jμ; ð4Þ

with q referring to u, d, s, c, b quark flavors. For
charmonium radiative decays, since u, d, s, b quarks
contribute to Gfμiðt2; t;p2;p1Þ through disconnected quark
diagrams, which are suppressed by OZI rules, we only
consider the electromagnetic current of charm quark with
Qc ¼ 2e=3 in the practical calculation.
After inserting a complete set of states between the

electromagnetic vector current and the interpolating oper-
ators, Eq. (3) has the following asymptotic form in the tf ≫
t ≫ 1 limit,

Gfμiðtf; t;pf;piÞ ⟶
tf≫t≫1 e−Eftfe−ðEi−EfÞt

4EiðpiÞEfðpfÞ
× hΩjOfjfðpfÞihiðpiÞjO†

i jΩi
× hfðpfÞjJemμ ð0ÞjiðpiÞi: ð5Þ
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In order to extract the matrix element hfjJemμ ð0Þjii, we need
to the energies and spectral weight of the final and the
initial states, i.e., Ei, Ef, hΩjOfjfðpfÞi, and hiðpiÞjO†

i jΩi.
They can be determined from the two-point correlation
function,

Cðt;pÞ ¼
X
x

e−ip·xhΩjOðt;xÞO†ð0; 0ÞjΩi

¼
X
n

jhΩjOð0Þjn;pij2
2EnðpÞ

e−EnðpÞt

→
jZðpÞj2
2EðpÞ e−EðpÞtðt → ∞Þ; ð6Þ

where EðpÞ is the energy of the ground state j1;pi, and
ZðpÞ ¼ hΩjOð0Þj1;pi is defined. So the key problem in
this work is to calculate the two-point and three-point
functions, from which the transition amplitude can be
derived. It should be notified that the polarizations of J ≠ 0
particles are not spelled out explicitly in the discussion
above for simplicity, but are taken into account the in the
concrete calculations.

III. SIMULATION DETAILS

We use a subset of the Nf ¼ 2 gauge ensemble
generated on an L3 × T ¼ 163 × 128 anisotropic lattice
with the anisotropy parameter ξ ¼ as=at ¼ 5.3 (as and at
are the spatial and temporal lattice spacings, respectively)
[31]. The sea quark mass is tuned to give the pion mass
mπ ≈ 350 MeV. The parameters of the gauge ensemble are
listed in Table I. For the valence charm quark, we adopt the
clover fermion action in Refs. [32–34], and the charm quark
mass parameter is set by ðmηc þ 3mJ=ψÞ=4 ¼ 3069 MeV.
For each source time slice τ∈ ½0; T − 1� on each gauge
configuration, the perambulators of charm quark are calcu-
lated in the Laplacian Heaviside (LH) subspace spanned by
Nvec ¼ 50 eigenvectors with lowest eigenvalues.

A. Charmonium spectrum

In this section, we introduce briefly the distillation
method to compute two-point correlation function [29].
The distillation method provides automatically the
Laplacian Heaviside (LH) smearing scheme for quark
fields. The LH smeared charm quark field on each time
slice t is defined as

cðsÞðx; tÞ ¼
X
y

□x;y ðtÞcðy; tÞ; ð7Þ

with the smearing function □x;yðtÞ being defined by the

eigenvectors fξðnÞx ðtÞ; n ¼ 1; 2;…; Nvecg that span the LH
subspace, namely,

□xyðtÞ ¼
XN
n¼1

ξðnÞx ðtÞξðnÞ†y ðtÞ: ð8Þ

Subsequently, each interpolation operator O in Eqs. (3)
and (6) is built in terms of cðsÞ

Oðt;xÞ ¼
X
y

c̄ðsÞðt;xÞΓðx; y; tÞcðsÞðt;xÞ; ð9Þ

where Γðx; y; tÞ is a specific combination of γ matrices
and the discretized covariant derivatives and dictates the
quantum number of the operators. (The Γ’s for the
charmonium states involved in this work are listed in
Table II.) A normal Fourier transformation can project out
the operator that annihilates a charmonium state with a
definite spatial momentum p,

Oðt;pÞ ¼
X
y

e−ip·yOðt;xÞ

≡ ½c̄x□xye−ip·yΓyz□zwcw�ðtÞ
≡ ½c̄□ΓðpÞ□c�ðtÞ; ð10Þ

where the subscripts x; y; z;w in the second row mean that
the spatial coordinates are viewed as matrix indices with
the duplicated subscripts being summed implicitly, and
Γðt;pÞ in the third row is ½ΓðpÞ�xyðtÞ ¼ e−ip·xΓxyðtÞ. The
two-point correlation function can be expressed as

TABLE I. Parameters of the gauge ensemble.

L3 × T β a−1t (GeV) ξ mπ (MeV) Ncfg

163 × 128 2.0 6.894(51) ∼5.3 348.5(1.0) 689

TABLE II. The interpolating operators [36] and masses of charmonium states involved in this work. The PDG masses values [4] of
these states are also presented for comparison.

