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Bayesian model averaging is a practical method for dealing with uncertainty due to model specification.
Use of this technique requires the estimation of model probability weights. In this work, we revisit the
derivation of estimators for these model weights. Use of the Kullback-Leibler divergence as a starting point
leads naturally to a number of alternative information criteria suitable for Bayesian model weight
estimation. We explore three such criteria, known to the statistics literature before, in detail: a Bayesian
analog of the Akaike information criterion which we call the BAIC, the Bayesian predictive information
criterion, and the posterior predictive information criterion (PPIC). We compare the use of these
information criteria in numerical analysis problems common in lattice field theory calculations. We find
that the PPIC has the most appealing theoretical properties and can give the best performance in terms of
model-averaging uncertainty, particularly in the presence of noisy data, while the BAIC is a simple and
reliable alternative.
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I. INTRODUCTION

In many data analysis applications, particularly in lattice
gauge theory, model uncertainty is a common challenge.
Model uncertainty arises when multiple candidate model
descriptions exist for a given set of observations, with the
desired analysis results dependent on which model is used.
A simple solution to this problem is model selection, i.e.,
choosing a single model from the available candidates
based on some (generally data-driven) criteria. Model
selection is appealing due to its relative simplicity: once
a model is chosen using some procedure, inference on
parameters or prediction of future observations can be done
using standard statistical methods within the chosen model.
However, this approach is not always optimal, especially

when the primary goal of analysis is parameter inference
and model selection is only an intermediate step. By
choosing a single “best” model, model selection neglects
the effects of model uncertainty compared to other sources
of error such as parameter uncertainty from a regression
procedure (e.g., least squares) [1–3]. As a result, model
selection can lead to overly confident results based on
limited statistical information.
To incorporate model uncertainty into statistical analy-

ses, a natural alternative to model selection is model
averaging. With model averaging, quantities of interest
are determined for each model in a space of candidates, and
a final estimate is made by taking a weighted average over

the model-dependent estimates. The weights correspond to
how likely each respective model is to describe the
observed data. Combining models in this way accounts
for the model uncertainties in the overall statistical uncer-
tainty of the analysis. Moreover, the probabilistic weighting
of models can yield smaller uncertainties compared to
overly conservative procedures such as taking the full
difference between plausible model variations as a system-
atic error, without introducing asymptotic bias.
Bayesian inference gives a natural framework in which

to carry out the procedure of model averaging. Specifically,
Bayes’ theorem gives a way to construct a posterior dis-
tribution over the combined model-parameter product
space and allows analysts to incorporate whatever prior
information is available. Bayesian model averaging has
been well known in the statistics literature for some time
[4–8]. The central problem in applying Bayesian model
averaging is the estimation of model probability weights,
which is generally formulated in terms of quantities
known as “information criteria” (ICs). The most well-
known information criterion is the Akaike information
criterion (AIC) [9–11], which by construction is inherently
a frequentist estimator (although a close analog, the
“Bayesian AIC,” may be derived in a Bayesian context
as we will show).
In this paper, we explore several ICs that may be used to

determine model weights for Bayesian model averaging.
As a unifying concept, and inspired by the work of Zhou
[12,13], we focus on the derivation of information criteria
based on the Kullback-Leibler (KL) divergence, which can
be thought of as an information-theoretic starting point for
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evaluating model probability. Variations on the explicit
definition of the KL divergence in the case of parametric
models (which are of primary interest for model averaging)
are shown to lead to different ICs.
This work is motivated specifically by a need for

improved statistical methods in lattice field theory.
Bayesian model averaging is well suited for lattice appli-
cations because of the notorious stability issues of the
functional forms that arise in lattice application (e.g., two-
point correlators modeled with an infinite tower of expo-
nentials). As a result, statistical analyses of lattice data
typically require model and/or dataset truncation, which
introduces systematic errors to a typical model selection
procedure. By averaging over models and data subsets
(which we will see is equivalent to the general model-
averaging framework), this systematic error is accounted
for. Furthermore, the firm physical foundation of lattice
field theory complements the use of Bayesian inference by
giving well-motivated families of models to consider. Other
explorations of model averaging in a lattice field theory or
effective field theory context include Refs. [14–24]; the AIC
was first used in the context of lattice field theory analysis
in [25]. Our current work inherits directly from [26], which
rigorously studied model averaging for lattice field theory
in a Bayesian context.
The remainder of the paper is structured as follows. In

the next subsection Sec. I A, we give an overview of our
key results. We then review some general results important
for model averaging in Sec. II, including the Bayesian
framework for model averaging developed in [26] and
some general concepts from mathematical statistics; as part
of this discussion, we establish how bias on information
criteria influences bias of parameter estimates. In Sec. III,
we define the KL divergence and give several distinct
variations for parametric distributions; here we also intro-
duce the information criteria that result from these varia-
tions. We specialize our discussion of Bayesian model
averaging to least-squares regression in Sec. IV and derive
formulas to approximate the model probability weights
from the aforementioned information criteria. In Sec. V, we
reformulate the data subset selection problem as one of
model variation and derive the corresponding expressions
for the information criteria in this case. Section VI gives
three numerical examples to demonstrate the performance
of each information criterion in model averaging; these
include linear least squares applied to a fixed dataset
(Sec. VI A), a nonlinear toy problem that resembles fitting
a two-point correlation function to demonstrate the effec-
tiveness of model averaging in lieu of manual data subset
selection (Sec. VI B), and finally a similar two-point
nucleon correlator example on a set of real lattice QCD
data (Sec. VI C). Section VII summarizes our findings and
gives some concluding remarks.
Appendix A connects the theoretical details of [26] to

our updated view in terms of the KL divergence and

provides some additional discussion. In Appendix B,
we discuss the asymptotic equivalence of the various
information criteria in the limit of infinite data. A bound
on the asymptotic bias of model averaging is derived in
detail in Appendix C. Another information criterion known
as the posterior averaging information criterion (PAIC) was
proposed by Zhou [12,13] to generalize and improve the
performance of the Bayesian predictive information cri-
terion (BPIC); however, using the same integral approxi-
mation as the BPIC and posterior predictive information
criterion (PPIC) gives a lower order (in the inverse sample
size N−1) approximation to the PAIC and hence worse
performance in practice. Therefore, the PAIC is not dis-
cussed as thoroughly as the other ICs, but the relevant
formulas are given in Appendix D. Appendix E gives a
brief derivation of the asymptotic approximation known as
Laplace’s method used in Sec. IVas well as some Gaussian
integrals used in Sec. V. Appendix F contains an alternative
derivation of the data subset selection criteria introduced in
Sec. V. Finally, some of the relevant derivative tensors used
in the calculations are given in Appendix G.

A. Summary of key results

Since we derive a number of technical results in this
paper in some detail, we include here an overview of some
of our key findings. Our primary focus is on information
criteria, which quantify the (logarithmic) probability of
a given model; for a review of the basic formalism of
model averaging including a rigorous definition of ICs, see
Sec. II A below.
Included in our work are two important clarifications.

First, we study the effect of bias in ICs on bias in parameter
estimates; our result Eq. (16) establishes that unbiased
ICs are important for obtaining unbiased model-averaged
parameter estimates. Second, we clarify some key points in
how the AIC arises in a Bayesian context compared to the
earlier work in [26]; see Sec. III A and Appendix A. We call
our revised formula the Bayesian AIC, or BAIC, see
Eqs. (35), (65), and (124); the differences between AIC,
ABICCV (our name for the formula defined in [26]) and
BAIC are subtle and irrelevant in the limit that the priors do
not influence the results.
A central aspect of our work is to approach the problem

of data modeling using the Kullback-Leibler divergence
as a foundation. Given a “true model” MT, the KL
divergence (or relative entropy) between the true model
and a candidate modelMμ is (notation is defined more fully
in Sec. III)

KLðMμÞ ¼ Ez½log prMT
ðzÞ� − Ez½log prMμ

ðzÞ�; ð1Þ

where future data z are drawn from the true likelihood
prMT

ðzÞ. Broadly speaking, minimization of this divergence
will select the model Mμ that most closely resembles the
true model MT. However, this definition is nonparametric,
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and therefore ambiguous when the model likelihood
prMμ

ðzjaÞ depends on some fit parameters a.
This ambiguity allows us to define several variations on

KLðMμÞ, which then lead naturally to different ICs. Each
variation can be thought of as representing a choice for how
to obtain the nonparametric model predictive distribution
prMμ

ðzÞ by starting from a parametric model. For example,
we may adopt a “plug-in” estimate using the best-fit
parameter value a�, leading to a Bayesian version of the
well-known Akaike information criterion as described
in Sec. III A:

Ez½log prMμ
ðzÞ� ∼ Ez½log prMμ

ðzja�Þ� ≃ −
BAIC
2N

;

where N is the data sample size, “∼” indicates a choice of
construction for the nonparametric model predictive dis-
tribution, and “≃” indicates that the IC on the right-hand
side may be used to compute an unbiased sample estimate
of the term on the left-hand side. The plug-in approach is
simple, but unnatural from a Bayesian point of view since it
focuses on a single best-fit parameter value instead of a
posterior distribution.
We also explore two alternatives that are more manifestly

Bayesian and lead to two other ICs. Specifically, we study
the Bayesian predictive information criterion [Eq. (47)] and
the posterior predictive information criterion [Eq. (58)]:

Ez½log prMμ
ðzÞ� ∼ Ez½Eajfyg½log prMμ

ðzjaÞ�� ≃ −
BPIC
2N

;

Ez½log prMμ
ðzÞ� ∼ Ez½logEajfyg½prMμ

ðzjaÞ�� ≃ −
PPIC
2N

:

These two ICs are not the unique constructions that may be
used to estimate the corresponding expectation values; in
Sec. III we discuss a wide variety of other ICs that have
appeared in the statistics literature before. We emphasize
that none of these ICs are new, although we believe that our
approach to deriving them in a unified way from variations
on the KL divergence is novel.
Although these two constructions look superficially

similar, we will find that the form of the PPIC makes it
uniquely sensitive to fluctuations within a given data
sample, and therefore more robust in the presence of noise.
On the other hand, the BPIC is somewhat more aggressive
in selecting models with fewer parameters. This can lead to
lower variances at the cost of higher bias at finite sample
size due to the bias-variance trade-off (see discussion in
Sec. II B and explicit demonstration of this effect in our
numerical results in Sec. VI).
In Appendix B we demonstrate that the BPIC and PPIC

are asymptotically equivalent to the BAIC, so that in the
limit of large sample size N all three will give identical
results; in this sense, the BPIC and PPIC may be viewed
as finite-sample size modifications of the BAIC. Including

the possibility of data subset selection (see Sec. V),
our simplified approximate formulas for the case of
least-squares fitting (see Sec. IV) are Eqs. (124), (125),
and (127); we reproduce these here for convenience:

BAICμ;P ¼ χ̂2ða�Þ þ 2kþ 2dC; ð2Þ

BPICμ;P ≈ χ̂2ða�Þ − 1

2
H̃baðΣ�Þab þ

1

2
g̃dTcbaðΣ�

2Þabcd
þ 3kþ 3dC; ð3Þ

PPICμ;P ≈ χ̂2ða�Þ þ 2kþ dC þ NdC log

�
1þ 1

N

�

− 2
XN
i¼1

log

�
1þ 1

2

�
1

4
ðgiÞbðgiÞa −

1

2
ðHiÞba

�

× ðΣ�Þab þ
1

4
ðgiÞdTcbaðΣ�

2Þabcd
�
; ð4Þ

where k is the number of model parameters, dC is the
number of cut data points, and the other symbols (defined
in Sec. IV) represent various derivatives of χ2 functions.
For use in model averaging, all of these ICs should also
include a model prior probability term −2 log prðMμÞwhen
it is nonconstant, see Sec. II A.
The above formulas for BPIC and PPIC are approximate,

based on expansion of integrals in the inverse sample size
1=N, as discussed in Sec. IV. For the BPIC and PPIC, we
recommend the use of these formulas combined with an
“optimal truncation” prescription, explained in Sec. IV F,
based on the theory of superasymptotics. In the numerical
tests we have performed, optimal truncation improves the
agreement of these formulas with direct numerical evalu-
ation of the associated integral formulas. Optimal trunca-
tion has the additional practical benefit of ensuring that the
sum appearing in the PPIC only includes logarithms with
positive argument, so that the formula is always well
defined.
In order to understand the practical performance of these

ICs, we carry out numerical tests on both synthetic data and
on real lattice QCD data. As we will see, based on both
theoretical considerations and numerical performance, the
PPIC is generally the most attractive information criterion
for Bayesian model averaging. The BAIC, although its
performance in terms of uncertainty is somewhat worse in
certain tests, is by far the simplest IC and often gives
indistinguishable results from the more complex and
expensive to calculate PPIC. Based on these results, we
recommend the PPIC as the primary information criteria for
Bayesian model averaging in all cases, with BAIC as a
backup option in use cases where computing the PPIC is
impractical. The BPIC is more aggressive in penalizing
model complexity, particularly in the context of data subset
selection, which can lead to statistically significant biases at
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finite sample size as seen in our numerical examples in
Sec. VI. As a result, we do not generally recommend the
use of BPIC in practice.

II. MODEL AVERAGING AND BIAS CORRECTION

In this section, we review some preliminary material
necessary to understand and motivate the content of
subsequent sections, including basic concepts of model
averaging and statistical bias. We then examine the
relationship between bias in information criteria and bias
in model-averaged statistical estimates, finding that the use
of asymptotically unbiased ICs is key.

