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(Baryon Scattering (BaSc) Collaboration)

1Deutsches Elektronen-Synchrotron (DESY), Platanenallee 6, 15738 Zeuthen, Germany
2GSI Helmholtz Centre for Heavy Ion Research, 64291 Darmstadt, Germany

3Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA
4Intel Deutschland GmbH, Dornacher Strasse 1, 85622 Feldkirchen, Germany

5Institut für Kernphysik, Technische Universität Darmstadt,
Schlossgartenstrasse 2, 64289 Darmstadt, Germany

6Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
7Department of Physics and Astronomy, University of North Carolina, Chapel Hill,

North Carolina 27516-3255, USA
8Center for Theoretical Physics, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139, USA
9Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Received 28 July 2023; accepted 16 November 2023; published 30 January 2024)

A lattice QCD computation of the coupled channel πΣ–K̄N scattering amplitudes in the Λð1405Þ region
is detailed. Results are obtained using a single ensemble of gauge field configurations with Nf ¼ 2þ 1

dynamical quark flavors and mπ ≈ 200 MeV and mK ≈ 487 MeV. Hermitian correlation matrices using
both single baryon and meson-baryon interpolating operators for a variety of different total momenta and
irreducible representations are used. Several parametrizations of the two-channel scattering K-matrix are
utilized to obtain the scattering amplitudes from the finite-volume spectrum. The amplitudes, continued to
the complex energy plane, exhibit a virtual bound state below the πΣ threshold and a resonance pole just
below the K̄N threshold.
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I. INTRODUCTION

In meson-baryon scattering with strangeness S ¼ −1 and
isospin I ¼ 0, the Particle Data Group [1] currently
recognizes a 4-star resonance of spin J ¼ 1=2, negative
parity, and mass near 1405 MeV, known as the Λð1405Þ. A
possible nearby resonance of the same quantum numbers,
referred to as the Λð1380Þ, is listed with only 2-star status.
The issue of whether or not this lower-lying resonance
actually exists is of great interest in hadron physics. In fact,
Ref. [1] includes an entire Section 83 dedicated to discus-
sing the pole structure of the Λð1405Þ region.
The Λð1405Þ resonance first appeared when low-

energy K−p amplitudes measured in bubble chamber

experiments [2,3] implied a resonance in the π−Σþ spec-
trum just below the K−p threshold. For a review of
experimental progress in this system, see Refs. [4,5].
Recent precise measurements of the energy shift and
width of kaonic hydrogen by the SIDDHARTHA col-
laboration at DAΦNE [6] have led to improved determi-
nations of the K−p scattering length, as discussed in
Ref. [7]. The CLAS collaboration at JLab investigated the
angular dependence of the reaction γ þ p → Kþ þ Σþ π,
determining the line shapes [8] and confirming [9] that the
Λð1405Þ resonance has spin and parity JP ¼ 1=2−. Using
a chiral unitary framework, Refs. [10,11] found the CLAS
data to be consistent with a two-pole picture. Recent
studies by the BGOOD collaboration [12] and the ALICE
collaboration [13] also support a two-pole scenario. A
preliminary analysis by the GlueX collaboration [14]
favors two isoscalar poles, while J-PARC [15] claim a
single pole describes their data. An overarching analysis
in Ref. [16] favors a single resonance, but does not rule
out the two-pole picture.
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Scattering in the Λð1405Þ region also poses a challenge
for theory. Accommodating the low mass and quantum
numbers of the Λð1405Þ resonance in constituent quark
models, such as Ref. [17], is problematic. The presence of
two poles in this region was first suggested in Ref. [18].
Early applications of chiral effective theory to scattering
in this energy region were presented in Refs. [19,20].
Nearly all approaches based on SUð3Þ chiral effective
theory, which are reviewed in Refs. [21,22], predict
the presence of two poles in the scattering matrix
analytically continued to complex center-of-mass ener-
gies, but disagree about the position of the lower pole. See
Refs. [23–31] for some other recent theoretical studies of
the Λð1405Þ resonances.
The above considerations suggest that a first-principles

investigation of the pole structure in the region of the
Λð1405Þ resonance is warranted. All previous lattice QCD
computations of the Λð1405Þ have not computed scattering
amplitudes and instead aimed only to isolate the lowest
finite-volume energy eigenstate using single-baryon three-
quark interpolating fields [32–40]. However, the use of
local single-hadron interpolating fields alone is insufficient
to correctly determine the finite-volume spectrum above
two-hadron thresholds [41–43]. The K̄N scattering length
for I ¼ 0 has also been computed long ago using the
quenched approximation in Ref. [44], but neglecting the
mixing with the kinematically open πΣ channel and
ignoring unitarity violation due to the quenched approxi-
mation, which invalidates the relation between the finite-
volume spectrum and scattering amplitudes [45]. The πΣ
and K̄N scattering lengths in other (nonsinglet) flavor and
isospin combinations not directly relevant for the Λð1405Þ
have also been computed in Refs. [46–48].
A recent study [49] of nucleon-pion scattering in the

region of the Δ-resonance demonstrates that current lattice
QCD techniques are sufficiently efficacious for studying
simple baryon resonances. In this work, we apply these
techniques to the isospin I ¼ 0 and strangeness S ¼ −1
coupled-channel πΣ − K̄N scattering amplitudes below the
ππΛ threshold for the first time. Hermitian correlation
matrices using both single baryon and meson-baryon
interpolating operators for a variety of different total
momenta and irreducible representations are used to obtain
the finite-volume stationary-state energies. A set of para-
metrizations of the scattering amplitudes are then con-
strained by fits to the finite-volume energy spectrum using
a well-known quantization condition. The amplitudes,
continued to the complex energy plane, exhibit a virtual
bound state below the πΣ threshold and a resonance pole
just below the K̄N threshold, the positions of which vary
little with differing fit forms and are broadly consistent with
predictions from chiral effective theory. This work con-
stitutes the first coupled-channel scattering study in lattice
QCD to include baryons; only coupled-meson systems
have been previously studied [43,50–54]. Highlights of this

study were previously presented in Ref. [55]. Further
technical details of the investigation are reported here.
This work is organized as follows. The determination of

the finite-volume stationary-state energies is presented in
Sec. II, including the ensemble details, method of evalu-
ating the correlation functions, and the extraction of the
energies. Details on the determinations of the scattering
amplitudes are then presented in Sec. III. The quantization
condition that relates the amplitudes to the finite-volume
spectrum is reviewed, the parametrizations of the K-matrix
that we use are described, and the fits using these para-
metrizations and the quantization condition are detailed.
Analytic continuation of the scattering transition ampli-
tudes to complex energies is then used to determine nearby
S-matrix poles.

II. SPECTRUM COMPUTATION

This section describes the determination of the finite-
volume stationary-state energies. The procedure used
follows an approach similar to Ref. [49], but for the
convenience of the reader, some of the main details of
the method are repeated here, along with a summary of our
results.

A. Ensemble details

A single ensemble of QCD gauge configurations is
employed with dynamical mass-degenerate u- and d-quarks
which are heavier than physical, and an s-quark lighter than
physical, resulting in a pionmassmπ ≈ 200 MeV and a kaon
mass mK ≈ 487 MeV, which differ slightly from their
physical values mphys

π ≈ 140 MeV and mphys
K ≈ 495 MeV.