Meson ηc J=ψ χc1 χc2 ψ2

Γ γ5 γi γiγ5 jϵijkjγj▽kðQijkγj▽kÞ jϵijkjγ5γj▽kðQijkγ5γj▽kÞ
m (MeV) 2976.8(0.4) 3099.9(0.4) 3563.1(1.6) 3610.8(1.7) 3907.5(7.6)
m (MeV) (PDG) [4] 2983.9(0.4) 3096.900(0.006) 3510.67(0.05) 3556.17(0.07) 3823.7(0.5)
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Cðt;pÞ ¼ hΩj½c̄□ΓðpÞ□c�ðtÞ½c̄□ΓðpÞ□c�ð0ÞjΩi
¼ τnmð0; tÞΦΓ

mpðt;pÞτpqðt; 0ÞΦΓ
qnð0;pÞ; ð11Þ

where τpqðt; 0Þ ¼ ξ†pðtÞM−1ðt; 0Þξqð0Þ is the perambulators
that are obtained by inverting the Dirac matrixM on sources
ξqð0Þfq ¼ 1;…; Nvecg. ΦΓ

mpðt;pÞ ¼ ½ξ†mΓðpÞξp�ðtÞ is the
elemental that reflects the structure of the corresponding
operator. In this study, we calculate the spectrum of
charmonium states ηc, J=ψ , χc1, χc2, ψ2). The mass values
for these meson are listed in Table II, where also listed are
the Γ operators in Eq. (9) for the charmonium states
involved in this work. Figure 1 shows the effective mass

functions meffat ¼ ln Cðt;0Þ
Cðtþat;0Þ of the correlation functions of

these charmonium states. In the calculation of charmonium
two-point functions, we do not include the contribution
from the disconnected diagrams, which are expected to be
negligible. (This is also supported to some extent by a recent
lattice QCD study [35]).

B. Three-point functions

Since the operators Oi;f are constructed in terms of the
LH smeared quark fields [see Eq. (9)], the Wick’s con-
traction of the three-point correlation function in Eq. (3)
results in the explicit expression for a given tf,

Gfμiðtf; t;pf;piÞ
→ hΩj½c̄□ΓfðpfÞ□c�ðtfÞJμðtÞ½c̄□ΓiðpiÞ□cð0Þ�jΩi
¼ hΩj½c̄□ΓfðpfÞ□c�ðtfÞ½c̄γμc�ðtÞ½c̄□ΓiðpiÞ□c�ð0ÞjΩi
¼ τnmð0; tfÞΦΓf

mpðtf;pfÞGpqμðtf; t; 0ÞΦΓi

qnð0;piÞ; ð12Þ

where Gpqμðtf; t; 0Þ ¼ ξ†pðtfÞM−1ðtf; tÞΓμM−1ðt; 0Þξqð0Þ is
called generalized perambulator. The schematic diagram

for the calculation of GfμiðtÞ is shown in Fig. 2, where the
hatched ellipses stand for the wave functions Φi;f of
the initial and final charmonia, and the filled black line
is the perambulator τðt1; t2Þ of the charm quark, while the
red line with the vector current insertion is the generalized
perambulator, which are calculated separately owing to the
insertion of the local current [30].
To reduce the unknown factors in Eq. (5), the ratio

between the three-point function and the two-point function
is introduced, i.e.,

Rμðt; tfÞ ¼
ZiðpiÞZfðpfÞGfμiðtf; t;pf;piÞ

Cfðtf − t;pfÞCiðt;piÞ

≃
hfðpfÞjJμð0ÞjiðpiÞi
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EfðpfÞEiðpiÞ

p : ð13Þ

Here, the second line is valid when tf ≫ t ≫ 1 and only the
ground state dominates. Ci and Cf are two-point correla-
tion functions of the initial state and the final state,
respectively. Gfμiðtf; t;pf;piÞ is a three-point correlation
function. Since the matrix element hfðpfÞjJμð0ÞjiðpiÞi is
independent of t, it can be derived in the plateau region that
Rμðt; tfÞ is independent of t where the ground states of the
initial and final state charmonia dominate the contribution.
After the matrix element is obtained at each value of Q2,

we can use the multipole expansion expression Eq. (2) to
extract the form factors FkðQ2Þ. In order to give a
theoretical prediction of the partial decay width using
Eq. (1), we need the on-shell form factors FkðQ2 ¼ 0Þ,
which can be determined through the interpolation or
extrapolation of FkðQ2Þ with respect to Q2. Usually, one
can use the quark model-inspired function forms to do the
interpolation or extrapolation (see below), or just use
polynomials of Q2 in the neighborhood of Q2 ¼ 0.

IV. CHARMONIUM RADIATIVE TRANSITIONS

Sincewe have only one gauge ensemble of a single lattice
spacing, a single light quark mass, we first calculate the

FIG. 1. Charmonium effective mass plateaus. From lower to
higher values, the plateau corresponds to the charmonium state
ηc, J=ψ , χc1, χc2, ψ2, respectively.

FIG. 2. The schematic diagram of the calculation three-point
function using the distillation method. The filled black line is
the perambulator τð0; tfÞ of the charm quark. The red line with
the vector current insertion is the generalized perambulator
Gpqμðtf; t; 0Þ in Eq. (12). The hatched ellipses indicates the wave
functions Φi;f of the initial and final charmonia.
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partial decay widths ΓðJ=ψ → γηcÞ and Γðχc2 → γJ=ψÞ.
The comparison of our results with those of previous lattice
calculations and experimental values is used as a calibration
of the possible systematic uncertainties of our lattice setup.
Then, the similar calculation is applied to the process
ψ2 → γχc1.
The continuum current form in Eq. (4) is not conserved

on the lattice and should be renormalized. We adopt the
strategy used in Refs. [12,16] to determine the renormal-
ization factor ZV. By calculating the relevant electromag-
netic form factors of ηc, we obtain Zt

V ¼ 1.165ð3Þ for the
temporal component of Jemμ and Zs

V ¼ 1.118ð4Þ for its
spatial components [25,26]. In this work, only the spatial
components of Jemμ are involved in the calculation, and the
renormalization constant Zs