A. Bayesian model-averaging procedure

Bayesian model averaging is a tool that allows for
quantitative treatment of uncertainty due to model choice,
in situations where many candidate models can plausibly
describe a given dataset. Such problems occur commonly
in lattice field theory. Even in situations where physical
arguments strongly motivate the use of a single theory to
describe the data, often the theory is an effective field
theory that must be truncated, and uncertainty in the order
of truncation is equivalent to model selection uncertainty.
For a detailed discussion of Bayesian model averaging with
derivations of the basic formulas appearing here, see [26].
Suppose we are interested in determining expectation

values of functions of some model parameters a, margin-
alized over a set of models fMg from a set of data fyg. The
key idea behind Bayesian model averaging is that we can
obtain these expectation values as a weighted average over
models,

hfðaÞi ¼
X
μ

fða�μÞprðMμjfygÞ; ð5Þ

σ2fðaÞ ¼ hfðaÞ2i − hfðaÞi2 ð6Þ

¼
X
μ

σ2fðaμÞprðMμjfygÞ þ
X
μ

fða�μÞ2prðMμjfygÞ

−
�X

μ

fða�μÞprðMμjfygÞ
�

2

; ð7Þ

where a�μ denotes the best-fit parameters for the modelMμ,
and the probabilities prðMμjfygÞ (the “model weights”)
represent the probability of each model given the data. The
quantity σ2fðaÞ is the estimated variance of the expectation

value hfðaÞi, and includes contributions both from stat-
istical error within each model (the first term) as well as a
“systematic error” contribution due to variation of the
individual model estimates (second and third terms); see
[26] for further discussion. The central problem in comput-
ing expectation values is thus to determine the model
weights prðMμjfygÞ. From Bayes’ theorem,

prðMμjfygÞ ¼
prðfygjMμÞprðMμÞ

prðfygÞ ; ð8Þ

where prðMμÞ is the model prior probability. We will only
consider cases where the data fyg is fixed for all candidate
models Mμ, so prðfygÞ will henceforth be omitted when
irrelevant. The sum of model weights over the space of all
models is normalized to 1,X

μ

prðMμjfygÞ ¼ 1: ð9Þ

At this point, we remark on the connection of model
weights to the common idea of an information criterion.Most
ICs are defined explicitly in terms of a likelihood function
prðfygjMμÞ, so that a generic information criterion is

ICμ ≡ −2 log prðfygjMμÞ: ð10Þ

By Bayes’ theorem, we may define a similar concept of
information criterion for use in model averaging simply by
including the model prior probabilities,

ICMA;μ ≡ −2 log prðMμjfygÞ ¼ −2 log prðMμÞ þ ICμ;

ð11Þ

where the subscript “MA” denotes model averaging.Wewill
generally work with the former version of the ICs in the text
below, to avoid repeatedly writing the factor −2 log prðMμÞ
that is shared between all of them.
We note in passing that any constant terms (i.e., identical

for all models considered) in the definition of an informa-
tion criterion can be safely ignored, since they will cancel
when the normalization condition Eq. (9) is applied. This
applies to the factor −2 log prðMμÞ in the case of a flat
model prior, i.e., if equal prior probability is assigned to all
models Mμ then this term becomes a constant and drops
out. We also exploit this observation to define an equivalent
formula for the unnormalized model weight,

prðMμjfygÞ ∝ exp½−ðICMA;μ −min
ν

ICMA;νÞ=2�: ð12Þ

This form of the model weight formula is less prone
to numerical instability when working at fixed floating-
point precision, and is used in practice in our numerical
implementations.

B. Bias correction and model averaging

There are a staggering number of information criteria
present in the statistics literature. To motivate a specific
subset of ICs to study, we first introduce the concept of bias
for statistical estimators. Roughly speaking, bias measures
the difference between an estimator and the true population
value that the estimator is intended to reflect. There are
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many possible sources of bias in any statistical study; we
will focus here on estimator bias, arising specifically from
the choice of sample estimator and not from other sys-
tematic effects.
Suppose that fyg is a random sample of size N drawn

independently from an unknown true distribution with
probability density function prMT

ðzÞ (i.e., fyg are iid
samples). Consider a sample estimator XðfygÞ for some
property ξ of the true underlying probability distribu-
tion prMT

ðzÞ from which N independent data samples
are drawn. The bias of XðfygÞ is defined as [27]

by½XðfygÞ�≡ Ey½XðfygÞ − ξ� ¼ Ey½XðfygÞ� − ξ; ð13Þ

where Ey denotes expectation with respect to the
population distribution. An unbiased estimator satisfies
by½XðfygÞ� ¼ 0. The quantity

bz½XðzÞ� ¼ lim
N→∞

by½XðfygÞ� ð14Þ

is known as the asymptotic bias of the sequence of
estimators fXðfygÞgN ∈N.
Obviously, it is ideal if one can find a sample estimator

that is unbiased at finite N. However, it is not always
practical to calculate (and hence correct for) the bias of a
given estimator a priori. Instead, one can settle for removal
of only the asymptotic bias. In the context of lattice
simulations, where lattice “data” are generated through a
Monte Carlo process, the sample size N tends to be quite
large and it can always (in principle) be extended in order to
approach the N → ∞ limit. For this reason, we insist on
asymptotic unbiasedness as a primary quality of interest in
lattice applications; this guarantees at least that any
estimator bias will vanish in the large-N limit. For lattice
applications where the goal is typically inference of some
physical parameters in a well-motivated theoretical model,
this requirement ensures that parameter estimates will
converge to the correct answers as N → ∞.
It is important to emphasize that this goal (removal of

asymptotic bias) is not universal across all fields of
research. For example, in machine learning the model
space is much less well understood, and the primary goal is
generally out-of-sample prediction rather than parameter
inference. As a result, machine learning applications are
often better served by joint optimization of bias and
variance; for an accessible review of this so-called “bias-
variance trade-off,” see [28]. As will be demonstrated in
Sec. VI, the use of model averaging itself represents a
form of bias-variance trade-off: inference with a single
fixed model will typically have lower variance than a model
average but at the risk of asymptotic bias if the model
is wrong.
It is important to place the idea of bias properly in the

present context of model selection. Suppose that within
the space of models fMμg, there is one model MT that

corresponds to the true distribution prMT
ðzÞ (assuming

that any model parameters are set to their correct asymp-
totic values a�T). Assuming that MT is in the space of
candidate models fMμg,1 asymptotically we should find
that

lim
N→∞

prðMμjfygÞ ¼ prðMμjzÞ ¼
�
1; μ ¼ T;

0; μ ≠ T:
ð15Þ

As discussed above, our primary goal is to remove
asymptotic bias from model-averaged estimates. If we
assume that the model parameter estimation procedure is
consistent2 (this is true for, say, least-squares regression),
then the asymptotic bias of Eq. (5) is bounded by

jbz½hfðaÞi�j ≤
X
μ

jfða�μÞjjbz½prðMμjzÞ�j; ð16Þ

with probability 1. For a derivation of this bound and
the formal definition of consistency, see Appendix C.
Therefore, we can eliminate the asymptotic bias from
model-averaged results by using an asymptotically unbiased
estimator of the model weights, i.e., bz½prðMμjzÞ� ¼ 0.
It is worth noting in passing that the effect of bias on

model-averaged results can be somewhat subtle. As dis-
cussed briefly in [26], if several models give near-identical
estimates hXiM for some expectation value hXi, then even
the use of a biased model weight estimator will not lead
to any significant bias in the estimate for hXi itself.
Nevertheless, we will insist that all of our model weight
estimators be asymptotically unbiased.

III. KULLBACK-LEIBLER DIVERGENCE
AND INFORMATION CRITERIA

The problem of estimating model probabilities can be
reformulated in terms of the KL divergence, which mea-
sures the deviation of a candidate distribution from an
underlying true distribution. The KL divergence can be
seen as a starting point for the standard methods of model
fitting and model weight estimation. Framing the problem
of model averaging by beginning with the KL divergence
will lead us naturally to the construction of alternative
model weight estimators.
In [26], a specific formula for model weight was derived

using basic manipulations of probability formulas. (For a

1The assumption that there is only one model MT in the
space of candidates is for simplicity. For example, say the
true distribution is nested within two candidate models MT;1
andMT;2. In this case, limN→∞ðprðMT;1jfygÞ þ prðMT;2jfygÞÞ ¼
prðMT;1jzÞ þ prðMT;2jzÞ ¼ 1, limN→∞ a�T;1 ¼ limN→∞ a�T;2 ¼ a�T,
and the model-averaged results Eq. (5) and (7) will be the same as
if there were only one true model in the space of candidates.

2Informally, consistency here means that the parameter esti-
mates converge in probability to their true, asymptotic values; see
Appendix C for a formal definition.
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detailed discussion of that paper’s results and how they
can be connected to the present analysis, see Appendix A.)
However, if we view the central problem as estimation of
probability distributions over the data fyg, then the model
weight formula of [26] is not unique; alternative methods
of dealing with the model parameters can be used to give
alternative estimators for the model weights. To understand
this concept, we step back to understand how the problems
of model selection and model fitting can be fundamentally
viewed in terms of the KL divergence. This approach, and
many of the specific information criteria that we will con-
sider as a result, follows closely the work of Zhou [12,13].
Suppose that fyg is a random sample of size N drawn

independently from an unknown true distribution with
probability density function prMT

ðzÞ. The basic goal of
data modeling is to approximate prMT

as closely as possible
with a model distribution prMμ

. We may evaluate the
“closeness” of a given model distribution to the true
probability density with the KL divergence [29],

KLðMμÞ≡
Z

dz½prMT
ðzÞ logprMT

ðzÞ− prMT
ðzÞ logprMμ

ðzÞ�

ð17Þ

¼
Z

dFMT
ðzÞ½log prMT

ðzÞ − log prMμ
ðzÞ� ð18Þ

¼ Ez½log prMT
ðzÞ� − Ez½log prMμ

ðzÞ�; ð19Þ

where FMT
ðzÞ is the cumulative distribution function for

future observation z drawn from prMT
ðzÞ, and Ez½…�

denotes an expectation with respect to the true distribution.
The KL divergence, which is also known as the relative
entropy, measures the information loss in the estimation
of prMT

ðzÞ with the model distribution prMμ
ðzÞ. The KL

divergence is positive semidefinite and vanishes if and
only if prMT

is equivalent in the sense of distributions
to prMμ

. Because the first term in the divergence depends
only on the unknown true distribution and not on the
candidate model, minimizing the KL divergence with
respect to the model is equivalent to maximizing the
quantity Ez½log prMμ

ðzÞ�.
The KL divergence can be used as the starting point

for a number of standard methods related to modeling
data. For example, consider the usual case in which a
parameter-dependent version of the model probability
density is prMμ

ðzÞ ¼ prðzja;MμÞ, i.e., our model proba-
bility distributions depend on additional parameters a.
Determination of the best-fit parameters a� for a given
model Mμ can be viewed as an optimization problem over
prðzja;MμÞ such that Ez½log prðzja;MμÞ� is maximized, so
that KLðMμÞ is minimized. In practice, the true distribution
is inaccessible and estimators using a finite sample fyg
must be used instead. A common practice is to estimate

Ez½log prðzja;MμÞ� by the standardized out-of-sample log
likelihood function:

Ez½log prðzja;MμÞ� ≃
1

N

X
i

log prðyija;MμÞ

¼ 1

N
log prðfygja;MμÞ; ð20Þ

where as introduced in Sec. I A, the symbol ≃ indicates that
the right-hand side is an unbiased sample estimator of the
quantity on the left. Directly maximizing this likelihood
function gives the quantity a�MLE, known as the maximum
likelihood estimator (MLE). The MLE is commonly used
in the frequentist literature. On the other hand, in Bayesian
modeling the distribution of the parameters is inferred
directly by applying Bayes’s theorem to obtain the pos-
terior (i.e., the likelihood weighted by the prior):

log prðajfyg;MμÞ ∝
1

N

X
i

log½prðyija;MμÞprðajMμÞ1=N�;

ð21Þ

where the 1=N exponent on the prior distribution ensures
that this summed version is equivalent to the conventional
posterior estimate defined with respect to the full dataset,
ð1=NÞ log½prðfygja;MμÞprðajMμÞ�. Maximizing the pos-
terior probability over a gives the posterior mode (PM), a⋆PM.
For the case of model averaging or model selection,

rather than a single model distribution, we would like to
compare a set of models fMμg, identifying prMμ

ðzÞ ¼
prðzjMμÞ for each model Mμ in the set. The model weights
can then be related directly to the probability density in the
KL divergence using Bayes’s theorem,

prðMμjzÞ ∝ prðzjMμÞ: ð22Þ

Note that there is no explicit reference to the model
parameters a here. This observation is crucial to a more
general treatment of model weights and model averaging.
To restate this important idea in other words: in the context
of the KL divergence, the model weights are determined by
each model’s predicted distribution over the data prðzjMμÞ.
Since prMT

is clearly independent of the parameters a,
whatever expression represents the candidate model in the
KL divergence must also be independent of a. From
this perspective, we are completely free to specify a
prescription for dealing with the model parameters fag.
We may view each possible prescription as a variation on
the standard definition of the KL divergence. These
variations in turn may be used to directly define new
information criteria.
In the discussion of bias for information criteria to

follow, it will be necessary to consider two matrices defined
from the log-likelihood: the Fisher information matrix Iz
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and the negative Hessian matrix Jz, which are defined for a
given model as

ðIzÞabðaÞ≡ Ez

�
∂ logLðz; aÞ

∂aa

∂ logLðz; aÞ
∂ab

�
; ð23Þ

ðJzÞabðaÞ≡ −Ez

�
∂
2 logLðz; aÞ
∂aa∂ab

�
; ð24Þ

where Lðz; aÞ denotes the asymptotic likelihood function—
the left-hand side of either Eq. (20) or Eq. (21), depending
on whether it is being evaluated in a frequentist or Bayesian
context, respectively (in the latter case, this is the posterior
probability function.) Given a finite sample of size N,
unbiased estimators for these two matrices are given by

ðINÞabðaÞ≡ 1

N − 1

XN
i¼1

�
∂ logLðxi;aÞ

∂aa

∂ logLðxi;aÞ
∂ab

�
; ð25Þ

ðJNÞabðaÞ≡ −
1

N

XN
i¼1

∂
2 logLðxi; aÞ
∂aa∂ab

; ð26Þ

where now Lðxi; aÞ corresponds to the right-hand side of
either Eq. (20) (frequentist) or Eq. (21) (Bayesian). We note
in passing that more general definitions exist for the
negative Hessian and the Fisher information matrices [30].
Finally, we will frequently assume that the parameter

prior information does not grow too rapidly with increasing
N, i.e.,

lim
N→∞

N−1 log prðajMμÞ ¼ 0: ð27Þ

So long as this condition holds (e.g., the prior information
does not depend on N), the PM and MLE become identical
as N → ∞ and the influence of the prior term vanishes
relative to the likelihood. This assumption is common in the
statistical analysis literature (see [12,13,31,32] among
others) and holds in the typical case where priors are
independent of the data. In making this assumption, the
distinction between the Bayesian and frequentist cases
vanishes in the large-N limit. For a more detailed dis-
cussion on this assumption, see Appendix 2 of [32].