The key properties of this so-called D200 ensemble
are summarized in Table I. The configurations were gen-
erated by the Coordinated Lattice Simulations (CLS) con-
sortium [56] using the tree-level improved Lüscher-Weisz
gauge action [57] and a nonperturbatively OðaÞ-improved
Wilson fermion action [58]. Open temporal boundary
conditions [59] were employed to reduce the autocorrelation
of the global topological charge, but this then requires that all
interpolating fields are sufficiently far from the boundaries,
limiting the maximum temporal separation in correlation
functions to tmax ¼ 25a. The algorithm used to generate the
D200 ensemble is described in Ref. [56]. Low-lying
eigenvalues of the Dirac matrix of either the light quark
doublet or the strange quark can cause instabilities in the

TABLE I. Parameters of the D200 ensemble [56] with spatial
extent L ¼ 64a and temporal extent T ¼ 128a. The lattice
spacing is given, as well as the masses mπ; mK of the pion
and kaon, respectively, in units of the lattice spacing a.

a [fm] amπ amK mπL

0.0633(4)(6) 0.06533(25) 0.15602(16) 4.181(16)
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hybrid Monte Carlo (HMC) or rational hybrid Monte Carlo
(RHMC) algorithm [60] for generating the gauge fields,
an issue which is sufficiently ameliorated for the D200
ensemble [61] by light- and strange-quark reweighting [62].
Reweighting factors must be included in the analysis to
convert the simulated action to the desired one, and we use
the factors computed in [63]. The lattice spacing is deter-
mined in Ref. [64] and updated in Ref. [65].
Correlation function evaluations are separated by four

molecular dynamics units (MDU’s) in the Monte Carlo
Markov chain. Our study of autocorrelations is summarized
in Fig. 1. The top panel of this figure shows how the
variance in the pion mass determination increases as
the original measurements are rebinned. The variance
initially increases with increasing Nbin, until little differ-
ence is observed in going from Nbin ¼ 10 to Nbin ¼ 20.
The bottom panel displaying the correlated χ2=d.o.f.
shows the expected reduction due to the larger variance
with increasing Nbin. For Nbin > 15 the correlated-χ2 of the
pion fit increases again, likely due to degrading estimates of
the covariance matrix. Fits to determine the nucleon mass
were also found to have similar behavior. Hence, in this
work, all primary quantities are first binned by averaging
over Nbin ¼ 10 consecutive gauge configurations.

B. Correlator determinations

Our operator construction is described in Ref. [67] and
our method of evaluating the temporal correlators is
detailed in Ref. [68]. We use multihadron operators
comprised of individual constituent hadrons, each corre-
sponding to a definite momentum. The single hadron

operators are appropriate assemblages of gauge-covariantly
smeared quark fields. The quark fields are smeared using
the Laplacian Heaviside (LapH) procedure described in
Ref. [69]. This smearing employs a projection onto the
subspace spanned by the Nev lowest eigenmodes of the
gauge-covariant three-dimensional Laplacian operator,
expressed in terms of link variables which are stout
smeared [70]. The stout smearing parameters are denoted
by ðρ; nρÞ. The multihadron operators used in this study are
presented in Tables IV–VII of Appendix A.
Evaluating the temporal correlations of our operator sets

requires time-slice to time-slice quark propagators, which
we estimate using the stochastic LapH method [68]. This
method employs variance reduction using noise dilution
projectors. Each projector is a product of time (“T”), spin
(“S”), and Laplacian eigenvector index (“L”) projectors.
For each, the different schemes used are denoted by “F” for
full dilution and “In” for some number n of uniformly
interlaced projectors. Different dilution schemes are used
for fixed-time quark lines, denoted “fix,” which propagate
from the source time slice to the sink time slice, and
relative-time lines (“rel”) which start and end at the same
time. In this work, the relative-time quark lines are
only used at the sink time, while the fixed-time lines are
used for quark propagation starting and ending at the source
time. The smearing parameters and the dilution schemes
used are specified in Table II. Source times t0 ¼ 35a; 64a
are used for correlations going forward in time, and
t0 ¼ 64a; 92a are used for correlations going backward
in time. Correlators for the different rows of the little group
irreducible representations (irreps) and for total momenta in
all directions of the same magnitudes squared are averaged
to increase statistics. An advantageous feature of the
stochastic LapH method is source-sink factorization of
the correlators which greatly facilitates the evaluation of
large Hermitian correlation matrices containing single-
baryon, πΣ, and K̄N interpolating operators via optimized
tensor contractions [71].

C. Finite-volume energies

Once Markov-chain Monte Carlo estimates of the
correlation functions are obtained, the determination of
finite-volume energies can then be achieved. Single-hadron
energies corresponding to the lowest-lying mesons and

FIG. 1. Top: ratios of variances for fits to determine amπ for
various bin sizes Nbin over the variance for Nbin ¼ 1. Both the
jackknife and bootstrap procedure are employed. Bottom: the
correlated-χ2 for single-exponential fits to the pion correlator
over a range in temporal separation ½tmin; tmax� ¼ ½15a; 25a� for
various rebinning factors. Jackknife and bootstrap (NB ¼ 800)
resampling methods are compared, and error bars are calculated
using statistical estimation outlined in Appendix F.2 of Ref. [66].

TABLE II. Parameters of the stochastic LapH implementation
used to compute temporal correlators in this work. The stout
smearing parameters for the spatial links in the gauge-covariant
Laplace operator are ðρ; nρÞ, and Nev denotes the dimension of
the LapH subspace. Notation used to specify the dilution scheme
for each line type is explained in the text.

ðρ; nρÞ Nev Noise dilution

(0.1, 36) 448 ðTF;SF;LI16Þfix ðTI8; SF;LI16Þrel
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baryons are obtained from the single diagonal correlators
of the relevant single-hadron operators. For the spectra of
stationary-state energies, the entire correlation matrices
involving all operators in a given symmetry channel
must be used. The symmetry channels are labeled by
their total isospin I, total strangeness S, and the irreducible
representation (irrep) Λðd2Þ of the little group for the
total momentum squared P2 ¼ ð2π=LÞ2d2, where d is a
three-vector of integers and L is the extent of the L3 spatial
lattice. Both single-baryon and meson-baryon operators
are used in the correlation matrices evaluated in this
work. The correlator matrices are then diagonalized, as
described in Ref. [49] and summarized below, using
solutions of a judiciously formed generalized eigenvalue
problem (GEVP). Each finite-volume stationary-state
energy is then extracted from fits to each of the resulting
diagonal correlators.
Energies are determined from correlated-χ2 fits to both

single- and two-exponential fit forms over various fit
ranges ½tmin; tmax�, which are additionally compared to a
“geometric-exp series” form [49]