V is incorporated implicitly in the
current insertion.
As shown in Fig. 2, the current insertion to each quark

line gives the same result, so we only consider one of the
two insertions. On the other hand, the electric charge Qc ¼
2e=3 of the charm quark is not included in Jμ in the practical
calculation for simplicity; therefore, the form factors
F̂kðQ2Þ extracted from three-point functions is related to
the original ones FkðQ2Þ in Eq. (2) by the convention

FkðQ2Þ ¼ 2 ×
2e
3
× F̂kðQ2Þ: ð14Þ

This convention applies to all the form factors considered in
this work.
The radiative transitions in this study are all studied in

the rest frame of the initial state; namely, the spatial
momentum of the initial state is set to be pi ¼ 0 such that
q ¼ −pf. The momentum mode n ¼ ðn1; n2; n3Þ of the
final state momentum pf ¼ 2π

Las
n is represented by (0,0,0),

(0,0,1),(0,1,1),(0,0,2),(0,1,2), or (1,1,2), meaning that all
the momentum modes that can be obtained by applying the
lattice symmetry operation to each mode n in the list are
sorted in the same mode denoted by n. Obviously, for a
specific transition process, the pf’s in each mode give the
same Q2 ¼ −ðEf −miÞ2 þ p2

f, and the Q2 of different
modes are different from each other.

A. J=ψ → γηc
The transition amplitude for the process for J=ψ → ηcγ

involves only one form factor VðQ2Þ [12,15],

hηcðpfÞjJemμ jJ=ψðpiÞ; ri

¼ 2VðQ2Þ
mηc þmJ=ψ

ϵαμβγpf;μpi;βϵγðpi; rÞ: ð15Þ

In practice, we derive the transition amplitude using
Eq. (13) first and then obtain V̂ðQ2; t; tfÞ by solving
Eqs. (14) and (15) for each momentum pf of the final

state. For tf ¼ 64at, the t dependence of V̂ðQ2; t; tfÞ for
different values of Q2 is shown in Fig. 3, where the
obvious t dependence near t ¼ 0 and t ¼ tf is attributed to
the contamination from higher initial states and higher
final states, respectively. Therefore, we use the following
function form:

V̂ðQ2; t; tfÞ¼ V̂ðQ2Þð1þδ1eΔ1tþδ2ðQ2Þe−Δ2ðtf−tÞÞ; ð16Þ

to fit the data at different Q2 simultaneously. Since we set
the initial state to be in its rest frame and let the final state
move with a specific momentum, the parameters δ1 and Δ1

describe the contribution from the higher initial states and
are thereby uniform for all the different values of Q2

involved, while the parameters δ2 and Δ2 for the higher
final states have Q2 dependence. The fit results are also
illustrated by colored bands in Fig. 3, where one can see
the fit form in Eq. (16) describes the data very well. The
fitted values of V̂ðQ2Þ are shown in Table III. In order to
obtain the on-shell form factor V̂ðQ2 ¼ 0Þ, which enters
the partial decay width as

ΓðJ=ψ → γηcÞ ¼
64

27
α

jqj3
ðm1 þm2Þ2

jV̂ð0Þj2; ð17Þ

we perform a Q2-interpolation using the function form

V̂ðQ2Þ ¼ V̂ð0Þ exp
�
−

Q2

16β2

�
; ð18Þ

inspired by the quark model [12] (as shown in Fig. 4).
Finally, we get the result

FIG. 3. The t dependence of V̂ðQ2Þ. The momentum of final
particle is pf ¼ 2π

asL
ðnxnynzÞ; the legend denotes explicit value of

ðnx; ny; nzÞ. The points are lattice data, and the shaded bands are
the fit results using the function form in Eq. (16).

RADIATIVE TRANSITION DECAY WIDTH OF … PHYS. REV. D 109, 014513 (2024)

014513-5



V̂ð0Þ ¼ 2.083ð11Þ; β ¼ 468ð3Þ MeV: ð19Þ

The value of fitted parameter V̂ð0Þ is consistent with the
previous lattice results, as listed in Table IV. By using the
experimental values of mJ=ψ and mηc , we predict the partial
width ΓðJ=ψ → γηcÞ ¼ 2.77ð3Þ keV, which is consistent
with previous lattice results but is still larger than the PDG
average ΓðJ=ψ → γηcÞ ¼ 1.57ð37Þ keV [4].

B. χ c2 → γJ=ψ

The multipole decomposition of the transition amplitude
for the decay χc2 → γJ=ψ is expressed as

hJ=ψðpf; r2ÞjJemμ ð0Þjχc2ðpi; r1Þi
¼ α1μE1ðQ2Þ þ α2μM2ðQ2Þ þ α3μE3ðQ2Þ
þ α4μC1ðQ2Þ þ α5μC2ðQ2Þ; ð20Þ

where αkμ ðk ¼ 1; 2;…; 5Þ are Lorentz covariant kinematic
functions of pi;f and polarization vectors of J=ψ and χc2,
whose explicit expressions can be found in the Appendix
and also in Refs. [14,16]. It should be noted that the J ¼ 2
(for example, the spin of χc2 and ψ2) representation in the
continuum breaks into E and T2 irreducible representations
of the octahedral group on a finite lattice. It is observed that

this breaking effect is negligible as manifested by the nearly
degenerate masses of tensor mesons derived from the E
operator and T2 operator. Subsequently, the multipole
decomposition is performed on the basis of E ⊕ T2 [36].
The decay width for χc2 → J=ψγ involves only three on-