A. Plug-in KL divergence

We turn now to the problem of how to deal with model
parameters in the estimation of Ez½log prMðzÞ� in Eq. (19).
A simple approach to dealing with model parameter
dependence is to determine a “best-fit” value a� and plug
in this estimate to construct a predictive density function
prðzja�;MμÞ, which no longer depends on a. This leads to
the plug-in KL divergence:

KLplug-inðMμÞ≡ Ez½log prMT
ðzÞ� − Ez½log prðzja�;MμÞ�:

ð28Þ

The exact definition of this estimator depends on the choice
of best-fit estimator a�.
In the frequentist literature, it is common to use the

maximum likelihood estimator a�MLE as the plug-in esti-
mator. In this case, N−1 log prðfygja�MLE;MμÞ is an asymp-
totically biased estimator of Ez½log prðzja�MLE;MμÞ�, as
discussed in [30,33–35]. Given a finite sample, we may
construct an estimator bN for the asymptotic bias bz, which
was done in [33]:

bplug-inN ¼ 1

N
tr½J−1N ða�MLEÞINða�MLEÞ�; ð29Þ

where IN and JN are the sample estimates of the (frequent-
ist) log-likelihood Fisher information and negative Hessian
matrices, as defined in Eq. (25) and (26) above. Subtracting
bplug-inN gives us an asymptotically unbiased estimator:

Ez½log prðzja�MLE;MμÞ� ≃
1

N

X
i

log prðyija�MLE;MμÞ

−
1

N
tr½J−1N ða�MLEÞINða�MLEÞ�:

ð30Þ

Multiplying by a conventional factor of −2N [see Eq. (10)
and Eq. (20)] then gives the Takeuchi information criterion
(TIC):

TICμ ¼ −2 log prðfygja�MLE;MμÞ
þ 2tr½J−1N ða�MLEÞINða�MLEÞ�: ð31Þ

We emphasize that this, and other information criteria to be
introduced, may be viewed as formulas for the model
weight prðMμjfygÞ by way of Eq. (11). To be explicit, the
model-averaging version of the TIC is

TICMA;μ ¼ −2 log prðMμÞ − 2 log prðfygja�MLE;MμÞ
þ 2tr½J−1N ða�MLEÞINða�MLEÞ�; ð32Þ

with an implied (unnormalized) model weight of
prðMμjfygÞ ¼ expð−TICMA;μ=2Þ. Models that minimize
the TIC will be favored as they minimize the KL diver-
gence; this will be true for all of the information criteria
discussed.
If we assume further that the true distribution belongs

to the family of candidate distributions, then we may make
the replacement tr½J−1N ða�MLEÞINða�MLEÞ� → k, where k is
the number of parameters (i.e., the dimension of the
parameter vector a). This replacement follows from the
equivalence of the asymptotic Fisher matrix IðaÞ and
the Hessian matrix JðaÞ, as proven in [26,36,37] among
others, so that the trace is over the k × k identity matrix.
With this replacement, the TIC reduces to the Akaike
information criterion (AIC) [9–11]:
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AICμ ¼ −2 log prðfygja�MLE;MμÞ þ 2k: ð33Þ

We emphasize that the AIC and TIC are frequentist
information criteria and thus make no reference to the prior
distribution. If we are interested in Bayesian applications,
we must modify the derivation above to reflect this. It is
shown in [12] that plug-in usage of the posterior mode and
removal of asymptotic bias leads to the Bayesian TIC
(BTIC):

BTICμ ¼−2 log prðfygja�PM;MμÞþ 2tr½J−1N ða�PMÞINða�PMÞ�;
ð34Þ

where a�PM is now the posterior mode. In Eq. (34), the log-
likelihood Fisher information and negative Hessian matri-
ces are defined using the Bayesian form of Eq. (25) and
(26); henceforth, we will always use the Bayesian form of
IN and JN unless otherwise stated.
With the further assumption that the candidate models

contain the true distribution, we may again make the
replacement tr½J−1N ða�PMÞINða�PMÞ� → k, recovering a direct
Bayesian analog of the AIC, which we dub the Bayesian
AIC:

BAICμ ¼ −2 log prðfygja�PM;MμÞ þ 2k: ð35Þ

As far as we know, the abbreviation “BAIC” is so far unused
in the statistics literature. The BAIC is not to be confused
with “a Bayesian information criterion” (ABIC) (often
referred to as “Akaike’s Bayesian information criterion”
[38]), which can be derived from the KL divergence by
marginalizing over the parameter space [39,40], or with
Schwarz’s “Bayesian information criterion” (BIC) [41],
which also has connections to the marginalized KL diver-
gence. See Sec. III A 1 and Appendix A for further dis-
cussion of the marginalized KL divergence and associated
information criteria.
Although the BTIC and BAIC are appropriate for use in

Bayesian inference, we note that the use of a plug-in
estimator implies the existence of a fixed underlying set of
model parameters, which is more inline with the frequentist
approach to inference. A more natural Bayesian approach
would consider model probability distributions rather than
fixed values; this will be the case for the subsequent
information criteria.
Unless otherwise stated, we denote the posterior mode

a�PM as a� omitting the subscript from here forward.

1. Digression: Marginalized KL divergence

Another AIC-like information criterion for Bayesian
model averaging is proposed in [26]. This information
criterion is derived from the marginalized KL divergence:

KLmargðMμÞ≡Ez½logprMT
ðzÞ�

−Ez

�
log

Z
daprðzja;MμÞprðajMμÞ

�
ð36Þ

¼ Ez½log prMT
ðzÞ� − Ez½logEa½prðzja;MμÞ��: ð37Þ

The expectation value over the parameters with respect to
the prior probability distribution is

Ea½…�≡
Z

da prðajMμÞð…Þ; ð38Þ

where we have assumed that the prior distribution prðajMμÞ
is normalized.3 Written in this form, it is apparent that the
marginalized KL divergence has a strong dependence on
the prior distribution. This is manifestly evident by com-
parison to Eq. (19), where the use of KLmarg is equivalent to
the identification

prMμ
ðzÞ ∼ Ea½prðzja;MμÞ�; ð39Þ

which makes no reference at all to the data sample fyg,
only to the prior parameter distribution.
Comparing two models using KLmarg is equivalent to

evaluating which model (together with its prior parameter
distribution) is more effective in describing the observed
data. This may be desirable in specific contexts, but
attempting to use the marginalized KL divergence in more
typical cases where the posterior parameter values are of
interest can lead to counterintuitive effects such as the
Jeffreys-Lindley paradox in which the results under certain
choices of prior become fully independent of the data (see
Appendix A for further discussion).
By approximating the integral in Eq. (36) to leading

order in large N and appealing to the use of a cross-
validation method to set the priors [26], one can obtain
from KLmarg what we will refer to as “ABICCV,” a variation
of Akaike’s Bayesian information criterion:

ABICCV;μ ¼−2 log ½prðfygja�;MμÞprða�jMμÞ�þ 2k: ð40Þ

The ABICCV, which is just called “AIC” in [26], is identical
to the BAIC except for the use of the posterior rather than
the likelihood (for emphasis, both use the posterior mode
a�PM for the plug-in estimator a�). While the ABICCV
formula is asymptotically equivalent to the BAIC when
Eq. (27) holds (e.g., the prior is N independent), the use
of cross-validation requires the priors to be adjusted as
more data is accumulated, giving a prior that depends too
strongly on N. The full ABIC (without the use of cross-
validation) has not been shown to be asymptotically

3In the case of improper priors, the integral in Eq. (36) would
be the same but would not be interpreted as an “expectation
value.”
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unbiased, and in fact appears to differ by OðlogNÞ terms
from the (asymptotically unbiased) BAIC at largeN. Due to
concerns regarding its asymptotic bias, we do not study the
marginalized KL divergence further here. Appendix A
contains some further discussion of the marginalized KL
divergence and the connection to the ABICCV from [26].

B. Posterior averaged KL divergence

Though adaptations like the BTIC and BAIC exist, the
plug-in prescription is an inherently frequentist approach
as it considers the underlying model parameters fixed.
In Bayesian inference, parameter estimates are given as
probability distributions. In light of this distinction, it is
natural to consider averaging over the posterior distribution
to measure deviations from model truth. This prescription
gives the posterior averaged KL divergence:

KLpost-avgðMμÞ≡ Ez½log prMT
ðzÞ�

− Ez½Eajfyg½log prðzja;MμÞ��; ð41Þ

where the expectation value over parameters with respect to
the posterior distribution is

Eajfyg½…�≡
R
da prðajfyg;MμÞð…ÞR
da prðajfyg;MμÞ

¼
R
da prðfygja;MμÞprðajMμÞð…ÞR
da prðfygja;MμÞprðajMμÞ

: ð42Þ

With a trivial rewriting of Eq. (41) as

KLpost-avgðMμÞ≡ Ez½log prMT
ðzÞ�

− Ez½log expðEajfyg½log prðzja;MμÞ�Þ�;
ð43Þ

we identify expðEajfyg½log prðzja;MμÞ�Þ as the relevant
predictive distribution estimating prMμ

ðzÞ; there is no
common name associated with this distribution. This
rearrangement shows that in the sense of predictive dis-
tributions, the posterior averaged KL divergence is some-
what less natural compared to the posterior predictive KL
divergence defined in Sec. III B below. We note in passing
that unlike the predictive distributions associated with the
plug-in or posterior predictive KL divergences, this pre-
dictive distribution is not obviously properly normalized.
This does not have any obvious impact on the derivations to
follow, but it may be interesting to explore the normali-
zation of the predictive distribution in future work.
As above, to convert this to a useful information criterion

we must approximate the second term in KLpost-avgðMμÞ at
finite sample size. One way to do so is to replace the
expectation over z by using a sum over the sample data,
which in turn will require a bias correction term similar to

the BTIC. This approach, which was proposed by Zhou
[12,13], gives the posterior averaging information criterion
(PAIC):

PAICμ ¼ −2Eajfyg½log prðfygja;MμÞ�
þ 2tr½J−1N ða�ÞINða�Þ�: ð44Þ

Evaluation of the PAIC requires carrying out a full
integration of the posterior-weighted likelihood over the
parameter space to evaluate Eajfyg, which may be difficult
or impractical. Historically, alternative ways of estimating
Ez½Eajfyg½log prðzja;MμÞ�� appeared in the literature well
before the PAIC. This was first attempted in [31] where the
deviance information criterion (DIC) was proposed:

DIC ¼ −2 log prðfygjEajfyg½a�;MμÞ þ 2pD; ð45Þ

where

pD ¼ −2Eajfyg½log prðfygja;MμÞ�
þ 2 log prðfygjEajfyg½a�;MμÞ: ð46Þ

This DIC is defined by analogy to the BAIC where the
posterior mean Eajfyg½a� is an alternative parameter plug-in
to the posterior mode a�, and pD is interpreted as an
effective number of parameters. Ez½Eajfyg½log prðzja;MμÞ��
arises implicitly in the DIC through pD.
Note that like the BAIC, the DIC is defined to

estimate KLplug-in rather than KLpost-avg. It is only in
correcting for asymptotic bias that we see estimates of
Ez½Eajfyg½log prðzja;MμÞ�� appear. This is what inspired
studies of KLpost-avg and supports the idea that all of the
variants of KL divergence discussed here are equivalent in
some sense.
The DIC has since been criticized for its heuristic

derivation and tendency to overfit observed data as it
underpenalizes overly complex models [42], and thus will
not be discussed further here (although a more detailed
exploration of the DIC compared to the other ICs defined
here could be an interesting direction for future study). A
more rigorous alternative to the DIC was studied in [32]
where the Bayesian predictive information criterion was
introduced:

BPICμ ¼ −2 log ðprðfygja�;MμÞprða�jMμÞÞ
þ 2Eajfyg½log prðajMμÞ�
þ 2tr½J−1N ða�ÞINða�Þ� þ k: ð47Þ

The BPIC has also been studied in the context of Bayesian
model averaging [43].
Explicitly, the BPIC trades the integration over the full

posterior distribution for an integration over the prior
distribution prðajMμÞ. This is accomplished by including
a plug-in estimator in the asymptotic bias correction, which
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cancels the integral of log prðfygja;MμÞ from KLpost-avg. In
other words, the BPIC is defined as

BPICμ ¼ −2Eajfyg½log prðfygja;MμÞ� þ 2NbBPICN ; ð48Þ

where the asymptotic bias bBPICz is estimated by

NbBPICz ≃ NbBPICN ¼ − logðprðfygja�;MμÞprða�jMμÞÞ
þ Eajfyg½logðprðfygja;MμÞprðajMμÞÞ�

þ tr½J−1N ða�ÞINða�Þ� þ
1

2
k; ð49Þ

in contrast to the PAIC, which is defined as

PAICμ ¼ −2Eajfyg½log prðfygja;MμÞ� þ 2NbPAICN ; ð50Þ

NbPAICz ≃ NbPAICN ¼ tr½J−1N ða�ÞINða�Þ�: ð51Þ

For emphasis, the PAIC and the BPIC are both estimators
of Eq. (41) and differ only by subleading terms in their bias
corrections, a difference that vanishes in the N → ∞ limit.
The BPIC is easier to evaluate in many situations; we

will find below that for the least-squares case, when using
approximate expressions for the integrals, the BPIC is
much more accurate than the PAIC for smaller sample
sizes. On the other hand, the PAIC does have certain
advantages. Specifically, by using a plug-in estimator in its
asymptotic bias correction, the BPIC loses estimation
efficiency compared to the PAIC when the posterior is
asymmetric or when there is nonzero correlation between
parameters; furthermore, the BPIC is not well defined when
the prior distribution is degenerate. For more detail on these
cases, see [12,13].
As above, under the usual assumption of correct model

specification, we may replace the trace in the BPIC and
PAIC bias correction terms with the number of parameters
k; we do not give these variations separate names. As a brief
aside (assuming correct model specification for simplicity),
we see from Eq. (47) that the BPIC includes a 3k term in
contrast to the BAIC’s 2k term; as shown in Appendix D,
evaluting the posterior average in Eq. (44) gives rise to an
additional k totaling 3k for the PAIC as well. The BPIC and
PAIC are still asymptotically equivalent to the BAIC, where
throughout the paper we use the term “asymptotically
equivalent” when referring to information criteria to mean
equivalence in the context of model choice; see Appendix B
for further discussion. For the sake of concreteness, we hold
off on further discussion of the 3k term until Sec. IV D.