CðtÞ ¼ Ae−Et

1 − Be−Mt ; ð1Þ

which consists of four free parameters. The geometric
exponential series is sometimes found to be successful at
estimating excited-state contamination of a correlator by
using an infinite tower of evenly separated states. The
optimal fit for an energy determination is chosen so that the
statistical error on the energy encompasses any variation
between fit forms and is reasonably insensitive to tmin.
However, the open temporal boundary conditions limit the
range of the correlation functions. For our choice of source
time-slices this results in tmax ¼ 25a. At the same time, the
energy gap between the desired ground state and unwanted
excited states decreases as the pion mass is lowered to the
physical point. The limited time range and small energy gap
often result in an insufficient description of the data using
the single-exponential fit form. The two-exponential form
and the “geometric-exp” form, however, do result in
suitable descriptions of the data and provide consistent
energy determinations.
Determinations of the pion, kaon, nucleon, Σ, and Λ

masses are shown in Fig. 2 and their values are presented in
Table III. This table also includes the η mass, as well as the
pion and kaon decay constants. The hadrons listed in this
table are all stable in the absence of electroweak inter-
actions and in the isospin limit with mu ¼ md.
Before extracting a spectrum of stationary-state energies,

the correlation matrixCijðtÞ in a given symmetry channel is
transformed [74] to a diagonal form DabðtÞ using the
eigenvectors vnðt0; tdÞ of the GEVP

CðtdÞvnðt0; tdÞ ¼ λnðt0; tdÞCðt0Þvnðt0; tdÞ; ð2Þ

where t0 is referred to as the metric time, td is called the
diagonalization time, and λn denote the eigenvalues. The
diagonal elements of the resulting matrix DðtÞ are
referred to here as the rotated correlators. In this work,
two different ways of carrying out the above trans-
formation are used.
In the simplest approach, known as a single pivot, a

single judicious choice of t0 and td is used to transform the
correlation matrix for all times t. We typically choose t0 to
be about half of td to minimize contamination from higher-
lying states [75,76] and choose td as small as possible to
minimize statistical errors but ensuring that the rotated
correlation matrix remains diagonal for all t > td within the
statistical precision of the calculations. The eigenvectors vn
utilized are computed using the mean values of the
correlation matrix. In this approach, it is important to
check insensitivity of the final spectrum results to a
reasonable range of ðt0; tdÞ choices.
In the second approach, known as a rolling pivot, a single

value of t0 is used, but td ¼ t is used for rotating the
correlation matrix at time t. In other words, the correlation
matrix is separately rotated at every time, keeping the
metric time fixed. The eigenvectors employed for each time
are determined using the mean values of the correlators.
This procedure is much more complicated than the single
pivot as the order of the eigenvectors with changing time
must be carefully considered. The simplest method of
ordering the eigenvectors according to their eigenvalues at
time t can lead to diagonal correlators which tend asymp-
totically toward different stationary-state decay rates for
different times t. Hence, some method of eigenvector
“pinning” is needed so that a given diagonal correlator
is always tending toward the same stationary-state behav-
ior. Diagonalizations at larger times can lead to increased
statistical errors, but this method ensures the correlation
matrix remains diagonal at all times.
To check that uncertainties determined in the rolling

pivot are not underestimated, a variant of the second
approach is also used in which the variance in the
diagonalized correlators include uncertainties from the
GEVP. Instead of using the same eigenvectors from
the mean values of the correlators when bootstrapping,
the eigenvectors themselves are re-evaluated using the
bootstrap resamplings of the correlation matrix.
Figure 3 shows center-of-mass frame energy determi-

nations in four symmetry channels using the above differ-
ent approaches. Two different choices of td in the single
pivot method are also shown. The same fitting strategy to
extract the energies from the diagonalized correlators was
used as for the single hadron energies. One sees that the
simplest single-pivot method produces nearly identical
results to the other two more complicated methods as long
as ðt0; tdÞ are chosen appropriately. Given this stability of
the results, our final results used the single-pivot method
with t0 ¼ 4a and td ¼ 16a.
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FIG. 2. Determination of single-hadron masses. Each row corresponds to a particular hadron denoted by the label on the vertical axis.
The left panel shows the effective energy lnðCðtÞ=Cðtþ aÞÞ with two-exponential fits overlayed (dashed lines), except for the pion and
kaon for which a single-exponential fit is used. The horizontal band corresponds to the quoted mass and statistical error. The right panel
compares different fit forms and different tmin choices for fixed tmax ¼ 35a for the pion and kaon and tmax ¼ 25a for the other hadrons,
with the chosen fit denoted by the horizontal band.

LATTICE QCD STUDY OF πΣ–K̄N SCATTERING AND THE … PHYS. REV. D 109, 014511 (2024)

014511-5



In addition to using the one-exponential, two-
exponential, and geometric-exp series fit forms to directly
determine the lab-frame stationary-state energies from the
diagonal elements of the rotated correlation matrix, a fourth
method, already used in Ref. [77], is also used to determine
the energies. After forming the rotated correlators DnðtÞ,
the following ratio of correlators is taken

RnðtÞ ¼
DnðtÞ

CAðd2A; tÞCBðd2B; tÞ
; ð3Þ

where ðA; BÞ is either ðπ;ΣÞ or ðK̄; NÞ, with d2A and d2B
chosen so that

Enon: int:
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

A þ
�
2πdA
L

�
2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

B þ
�
2πdB
L

�
2

s
ð4Þ

corresponds to a non-interacting energy sum close to the
energy expected for the stationary state. The ratio RnðtÞ is
then fit to a one-exponential ansatz to determine the energy
interaction shift aΔEn, from which the lab-frame energy
can be reconstructed aElab

n ¼ aΔEn þ aEnon: int:
n . This

method hopes to take advantage of noise cancellation in

the ratio of correlators to more precisely determine the
interaction shifts. Due to the presence of both πΣ and K̄N
states, there are often nearby noninteracting sums of each
type. Since the reconstructed lab-frame energy should be
independent of which product of non-interacting correla-
tors is used in the denominator, we use both types to check
for consistency.
To select a final result for use in determining the

scattering amplitudes, several general rules of thumb are
employed. First, the selected fit must have a p-value greater
than 0.1 and/or χ2=d.o.f. less than 1.5. Agreement of the fit
result with those from nearby tmin values is also considered.
When choosing a final fit, we also look for consistency with
the other fit methods. From these considerations, a single-
exp ratio fit is often selected, and we require that the final fit
is within 2σ of the other ratio fit of the same tmin.
Consistency with the plateau regions of the two-exponen-
tial and geometric-exp fits is also required. The final fit is
chosen as that with the smallest statistical errors which is
also stable between nearby tmin values and maintains
consistency between methods.
An example energy determination is shown in Fig. 4.

The energy determined in this example corresponds to the
lowest level of the G1uð0Þ irrep. Results from four different
fit methods are shown: two-exponential and geometric-exp
fits to the rotated correlator, and single-exponential fits to
the ratio of the rotated correlator over the product of single-
hadron correlators for either K̄ð0ÞNð0Þ or πð0ÞΣð0Þ, the
zeroes in parentheses referring to d2 of each hadron.
The single-exp ratio fit for tmin ¼ 15a is selected as the
final estimate. Analogous plots for other levels are given in
Appendix B.

FIG. 3. Stability of the finite-volume spectra under variation of
the correlation matrix rotation method using the GEVP for four
different symmetry sectors. The metric time is set to t0 ¼ 4a.
“Rolling Pivot M” refers to the second approach that uses
eigenvectors determined using the mean values of the correlation
matrix, and “Rolling Pivot B” refers to the bootstrapped variant of
the rolling pivot.