shell form factors, namely, E1ð0Þ,M2ð0Þ, and E3ð0Þ, by the
formula

Γðχc2 → γJ=ψÞ ¼ 16

45
α
jqj
m2

χc2

× ðjÊ1ð0Þj2þjM̂2ð0Þj2þjÊ3ð0Þj2Þ: ð21Þ

So we focus on the extraction of these three form factors at
different Q2 and then perform the interpolation (extrapo-
lation) to get the on-shell values. The procedure is very
similar to that of VðQ2Þ for J=ψ → γηc except that tf is
48at instead of tf ¼ 64at. (We also calculate the three-
point function with tf ¼ 64at and find the signals are very
bad.) The t dependences of Ê1ðQ2; tf; tÞ, M̂2ðQ2; tf; tÞ, and
Ê3ðQ2; tf; tÞ are shown in Fig. 5. By fitting these quantities
using the function similar to Eq. (16), namely,

F̂kðQ2; tÞ ¼ F̂kðQ2Þð1þ δðkÞ1 ðQ2ÞeΔðkÞ
1
t

þ δðkÞ2 ðQ2Þe−ΔðkÞ
2
ðtf−tÞÞ; ð22Þ

where F̂k with k ¼ 1, 2, 3 refer to Ê1, M̂2, and Ê3,
respectively. The form factors F̂kðQ2Þ at different Q2 are
listed in Table V. For Ê1ðQ2Þ and M̂2ðQ2Þ, the on-shell
values F̂kðQ2 ¼ 0Þ are interpolated through the function
form

F̂kðQ2Þ ¼ F̂kð0Þð1þ λkQ2Þ exp
�
−

Q2

16β2k

�
: ð23Þ

Since the values of Ê3ðQ2Þ are very small, we use a linear
function Ê3ðQ2Þ ¼ Ê3ð0Þ þ aQ2 to perform the extrapo-
lation. The fits for three form factors are illustrated in Fig. 6
by shaded bands. The extrapolated values of F̂kð0Þ are also
listed in Table V. The values of the on-shell form factors in

TABLE III. The form factor V̂ðQ2Þ at different Q2.

n Q2ðGeV2Þ V̂ðQ2Þ
(0,2,2) 2.04 1.288(26)
(0,1,2) 1.29 1.499(10)
(0,0,2) 1.04 1.512(8)
(0,1,1) 0.52 1.784(10)
(0,0,1) 0.25 1.910(9)

� � � 0 2.083(11)

FIG. 4. TheQ2 extrapolation of V̂ðQ2Þ. The shaded band shows
the fit result using Eq. (18), and the black point is the value of
V̂ðQ2 ¼ 0Þ through the Q2 extrapolation.

TABLE IV. The comparison of the form factor V̂ð0Þ in this
work with those in previous lattice QCD studies.

V̂ð0Þ Reference

1.85(4) [12]
2.01(2) [15]
1.92(3)(2) [37]
1.90(7)(1) [18]
1.83–2.07 [27]
1.8649(73) [38]

2.083(11) This study
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the last row of Table V indicate that the electric dipole (E1)
contribution dominates the decay process χc2 → γJ=ψ , and
the hierarchy jE1ð0Þj > jM2ð0Þj ≫ jE3ð0Þj is described by
the two ratios

a2 ¼
M2ð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E1ð0Þ2 þM2ð0Þ2 þ E3ð0Þ2
p ¼ −0.130ð18Þ;

a3 ¼
E3ð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E1ð0Þ2 þM2ð0Þ2 þ E3ð0Þ2
p ¼ 0.0177ð21Þ; ð24Þ

which are in agreement with the PDG values a2 ¼
−0.11ð1Þ and a3 ¼ −0.003ð10Þ [4].
With the interpolated values of F̂kð0Þ and the exper-

imental value of the masses of the mesons involved, the
partial decay width of the decay χc2 is predicted to be

Γðχc2 → γJ=ψÞ ¼ 368ð5Þ keV; ð25Þ

which can be compared with the PDG average of 374
(10) keV [4] as well as the previous lattice results of 361
(9) keV [16] and 380(30) keV [14]. This comparison
calibrates the uncontrolled systematic uncertainties of
our calculation to some extent.

C. ψ2 → χ c1γ

The multipole decomposition of the transition matrix
elements for ψ2 → γχc1 (2−− → 1þþ) is exactly the same as
that for χc2 → γJ=ψ (2þþ → 1−−) [see Eq. (20)] [14,16].
The calculation of the related three-point function in Eq. (3)
is performed in the rest frame of the initial state ψ2. The
subtlety in this case is that the generic quark bilinear
operator O5i ∼ ψγ5γiψ for χc1 couples both pseudoscalar
mesons and axial vector mesons with the overlapping
factors

hΩjψ̄γ5γiψð0Þj0−þðpÞi ¼ ZPpi;

hΩjψ̄γ5γiψð0Þj1þþðp; rÞi ¼ ZAϵ
ðrÞ
i ðpÞ; ð26Þ

FIG. 5. Form factors Ê1ðQ2Þ, M̂2ðQ2Þ, and Ê3ðQ2Þ versus ta−1t for the radiative transition χc2 → J=ψγ. The momentum of final
particle is pf ¼ 2π

asL
ðnx ny nzÞ, and the legend denotes explicit values of ðnx; ny; nzÞ. The points are lattice data, and the shaded bands are

the fit results using the function form in Eq. (22).

TABLE V. The explicit value of the form factors Ê1ðQ2Þ,
M̂2ðQ2Þ, and Ê3ðQ2Þ for radiative transition χc2 → J=ψγ.
The values are in physical units and are converted by
a−1t ¼ 6.894ð31Þ GeV.