C. Posterior predictive KL divergence

As a final variation on construction of the KL diver-
gence, we may observe that the way in which the posterior
average was constructed in Eq. (41) is not unique.
Specifically, the second expectation value can be moved

inside the logarithm,4 defining the posterior predictive KL
divergence:

KLpost-predðMμÞ≡ Ez½log prMT
ðzÞ�

− Ez½logEajfyg½prðzja;MμÞ��: ð52Þ

The name “posterior predictive” follows from the obser-
vation that we may rewrite

Eajfyg½prðzja;MμÞ�

∝
Z

da prðzja;MμÞprðfygja;MμÞprðajMμÞ ð53Þ

∝
Z

da prðzja;MμÞprðajfyg;MμÞ ð54Þ

≡prðzjfyg;MμÞ; ð55Þ

which is the predictive distribution for future observation z
obtained by averaging the model parameters over the
posterior distribution. Though we will see that the commu-
tation of the expectation and the log will add some computa-
tional complexity in practice, the use of the posterior
predictive distribution as an estimator of prMμ

ðzÞ makes
KLpost-pred somewhat more natural in Bayesian inference
than KLpost-avg [cf. Eq. (43)]. A less heuristic motivation for
KLpost-pred over KLpost-avg follows from Jensen’s inequality
[44,45]. Specifically, we have that for a general expectation
operator E½…� and random variable X

E½logX� ≤ logE½X�: ð56Þ

Therefore,

KLpost-pred ≤ KLpost-avg: ð57Þ

Since the KL divergence is positive semidefinite, this in
turn implies that KLpost-pred will be closer to zero. In other
words, minimizing the posterior averaged KL divergence
with respect to the set of models and parameter values
can never do better than minimizing the posterior predic-
tive KL divergence. It is meaningful to compare these
two KL divergences by framing them both in terms of the
nonparametric KL divergence Eq. (19). The inequality

4We note in passing that a similar rearrangement may be done
to the marginalized KL divergence, defining KL0

margðMμÞ≡
Ez½log prMT

ðzÞ� − Ez½Ea½log prðzja;MμÞ��. As far as we know
the resulting IC from this definition has not been studied in the
literature, but it is not obvious that it has any advantage compared
to the other ICs discussed so far, and it is likely to suffer from the
same difficulties as the marginalized KL divergence. Based on
the argument using Jensen’s inequality given in the text below,
this IC would also perform worse than KLmarg by transposing the
logarithm in this way.
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above then implies that in terms of closeness to the
true distribution prTðzÞ, using the posterior predictive
logEajfyg½prðzja;MμÞ� as our choice for the nonparametric
prMμ

ðzÞ will never underperform the posterior average
Eajfyg½log prðzja;MμÞ� for a given choice of model Mμ.
One bias-corrected information criterion correspon-

ding to KLpost-pred is the posterior predictive information
criterion:

PPICμ ¼ −2
XN
i¼1

log prðyijfyg;MμÞ þ 2tr½J−1N ða�ÞINða�Þ�:

ð58Þ
The PPIC was proposed in [12] as an ad hoc information
criterion based on certain formulations of Bayes’s factors.
However, the first term of the PPIC appears earlier in the
literature; the first instance we are aware of is [30]. Other
information criteria which include the same first term
include the predictive information criterion [38,40] and
the Watanabe-Akaike information criteria (WAIC) [46].
These information criteria differ from the PPIC in their bias
corrections: the PIC lacks a simple general definition for the
bias term, and the WAIC includes additional posterior
averages, resulting in a higher complexity. We will focus
on the PPIC here as its bias correction is of the same form as
the other information criteria discussed. We show in
Appendix B that the PPIC is asymptotically equivalent to
the BAIC.
Although the modification of the KL divergence to

obtain the PPIC rather than the PAIC seems relatively
minor, we will find in practice that the PPIC is uniquely
sensitive to information encoded in the individual fluctua-
tions within the sample fyg, and as such can be particularly
effective for certain problems.
We note in passing that some information criteria in the

literature can be derived using a combination of the various
KL divergence formulations discussed here (e.g., the WAIC
can be written as 2PAIC − PPIC − 2tr½J−1N ða�ÞINða�Þ�). It
is unclear to us whether doing so has any theoretical or
practical motivations, hence we ignore these alternatives
and present only the more natural information criteria
defined above.

IV. SPECIALIZATION TO LEAST-SQUARES
REGRESSION

In this section, we specialize our discussion of Bayesian
model averaging, the KL divergence, and information
criteria to least-squares regression, which is of primary
interest in the context of lattice simulations. We start with a
brief overview of least-squares fitting and the relevant
notation. The BAIC is discussed as a reformulation of the
AIC-like information criterion proposed in [26]. We then
discuss an asymptotic integral approximation known as
Laplace’s method that will be needed in the subsequent
sections. Next, we return to some of the aforementioned

information criteria (BPIC, PAIC, and PPIC) and give
approximations for each in the case of least-squares fitting.
Lastly, we discuss improvements to the information criteria
approximations.

A. Least-squares fitting

The discussion thus far has been completely general with
regards to the probability distributions appearing in the
KL divergence, information criteria, and model-averaging
formulas. We now specialize our discussion to the case of
least-squares regression of a model Mμ with parameters a
to a set of data fyg. The likelihood function is

prðfygja;MμÞ ¼
YN
i¼1

1

ð2πÞd=2ðdetΣÞ1=2 exp
�
−
1

2
χ2i

�
; ð59Þ

where

χ2i ≡ ðyi − fμðaÞÞTΣ−1ðyi − fμðaÞÞ ð60Þ
is the standard chi-squared goodness of fit statistic, which
involves the data sample yi, themodel function fμðaÞ corres-
ponding to themodelMμ, and the covariancematrix between
the individual samples Σ¼ 1

N−1
P

N
i¼1 ðyi− ȳÞðyi− ȳÞT ; we

assume the samples are drawn independently from some
underlying distribution. The dimension of a single observa-
tionvector yi is denoted by d, and the number of independent
observations drawn from the true distribution is N.
As for the prior distribution, a common choice is to use a

multivariate Gaussian [47,48],

prðajMμÞ ¼
1

ð2πÞk=2ðdet Σ̃Þ1=2

× exp

�
−
1

2
ða − ãÞTΣ̃−1ða − ãÞ

�
; ð61Þ

where k is the number of fit parameters in model Mμ, Σ̃ is
the prior covariance matrix, and ã is the prior central value.
We define the “prior chi-squared statistic”

χ̃2 ≡ −2 log prðajMμÞ ð62Þ
for later use. In the multivariate Gaussian case, χ̃2 ≡
ða − ãÞTΣ̃−1ða − ãÞ þ ðconstÞ, but the approximate formu-
las derived below apply in general. Unless otherwise stated,
we will assume that Eq. (27) holds, i.e., that the prior
information grows sufficiently slowly with the sample size.
Since we are only considering the case of a fixed data

set, the overall normalization of the likelihood function
prðfygja;MμÞ will be the same for all models and can be
ignored.5 On the other hand, in the presence of models with

5The problem of data subset selection is treated as a model
variation problem, so that this normalization factor remains
irrelevant; see Sec. V. See also further discussion of this issue
in [49].
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varying numbers of parameters the normalization of prior
distribution prðajMμÞ may not be omitted.
The best-fit point a� is the posterior mode, which

maximizes the posterior or, equivalently, minimizes the
negative log posterior:

− 2 log ½prðfygja;MμÞprðajMμÞ� − ðN − 1Þd
¼ χ̂2ðaÞ þ χ̃2ðaÞ≡ χ2augðaÞ; ð63Þ

where

χ̂2ðaÞ≡XN
i¼1

χ2i ðaÞ − ðN − 1Þd

¼ ðȳ − fμðaÞÞTΣ̂−1ðȳ − fμðaÞÞ; ð64Þ

and Σ̂≡ Σ=N is the standard-error covariance matrix. χ2aug
is the so-called augmented chi-squared function [47]. The
ðN − 1Þd term appears when converting between the use of
the sample-based

P
i χ

2
i and the mean-based χ̂2, which

subtracts it by convention. For data with a constant
dimension over all models, the ðN − 1Þd term is constant
and thus can be ignored. However, it will play an important
role in Sec. V where we consider model averaging over
different data subsets, i.e., variable d.

B. BAIC

In the context of least-squares regression, the BAIC takes
the form

BAICμ ≡ χ̂2ða�Þ þ 2k: ð65Þ

We reiterate here that unless noted otherwise, throughout
this work the plug-in estimator a� is the posterior mode
a�PM. For common applications in lattice simulations with
weakly informative priors (so that χ̃2 is negligible com-
pared to χ̂2), the BAIC is nearly identical to the ABICCV:

ABICCV;μ ≡ χ2augða�Þ þ 2k: ð66Þ

This is presented as simply the “AIC” in [26]. While
the choice between BAIC and ABICCV should be incon-
sequential for most lattice applications when the priors
are relatively uninformative, we omit further analysis of
the ABICCV due to its lack of solid theoretical foundation
(see Appendix A).

C. Laplace’s method

For evaluation of the subsequent information criteria, we
will need integrals of the form

I ½ψ � ¼
Z

da exp

�
−
1

2
χ2augðaÞ

�
ψðaÞ: ð67Þ

In the case of nonlinear least squares, this expression
cannot be computed analytically in general. One option
is numerical evaluation of the integrals, but this can be
relatively expensive as part of a fitting analysis and
provides an additional source of numerical instability to
deal with. Our focus instead will be on the use of a closed-
form approximation known in the asymptotics literature as
Laplace’s method. Specifically, we will write a next-to-
leading-order (NLO) perturbation expansion in the inverse
sample size N−1 for Eq. (67), which becomes increasingly
accurate as N → ∞. We have implemented integrals of the
form in Eq. (67) numerically and verified the accuracy of
our approximation.
The details of this approximation are summarized in

Appendix E. The main result is

I ½ψ � ≈ ð2πÞk=2jΣ�j1=2 exp
�
−
1

2
χ2augða�Þ

�

×

�
ψða�Þ þ 1

2
HbaðΣ�Þab

−
1

2
gdTcbaðΣ�

2Þabcd −
1

2
ψða�ÞFdcbaðΣ�

2Þabcd

þ 1

8
ψða�ÞTfedTcbaðΣ�

3Þabcdef
�
; ð68Þ

where the inverse parameter covariance matrix is

ðΣ�−1Þab ¼
1

2

∂
2χ2aug

∂aa∂ab

����
a¼a�

; ð69Þ

the higher-order contractions of the covariance matrix are

ðΣ�
2Þabcd ≡ 3ðΣ�ÞabðΣ�Þcd;

ðΣ�
3Þabcdef ≡ 9ðΣ�ÞabðΣ�ÞcdðΣ�Þef þ 6ðΣ�ÞadðΣ�ÞbeðΣ�Þcf;

ð70Þ
and the remaining tensors are given by

Tabc≡ 1

6

∂
3χ2aug

∂aa∂ab∂ac

����
a¼a�

; Fabcd≡ 1

24

∂
4χ2aug

∂aa∂ab∂ac∂ad

����
a¼a�

;

ð71Þ

ga ≡ ∂ψ

∂aa

����
a¼a�

; Hab ≡ ∂
2ψ

∂aa∂ab

����
a¼a�

: ð72Þ

Note the use of Einstein summation notation for the tensor
contractions. This result is in agreement with a special case
of a more general integral computed in [50].
In the cases of interest, the integral Eq. (67) will appear

with the following normalization:

I ½ψ �
I ½1� ¼

R
da exp ½− 1

2
χ2augðaÞ�ψðaÞR

da exp ½− 1
2
χ2augðaÞ�

: ð73Þ
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As shown in Appendix E, normalized integrals of this form
can be approximated by first applying Laplace’s method
Eq. (68) to both the numerator and denominator followed
by a geometric expansion. Keeping terms to NLO gives

I ½ψ �
I ½1� ≈ ψða�Þ þ 1

2
HbaðΣ�Þab −

1

2
gdTcbaðΣ�

2Þabcd: ð74Þ

This geometric expansion maintains the same order of
accuracy and is used in the probability literature [51].
For the case of linear least squares, the χ2aug function can

be written as a quadratic form in the fit parameter vector a
in which case the tensors T and F are identically zero.
Furthermore, if ψ is quadratic in a so that its higher
derivatives vanish, then the “approximations” in Eq. (68)
and (74) are in fact exact. This will be the case for linear fit
models and the BPIC, but not for the PPIC in which ψ has
exponential form. For linear fit models, the PPIC integrals
are Gaussian and can be computed exactly, but the
expression is unwieldy and since this only works for linear
models, we do not pursue it further here.
We emphasize that the rationale for this approximation is

based on expansion in the inverse sample sizeN−1. To verify
that the order of approximation is consistent, it is useful to
note the N dependence of these tensors: Σ� ¼ OðN−1Þ,
Σ�
2 ¼ OðN−2Þ, Σ�

3 ¼ OðN−3Þ, T; F ¼ OðNÞ, and g;H ¼
Oðψða�ÞÞ as N→∞. Thus, the approximation in Eq. (68)
is accurate to OðN−1ψða�ÞÞ. We will consider cases where
ψða�Þ ¼ Oð1Þ and ψða�Þ ¼ OðNÞ.

D. BPIC

In Sec. III B, we introduced two other information criteria,
the BPIC and PAIC, based on the posterior averaged KL
divergence in Eq. (41). Here we specialize our discussion of
the BPIC and PAIC to the case of least-squares regression
(see Sec. IVA) with correct model specification (so that we
may replace tr½J−1ða�ÞIða�Þ� → k). Using the NLO Laplace
approximation discussed in Sec. IV C, we give a computa-
tionally efficient approximation of the BPIC. We will not
pursue the PAIC further in the body of the text due to the
lower order of accuracy of the NLO Laplace approximation
in this case (see discussion below); the relevant formulas for
the PAIC are summarized in Appendix D.
First, we consider the BPIC. In the cases of interest,

Eq. (47) reduces to (up to constant terms)

BPICμ ¼ χ2augða�Þ − Eajfyg½χ̃2ðaÞ� þ 3k; ð75Þ

where

Eajfyg½…� ¼
R
da exp ½− 1

2
χ2augðaÞ�ð…ÞR

da exp ½− 1
2
χ2augðaÞ�

: ð76Þ

Using the NLO Laplace approximation with the geometric
expansion simplification given in Eq. (74), we obtain

Eajfyg½χ̃2ðaÞ� ≈ χ̃2ða�Þ þ 1

2
H̃baðΣ�Þab −

1

2
g̃dTcbaðΣ�

2Þabcd
ð77Þ

where

g̃a ≡ ∂χ̃2

∂aa

����
a¼a�

; H̃ab ≡ ∂
2χ̃2

∂aa∂ab

����
a¼a�

: ð78Þ

Substituting Eq. (77) into Eq. (75) gives

BPICμ ≈ χ̂2ða�Þ − 1

2
H̃baðΣ�Þab þ

1

2
g̃dTcbaðΣ�

2Þabcd þ 3k:

ð79Þ

An interesting feature of the BPIC is the last term in
Eq. (47), which gives the 3k term in Eq. (79) as opposed to
the 2k term in the BAIC. The additional k in Eq. (47) comes
from the posterior averaging prescription (this is seen
explicitly for the PAIC as shown in Appendix D). As a
result, the BPIC tends to favor more parsimonious models
than the BAIC. While this may seem like an advantage
of the BPIC, we emphasize that additional parsimony
comes at the cost of larger KL divergence as discussed
in Sec. III C. Despite this difference, the BPIC remains
asymptotically equivalent to the BAIC in the limit of
infinite sample size, as shown in Appendix B.
It is worth discussing a limit in which the other Oð1Þ

terms in the BPIC cancel the additional k [in this case,
equality holds for Eq. (57)]. Specifically, consider the case
of infinitesimal prior widths, i.e., the prior information is
infinitely constraining. In this case, Σ� goes to 1

2
H̃, and the

trace term in Eq. (79) cancels the additional k exactly (of
course, there will be additional asymptotic bias from the χ̂2

unless the prior center value is the true model parameter
value). The third term containing g̃ goes to zero, since in
this limit a� → ã. In the case of finite prior widths, results
will depend on the observed data and the additional k
persists. This behavior demonstrates that the additional
dependence on the observed information over the prior
information manifests itself by favoring parsimonious
models more than if there were no posterior averaging,
as is the case for the BAIC.
As an aside, consider the PAIC. From Eq. (44), once

again assuming correct model specification the PAIC is
given by

PAICμ ¼ Eajfyg½χ̂2ðaÞ� þ 2k; ð80Þ

where Eajfyg½…� is defined in Eq. (76). We could proceed
by attempting to approximate the expectation as we did in
above for the BPIC. However, a complication arises from
the fact that χ̂2 is itself OðNÞ. This means that working to
the same order in inverse sample size, OðN−1Þ, would
require a next-to-next-to-leading order (NNLO) evaluation
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of the integral. This endeavor would require a notable
increase in mathematical complexity. As discussed in
Sec. III B, the PAIC only differs from BPIC in subleading
terms in the bias correction. Since the PAIC will be a lower
order or more complicated version of the BPIC in practice
with similar theoretical motivations, it suffices for our
present purposes to omit further discussion of the PAIC.
The corresponding results for the PAIC are given in
Appendix D; these may be used in cases were the BPIC
is not well defined, as discussed in Sec. III B; see also the
discussion in [12,13].