TABLE III. A summary of various hadron masses and decay
constants (with normalization fphysπ ≈ 130 MeV) for the CLS
D200 gauge ensemble used in this work. The η mass is taken
from Ref. [72], and the pion and kaon decay constants are taken
from Ref. [73]. All other masses are determined in Fig. 2.

amπ 0.06533(25) afπ 0.04226(13)
amK 0.15602(16) afK 0.04910(11)
amη 0.1768(22) amΛ 0.3634(14)
amN 0.3143(37) amΣ 0.3830(19)

FIG. 4. Determination of the finite-volume stationary-state
energy corresponding to the lowest level of the G1uð0Þ irrep.
Each point shows the lab-frame energy from a particular fit using
temporal range tmin, shown on the horizontal axis, to tmax ¼ 25a.
Four different fit methods are shown: two-exponential and geo-
metric-exp fits to the rotated correlator, and single-exponential
fits to the ratio of the rotated correlator over the product of single-
hadron correlators for either K̄ð0ÞNð0Þ or πð0ÞΣð0Þ. The dark
horizontal band and filled symbol denote the final chosen fit
selected as described in the text.
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A summary of the total isospin I ¼ 0 and strangeness
S ¼ −1 spectrum in the center-of-mass frame for various
symmetry channels is presented in Fig. 5. Each center-of-
mass energy Ecm is obtained from the corresponding lab-
frame energy Elab using

Ecm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
lab − P2

q
: ð5Þ

The results are compared to the energy sums of non-
interacting two-particle combinations.

III. SCATTERING AMPLITUDES

Our determinations of the scattering amplitudes are
presented in this section. First, the quantization condition
that relates the amplitudes to the finite-volume spectrum is
discussed. Then the parametrizations of the K-matrix that
we use are described, and fits using these parametrizations
and the quantization condition are presented.

A. Quantization condition

In lattice QCD, scattering amplitudes are obtained by
solving a quantization condition [78–85] which relates the
amplitudes to the finite-volume spectrum of center-of-mass
energies Ecm. Generally, the lowest partial wave amplitudes
must be somehow parametrized, then best-fit values of the
parameters are determined by matching the finite-volume
spectrum produced by the quantization condition to that
evaluated in lattice QCD.
The form of the quantization condition used here is

given by

det½K̃−1ðEcmÞ − BPðEcmÞ� þ Oðe−MLÞ ¼ 0; ð6Þ

where K̃ is related to the usual scattering K-matrix as
described below, and BPðEcmÞ for a particular total
momentum P ¼ ð2π=LÞd, with d∈Z3, is the so-called
box matrix, using the notation of Ref. [86]. In Eq. (6), the
neglected correction terms are suppressed exponentially
with the spatial extent L and some relevant energy scaleM,
typically the pion mass. Equation (6) applies only for
energies below all thresholds of states containing three or
more particles. The determinant can be taken over all unit
normalized two-hadron states jJmJlSai specified by total
angular momentum J, the projection of J along the z-axis
mJ, the orbital angular momentum l, the total intrinsic spin
S, and particle species a. Here, a ¼ 0, 1, where species
channel 0 is πΣ and species channel 1 is K̄N, and total spin
S ¼ 1=2 is fixed, and therefore, need not be explicitly
indicated.
The box matrix hJ0m0

Jl
0S0a0jBPðEcmÞjJmJlSai encodes

the effects of inserting the partial waves into the cubic box
so as to maintain the periodic boundary conditions. This
matrix is diagonal in the indices corresponding to total
intrinsic spin and particle species, but not to any of the
other indices. In particular, states of different total angular
momentum can mix. One can show that, under any sym-
metry transformation Q of the cubic box which is an
element of the little group of P, the box matrix transforms
as QBPQ† ¼ BP. This implies that the box matrix can be
block diagonalized by projecting onto the superpositions of
states that transform according to the irreps of the little
group. The K̃ matrix similarly block diagonalizes in such a
basis, except for the total intrinsic spin and particle species
indices. Hence, the determinant in Eq. (6) can be dealt with
separately block by block. A particular block can be
denoted by the finite-volume irrep Λðd2Þ and a row of
this irrep λ. Since the spectrum is independent of the row λ,
this index is henceforth omitted. For a particular block, the

block-diagonalized box-matrix is denoted BΛðd2Þ
J0l0n0;Jln, where

n, n0 are irrep occurrence numbers. The expressions for all
elements of BΛðd2Þ relevant for this work are given in
Ref. [86]. After transforming to the block diagonal matrix,
the K̃ matrix has the form given by Eq. (35) in Ref. [86]. A
truncation l ≤ lmax in each block then makes the determi-
nant condition manageable.
We use the same definition of the K-matrix as described

in Ref. [86]. This matrix is real and symmetric and diagonal
in total angular momentum and its projection:

hJ0m0
Jl

0S0a0jKjJmJlSai ¼ δJ0Jδm0
JmJ

KðJÞ
l0S0a0;lSaðEcmÞ: ð7Þ

The matrix K̃ here is defined by

K̃ðJÞ−1
l0S0a0;lSaðEcmÞ ¼

�
ka0

mπ

�
l0þ1

2

KðJÞ−1
l0S0a0;lSaðEcmÞ

�
ka
mπ

�
lþ1

2

;

ð8Þ

FIG. 5. Finite-volume stationary-state energy spectrum, shown
as green points, in the center-of-mass frame for total isospin
I ¼ 0, strangeness S ¼ −1, and various symmetry channels
indicated along the horizontal axis. The gray bands show the
locations of energy sums for non-interacting two-particle combi-
nations. Various two and three particle thresholds are shown as
dashed horizontal lines. Energies are shown as ratios over the
pion mass mπ .
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where

k20 ¼ k2πΣ ¼ 1

4E2
cm

λKðE2
cm; m2

π; m2
ΣÞ; ð9Þ

k21 ¼ k2K̄N ¼ 1

4E2
cm

λKðE2
cm; m2

K̄; m
2
NÞ; ð10Þ

and λK is the Källén function [87]

λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2xz − 2yz: ð11Þ

Note that this definition of K̃ differs very slightly from that
given in Ref. [86], and hence, the box matrix here also is
slightly different. Simple factors related to the spatial extent
L have been removed here.
In this work, the total intrinsic spin S ¼ S0 ¼ 1=2 is

fixed, so these indices can be omitted. For elastic scattering,
K̃ is diagonal in the orbital angular momentum, so we
take l ¼ l0. We restrict our attention to l ≤ lmax where
lmax ¼ 0, 1. Since parity for πΣ and K̄N states is
P ¼ ð−1Þlþ1, where the product of the intrinsics parities
is −1, and we include only l ¼ 0, 1 waves, we can change
notation to remove l in favor of JP. Thus, we use the

notation K̃ðJPÞ
a0a ðEcmÞ in what follows, with JP ¼ 1=2− for

lmax ¼ 0 and JP ¼ 1=2−; 1=2þ; 3=2þ for lmax ¼ 1.