Q2 Ê1ðQ2Þ M̂2ðQ2Þ Ê3ðQ2Þ
n (GeV2) (GeV) (GeV) (GeV)

(0,1,2) 1.21 0.609(28) −1.006ð31Þ 0.0608(92)
(0,0,2) 0.91 0.995(18) −0.986ð20Þ −0.011ð12Þ
(0,1,1) 0.33 1.634(14) −0.679ð14Þ 0.0321(51)
(0,0,1) 0.033 1.948(15) −0.324ð40Þ 0.0459(51)
(0,0,0) –0.27 2.396(14) � � � � � �
� � � 0 2.025(13) −0.267ð38Þ 0.0362(42)

FIG. 6. The Q2 interpolations or extrapolations of Ê1ðQ2Þ,
M̂2ðQ2Þ, and Ê3ðQ2Þ for χc2 → γJ=ψ. Ê1ðQ2Þ, M̂2ðQ2Þ are fitted
using Eq. (23), while Ê3ðQ2Þ is fitted using a linear equation in
Q2. The shaded bands illustrate the fit results, and the black
points are the values at Q2 ¼ 0.
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when the spatial momentum p is nonzero. Therefore,
the contribution from pseudoscalar mesons (mainly ηc)
should be eliminated when the three-point function
Gfμiðtf; t;pf;piÞ in Eq. (3) is computed. This is accom-
plished by choosing an optimized operator that couples
predominantly to axial vector mesons. In doing so, for
index i of O5i and each momentum p with pi ≠ 0, we
adopt the momentum projected operator Op

5 to calculate
the correlation matrix

CðtÞ ¼
 
hΩjOp

5ðtÞOp;†
5 ð0ÞjΩi hΩjOp

5iðtÞOp;†
5 ð0ÞjΩi

hΩjOp
5ðtÞOp;†

5i ð0ÞjΩi hΩjOp
5iðtÞOp;†

5i ð0ÞjΩi

!
:

ð27Þ

Since Op
5 couples exclusively to pseudoscalar mesons

(ηc and its excited states), for properly chosen t and t0,
by solving the generalized eigenvalue problem CðtÞv ¼
λðt − t0ÞCðt0Þv with vT ¼ ðv1; v2Þ being an eigenvector,

we can obtain the optimized operator that couples to axial
vector mesons as follows:

Oop
5i ðt;pÞ ¼ v1O

p
5ðtÞ þ v2O

p
5iðtÞ: ð28Þ

The effectiveness of this prescription is illustrated by
Fig. 7, where the effective energies are plotted for the
correlation function of O5i (in green) and that of the
optimized operator Oop

5i (in red) for the momentum mode
n ¼ ð0; 0; 1Þ. It is seen that the effective energy of the
former does not show a plateau but tends to the energy of
ηc when t increases, while the effective energy of the latter
reaches a plateau of a value consistent with the energy of
χc1 at this momentum. Therefore, for each momentum p
mode of the final state χc1, we use the optimized operator
Oop

5i to calculate the three-point function Gfμi in Eq. (3).
The related transition matrix elements are extracted sim-
ilarly to the cases of J=ψ → γηc and χc2 → γJ=ψ
through Eq. (13).
The electromagnetic multipole decomposition of the

matrix element is exactly the same as that for χc2 → γJ=ψ
and is expressed in terms of five form factors E1ðQ2Þ,
M2ðQ2Þ, E3ðQ2Þ, C1ðQ2Þ, and C2ðQ2Þ. Considering that
the final state photon is transversely polarized, only the
former three form factors contribute to the partial width of
the process ψ2 → γχc2, namely,

Γðψ2 → γχc1Þ ¼ α
16

45

jqj
m2

ψ2

ðjÊ1ð0Þj2þjM̂2ð0Þj2þ jÊ3ð0Þj2Þ:

ð29Þ

For different values of Q2, the three form factors Ê1ðQ2Þ,
M̂2ðQ2Þ, and Ê3ðQ2Þ are extracted similarly to the case of
χc2 → γJ=ψ , as shown in Fig. 8, where the shaded bands
illustrate the fit results using Eq. (16). The final values of
form factors Ê1ðQ2Þ, M̂2ðQ2Þ, Ê3ðQ2Þ are listed in
Table VI along with the extrapolated values at Q2 ¼ 0

FIG. 7. The effective energies of the correlation functions of
Op

5iðtÞ (green) and Oop
5i ðt;pÞ (red) for p mode n ¼ ð0; 0; 1Þ. The

black lines show the values of EηcðpatÞ and Eχc1ðpÞat, respec-
tively. Obviously, the optimized operatorOop

5i ðt;pÞ couples to χc1
when t is large.