E. PPIC

Finally, we turn to the PPIC, defined in Eq. (58). The
PPIC involves the posterior predictive distribution, which
can be rearranged to the form

prðyijfyg;MμÞ ¼
Z

da prðyija;MμÞprðajfyg;MμÞ ð81Þ

¼
R
da prðyija;MμÞprðfygja;MμÞprðajMμÞR

da prðfygja;MμÞprðajMμÞ
: ð82Þ

Note that this contains both the combined likelihood for
the entire dataset prðfygja;MμÞ as well as the likelihood
function for the ith single data sample prðyija;MμÞ. In the
case of least-squares regression with correct model speci-
fication, the PPIC then becomes

PPICμ ¼ −2
XN
i¼1

log

R
da exp ½− 1

2
χ2augðaÞ� exp ½− 1

2
χ2i ðaÞ�R

da exp ½− 1
2
χ2augðaÞ�

þ 2k: ð83Þ

Here, we must compute N integrals, one for each obser-
vation. Using Eq. (74), we obtain

PPICμ ≈ χ̂2ða�Þ þ 2k − 2
XN
i¼1

log

�
1þ 1

2

�
1

4
ðgiÞbðgiÞa

−
1

2
ðHiÞba

�
ðΣ�Þab þ

1

4
ðgiÞdTcbaðΣ�

2Þabcd
�
; ð84Þ

where

ðgiÞa ≡ ∂χ2i
∂aa

����
a¼a�

; ðHiÞab ≡ ∂
2χ2i

∂aa∂ab

����
a¼a�

: ð85Þ

We see from Eq. (84) that through the final log term, the
PPIC relies on information from each individual observa-
tion rather than solely on averaged and prior statistics like
the other information criteria discussed. As we will see in
Sec. VI B, this sensitivity to sample fluctuations gives the
PPIC the ability to parse out models with poor parameter
estimates, a very attractive quality in model averaging.

F. Superasymptotics and optimal truncation

In the preceding subsections, approximate expressions
for the BPIC and PPIC were obtained using the NLO
Laplace approximation. In the limit of large sample size N,
this approximation should become increasingly accurate
and the size of the subleading terms in N−1 should become
negligible. However, in practice these information criteria
will be computed and used at fixed, finite sample size. For a
given value of N, it is possible for the coefficients of our
expansion to be such that the subleading terms are larger
than the leading terms. For example, there is no reason to
suspect the gradients appearing in the NLO Laplace
approximations should remain small in cases where the
candidate model is unable to accurately represent the data.
While such poor models will likely be rejected based on
their χ2aug values alone, numerical issues can arise in model
averaging when subleading terms are dominant. In par-
ticular, this effect can cause logarithms with negative real
arguments to arise in the PPIC.
As discussed previously, the Laplace approximation

discussed in Sec. IV C and derived in Appendix E is an
NLO perturbation expansion. This type of fixed-order
expansion is known in the asymptotics literature as a
Poincaré expansion [52–56]. Another type of expansion
is the “superasymptotic” expansion. First proposed by Sir
George Gabriel Stokes for a similar integral approximation
problem [57], superasymptotics rely on the fact that an
asymptotic series need not converge to give an accurate
approximation with finitely many terms. Ignoring the case
of singular perturbation expansions for simplicity, this
means as additional terms are added to the asymptotic
series, a formally divergent regular perturbation expansion
has a “convergent” part where terms decrease in magnitude
algebraically in the perturbation parameter and a “diver-
gent” part which typically grows with additional terms,
causing the series to diverge. A superasymptotic expan-
sion is one that is “optimally truncated” after the term of
minimum modulus [53–56].
While superasymptotics have been applied to an array of

problems (see [58] and references therein), it is often used
for the method of steepest descent [53]. Since Laplace’s
method is a special case of the method of steepest descent,
the use of superasymptotics is well suited for our purposes.
In principle, this approach can achieve Oðexpð−NÞÞ
accurate integral approximations. (Since this error is
exponentially small rather than algebraically small, super-
asymptotics is sometimes referred to as “asymptotics
beyond all orders” [59].) While we cannot guarantee this
level of accuracy due to other sources of error in the
derivation of each criteria (e.g., subleading terms in the bias
corrections, see [12,13,32] for details), it does suggest the
power of optimal truncation. Furthermore, superasymptotic
expansions are known to work well even when the
perturbation parameter (N−1 here) approaches Oð1Þ [55],
which will be the case for small sample sizes. Possible
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issues could arise with optimal truncation due to the
high-dimensionality of the integrals considered, but this
is unlikely assuming that the extremum in χ2aug is a simple
global minimum [56].
To benefit from these ideas, we propose using the

Poincaré expansions previously developed, unless the
second term in the NLO Laplace approximation is
larger than the first. If the second term is larger, then

superasymptotics suggest that optimal truncation should
leave only the leading order term. Note that this prescrip-
tion does not apply for the case of linear least squares for
the BPIC, in which case the NLO “approximations”
are exact.
Under the use of optimal truncation, a combined

approximate formula for the BPIC becomes (suppressing
the tensor indices for compactness)

BPICμ ≈

(
χ̂2ða�Þ − 1

2
H̃ðΣ�Þ þ 1

2
g̃TðΣ�

2Þ þ 3k;
��� 12 H̃Σ� − 1

2
g̃TΣ�

2

��� < χ̂2ða�Þ;
χ̂2ða�Þ þ 3k; otherwise:

ð86Þ

In the case of the PPIC, there are N separate integrals for each of the data samples. We can consider optimal truncation
case-by-case for each individual integration:

R
da exp ½− 1

2
χ2augða�Þ� exp ½− 1

2
χ2i ðaÞ�R

da exp ½− 1
2
χ2augða�Þ�

¼
(
exp½− 1

2
χ2i ða�Þ�ð1þ SLiÞ; jSLij < 1;

exp½− 1
2
χ2i ða�Þ�; otherwise;

ð87Þ

where SLi denotes the subleading terms associated with the ith data sample,

SLi ¼
1

2

�
1

4
ðgiÞbðgiÞa −

1

2
ðHiÞba

�
ðΣ�Þab þ

1

4
ðgiÞdTcbaðΣ�

2Þabcd: ð88Þ

The form of the PPIC under optimal truncation is therefore

PPICμ ≈ χ̂2ða�Þ − 2
X

fi∶jSLij<1g
log ð1þ SLiÞ þ 2k: ð89Þ

Adopting this prescription thus eliminates the possibility of
negative arguments within the logarithms.
There is also a wealth of literature on hyperasymptotics

where the divergent part of the asymptotic series is used to
obtain orders of accuracy superior to even those of super-
asymptotics [53–56,60,61]. Since other sources of error
would diminish the efficacy of such a procedure here, we
advocate for the use of the superasymptotic schema
described above rather than develop a hyperasymptotic
one. This also maintains relative simplicity in the imple-
mentation of the information criteria.
We emphasize that the integral expansions we have

carried out above are done primarily for ease of calculation
and to reveal useful details about the structure of the various
information criteria. The only obstacles, in principle, to
direct evaluation of the integral versions of each IC are the
lack of a general analytic solution and the computational
cost associated with accurate numerical evaluation.
However, we find in practice in our numerical tests that
the NLO Laplace approximations with optimal truncation
yield essentially identical results to direct integration with
much lower computational cost. We will discuss this
comparison further in Sec. VI B.

V. DATA SUBSET SELECTION

As part of a lattice field theory analysis (or in Bayesian
model-averaging applications more broadly), it is often
desirable to additionally select a subset of the data beyond
which the model is not applied, i.e., selecting dC dimen-
sions of the samples yi to be ignored and fitting models
only to the other dK ≡ d − dC dimensions. The subscript
“C” refers to the “cut” portion of the data and the subscript
“K” refers to the “kept” portion of the data. A simple and
common example of such a procedure in the context of
lattice field theory is fitting a two-point correlation function
CðtÞ for the ground-state energy. The full model describing
CðtÞ involves an exponential decay series

CðtÞ ¼
X∞
m¼0

Ame−Emt; ð90Þ

where fEmg increases monotonically with m. If only the
first few states are of interest (as is often the case), it is
sufficient to apply the model to times with t ≥ tmin for some
tmin after which the more rapidly decaying modes become
negligible. Choosing tmin has (historically) often been done
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manually, although outside of model averaging there
have been a variety of methods used for determination
of tmin and/or estimation of associated systematic errors, see
e.g. [25,62,63].
Though the problem described is one of data subset

selection, it can be reformulated as one of model selection.
The key to doing so is to define a joint model that describes
the full data set. First, choose a subset of the data towhich the
model Mμ is fit. Next, fit the remaining data to a “perfect”
modelMperf with zero degrees of freedom (with the use of the
approximate formulas we give below, Mperf need not be
constructed in practice.) An example of such a perfect model
is a polynomial of degree dC − 1; in this example, fitting the
data for model parameters is equivalent to finding the
polynomial interpolant of the data where the differences
between the model and sample means vanish identically.
To give a more explicit construction, we first define

P as the partition of each observation vector into yi ¼
ð yC;i yK;i ÞT , where yK;i ∈RdK is to be modeled by Mμ

and yC;i ∈RdC is to be modeled byMperf;P. We can similarly
divide up the inverse sample standard-error covariance
matrix as

Σ̂−1 ¼
� ðΣ̂−1ÞC ðΣ̂−1ÞO
ðΣ̂−1ÞTO ðΣ̂−1ÞK

�
; ð91Þ

where the subscript “O” stands for “off-block-diagonal.”
We then define the corresponding partitioned model

ϕM;PðaÞ as

ðyi − ϕM;PðaÞÞx ¼
� ðyi − aCÞx; ðyiÞx ∈ yC;i;

ðyi − fMðaKÞÞx; ðyiÞx ∈ yK;i:
ð92Þ

We note for later use that the cut part of the best-fit
parameter a�C is simply the mean of the cut data, i.e.,
a�C ¼ ȳC. Even though a�C are known a priori, we cannot
take the cut parameter priors to be too constraining as this
would violate Eq. (27) and thus not guarantee asymptotic
unbiasedness of the information criteria. Therefore, we will
take the cut parameter priors to be infinitely diffuse, i.e.,
ðΣ̃CÞ−1 → 0, which is the limit where predictions rely
solely on the data.
Based on these definitions, we can define a partition of

the chi-squared function

χ̂2ðaÞ ¼ ðȳ − ϕM;PðaÞÞTΣ̂−1ðȳ − ϕM;PðaÞÞ ð93Þ

¼
�

ȳC − aC
ȳK − fMðaKÞ

�T� ðΣ̂−1ÞC ðΣ̂−1ÞO
ðΣ̂−1ÞTO ðΣ̂−1ÞK

�

×

�
ȳC − aC

ȳK − fMðaKÞ

�
ð94Þ

≡ χ̂2CðaCÞ þ χ̂2KðaKÞ þ 2χ̂2OðaC; aKÞ; ð95Þ
with analogous definitions for partitions of χ̃2 and χ2aug.

The ABICCV (see Appendix A) is derived under this
construction for the case of least-squares regression in [26]:

ABICCV;μ;P ¼ χ2aug;Kða�Þ þ 2kþ 2dC; ð96Þ

where χ2augða�Þ is evaluated only forMμ, as the contribution
from Mperf;P vanishes. Note that this result holds even
without taking the infinitely diffuse cut prior limit, and
without any assumptions on the structure of the correlations
between the yC;i and yK;i partitions. The derivation for the
BAIC is similar, giving

BAICμ;P ¼ χ̂2Kða�Þ þ 2kþ 2dC; ð97Þ

which should also hold for any cut prior width satisfying
Eq. (27). We will rederive this result below.
A subtle point which appears here is the distinction

between the sub-blocks of the inverse covariance matrix,
e.g., ðΣ̂−1ÞK, and the inverse of a sub-block, e.g., ðΣ̂KÞ−1.
The former quantity contains indirect contributions from
the cut portion of the data. If we use the kept data
exclusively to compute BAICμ;P above, then this is
equivalent to making the approximation

ðΣ̂−1ÞK ≈ ðΣ̂KÞ−1; ð98Þ

which is commonly used in the lattice community [26].
This approximation can avoid numerical instabilities that
may occur when inverting the full Σ̂−1, particularly when
dK ≪ d. In fact, this approximation is better than it may
seem. Even if Σ̂ is estimated unbiasedly, simply inverting to
find Σ̂−1 will introduce some finite-N bias (that vanishes
asymptotically). The corrected estimator is [64,65]

Σ̂−1
BC ¼ N − d − 2

N − 1
Σ̂−1 ¼ N − dC − dK − 2

N − 1
Σ̂−1; ð99Þ

where the subscript “BC” denotes the bias corrected
inverse. The analogous expression for ðΣ̂KÞ−1BC is

ðΣ̂KÞ−1BC ¼ N − dK − 2

N − 1
ðΣ̂KÞ−1: ð100Þ

So, when dC is large [i.e., when Eq. (98) would be a poor
approximation], ðΣ̂KÞ−1 will in fact give a less biased result
than ðΣ̂−1ÞK at finite N.
The distinction between ðΣ̂−1ÞK and ðΣ̂KÞ−1 will become

negligible in the case of weak long-range correlations, that
is to say, when the off-block-diagonal elements of the
sample covariance Σ̂O are small (in the sense of induced
operator norm) relative to the elements of Σ̂C and Σ̂K. For
the BPIC and PPIC, unlike the BAIC, there will be
additional contributions to the “perfect model” IC when
the long-range correlations are not negligible. In order to
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have tractable approximate formulas for these criteria, we
will assume weak long-range correlations so that the
correlation matrix is approximately block diagonal,
Σ−1 ≈ diagðΣ−1