B. Parametrizations and fits for lmax = 0

For lmax ¼ 0, the finite-volume spectrum shown in
Fig. 5 constrains the coupled-channel scattering amplitude
via Eq. (6) at center-of-mass energies near the πΣ and K̄N
thresholds. All irreps in Table 1 of Ref. [49] to which the
JP ¼ 1=2− partial wave contributes are employed.
Six different types of parametrizations of K̃ are studied

here using lmax ¼ 0. In the expressions below, the sub-
scripts i and j denote either of the two scattering channels
(channel 0 is πΣ and channel 1 is K̄N), and the quantity

ΔπΣðEcmÞ ¼
E2
cm − ðmπ þmΣÞ2
ðmπ þmΣÞ2

; ð12Þ

is related to the center-of-mass energy gap above πΣ
threshold. The matrices A, B, Â, B̂, Ã, B̃, Ĉ, A0, and B0
below are real and symmetric. The six forms of para-
metrizations are as follows:
(1) An effective range expansion (ERE) of the form

K̃ij ¼
mπ

Ecm
ðAij þ BijΔπΣðEcmÞÞ: ð13Þ

(2) A variation of the first parametrization without the
factor of mπ=Ecm:

K̃ij ¼ Âij þ B̂ijΔπΣðEcmÞ: ð14Þ

(3) An ERE of K̃−1 of the form

K̃−1
ij ¼ Ecm

mπ
ðÃij þ B̃ijΔπΣðEcmÞÞ: ð15Þ

(4) A Blatt-Biederharn [88] parametrization:

K̃ ¼ CFC−1; ð16Þ

where

C ¼
�

cos ϵ sin ϵ

− sin ϵ cos ϵ

�
; ð17Þ

F ¼
�
f0ðEcmÞ 0

0 f1ðEcmÞ

�
; ð18Þ

and

fiðEcmÞ ¼
mπ

Ecm

ai þ biΔπΣðEcmÞ
1þ ciΔπΣðEcmÞ

: ð19Þ

(5) A parametrization based on the leading-order
Weinberg-Tomozawa term [20]:

K̃ij ¼
Ĉij

mπ
ð2Ecm −Mi −MjÞ; ð20Þ

where M0 ¼ mΣ and M1 ¼ mN .
(6) An expansion that is linear in the energy around the

πΣ threshold:

K̃ij ¼ A0
ij þ

B0
ij

mπ
ðEcm −mπ −mΣÞ: ð21Þ

Making use of these forms for K̃, fits are carried out to
determine the best-fit values of the above parameters
using the spectrum method [89]. The correlated-χ2 mini-
mized in these fits is defined similar to Eq. (14) in
Ref. [49], except that the residuals are formed in terms
of differences between the center-of-mass energy inter-
action shifts ΔEcm obtained from the quantization con-
dition using the K̃-matrix parametrization and the
interaction shifts determined from the Monte Carlo com-
putations. For each of the six parametrizations above,
several fits were carried out, setting various parameters to
zero to check sensitivity to these parameters. The results
are presented in Tables VIII–XIII of Appendix C. In these
tables, statistical uncertainties are estimated using a
simple derivative method, as described in Eq. (4.2) of
Ref. [90]. This method is faster than other methods, but it
often yields slightly underestimated values. However, this
method is sufficient for the purposes of illustrating model
dependence. Each fit in these tables also shows the value
of the Akaike information criterion (AIC) [91] defined by
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AIC ¼ χ2 − 2nd.o.f.; ð22Þ

where nd.o.f. denotes the number of degrees of freedom.
The best-fit values for the K̃-matrix parameters in

Tables VIII–XIII show large variations from fit to fit.
However, only more physically-relevant quantities, such as
the scattering amplitudes or the S-matrix pole positions, are

important. We define a quantity tðJ
PÞ

ij ðEcmÞ which is propor-
tional to the scattering transition amplitude and is related
to K̃ by

t−1 ¼ K̃−1 − ik̂; ð23Þ

where mπ k̂ ¼ diagðkπΣ; kK̄NÞ. The different parametriza-
tions discussed above constrain the energy dependence of
the amplitudes near the finite-volume energies, even if
they do not accommodate left-hand (cross-channel) cuts.
Knowledge over this limited range enables the analytic
continuation of tijðEcmÞ to complex Ecm and the identi-
fication of poles close to the real axis on sheets adjacent to
the physical one. Analytic continuation of the coupled
channel πΣ − K̄N scattering amplitude involves four differ-
ent Riemann sheets, each labeled by the sign of the
imaginary parts of ðkπΣ; kK̄NÞ, with ðþ;þÞ denoting the
physical sheet. Complex poles in the scattering amplitudes
correspond to vanishing eigenvalues in the right-hand side
of Eq. (23) and are determined numerically. In the vicinity
of a pole, the divergent part of the amplitude is

t ¼ mπ

Ecm − Epole

�
c2πΣ cπΣcK̄N

cπΣcK̄N c2K̄N

�
þ…; ð24Þ

where the (complex) residues cπΣ, cK̄N represent the
coupling of the resonance pole to each channel.
Results for the scattering transition amplitudes and the

pole locations for each of the fits in Tables VIII–XIII
are shown in Fig. 6. The transition amplitudes are
shown in the upper panel, and the resulting poles from
the analytic continuations are shown in the middle
panel of Fig. 6. Each line in the upper panel corresponds
to a different fit in Tables VIII–XIII, with corresponding
pairs of points in the middle panel. The transparency of
the lines and points is directly related to the value of the
AIC, darker implying a lower AIC. One sees that the
variations between the results of the transition amplitudes
and the S-matrix poles from the different fits are no
longer large.
The first parametrization, given by Eq. (13), leads to the

lowest AIC, i.e. AICmin. Given this, a fit is carried out using
this parametrization and the errors are more accurately
determined using a bootstrap procedure with 800 samples.
This analysis also accounts for fluctuations in the single
hadron masses, and thus the errors are larger than the ones
estimated using the derivative method in Table VIII. The fit

with the lowest AIC value is a four-parameter fit of the form
of Eq. (13), and the best-fit parameters values are

A00 ¼ 4.1ð1.8Þ; A11 ¼ −10.5ð1.1Þ;
A01 ¼ 10.3ð1.5Þ; B01 ¼ −29ð18Þ; ð25Þ

with fixed B00 ¼ B11 ¼ 0 and χ2 ¼ 10.52 for 11 degrees of
freedom. This fit is shown in Fig. 7. The finite-volume
energies that are used in this fit are shown in Fig. 8. The
green points show the center-of-mass energies obtained
from the Monte Carlo lattice QCD computations, and the
blue points show the energies obtained from the fit using
the quantization condition and the K̃-matrix parametriza-
tion of Eq. (13) with best-fit values given in Eq. (25).
For this preferred fit, two poles are found on the ð−;þÞ

sheet, which is the one closest to physical scattering in the
region between the two thresholds, with energies

E1=mπ ¼ 6.856ð45Þstð06Þmd;

E2=mπ ¼ 7.144ð63Þstð07Þmd − i0.057ð22Þstð17Þmd;

E1 ¼ 1392ð9Þstð2Þmdð16Þa MeV

E2 ¼ ½1455ð13Þstð2Þmdð17Þa
− i × 11.5ð4.4Þstð4Þmdð0.1Þa� MeV; ð26Þ

FIG. 6. Scattering amplitudes and S-matrix pole locations
against center-of-mass energy difference to the πΣ threshold
for various fits using the six different K̃-matrix parametrizations.
The quantities t and k̂ are defined in Eq. (23), and the subscripts i,
j refer to the flavor channels. The different fits in Tables VIII–
XIII are shown as different lines in the upper panel, with
corresponding pairs of points in the middle panel which show the
positions of the S-matrix poles in the complex center-of-mass
energy plane. The transparency parameter in matplotlib [92] of
each line and corresponding pair of points is set to be
alpha ¼ expð−ðAIC − AICminÞ=2Þ. The bottom panel shows
the finite-volume spectrum used to constrain the fits involving the
transition amplitudes.