FIG. 8. Form factors Ê1ðQ2Þ, M̂2ðQ2Þ, and Ê3ðQ2Þ versus ta−1t for the radiative transition ψ2 → χc1γ. The momentum of final particle
is pf ¼ 2π

asL
ðnx ny nzÞ, and the legend denotes explicit values of ðnx; ny; nzÞ. The points are lattice data, and the shaded bands are the fit

results using the function form in Eq. (22).
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using Eq. (23). The fits of form factors are illustrated in
Fig. 9. After putting the values of FkðQ2 ¼ 0Þ into
Eq. (29), the partial decay width of ψ2 → γχc1 is predicted
to be

Γðψ2 → γχc1Þ ¼ 337ð27Þ keV: ð30Þ

It is seen that, although the dominant electric dipole (E1)
contribution is similar to the case of χc2 → γJ=ψ , the
contributions from the magnetic quadrupole (M2) and the
electric octupole (E3) are substantial. Accordingly, we
give the predictions

a2 ¼
M2ð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E1ð0Þ2 þM2ð0Þ2 þ E3ð0Þ2
p ¼ −0.485ð37Þ;

a3 ¼
E3ð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E1ð0Þ2 þM2ð0Þ2 þ E3ð0Þ2
p ¼ 0.137ð19Þ: ð31Þ

D. Discussion

As has been shown in the previous sections, the
obtained form factors for transitions J=ψ → γηc and χc2 →
γJ=ψ based on our lattice setup are consistent with
previous lattice results. Especially, our prediction for
the partial width and the hierarchy of jE1ð0Þj > jM2ð0Þj ≫
jE3ð0Þj of the process χc2 → γJ=ψ are in quantitatively
agreement with the experimental data. This comparison
justifies the reliability of our predictions for the proc-
ess ψ2 → γχc1.
There have been quite a lot of phenomenological

studies on radiative charmonium transitions using various
theoretical frameworks, such as the nonrelativistic QCD
approach (NRQCD), the nonrelativistic quark models
(QM) with different confining potentials, the relativistic
quark models, the Bethe-Salpeter wave function method,
etc. Their predictions for the partial decay widths of
χc2 → γJ=ψ and ψ2 → γχc1 are collected in Table VII
along with the precise references. Also shown are the
previous lattice QCD predictions in the quenched approxi-
mation (QLQCD), the experimental values, and the results
in this work.

TABLE VI. The explicit values of form factors Ê1ðQ2Þ,
M̂2ðQ2Þ, and Ê3ðQ2Þ for radiative transition ψ2 → χc1γ.

Q2 Ê1ðQ2Þ M̂2ðQ2Þ Ê3ðQ2Þ
n (GeV2) (GeV) (GeV) (GeV)

(0,1,2) 1.27 0.35(15) –1.15(15) 0.133(62)
(0,0,2) 1.00 0.92(22) –1.140(95) 0.108(22)
(0,1,1) 0.44 1.09(15) –1.24(10) 0.203(33)
(0,0,1) 0.16 1.72(10) –1.07(18) 0.451(69)
(0,0,0) –0.12 2.60(11)

� � � 0 2.17(10) –1.22(11) 0.346(47)

FIG. 9. The Q2 interpolation or extrapolation of Ê1ðQ2Þ,
M̂2ðQ2Þ, and Ê3ðQ2Þ for ψ2 → γχc1. Ê1ðQ2Þ, M̂2ðQ2Þ are fitted
using Eq. (23), while Ê3ðQ2Þ is fitted using a linear equation in
Q2. The shaded bands illustrate the fit results. and the black
points are the values at Q2 ¼ 0.

TABLE VII. Comparison of the predictions of Γðχc2 → γJ=ψÞ
and Γðψ2 → γχc1Þ by different theoretical formalism. The ab-
breviations in the most right column refer to the nonrelativistic
QCD approach (NRQCD), the nonrelativistic quark models
(QM), the relativistic quark models (RQM), the Bethe-Salpeter
equation (BS), and the quenched lattice QCD (QLQCD) calcu-
lations, respectively. Various confining potentials are adopted in
QM and RQM approaches, and the details can be found in the
corresponding references. The experimental value and the pre-
dictions of this work are shown in bold numbers.

Γðχc2 → γJ=ψÞ (keV) Γðψ2 → γχc1Þ (keV) Formalism

282 [39] 250 [40] NRQCD
401 [39] � � � NRQCD

315 260 QM [41]
424 307 QM [8]
473 342 QM [42]
309 208 QM [42]
327 281 QM [43]
338 291 QM [43]

313 268 RQM [8]
448 297 RQM [7]
309 215 RQM [7]
292 215 RQM [7]
327 215 RQM [7]

� � � 265 BS [44]

361(9) � � � QLQCD [16]
380(50) � � � QLQCD [14]

368(5) 337(27) This work

374(10) � � � PDG2022 [4]
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As far as the χc2 → γJ=ψ transition is concerned, the
phenomenological predictions of the partial width range
from 280 to 450 keV and are consistent with the exper-
imental value 374(10) keV when considering the theoreti-
cal uncertainties owing to the model assumptions. The
values by QLQCD are more converged and agree quanti-
tatively with the PDG value. Our result Γðχc2 → γJ=ψÞ ¼
368ð5Þ keV is the first prediction from the lattice QCD
with light dynamical quarks and is in excellent agreement
with QLQCD results and the PDG value.
We also give the first lattice QCD prediction

Γðψ2 → γχc2Þ ¼ 337ð27Þ keV, whose central value is
slightly larger than the phenomenological predictions (see
Table VII), most of which are below 300 keV. On the other
hand, BESIII measured the branching-fraction ratios
Bðψ2ð3823Þ → XÞ=Bðψ2ð3823Þ → γχc1Þ with X referring
to the decay channels γχc2, πþπ−J=ψ , π0π0J=ψ , ηJ=ψ ,
π0J=ψ , and γχc0 [3], which are quoted in Table VIII. These
ratios are equivalently the ratios of the corresponding partial
decay widths Γðψ2ð3823Þ → XÞ=Γðψ2ð3823Þ → γχc1Þ. Ba-
sed on these results, we can estimate the total width of ψ2 as
follows:

(i) Γðψ2ð3823Þ → γχc2Þ: According to the branching-
fraction ratio measured by BESIII, this partial width
is estimated to be 94þ49

−39 keV.
(ii) Γðψ2ð3823Þ → ππJ=ψ): Although BESIII gives

individual upper limits for the branching-fraction
ratios 0.06 and 0.11 for πþπ−J=ψ and π0π0J=ψ
decay channels, respectively, the isospin sym-
metry implies that Γðπþπ−J=ψÞ=Γðπ0π0J=ψÞ ≈ 2.
Therefore, we assume Γðψ2ð3823Þ → ππJ=ψÞ=
Γðψ2ð3823Þ → γχc1Þ < 0.1, which implies Γðψ2

ð3823Þ → ππJ=ψÞ < 34ð3Þ keV. This is compatible
with the QM prediction Γðψ2ð3823Þ → ππJ=ψÞ ≈
45 keV [41], but much smaller than the value of
160 keV predicted by Ref. [9].