K ;Σ−1
C Þ. For data where this assumption is

badly violated, we advocate the use of the BAIC for subset
selection, or one may explicitly construct a piecewise
model including the perfect model and perform joint fits
to the data as a whole.6

One way to derive the perfect model formulas is to
explicitly plug in the partitions for χ̂2; χ̃2, and χ2i to the
definitions of the PPIC and BPIC and integrate over the
perfect-model parameters aC. This derivation is shown in
Appendix F. Here, we take an alternative and simpler
approach, which is to work with the KL divergences
directly using a particularly simple choice of the per-
fect model.
In the following derivations, we use the assumption

of negligible long-range correlations described above
to separate each definition of the KL divergence as
KL ¼ KLK þ KLC; we are able to do this decomposition
by Theorem 3.1 from [29] (see discussion in [49]). Explicit
calculation of the second term in KLC as defined by
equations Eq. (28), Eq. (41), and Eq. (52) will give us
exact results for the associated ICs for the perfect model.
These can then be combined with the formulas for the ICs
derived above on the kept portion of the data.
For the remainder of this section, unless otherwise

noted we focus on a single data set of size dC and ignore
the kept data. We assume a specific perfect model Mperf

construction of the form fðxÞ ¼ a and a� ¼ ȳ, i.e. a
model which is defined piecewise for each value in the
vector ȳ. The number of model parameters is mani-
festly k ¼ dC.
Given a data sample fyg of size N, the predicted least-

squares likelihood function for a single future observation
z is

prðzja;MperfÞ ¼
1

ð2πÞdC=2ðdetΣÞ1=2

× exp

�
−
1

2
ðz − aÞTΣ−1ðz − aÞ

�
; ð101Þ

where Σ is the sample covariance matrix. Note that
technically, this means the likelihood function should be
written as is prðzja;Mperf ; fygÞ since Σ depends on fyg,
although in the large-N limit Σ → ΣT, the true covariance
matrix.
Dropping constant factors from the normalization (they

will not be constant as dC is varied, but they will combine

with similar normalization factors from the kept data to
become overall constants), then, we have

Ez½log prðzja�;MperfÞ�¼−
1

2
Ez½ðz− ȳÞTΣ−1ðz− ȳÞ�: ð102Þ

In order to simplify further, suppose that the true model is
represented by a vector μT, and data y are generated from a
multivariate Gaussian random process with true covariance
ΣT . (In general, we could work with a sample estimator of
this probability instead so that the central limit theorem
applies, leading to the same form.) Then the “true model”
probability distribution is

prTðzÞ ¼
1

ð2πÞdC=2ðdetΣTÞ1=2

× exp

�
−
1

2
ðz − μTÞTΣ−1

T ðz − μTÞ
�
: ð103Þ

Putting these together and using the formula Eq. (E22)
derived in Appendix E, we have

Ez½log prðzja�;MperfÞ�

¼
Z

dz prTðzÞ
�
−
1

2
ðz − ȳÞTΣ−1ðz − ȳÞ

�
ð104Þ

¼ −
1

2
tr½Σ−1ΣT� −

1

2
ðμT − ȳÞTΣ−1ðμT − ȳÞ: ð105Þ

Considering the second term first, based on a result by
White [26,37] (or for this particular model, simply invoking
the central limit theorem), the difference

ffiffiffiffi
N

p ðμT − ȳÞ is
normally distributed as N → ∞, with mean zero and
covariance C ¼ J−1IJ−1. Due to the simple structure of
this perfect model, we have J ¼ I ¼ ΣT, giving the result

Ez½log prðzja�;MperfÞ� ¼ −
1

2
tr½Σ−1ΣT� −

1

2N
tr½Σ−1ΣT�

→ −
dC
2
−
dC
2N

; ð106Þ

where we have simplified using the fact that Σ → ΣT, i.e., it
is a consistent estimator of the true covariance. In terms of
information criteria, this translates to

− 2NEz½log prðzja�;MperfÞ� ≃ BAICperf

¼ χ̂2 þ 2kþ ðN − 1ÞdC ¼ ðN þ 1ÞdC; ð107Þ

where χ̂2 ¼ 0 identically, the number of parameters
k ¼ dC, and we are being careful to keep the overall factor
of ðN − 1ÞdC that appears in the definition of χ̂2 in terms of
sample means, see the discussion around Eq. (63).
Moving on to the second definition of the KL diver-

gence, we have to simplify the posterior average. Using
Eq. (42), we have

6Direct estimation of χ̂2O and its derivatives may be challeng-
ing; strongly correlated covariance matrices can have large
condition numbers, especially at small sample sizes. Careful
treatment of the covariance matrix (e.g., regularization via
singular value decomposition) before inversion is essential in
this case.
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Eajfyg½log prðzja;MperfÞ�

¼ −
1

2Z

Z
da exp

�
−
1

2
χ2augðaÞ

�
× ðz − aÞTΣ−1ðz − aÞ ð108Þ

¼ −
1

2Z

Z
da exp ½ðȳ − aÞTðΣ�Þ−1ðȳ − aÞ�

× ðz − aÞTΣ−1ðz − aÞ; ð109Þ

where due to the infinitely diffuse priors Σ� ¼ Σ̂ ¼ Σ=N.
The normalizing factor Z is

Z≡
Z

da exp

�
−
1

2
χ2augðaÞ

�
: ð110Þ

Using Eq. (E22) once again, we find the result

Eajfyg½log prðzja;MperfÞ� ¼ −
1

2
ððz − ȳÞTΣ−1ðz − ȳÞ

þ tr½Σ−1Σ��Þ: ð111Þ

The first term is precisely the plug-in log likelihood, while
the second term reduces to a constant, tr½Σ−1Σ�� ¼
1
N tr½Σ−1Σ� ¼ dC=N. Thus, we find

Ez½Eajfyg½log prðzja;MperfÞ��

¼ Ez½log prðzja�;MperfÞ� −
dC
2N

; ð112Þ

which in terms of information criteria translates to

BPICperf ¼ BAICperf þ dC: ð113Þ

Although we do not focus on the PAIC (see Appendix D),
since the PAIC and BPIC both estimate the same posterior
averaged KL divergence, this also implies that PAICperf ¼
BAICperf þ dC.
Finally, we consider the posterior predictive KL diver-

gence, for which the posterior average and the log are
transposed. To evaluate this, we first need the posterior
average without the log,

Eajfyg½prðzja;MperfÞ� ¼
1

Z

Z
da exp

�
−
1

2
ðȳ − aÞTðΣ⋆Þ−1ðȳ − aÞ − 1

2
ðz − aÞTΣ−1ðz − aÞ

�
: ð114Þ

Applying Eq. (E27), the result of the integration is

Eajfyg½prðzja;MperfÞ� ¼
�

N
N þ 1

�
dC=2

exp

�
−
1

2

1

N þ 1
ðz − ȳÞTðΣ�Þ−1ðz − ȳÞ

�
: ð115Þ

Taking the log and then the z-expectation, we find the result:

Ez½logEajfyg½prðzja;MperfÞ�� ¼
dC
2
log

N
N þ 1

−
1

2

N
N þ 1

Ez½ðz − ȳÞTΣ−1ðz − ȳÞ� ð116Þ

¼ N
N þ 1

Ez½log prðzja�;MperfÞ� −
dC
2
log

�
1þ 1

N

�
; ð117Þ

or in terms of information criteria once more, and dropping
the N-dependent constant term since it will cancel out in
any model averages,

PPICperf ¼
N

Nþ 1
BAICperf þNdC log

�
1þ 1

N

�
ð118Þ

¼ N
N þ 1

ðN þ 1ÞdC þ NdC log

�
1þ 1

N

�
ð119Þ

≈ ðN þ 1ÞdC −
dC
2N

¼ BAICperf −
dC
2N

: ð120Þ

When used in data subset selection, there is an additional
factor of ðN − 1ÞdK that arises from the definition of

chi-squared over the kept part of the data. This combines
with ðN − 1ÞdC to give an overall shift of ðN − 1Þd, which
is constant and may be dropped. Doing so, we find our final
results for the contribution of the cut portion of the data to
each information criterion:

ΔPBAIC ¼ 2dC; ð121Þ

ΔPBPIC ¼ 3dC; ð122Þ

ΔPPPIC ¼ dC þ NdC log

�
1þ 1

N

�
≈ 2dC −

dC
2N

; ð123Þ

whereΔP denotes the change in the overall model-averaging
formulas due to the cut data in data subset selection.
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Putting this together with the formulas for the kept data,
we have our final results for the three ICs in the presence of
data subset selection:

BAICμ;P ¼ BAICμ þ ΔPBAIC ¼ χ̂2ða�Þ þ 2kþ 2dC;

ð124Þ

BPICμ;P ¼ BPICμ þ ΔPBPIC ≈ χ̂2ða�Þ − 1

2
H̃baðΣ�Þab

þ 1

2
g̃dTcbaðΣ�

2Þabcd þ 3kþ 3dC; ð125Þ

PPICμ;P ¼ PPICμ þ ΔPPPIC ð126Þ

≈ χ̂2ða�Þ þ 2kþ dC þ NdC log
�
1þ 1

N

�

− 2
XN
i¼1

log

�
1þ 1

2

�
1

4
ðgiÞbðgiÞa −

1

2
ðHiÞba

�
ðΣ�Þab

þ 1

4
ðgiÞdTcbaðΣ�

2Þabcd
�
; ð127Þ

where χ̂2 and all other quantities are evaluated only for the
kept data. In cases of optimal truncation, Eq. (86) and (89)
should be used for the BPIC and PPIC, respectively, with
the addition of ΔPBPIC and ΔPPPIC, respectively. We
remind the reader that for use with model averaging, the
factor −2 log prðMμÞ should be added to all ICs as in
Eq. (11), although this factor may be ignored completely if
prðMμÞ is flat (independent of μ.)
An alternative derivation for these formulas starting from

the level of information criteria rather than KL divergence
is provided in Appendix F. In addition to the relative
simplicity of the KL divergence approach taken here, we
are able to obtain exact results for KLC, whereas starting
from the ICs neglects higher-order bias corrections (see
discussion in Appendix F).
As a final remark on the data subset selection procedure

outlined above, it is worth discussing the full bias cor-
rection, i.e. the case in which tr½J−1N ða�ÞINða�Þ� is used
rather than replacing the trace by the number of para-
meters. While the dC contributions computed above are
exact for the perfect model, in general the replacement of
tr½ðJ−1N ða�ÞÞKðINða�ÞÞK� → k on the kept data may not hold
(as discussed in Sec. III A.) In particular, long-range
correlations will correct all information criteria through
contributions to this trace, as Σ̂−1

O appears in the analytical
expressions for ðJ−1N ÞK and ðINÞK. This can lead to
numerical instabilities that will be more significant than
the bias correction introduced by the full trace [35,66,67].
In such cases, the simplified bias corrections should be used
even when the true model is not in the family of candidate
models. In general, bias can be reduced by expanding the
space of candidate models, ideally to include the true

model. In future work, it would be interesting to explore
the use of more robust methods for estimation of these
matrices, such as shrinkage [20,68–71].

VI. NUMERICAL TESTS

In this section, we give several numerical examples of
model averaging with the various information criteria
derived above and comparing their performance to fixed-
model parameter estimation procedures.7 While tests with
the ABICCV were conducted, we omit any numerical results
due to its similar performance to the BAIC in the following
examples. All Bayesian least squares fits were performed
using the LSQFIT package in Python [47,72], which uses the
Gaussian random variable data type from GVAR [73].

A. Example 1: Polynomial models

Consider a simple toy problem where the “true model” is
a quadratic polynomial:

fTðxÞ ¼ 1.80 − 0.53

�
x
16

�
þ 0.31

�
x
16

�
2

: ð128Þ

A set of N samples are generated on x∈ f1; 2;…; 15g
using fT at each point multiplied by uncorrelated noise
1þ ηðxÞ, where ηðxÞ is drawn from a Gaussian with mean
η̄ ¼ 0.0 and variance σ2η ¼ 1.0. To be explicit, the mock
data are drawn from yðxÞ ¼ ð1þ ηðxÞÞfTðxÞ.
Our space of candidate models are polynomials labeled

by their degree μ∈ f0; 1;…; 5g:

fμðxÞ ¼
Xμ
m¼0

am

�
x
16

�
m
: ð129Þ

We take uniform model priors prðMμÞ ¼ 1=6 correspond-
ing to minimal prior information on the functional form of
the true model (except that it can be approximated by a
polynomial). We consider the case of moderately uncon-
strained parameter priors of the Gaussian form given in
Eq. (61) with mean zero and width 10.
We use the previously developed model-averaging pro-

cedures to determine the parameter estimate and error for
a0. Since the model functions are linear in the parameters,
we use the following forms of the information criteria to
determine the model weights:

BAICμ ¼ −2 log prðMμÞ þ χ̂2ða�Þ þ 2k; ð130Þ

BPICμ ¼ −2 log prðMμÞ þ χ̂2ða�Þ − 1

2
H̃baðΣ�Þab þ 3k;

ð131Þ

7The code used to generate the examples in Secs. VI A andVI B
is publicly available at https://github.com/jwsitison/improved_
model_avg_paper.
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PPICμ ≈ −2 log prðMμÞ þ χ̂2ða�Þ þ 2k

− 2
XN
i¼1

log

�
1þ 1

2

�
1

4
ðgiÞbðgiÞa

−
1

2
ðHiÞba

�
ðΣ�Þab

�
: ð132Þ

Due to the linearity of the model function in this example,
the NLO Poincaré expansion formula is exact for the BPIC;
the superasymptotic schema discussed in Sec. IV F are
applied only for the PPIC, although in practice truncation
does not occur in this test. Furthermore, the BPIC and PPIC
are simplified for a linear model function since the tensor T
is zero, see Sec. IV C. In this example the data set is held
fixed, so we drop all terms depending on dC.
The model-averaged results are summarized in Table I

and shown in Fig. 1; we also report the Q-value of the fit (a
Bayesian analog of the p-value, see Appendix B of [74]),
which gives a measure of the fit quality. The model-
averaged results are consistent with model truth but with
a larger uncertainty than the individual fit to the correct
model with μ ¼ 2. The larger error with model averaging is
an inherent feature, reflective of a bias-variance trade-off;
in the face of model uncertainty, model averaging hedges
against the possibility of biased results due to selection of
the wrong model, at the cost of increased error with a given
data sample. See the further discussion in Sec. VII. In the
top panel of Fig. 1, the advantage of model averaging over
model selection is evident as the model probabilities
happen to favor the μ ¼ 1 linear model, which is in fact
incorrect. As the sample size N increases, this model will
eventually be ruled out and the model weight will peak at
the true model μ ¼ 2 as seen in the bottom panel of Fig. 1.
Note that in this case, the models are “nested” in the

sense that any μ > 2 can capture the true model by setting

TABLE I. Individual best-fit results with information criteria values and corresponding model weights for
N ¼ 160.