LATTICE QCD STUDY OF πΣ–K̄N SCATTERING AND THE … PHYS. REV. D 109, 014511 (2024)

014511-9



while their couplings are

cð1ÞπΣ ¼ i0.52ð10Þstð2Þmd;

cð1ÞK̄N ¼ i0.28ð8Þstð6Þmd;

cð2ÞπΣ ¼ 0.26ð9Þstð5Þmd − i0.13ð3Þstð3Þmd;

cð2ÞK̄N ¼ 0.12ð6Þstð4Þmd − i0.53ð4Þstð2Þmd: ð27Þ
The ratios of these couplings (with correlated uncertainties)
show that the lower pole is more strongly coupled to the πΣ
channel, while the pole at a larger real energy is more
strongly coupled to the K̄N channel:

����
cð1ÞπΣ

cð1ÞK̄N

���� ¼ 1.9ð4Þstð6Þmd;

����
cð2ÞπΣ

cð2ÞK̄N

���� ¼ 0.53ð9Þstð10Þmd: ð28Þ

In the above results, the first uncertainty is statistical, the
second accounts for the model parametrization dependence,
and when the pole positions are quoted in physical units, the
third comes from the scale setting uncertainty in Table I. For
this work, the systematic uncertainty due to the parametri-
zation dependence is estimated by considering all models
withAIC − AICmin < 1, and taking half the difference in the
maximal spread of values as the model uncertainty. In future
work, when a full extrapolation to the physical point is
performed, a more thorough determination of the model-
average and systematic uncertainty will be performed.
As shown in Fig. 6, the existence of two poles remains

robust under variations of the underlying parametrization of
the K-matrix. Our K̃-matrix parametrizations make no
assumptions about the number or locations of the S-matrix
poles, and can accommodate zero, one, or two poles. The
pole at E1 is most likely a virtual bound state (except in
0.5% of the bootstrap samples where the pole is in the
physical sheet and is thus a bound state), while the one at
E2 is a resonance. The first pole has a stronger coupling to
πΣ, while the second couples more strongly to K̄N.
Another way of presenting the results for the amplitudes

is to show the scattering phase shifts δi and the inelasticity
η, which are related to t by

t00 ¼
mπ

�
ηe2iδπΣ − 1

�
2ikπΣ

;

t11 ¼
mπ

�
ηe2iδK̄N − 1

�
2ikK̄N

;

t01 ¼
mπ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
eiðδπΣþδK̄NÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kπΣkK̄N

p ; ð29Þ

FIG. 7. The isospin I ¼ 0 and strangeness S ¼ −1 coupled-
channel πΣ − K̄N transition amplitudes computed on a single
lattice QCD gauge-field ensemble with mπ ≈ 200 MeV as a
function of the center-of-mass energy difference to the πΣ
threshold. Results are obtained using the best fit specified
by Eqs. (13) and (25), with uncertainties estimated by
bootstrap resampling. The quantities t and k̂ are defined in
Eq. (23), and the subscripts i, j refer to the flavor channels. The
middle panel shows the positions of the S-matrix poles in the
complex center-of-mass energy plane on the sheets closest to
the physical one. The bottom panel shows the finite-volume
spectrum used to constrain the fits involving the transition
amplitudes.

FIG. 8. Finite-volume spectrum in the center-of-mass frame
used as input data to constrain parametrizations of the coupled-
channel πΣ − K̄N scattering amplitude (green circles). Each
column corresponds to a particular irrep Λðd2Þ of the little group
of total momentum P2 ¼ ð2π=LÞ2d2. Only irreps where the
l ¼ 0 partial wave contributes are included. Dashed lines
indicate various thresholds, as labeled. Model energies from
the resultant fit are shown as blue squares.
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where the indices again indicate the flavor channel: 0 for
πΣ and 1 for K̄N. The results are shown in Fig. 9. This
figure illustrates two features that can be related to the two-
pole structure. First, a rapid increase of the phase at the Σπ
threshold is related to the presence of a close virtual bound
state. Second, the phase crosses 90 degrees near the
position of the real part of the second pole.

C. Single-channel πΣ scattering

In the vicinity of the πΣ threshold, and well below the
K̄N threshold, the standard single-channel Lüscher for-
malism can be used to study the elastic πΣ scattering
amplitude. Compared to the multichannel approach, the
single-channel approach is equivalent up to effects that are
exponentially-suppressed with respect to the distance to the
K̄N threshold. Such an analysis is used here to show further
evidence of the existence of the lower pole and its nature as
a virtual bound state.
We perform this single-channel analysis using the lowest

energies in each frame in the G1uð0Þ; G1ð1Þ, Gð2Þ, and
Gð3Þ irreps (4 in total), as shown in Fig. 8. The elastic
scattering phase shift can be parametrized by

kπΣ
mπ

cot δπΣ ¼ Ecm

mπ
ðaπΣ þ bπΣΔπΣÞ; ð30Þ

where aπΣ and bπΣ are fit parameters. The results of
performing a fit using the spectrum method as in
Ref. [49] are

aπΣ ¼ 0.047ð14Þ; bπΣ ¼ 0.65ð50Þ; χ2¼ 5.04; ð31Þ

with 2 degrees of freedom. A visualization of the single-
channel phase shift from the fit is shown in Fig. 10, along

with a comparison to the elastic phase shift from the
multichannel analysis in Eq. (25). One observes that the
phase shift curve (blue band) intersects the virtual bound
state condition (black dashed line). That is,

kπΣ cot δπΣ − ikπΣ ¼ 0; ð32Þ

for purely imaginary and negative kπΣ. The position of the
virtual bound state is found at

E1=mπ ¼ 6.822ð37Þ;
E1 ¼ 1389ð8Þstð16Þa MeV: ð33Þ

Thus, the results are consistent with those obtained in the
multichannel analysis, and confirm the existence of the lower
pole in amodel-independent way. The larger χ2 per degree of
freedom compared to the multichannel analysis may arise
from the proximity of the K̄N threshold, suggesting the need
for the multichannel approach to study this system.

D. Effect of higher partial waves

The analysis above only includes s waves and the JP ¼
1=2− amplitudes. For the energies in the rest frame in the
G1uð0Þ irrep, this is a good approximation, since this irrep
only receives contamination from l ¼ 4 partial waves. By
contrast, energy levels in moving frames, such as the G1ð1Þ,
Gð2Þ, andGð3Þ irreps, receive contamination from p-waves.
In particular, the dominant contamination from higher partial
waves is expected to be from the JP ¼ 1=2þ and JP ¼ 3=2þ

channels. The scattering amplitude for JP ¼ 1=2þ is the
leading contribution to the finite-volume energy shifts in the

FIG. 9. Inelasticity η and phase shifts δπΣ and δK̄N against
center-of-mass energy difference to the πΣ threshold. These
quantities are defined in Eq. (29). Results are obtained using the
best fit specified by Eqs. (13) and (25), with uncertainties
estimated by bootstrap resampling.