(iii) Γðψ2ð3823Þ → ηJ=ψÞ: The flavor SU(3) symmetry
requires the η in the final state is produced through
gluons coupling to its flavor singlet component. The
small η − η0 mixing angle θ (the partial width is
proportional to sin2 θ) and the centrifugal barrier

(η and J=ψ are in P wave) suppresses the decay
rate of this process, but the QCD UAð1Þ anomaly
enhances the coupling of gluons to η and may
counteract the suppression. Referring to the
branching-fraction ratio Bðψð3770Þ→ππJ=ψÞ

Bðψð3770Þ→ηJ=ψÞ ≈ 3 [4],

Γðψ2ð3823Þ → ηJ=ψÞ < 20 keV might be a reason-
able estimate even though BESIII gives a higher
upper limit.

(iv) Γðψ2ð3823Þ → γχc0; γηcÞ: These two partial widths
are predicted to be ∼1 keV by a phenomenological
study through the Bethe-Salpeter equation ap-
proach [44].

(v) Γðψ2ð3823Þ → π0J=ψÞ: The partial width of this
isospin breaking decay channel can be neglected.

(vi) Γðψ2ð3823Þ → light hadronsÞ: The total decay
widths of ψ2ð3823Þ → light hadrons can be approxi-
mated by Γðψ2 → gggÞ ∼ 36 keV [41].

Summing over all the contributions mentioned above, we
can give a raw estimate of the total width of ψ2ð3823Þ,

Γðψ2ð3823ÞÞ ≈ 520� 100 keV; ð32Þ

where the uncertainty mainly comes from the partial widths
of ψ2ð3823Þ → γχc1; χc2 and can be reduced by a refined
lattice QCD calculation of Γðψ2ð3823Þ → γχc1Þ and a direct
lattice calculation of Γðψ2ð3823Þ → γχc2Þ in the future.

V. SUMMARY

We perform an exploratory Nf ¼ 2 lattice QCD study on
the radiative transition ψ2ð3823Þ → γχc1 in the framework
of the distillation method. On a single gauge ensemble with
a pion mass mπ ∼ 350 MeV, the electromagnetic multipole
form factors are extracted for the processes J=ψ → γηc,
χc2 → γJ=ψ and ψ2 → γχc1. The obtained V̂ð0Þ ¼
2.083ð11Þ for J=ψ → γηc is consistent with previous lattice
results, but the result ΓðJ=ψ → γηcÞ ¼ 2.77ð3Þ keV is still
larger than the PDG average. For χc2 → γJ=ψ, we extract
the on-shell form factors E1ð0Þ, M2ð0Þ, and E3ð0Þ, whose
hierarchy jE1ð0Þj > jM2ð0Þj ≫ jE3ð0Þj is in quantitative
agreement with the experimental results. We predict
Γðχc2 → γJ=ψÞ ¼ 368ð5Þ keV, which is in excellent agree-
ment with the PDG value 374(10) keV and previous
QLQCD results. This is the first result from lattice QCD
with dynamical light quarks. No quenched effects are
observed here.
We present the first lattice QCD prediction of the partial

decay width Γðψ2ð3823Þ → γχc1Þ ¼ 337ð27Þ keV, whose
central value is higher than most of the phenomenological
results. According to the BESIII measurement of branch-
ing fractions of ψ2ð3823Þ decay channels and some
phenomenological results, we estimate the total width
Γðψ2ð3823ÞÞ ¼ 520ð100Þ keV. A direct lattice QCD cal-
culation of the partial widths of ψ2 → γχc2; γχc0; γηc will

TABLE VIII. The branching-fraction ratios Bðψ2ð3823Þ→XÞ
Bðψ2ð3823Þ→γχc1Þ mea-

sured by BESIII [3] with X referring to the decay channels γχc2,
πþπ−J=ψ , π0π0J=ψ , ηJ=ψ , π0J=ψ and γχc0.

Channel (X) Bðψ2ð3823Þ→XÞ
Bðψ2ð3823Þ→γχc1Þ

γχc2 0.28þ0.14
−0.11 � 0.02

πþπ−J=ψ <0.06
π0π0J=ψ <0.11
ηJ=ψ <0.14
π0J=ψ <0.03
γχc0 <0.24
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reduce the uncertainty of the total width. This can be
fulfilled in the future.
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APPENDIX: MULTIPOLE DECOMOPOSITION OF hVjjμjTi
Generally speaking, the radiative transition amplitude of the process ðJλÞ → ðJ0λ0Þ þ γðλγÞ,

MðλγÞ≡ hJ0λ0jJemμ ð0ÞjJλiϵ�μðλγÞ; ðA1Þ

can be expressed in terms of the electromagnetic multipole form factors Ek, Mk and Ck as [14,16]