μ ¼ 0 μ ¼ 1 μ ¼ 2 μ ¼ 3 μ ¼ 4 μ ¼ 5 ha0i
a0 1.587(32) 1.803(67) 1.89(11) 2.01(16) 1.98(17) 1.94(18)
a1 −0.41ð11Þ −0.88ð50Þ −2.2ð1.3Þ −1.6ð1.5Þ −1.0ð1.8Þ
a2 0.44(46) 3.6(3.0) 0.4(5.0) −1.0ð5.5Þ
a3 −2.1ð2.0Þ 3.4(7.1) −3.0ð3.7Þ
a4 −3.0ð3.7Þ 1.5(7.7)
a5 −3.1ð4.7Þ
χ̂2 28.85 15.17 14.23 12.88 12.23 11.79
Q-value 0.02 0.44 0.50 0.59 0.64 0.67
BAIC 30.85 19.17 20.23 20.88 22.22 23.79
prðMμjfygÞBAIC 0.00 0.43 0.25 0.18 0.09 0.04 1.89(14)
BPIC 31.85 21.17 23.23 24.73 26.30 28.13
prðMμjfygÞBPIC 0.00 0.61 0.22 0.10 0.05 0.02 1.85(12)
PPIC 30.85 19.18 20.24 20.89 22.23 23.80
prðMμjfygÞPPIC 0.00 0.43 0.25 0.18 0.09 0.04 1.88(14)

FIG. 1. Fit results at N ¼ 160 (top panel) and N ¼ 5120
(bottom panel) for fμðxÞ (purple solid circles) and model-
averaged results with the BAIC (blue solid diamonds), BPIC
and PAIC (yellow solid squares) and PPIC (red solid triangles)
compared to to the known value a0 ¼ 1.80 (black dashed line).
The lower inset shows the standard Q-value (gray dotted curve)
and the model weights prðMμjfygÞ from the BAIC (blue solid
curve), BPIC and PAIC (yellow dashed curve), and PPIC (red
dash-dotted curve).
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higher-order am to zero. This means that even as N → ∞,
the model probability prðMμjfygÞ for μ > 2 will never go
to zero, although models with higher complexity will be
penalized by the þ2k bias-correction term so that peak
model probability will be at μ ¼ 2.
Observe that the BPIC has less uncertainty than the

BAIC or PPIC. This is because the BPIC favors simpler
models even more so than the BAIC or PPIC as a result of
the additional k that comes from the posterior averaging of
the KL divergence when parameter priors are sufficiently
diffuse, as discussed in Sec. IV D. The additional parsi-
mony implied by the BPIC comes with a larger KL
divergence for the model distribution. While this might
cause concern that the BPIC may actually underestimate
the model uncertainty in this example, in practice this does
not appear to be the case (as seen in this example by
comparing the BPIC-averaged parameter uncertainty with
that for the true μ ¼ 2 model).
We repeat the previous numerical test with several values

of N ¼ 40, 80, 160, 320, 640, 1280; the final estimates
for a0 are in Fig. 2. The model-averaged results using the

FIG. 2. N-dependent scaling of the various estimates of the
intercept a0. The true value (black dashed line) is a0 ¼ 1.80. The
model-averaged results using the BAIC (blue solid diamonds),
the BPIC and PAIC (yellow solid squares), and PPIC (red solid
triangles) are consistent with both model truth and the fit results
of the correct quadratic model (purple solid circles).

FIG. 3. Fit results for the ground-state energy with true value E0 ¼ 0.80 (black dashed line) for N ¼ 30, ση ¼ 0.3, and σθ ¼ 0, for data
subset t∈ ½tmin; 31� (purple solid circles). Model-averaged results with the BAIC (blue solid diamonds), BPIC (yellow solid squares),
and PPIC (red solid triangles) agree well with model truth and each other in any case. The lower inset shows the standard Q-value
(gray dotted line) and model weights prðMμjfygÞ corresponding to the BAIC (blue solid curve), BPIC (yellow dashed curve), and
PPIC (red dash-dotted curve). The four separate figures represent four random draws of correlated Gaussian fractional noise, but are
otherwise identical.
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BAIC, BPIC, and PPIC are consistent with model truth in
all cases. As in the fixed-N study, the uncertainties in the
model-averaged estimates are typically larger than that of
the fixed quadratic estimate; this is because model averag-
ing has two sources of error—(i) parameter uncertainty in
individual fits and (ii) variance across the individual fit
means—whereas using a fixed model only has the former.

B. Example 2: Exponential model
and subset selection

To test the data subset selection procedure developed in
Sec. V, we consider another toy problem meant to resemble
a two-point correlation function (see Sec. V for a brief
discussion of two-point correlators). For this example, we
will set model truth to a two-state exponential:

fTðtÞ ¼ 2.0e−0.80t þ 10.4e−1.16t: ð133Þ

To generate synthetic data, we multiply fT by correlated
noise 1þ ηðtÞ, where ηðtÞ is drawn from a Gaussian with
mean η̄ ¼ 0.0 and standard deviation ση ∈ f0.3; 0.003g,
as well as an uncorrelated noise floor θðtÞ drawn from a
Gaussian with mean θ̄ ¼ 0.0 and standard deviation
σθ ∈ f0; 10−5g, i.e., the synthetic data are generated from
yðtÞ ¼ ð1þ ηðtÞÞfTðtÞ þ θðtÞ. The correlation matrix used
to generate ηðtÞ takes the form ρxy ¼ ρjtx−tyj so that ρ equals
one on the diagonal and decreases as a power law as the
temporal separation between points increases (similar to a
real lattice QCD correlation function). We fix the correla-
tion coefficient to ρ ¼ 0.6. We generate N mock data
samples on t∈ f1; 2;…; 31g; the initial time is omitted
from the analysis due to the certain excited state contami-
nation at t ¼ 0. Other sets of parameters with σθ ¼ 0.0
were considered in [26] with and without correlation on
ηðtÞ to no qualitative effect; the same is true for σθ > 0

FIG. 4. Fit results for the ground-state energy with true value E0 ¼ 0.80 (black dashed line) for N ¼ 200, ση ¼ 0.003, and σθ ¼ 10−5,
for data subset t∈ ½tmin; 31� (purple solid circles. Model-averaged results with the BAIC (blue solid diamonds), BPIC (yellow solid
squares), and PPIC (red solid triangles) agree well with model truth and each other in any case. The middle inset shows the standard
Q-value (gray dotted line) and model weights prðMμjfygÞ corresponding to the BAIC (blue solid curve), BPIC (yellow dashed curve),
and PPIC (red dash-dotted curve). The lower inset shows the ratios of the PPIC model weights to the BAIC model weights
r≡ prðMμjfygÞPPIC=prðMμjfygÞBAIC. The four separate figures represent four random draws of correlated Gaussian fractional noise and
uncorrelated Gaussian additive noise, but are otherwise identical.
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except for very large values of ρ where numerical issues
lead to unreliable simulations.
We note that in terms of the observed signal-to-noise

ratio in the mock data, the case without the noise floor
σθ ¼ 0 has roughly constant signal-to-noise, analogous to a
pion two-point correlation function [75]. On the other hand,
with σθ > 0 a threshold in t is introduced at which the
signal-to-noise drops exponentially, with the signal being
completely overwhelmed at large t where σθ ≫ fTðtÞ. This
more closely resembles the behavior of something like a
nucleon two-point function, with extremely poor signal-to-
noise at large time separation reflective of a sign problem
[76,77]. These resemblances to real data are, at best,
qualitative; we do not claim to use a realistic noise model
for this toy example. Wewill consider the application of our
methods to real lattice QCD data in Sec. VI C.
Initially, we consider a single candidate model that

consists of a single exponential term:

f1ðtÞ ¼ A0e−E0t: ð134Þ

This model is fit to data ðyiÞx corresponding to tx ∈ ½tmin; 31�
for tmin ∈ f1; 2;…; 28g. Model-averaged results for the
ground-state energy E0 are obtained using

BAICμ;dC ¼ −2 log prðMμÞ þ χ̂2ða�Þ þ 2kþ 2dC; ð135Þ

BPICμ;dC ≈ −2 log prðMμÞ þ χ̂2ða�Þ − 1

2
H̃baðΣ�Þab

þ 1

2
g̃dTcbaðΣ�

2Þabcd þ 3kþ 3dC; ð136Þ

PPICμ;dC ≈ −2 log prðMμÞ þ χ̂2ða�Þ þ 2kþ dC

þ NdC log

�
1þ 1

N

�
− 2

XN
i¼1

log

�
1

þ 1

2

�
1

4
ðgiÞbðgiÞa −

1

2
ðHiÞba

�
ðΣ�Þab

þ 1

4
ðgiÞdTcbaðΣ�

2Þabcd
�
; ð137Þ

as derived in Sec. V. In this example, dC ¼ tmin entirely
determines model complexity as k ¼ 2 is fixed across the
space of models. Unlike the polynomial example, the
integrals used to obtain the information criteria are not
computed exactly as the model function Eq. (134) is non-
linear in the model parameters. To improve the accuracy of
these results, we implement the superasymptotic schema
described in Sec. IV F for the BPIC and PPIC.
The results of four independent trials of the above

procedure with ðN; ση; σθÞ ¼ ð30; 0.3; 0Þ and ðN; ση; σθÞ ¼
ð200; 0.003; 10−5Þ are shown in Figs. 3 and 4, respectively.
Excited-state contamination is clear at low tmin as the
second exponential state has influence over the fit results

before it has decayed away. Model-averaged results agree
well with model truth for all information criteria consid-
ered. Like the polynomial example, the model-averaged
results favor parsimonious models; in the present context,
parsimony corresponds to fits that cut away as little data as
possible without compromising fit quality.
In Fig. 3, where there is no noise floor, the BAIC and

PPIC perform identically. The BPIC shows a preference
for smaller tmin cuts due to the extra factor of dC in its
subset selection formula. This leads to generally smaller
uncertainty but potential for finite-sample bias, which will
be more strongly evident below in the presence of addi-
tional noise.
Figure 4 represents a more challenging noisy-data case

study, as the noise floor θðtÞ is typically larger than the last
several data points, which is reflected in the large E0 error
for fits at large tmin. In this case, the PPIC consistently
outperforms the BAIC in its estimation of the parameter

FIG. 5. N-dependent scaling of the various estimates of the
ground-state energy E0 for ση ¼ 0.3 and σθ ¼ 0 (top) and ση ¼
0.003 and σθ ¼ 10−5 (bottom). The true value (black dashed line)
is E0 ¼ 0.80. The model-averaged results using the BAIC (blue
solid diamonds), BPIC (yellow solid squares), and PPIC (red
solid triangles) are consistent with model truth in all cases.
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mean and the error of this estimate. This results from the
phenomenon discussed in Sec. IV E where, in its use of
information from each individual observation, the PPIC is
able to penalize models that fail to predict the data and
hence give poor parameter estimates. The improved error
of the PPIC E0 estimate is coupled to this effect as poor
models tend to give larger parameter uncertainties. The
relatively low weight for noisy models at high tmin using
PPIC versus BAIC can be seen from the lowest panel in
each subfigure, which shows the ratio r≡ prðMμjfygÞPPIC=
prðMμjfygÞBAIC of the model weights using PPIC to BAIC.
The PPIC also outperforms the BPIC in terms of finite-N
bias; while the BPIC often gives much smaller error
estimates than the other information criteria, this is due
to its overly aggressive penalty for dC which heavily
weights a single fit with small tmin as seen in the figure.
As a result, the BPIC often disagrees strongly with the true
asymptotic value for E0.
In Fig. 5, we repeat the model-averaging test with varying

sample size N, again over N ¼ 40, 80, 160, 320, 640, 1280,

with ση ¼ 0.3 and σθ ¼ 0 (top panel) and with ση ¼ 0.003
and σθ ¼ 10−5 (bottom panel). All model-averaged results
based on the tested information criteria agreewellwithmodel
truth. As in Fig. 2, model averaging leads to larger uncer-
tainties compared to the result of fixing a single fit at fixed
tmin. However, the fixed-model approach does not account
for systematic error due to model truncation, as tmin must
be adjusted as N → ∞ for the estimate of E0 to remain
uncontaminated by higher-energy states.
Though model averaging seems to protect the final

results from excessively noisy data, the exponential signal-
to-noise problem when the noise floor is present may cause
concern about the accuracy of Laplace’s method in these
cases. In general, one should take caution in using data
subset averaging procedure when a region of the data
is effectively pure noise. (Pure noise is, in some sense,
drawn from the incorrect distribution, one centered at zero
instead of around the desired signal.) A straightforward
approach to mitigating this effect is to impose a minimum
signal-to-noise cut on the data before implementing the

FIG. 6. Model-averaging results versus the number N of data samples included in the analysis. The data is the same as the bottom
panel of Fig. 5 and the subset sizes shown are N ¼ 40, 80, 160, 320, 640, 1280. The black dashed line shows the value of the model
truth. The model-averaged results shown use the BAIC (blue solid diamonds), BPIC (yellow solid squares), and PPIC (red solid
triangles). Each panel corresponds to a different value of minimum signal-to-noise ratio imposed on the data denoted by SNRmin ¼ 1, 2,
3, 4 in the top right of each panel. For SNRmin ¼ 0, see Fig. 5.
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model-averaging procedure. Figure 6 shows the results
of different minimum signal-to-noise ratios for the same
N-scaling test data used in the bottom panel of Fig. 5.
Because the fit model decreases monotonically, we cut
away the data for t greater than the first time where the
minimum signal-to-noise ratio is exceeded.
We emphasize that the signal-to-noise ratio cut in these

tests is distinct from the data subset selection procedure
outlined in Sec. V. Unlike the choice of a tmin cut, a signal-
to-noise cut removes data with minimal information con-
tent and therefore the choice of a specific threshold by the
analyst will not be a significant source of systematic error.
Since a signal-to-noise cut discards the data before any
further analysis, no information penalty need be assessed
when it is used, i.e., dC does not include the signal-to-noise
cut data.8

Even with the minimum signal-to-noise ratio imposed on
the data in Fig. 6, the variance on the model-averaged
results behaves counterintuitively. Namely, the uncertainty
does not decrease monotonically withN. This is a symptom
of the systematic error due to model truncation discussed in
the context of the fixed-model in Fig. 5. As N increases,
small values of t are not well approximated by one-state
exponential for the fit model Eq. (134). For this reason,
small tmin values contaminate the model-averaged results,
inflating parameter uncertainties. Eventually, asN increases,
the data will be precise enough that there will be no region
in which the one-state model is sufficient to describe the
data. Continuing to use model averaging over only one-
state fits in this limit would lead to incorrect results due to
model misspecification. Instead, the model space should be
expanded; a two-state fit to

f2ðtÞ ¼ A0e−E0t þ A1e−E1t ð138Þ

can be performed to account for the excited state contami-
nation. In contrast to correlator fits to real lattice data
(cf. Sec. VI C), Eq. (138) is of the same form as Eq. (133)
so there should be no further contamination from higher
excited states. To improve numerical stability and ensure
ordering of energy levels, the excited-state energy is fit in
practice using the fit parameter ldE1 ≡ logðE1 − E0Þ to
replace E1. Eq. (138) is fit to construct Figs. 7 and 8 for a
minimum signal-to-noise ratio of SNRmin ¼ 4, which is
sufficient to stabilize the results as shown in Fig. 6. Figure 7
shows the expected improved accuracy of the fits at small tmin
using the two-statemodel. Here the BPIC shows no bias with
respect to the true value of E0, since the two-state model is
exactly the true model from which the data are drawn.