FIG. 10. The πΣ elastic phase shift as a function of the center-
of-mass momentum squared, determined in a single-channel
analysis and compared against the multichannel result. The
dashed black line corresponds to the virtual bound state condition
in Eq. (32). The blue dashed line and corresponding band show
the fit to an effective range expansion with statistical errors. The
star labels the position of the virtual bound state in the single-
channel analysis. The solid purple line and the associated band
show the result from the multichannel fit with lowest AIC value.
The scattering phase shifts from each energy level are shown by
the hollow blue symbols.
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G1gð0Þ irrep, while in the F1ð3Þ and F2ð3Þ irreps, the JP ¼
3=2þ wave dominates. Since a few energy levels in these
irreps are determined in this work, as shown in Fig. 5, we can
use these energies to estimate the strength of the interactions
in these two waves and how they impact the main fit of
this work.
To assess this, we perform two additional fits. In the first

additional fit, sixteen energies are used, which include the
fifteen energies from the s-wave fits and one G1gð0Þ level,
and we incorporate a JP ¼ 1=2þ wave in the K̃-matrix
parametrization. In the second additional fit, seventeen
energies are used, which include the fifteen energies from
the s-wave fits and one level each in the F1ð3Þ, F2ð3Þ
irreps, and we add a JP ¼ 3=2þ wave in the K̃-matrix
parametrization. For each of these additional partial waves,
we use simple parametrizations of the form

K̃JP ¼ diagðAJP
00 ; A

JP
11Þ: ð34Þ

The results of these additional fits are presented in
Table XIV of Appendix C. One sees that the shifts in
the parameters due to considering additional waves is about
an order of magnitude lower than the statistical uncertainty
when considering only the leading partial wave. Thus, it
can be concluded that the effects of higher partial waves can
be neglected to the present statistical uncertainty for
energies below the ππΛ threshold.

IV. CONCLUSION

Hermitian correlation matrices using both single baryon
and meson-baryon interpolating operators for a variety of
different total momenta and irreducible representations
were used to determine the finite-volume stationary-state
energies in the isospin I ¼ 0 strangeness S ¼ −1 sector in
lattice QCD with the stochastic LapH method. Results were
obtained using a single ensemble of gauge field configu-
rations with Nf ¼ 2þ 1 dynamical quark flavors and mπ ≈
200 MeV and mK ≈ 487 MeV on a 643 × 128 lattice with
spacing a ¼ 0.0633ð4Þð6Þ fm. Various K-matrix paramet-
rizations restricted to s-waves were then employed in the
quantization condition to match the spectrum obtained
from lattice QCD. The resulting best-fit parameter values
from the K-matrix parametrization yielding the lowest
Akaike Information Criterion produced the πΣ − K̄N
transition amplitudes shown in Fig. 7. Analytic continu-
ation of the transition amplitudes into complex center-of-
mass energies revealed two poles, suggesting a virtual
bound state below the πΣ threshold and a resonance just
below the higher K̄N threshold. A single channel fit of πΣ
scattering showed the robustness of the lower pole, and the
effects of including the leading p-wave contributions were
examined and found to be negligible at the current
statistical precision.
The results presented here demonstrate the feasibility

of using current lattice QCD techniques to study

coupled-channel dynamics for baryon resonances such as
the controversial Λð1405Þ. We plan to obtain results at
physical quark masses, as well as results for several lattice
spacings to extrapolate to the continuum-limit. The impor-
tance of studying lattice spacing errors has been under-
scored recently by the observation of large discretization
effects in the H-dibaryon binding energy [93] using the
same lattice discretization as employed here. However, that
work suggests that at the fine lattice spacing used here the
result is unlikely to differ qualitatively from the continuum.
Note that moving to physical quark masses requires the
consideration of three-particle effects due to ππΛ states.
The lattice QCD determination of levels above this thresh-
old should not present a major problem in the region
relevant for the Λð1405Þ, and the formalism for three-
hadrons including particles with spin is progressing rapidly
[94]. Exploring the quark-mass trajectory toward the
SU(3)-symmetric point will be useful for testing chiral
effective theories. This work opens the door to investigating
other baryon resonances, such as the Nð1535Þ, Λð1670Þ,
Σð1620Þ, and Ξð1620Þ, among others.
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APPENDIX A: SINGLE- AND TWO-HADRON
OPERATORS

The single- and two-hadron operators used in this study
are specified in Tables IV–VII in this section. We use
multihadron operators comprised of individual constituent
hadrons, each corresponding to a definite momentum. Each
single-hadron operator is specified by its flavor structure,
such as Λ, Σ, N, π, K̄, then in square brackets, the irrep of

its little group, with the squared spatial momentum, in units
of ð2π=LÞ2, shown in parentheses. The subscript indicates a
spatial identification number. The spin and orbital structure
associated with each identification number can be obtained
from the authors upon request.

TABLE IV. Single- and two-hadron operators used in each
symmetry sector with total momentum d2 ¼ 0. Operator notation
is described in the text.

Λðd2Þ Operators

Huð0Þ π½A−
1uð0Þ�0Σ½Hgð0Þ�0

π½A−
2 ð1Þ�1Σ½G1ð1Þ�0

K̄½A2ð1Þ�1N½G1ð1Þ�0
G1gð0Þ Λ½G1gð0Þ�0

Λ½G1gð0Þ�1
Λ½G1gð0Þ�3

K̄½A2ð1Þ�1N½G1ð1Þ�0
π½A−

2 ð1Þ�1Σ½G1ð1Þ�0
G1uð0Þ Λ½G1uð0Þ�0

Λ½G1uð0Þ�1
Λ½G1uð0Þ�2
Λ½G1uð0Þ�3

K̄½A1uð0Þ�0N½G1gð0Þ�0
π½A−

1uð0Þ�0Σ½G1gð0Þ�0
K̄½A2ð1Þ�1N½G1ð1Þ�0
π½A−

2 ð1Þ�1Σ½G1ð1Þ�0

TABLE V. Same as Table IV with d2 ¼ 1.

Λðd2Þ Operators

G1ð1Þ Λ½G1ð1Þ�0
Λ½G1ð1Þ�1
Λ½G1ð1Þ�2
Λ½G1ð1Þ�4
Λ½G1ð1Þ�6

K̄½A1uð0Þ�0N½G1ð1Þ�0
π½A−

1uð0Þ�0Σ½G1ð1Þ�0
K̄½A2ð1Þ�1N½G1gð0Þ�0
π½A−

2 ð1Þ�1Σ½G1gð0Þ�0
G2ð1Þ Λ½G2ð1Þ�0

Λ½G2ð1Þ�1
π½A−

1uð0Þ�0Σ½G2ð1Þ�0
π½A−

2 ð1Þ�1Σ½Gð2Þ�0 (2)

K̄½A2ð1Þ�1N½Gð2Þ�0 (2)

TABLE VI. Same as Table IV with d2 ¼ 2.

Λðd2Þ Operators

Gð2Þ Λ½Gð2Þ�0
Λ½Gð2Þ�1
Λ½Gð2Þ�2
Λ½Gð2Þ�3
Λ½Gð2Þ�5
Λ½Gð2Þ�6

K̄½A1uð0Þ�0N½Gð2Þ�0
π½A−

1uð0Þ�0Σ½Gð2Þ�0
K̄½A2ð1Þ�1N½G1ð1Þ�0 (2)
π½A−

2 ð1Þ�1Σ½G1ð1Þ�0 (2)

K̄½A2ð2Þ�0N½G1gð0Þ�0
π½A−

1uð0Þ�0Σ½Gð2Þ�1
π½A−

1uð0Þ�0Σ½Gð2Þ�7

TABLE VII. Same as Table IV with d2 ¼ 3.