Mðλγ ¼ �Þ ¼
X
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kþ 1

2J þ 1

r �
Ek

1

2
ð1þ ð−ÞkδPÞ ∓ Mk

1

2
ð1 − ð−ÞkδPÞ

�
hk�; J0λ� 1jJλi;

Mðλγ ¼ 0Þ ¼
X
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kþ 1

2J þ 1

r
Ck

1

2
ð1þ ð−ÞkδPÞ hk0; J0λ0jJλi; ðA2Þ

where JðJ0Þ and λðλ0Þ are the spin and the helicity of the initial(final) state meson, respectively, and δP is the product of the
parities of the initial and final states. Note that the number of form factors are determined by the Clebsch-Gordan
coefficients hkλγ; J0λ0jJλi for given J and J0. Constrained to the case of the initial JP ¼ 2� meson (T) and the final JP ¼ 1∓
meson (V) in this study, it is easy to see that only the form factors E1, M2, and E3 are involved in the partial decay width.
On the other hand, the Lorentz structure of the transition matrix of T → V þ γ can be written as

hVðpf; r2ÞjJemμ ð0ÞjTðpi; r1Þi ¼ aðQ2ÞAμ þ bðQ2ÞBμ þ cðQ2ÞCμ þ dTðQ2ÞDT
μ þ dVðQ2ÞDV

μ þ fVðQ2ÞFV
μ ; ðA3Þ

with the definitions

Aμ ≡ ϵμνðpi; r1Þϵ�νðpf; r2Þ; Bμ ≡ ϵμνðpi; r1Þpν
fðϵ�ðpf; r2Þ · piÞ; Cμ ≡ ϵ�μðpf; r2Þðϵαβðpi; r1Þpα

fp
β
fÞ;

DT
μ ≡ pi;μðϵαβϵ�;αðpf; r2Þpβ

fÞ; DV
μ ≡ pf;μðϵαβðpi; r1Þϵ�;αðpf; r2Þpβ

fÞ;
FT
μ ≡ pi;μðϵαβðpi; r1Þpα

fp
β
fÞðϵ�ðpf; r2Þ · piÞ; FV

μ ≡ pf;μðϵαβðpi; r1Þpα
fp

β
fÞðϵ�ðpf; r2Þ · piÞ: ðA4Þ

Here, theC and P parity conservation is assumed implicitly. In the practical calculation of this work, the polarization vectors
ϵμνðpi; r1Þ of the tensor state T in the above equations are expressed on the basis of E ⊗ T2, since E and T2 are the
subduced irreducible representation of the J ¼ 2 representation of the rotational group SO(3) onto the lattice symmetry
group, namely, the octahedral group O. Although E and T2 are different representations for a finite lattice spacing, their
differences are tested to be negligible in our lattice setup. Along with the Ward identity,

∂
μhVðpfÞjJemμ ðxÞjTðpiÞi≡ −iðpi − pfÞμhVðpfÞjJemμ ðxÞjTðpiÞi≡ 0; ðA5Þ

and combining Eqs. (A1)–(A4), after some calculus one obtains

hVðpf; r2ÞjJemμ ð0ÞjTðpi; r1Þi ¼ α1μE1ðQ2Þ þ α2μM2ðQ2Þ þ α3μE3ðQ2Þ þ α4μC1ðQ2Þ þ α5μC3ðQ2Þ; ðA6Þ
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where Q2 ¼ −ðpf − piÞ2 ≡ −q2 is defined, and the explicit expressions of αiμ are as follows [14,16]:

α1μ ¼
ffiffiffi
3

5

r �
−Aμ þ

mi

Ω
ðω −mfÞBμ þ

mi

Ω
ðωDT

μ −miDV
μ Þ þ

m2
i

Ω2
ðω −mfÞð−ωFT

μ þmiFV
μ Þ
�
;

α2μ ¼
ffiffiffi
1

3

r �
Aμ −

mi

Ω
ðωþmfÞBμ −

2m2
i

Ω
Cμ −

mi

Ω
ðωDT

μ −miDV
μ Þ þ

m2
i

Ω2
ððω2 þ ωmf − 2m2

fÞFT
μ þmiðω −mfÞFV

μ Þ
�
;

α3μ ¼
ffiffiffiffiffi
1

15

r �
−Aμ þmi=Ωðωþ 4mfÞBμ −

5m2
i

2Ω
Cμ þ

mi

Ω
ðωDT

μ −miDV
μ Þ

þm2
i

Ω2

�
−
�
ω2 þ 4ωmf þ

5

2
m2

f

�
FT
μ þmi

�
7

2
ωþ 4mf

�
FV
μ

��
;

α4μ ¼
ffiffiffi
3

5

r
mi

Ω
ffiffiffiffiffi
q2

p �
ðm2

f − ωmiÞDT
μ þ ðm2

i − ωmiÞDV
μ −

mi

Ω
ðω −mfÞððm2

f − ωmiÞFT
μ þ ðm2

i − ωmiÞFV
μ Þ
�
;

α5μ ¼
ffiffiffi
2

5

r
mi

Ω
ffiffiffiffiffi
q2

p �
ðm2

f − ωmiÞDT
μ þ ðm2

i − ωmiÞDV
μ −

mi

Ω

�
ωþ 3

2
mf

�
ððm2

f − ωmiÞFT
μ þ ðm2

i − ωmiÞFV
μ Þ
�
: ðA7Þ

In the expressions above, we introduce two Lorentz invariant quantities,

Ω≡ ðpi · pfÞ2 −m2
i m

2
f; ω ¼ pi · pf

mi
: ðA8Þ
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