Λðd2Þ Operators

F1ð3Þ Λ½F1ð3Þ�0
π½A−

2 ð1Þ�1Σ½Gð2Þ�0
K̄½A2ð1Þ�1N½Gð2Þ�0
π½A−

2 ð2Þ�0Σ½G1ð1Þ�0
K̄½A2ð2Þ�0N½G1ð1Þ�0
π½A−

1uð0Þ�0Σ½F2ð3Þ�0
F2ð3Þ Λ½F2ð3Þ�0

π½A−
2 ð1Þ�1Σ½Gð2Þ�0

K̄½A2ð1Þ�1N½Gð2Þ�0
π½A−

2 ð2Þ�0Σ½G1ð1Þ�0
K̄½A2ð2Þ�0N½G1ð1Þ�0
π½A−

1uð0Þ�0Σ½F1ð3Þ�0
Gð3Þ Λ½Gð3Þ�0

Λ½Gð3Þ�1
Λ½Gð3Þ�4
Λ½Gð3Þ�5

K̄½A1uð0Þ�0N½Gð3Þ�0
π½A−

1uð0Þ�0Σ½Gð3Þ�0
K̄½A2ð1Þ�1N½Gð2Þ�0 (2)
π½A−

2 ð1Þ�1Σ½Gð2Þ�0 (2)

K̄½A2ð2Þ�0N½G1ð1Þ�0 (2)

K̄½A2ð2Þ�0N½G1gð0Þ�0
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All operators used in this study are single-site oper-
ators. The notation for the irreps follows the conventions
in Ref. [67]. The subscripts g=u denote even/odd parity,
and the superscripts þ=− denote even/odd G-parity.
Whenever there are more than one independent

Clebsch-Gordan combinations, the multiplicity is indi-
cated by an integer in parentheses to the right of the
operator identification. The Clebsch-Gordan coefficients
that fully define each operator are not given, but are
available upon request.

FIG. 11. Fit results for the stationary-state energies indicated. These plots are similar to that shown in Fig. 4. Orange diamonds and
purple triangles indicate results from fits using a two-exponential and a geometric-exp series, respectively. Green circles and blue
squares indicate results from single-exponential fits to ratios of the rotated diagonal correlator over the product of Nðd21ÞK̄ðd22Þ and
Σðd21Þπðd22Þ single-hadron correlators, respectively, as described in Sec. II C. In each plot, the integers in square brackets in the legend
show the values ½d21; d22�. The dark horizontal band and filled symbol denote the final chosen fit selected as described in Sec. II C.
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APPENDIX B: ENERGY EXTRACTIONS

Energy determinations are shown in Fig. 11 in this section.
Results from four different fit methods are shown: two-
exponential and geometric-exp series fits to the rotated
correlator, and single-exponential fits to the ratio of the
rotated diagonal correlator over the product of single-hadron
correlators for either K̄ðd2K̄ÞNðd2NÞ or πðd2πÞΣðd2ΣÞ. The dark
horizontal band and filled symbol denote the final chosen fit
for each level selected as described in the Sec. II C. Bootstrap
samples for extracted energies are available at Ref. [98].

APPENDIX C: AMPLITUDE PARAMETER FIT
RESULTS

Best-fit results for the parameters in the various
K̃-matrix parametrizations are presented here. Results
are obtained by fitting the spectrum obtained from the
K̃-matrix parametrizations and the quantization condition
to the spectrum determined in the lattice QCD computa-
tions. Tables VIII–XIII contain results from fits using
lmax ¼ 0, and Table XIV using lmax ¼ 1.

TABLE VIII. Fit results for K̃ parametrization class 1 shown in Eq. (13). Errors are propagated through the derivative method. Empty
entries indicate parameters set to zero in a fit. AIC refers to Akaike information criterion.

Fit A00 A11 A01 B00 B11 B01 χ2=d.o.f. AIC

a 1.5(1.4) −8.78ð72Þ 8.30(65) 15.68=ð15 − 3Þ −8.32
b 4.1(1.2) −10.5ð1.1Þ 10.3(1.3) −29ð15Þ 10.52=ð15 − 4Þ −11.48
c 2.3(1.3) −8.62ð58Þ 7.60(80) −18ð11Þ 12.29=ð15 − 4Þ −9.71
d 15.1(5.3) −11.8ð1.3Þ 7.6(1.3) −56ð19Þ 11.48=ð15 − 4Þ −10.52
e 9.6(6.2) −12.7ð3.4Þ 11.1(2.8) −23ð26Þ 18(31) −37ð29Þ 9.70=ð15 − 6Þ −8.30

TABLE IX. Fit results for K̃ parametrization class 2 shown in Eq. (14). Errors are propagated through the derivative method. Empty
entries indicate parameters set to zero in a fit. AIC refers to Akaike information criterion.

Fit Â00 Â11 Â01 B̂00 B̂11 B̂01 χ2=d.o.f. AIC

a 0.16(19) −1.229ð91Þ 1.140(88) 15.44=ð15 − 3Þ −8.56
b 0.52(18) −1.45ð15Þ 1.42(18) −3.9ð2.0Þ 10.73=ð15 − 4Þ −11.27

TABLE X. Fit results for K̃ parametrization class 3 shown in Eq. (15). Errors are propagated through the derivative method. Empty
entries indicate parameters set to zero in a fit. AIC refers to Akaike information criterion.

Fit Ã00 Ã11 Ã01 B̃00 B̃11 B̃01 χ2=d.o.f. AIC

a 0.092(21) −0.036ð15Þ 0.082(20) 0.28(15) 11.73=ð15 − 4Þ −10.27
b 0.114(25) −0.041ð24Þ 0.096(19) 0.19(16) 14.57=ð15 − 4Þ −7.43
c 0.137(33) −0.019ð14Þ 0.119(21) −0.142ð85Þ 13.10=ð15 − 4Þ −8.90

TABLE XI. Fit results for K̃ parametrization class 4 shown in Eq. (16). Errors are propagated through the derivative method. Empty
entries indicate parameters set to zero in a fit. AIC refers to Akaike information criterion.

Fit a0 a1 b0 b1 c0 c1 ϵ χ2=d.o.f. AIC

a 5.7(1.2) −11.4ð1.2Þ −27ð15Þ 0.451(56) 13.27=ð15 − 4Þ −8.73
b 13.7(4.1) −14.06ð86Þ −37ð17Þ 0.349(75) 10.63=ð15 − 4Þ −11.37
c 5.8(1.2) −11.8ð1.1Þ −1.62ð95Þ 0.468(48) 13.54=ð15 − 4Þ −8.46
d 12.2(3.4) −14.06ð87Þ 5.8(3.2) 0.360(82) 11.13=ð15 − 4Þ −10.87

TABLE XII. Fit results for K̃ parametrization class 5 shown in Eq. (20). Errors are propagated through the derivative method. Empty
entries indicate parameters set to zero in a fit. AIC refers to Akaike information criterion.

Fit Ĉ00 Ĉ11 Ĉ01 χ2=d.o.f. AIC

a 0.005(58) −0.270ð12Þ −0.295ð22Þ 15.28=ð15 − 3Þ −8.72
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