While Fig. 8 shows improved behavior of the model-
averaged uncertainty at large N compared to Fig. 6
(particularly for the PPIC), the uncertainty still does not
decrease monotonically as a function of N, as we would

FIG. 8. N-dependent scaling of the various estimates of the
ground-state energy E0 for ση ¼ 0.003 and σθ ¼ 10−5 using a
two-state fit; a minimum signal to noise ratio of SNRmin ¼ 4
has been imposed on the data. The true value (black dashed line)
is E0 ¼ 0.80. The model-averaged results using the BAIC
(blue solid diamonds), BPIC (yellow solid squares), and PPIC
(red solid triangles) are consistent with model truth.

FIG. 7. Two-state fit results for the ground-state energy with
true value E0¼0.80 (black dashed line) for N ¼ 640, ση ¼ 0.003,
and σθ ¼ 10−5, for data subset t∈ ½tmin; 31� (pink solid circles); a
minimum signal to noise ratio of SNRmin ¼ 4 has been imposed
on the data. Model-averaged results with the BAIC (blue solid
diamonds), BPIC (yellow solid squares), and PPIC (red solid
triangles) agree well with model truth and each other in any case.
The middle inset shows the standard Q-value (gray dotted line)
and model weights prðMμjfygÞ corresponding to the BAIC (blue
solid curve), BPIC (yellow dashed curve), and PPIC (red dash-
dotted curve). The lower inset shows the ratios of the PPIC model
weights to the BAIC model weights r≡ prðMμjfygÞPPIC=
prðMμjfygÞBAIC.

8While this distinction is moot in the examples above (where
the resulting penalty would change each IC by only an additive
constant), it could be important if the BPIC or PPIC with long-
range correlations are used (see Sec. V).
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expect for, e.g., a parameter estimate from a single model.
This behavior may be concerning at face value since it
indicates situations where adding more data does not
result in reduction of error. This behavior cannot persist
indefinitely; since the error on individual sample estimates
of E0 scales as 1=

ffiffiffiffi
N

p
, and the model average is obtained

from these estimates, the model-averaged uncertainty must
decrease as 1=

ffiffiffiffi
N

p
asymptotically. The enhanced fluctua-

tions in the model-averaged uncertainty versus sample size
compared to single-model results are an inherent trade-off
for robustness against incorrect model specification; see the
discussion of bias-variance trade-off in Sec. VII.
Figure 9 shows the results of a “grand average” pro-

cedure, i.e., a model average including both one-state and
two-state fits in addition to data subset selection. If we
attempt to compare these results to both Figs. 6 and 8, we
see that the grand average results actually give more precise
estimates than either individual set of fits. This shows
concretely that expansion of the model space does not
always result in increased uncertainty; in this case, the
relative weight of individual fits with larger errors seems to
be reduced in the grand average.
Briefly summarizing what we have found in our numeri-

cal results above, our main finding is that the PPIC shows
the best overall performance in all tests. Its precision is
generally the same as or better than the precision of the
BAIC, but without any signs of statistically significant bias
versus the true value of E0. The PPIC is especially robust in
cases where very noisy model estimates are part of the
average; when signal-to-noise cuts are used, the PPIC’s
advantage tends to decrease relative to BAIC as the latter is

improved more significantly, although there are counter-
examples, e.g., Fig. 8. The BAIC is the simplest criterion
and also shows good performance with respect to the
absence of statistically significant finite-N bias. On the
other hand, the BPIC is overly aggressive in penalizing data
cuts, resulting in the highest precision in many cases but
together with a significant bias, which would be unaccept-
able in many applications in lattice field theory.
As a final remark on this example, we note that accuracy

of the numerical approximations developed in Secs. IV C
and IV F have been corroborated in several test cases
using the VEGAS algorithm, an importance-sampling-
based Monte Carlo integration scheme [78–80]. We do
not show additional tables or figures with VEGAS evalu-
ation of the full integrals, as in all cases tested these results
are essentially indistinguishable from the approximate
formulas.

C. Example 3: Lattice QCD correlation functions

To further test our methodology on a more realistic
example, we apply it to a real lattice QCD dataset, speci-
fically a nucleon two-point correlation function. The data
consists of measurements on 615 configurations from the
JLab/W&M/MIT/LANL ensemble a091m170 (see [81]
for details). On each configuration, correlators were mea-
sured on an even grid of 512 sources, projected to zero
momentum, and averaged over sources. Gauge-invariant
Gaussian smearing to radius 4.5 was applied at both the
source and sink. We find no evidence of residual thermal-
ization or autocorrelation effects, so we take these samples
to be independent. All numerical values below are provided
in implicit lattice units, i.e., a ¼ 1.
We carry out fits using two different model functions: a

simple one-state model Eq. (134), and a two-state model
Eq. (138). In practice, the parameter ldE1 defined in
Sec. VI B is fit in lieu of E1 for the same reasons discussed
in Sec. VI B. The fits are done with ground-state priors
A0 ¼ 3ð3000Þ × 10−8 and E0 ¼ 0.4ð4Þ; these were chosen
primarily to ensure fit convergence. For two-state fits, the
priors are A1 ¼ 3ð10000Þ × 10−8 and ldE1 ¼ −0.5ð1.0Þ.
The choice of parameter priors does not affect the results
qualitatively.
Individual fit results versus tmin, as well as the corre-

sponding model-averaging results, are shown in Figs. 10
and 11. Here we initially impose no signal-to-noise cut,
although we would certainly advocate for doing so in a
serious analysis of this data and will explore the effect of
such a cut below. Qualitatively, we see that the results are
very similar to those obtained for the synthetic two-state
exponential example above: overall the model-averaged
results for the PPIC and BAIC are very similar, but the
PPIC is slightly more precise. The BPIC results tend to be
much more precise, but suffer from potential bias, giving
estimates at smaller N which significantly disagree with the
full dataset estimates.

FIG. 9. N-dependent scaling of the various estimates of the
ground-state energy E0 for ση ¼ 0.003 and σθ ¼ 10−5 averaging
over both data subsets and the one- and two-state models; a
minimum signal to noise ratio of SNRmin ¼ 4 has been imposed
on the data. The true value (black dashed line) is E0 ¼ 0.80. The
model-averaged results using the BAIC (blue solid diamonds),
BPIC (yellow solid squares), and PPIC (red solid triangles) are
consistent with model truth.
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Within Fig. 10, we also show the difference in results
between the full dataset N ¼ 615 and a much smaller sub-
sample of N ¼ 40. Within the smaller dataset, increased
model uncertainty is apparent in the plot of prðMμjfygÞ,
with multiple local peaks appearing for the BAIC and
PPIC. This uncertainty is reflected in relatively large
model-averaged uncertainty relative to any of the individual
fits in the “plateau” region for these ICs. With the full N ¼
615 dataset, the model probability becomes sharply peaked
at the lowest value of tmin for which the one-state model is a
good description of the data, decaying exponentially as tmin
increases; this is precisely the behavior we expect at

relatively large N. Note that despite their close agreement
for most fits, the PPIC once again results in a smaller
uncertainty than the BAIC due to the rejection of noisy fit
results at the largest tmin, as visible from the ratio r of PPIC
to BAIC model weights which goes to zero at large tmin.
We further explore dependence on sample size using the

nucleon data by cutting down to the first N out of 615
measurements and repeating the model-averaging analysis,
for N taking on the values f40; 80; 160; 320; 615g. The
results of this procedure are shown in Fig. 12, imposing
various levels of minimum signal-to-noise cut and for both
one-state and two-state fits; the grand average over both
models is shown in Fig. 13. Most of the qualitative
conclusions are very similar to those drawn from the
synthetic data example; imposition of a signal-to-noise
cut generally improves both the total uncertainty at fixed N
and the scaling of errors as a function of N. For the one-
state fits (left column), we can see a clear saturation of the
error as N increases, with no decrease in uncertainty from
N ¼ 320 to N ¼ 615. This effect can be explained by the
effect discussed in the previous subsection and clearly
visible in Fig. 10, namely that as N increases and data
errors decrease, the “plateau” region in which the one-state
model adequately describes the data shrinks. The saturation
of model-averaged uncertainty is thus an indicator that our
model space is incomplete. Indeed, we see that going
instead to two-state fits (either exclusively or in the grand
average) allows smaller error estimates to be obtained from
the full N ¼ 615 dataset.
An important difference between this real-world nucleon

data and the controlled example shown above is that for
the nucleon data, the “true model” is not accessible—in
principle, it is a sum over an infinite number of excited

FIG. 11. Fit and model-averaging results for the lattice QCD
nucleon data (N ¼ 615) using the two-state model. Individual fit
results to data subsets t∈ ½tmin; 30� are shown as gray solid circles
Other colors, symbols, and the lower subpanel are all defined as
in Fig. 10.

FIG. 10. Fit and model-averaging results for the lattice QCD
nucleon data using the one-state model for N ¼ 40 (top panel)
and N ¼ 615 (bottom panel). Individual fit results to data subsets
t∈ ½tmin; 30� are shown as black solid circles. The model-averaged
results shown use the BAIC (blue solid diamonds), BPIC (yellow
solid squares), and PPIC (red solid triangles). The lower inset
shows the standard Q-value (gray dotted line) and model weights
prðMμjfygÞ corresponding to the BAIC (blue solid curve), BPIC
(yellow dashed curve), and PPIC (red dash-dotted curve). The
lower inset shows the ratios of the PPIC model weights to the
BAIC model weights r≡ prðMμjfygÞPPIC=prðMμjfygÞBAIC.
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states. This means that our true model is never contained in
the model space we consider, strictly speaking, no matter
how many excited states we include. However, at any given
N and tmin the difference between the true model and a
truncated model will be exponentially small as long as
enough states are included. For a given data sample, the
Bayesian model-averaging philosophy suggests to include
all possible numbers of states and perform a “grand

average” to determine the relative weights. In practice,
one should typically truncate the number of states once the
number required to give stable descriptions of the data and
saturation of error estimates, e.g. as done in [47] without
model averaging.
Overall, the performance of the three information criteria

tested against this real-world data mirrors what we saw in
the toy-model case of Sec. VI B. The BAIC and PPIC are

FIG. 12. For the lattice QCD nucleon data, model-averaging results versus the number N of data samples included in the analysis. The
data subset sizes shown are N ¼ 40, 80, 160, 320, 615. The model-averaged results shown use the BAIC (blue solid diamonds), BPIC
(yellow solid squares), and PPIC (red solid triangles). The left column shows results obtained with the one-state fit model; the right
column shows results using the two-state fit model. Each row corresponds to a different value of minimum signal-to-noise cut imposed
on the data: from the top row, the values used are SNRmin ¼ 0, 3, 5.
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consistent with one another, with the PPIC often having
smaller uncertainties particularly in the presence of noisy
estimates for E0. The BPIC shows the smallest uncertainty
but often also shows a consistent offset relative to the other
ICs, and based on our other numerical results we would be
concerned that its results are biased significantly.

VII. CONCLUSION

We have adapted several information criteria from the
model selection literature for use in Bayesian model
averaging. The information criteria described give asymp-
totically unbiased estimates of the Kullback-Leibler diver-
gence, which is sufficient to remove asymptotic bias from
model-averaged results when the regression procedure
gives consistent model parameter estimates. By connecting
these ideas to the KL divergence, we are able to present a
very general and rigorous statistical theory. We also provide
specialized discussion of least squares, which is a con-
sistent regression procedure. In the case of least squares, we
derived numerically efficient and accurate asymptotic and
superasymptotic approximations of the information criteria
using Laplace’s method and optimal truncation, respec-
tively; these approximations are in fact exact for linear fit
functions. For each information criteria, we extend the
model-averaging framework to data subset averaging.
The information criteria studied are the BAIC, BPIC,

and PPIC, all of which are asymptotically unbiased with
oðN−1Þ finite-N bias, where N is the data sample size
[12,13,32]. The approximate formulas provided for the
BPIC and PPIC are at least OðN−1Þ accurate; higher orders
of accuracy (potentially exponential) may be achieved in
cases of optimal truncation. We have chosen not to study

the PAIC in detail in the body due to the lower order of
accuracy [Oð1Þ] of the integral approximation required and
its theoretical similarity to the BPIC; the relevant PAIC
formulas are given in Appendix D.
Each of the ICs have various strengths and weaknesses.

The simplest is the BAIC, which only requires the number
of parameters (and the number of the excluded data points)
and evaluation of the likelihood function (i.e., χ̂2) at the
posterior mode a�PM [i.e., the (Bayesian) best-fit point].
The other information criteria studied can be thought of as
finite sample size corrections to the BAIC as they all give
equivalent model probabilities in the large N limit. On the
other hand, the use of a plug-in estimator in the BAIC is
closer to frequentist than to Bayesian statistical practice as
it assumes that there is a true value as opposed to a true
distribution. A more natural treatment of parametric models
in Bayesian inference should integrate over an estimate of
this true distribution. One approach is to average the log
likelihood over the posterior giving rise to the BPIC.
However, due to Jensen’s inequality, the BPIC is unable
to give a smaller KL divergence than the PPIC where the
log is taken after doing the posterior averaging. This
seemingly minor change gives PPIC the ability to sense
to individual fluctuations in the data leading to better
performance in practice, particularly in situations where
signal-to-noise is poor. As seen in our numerical tests, this
allows the PPIC to in some cases outperform both the
BAIC, giving smaller error estimates, and the BPIC, giving
greatly reduced finite-sample bias. For this reason, we
advocate for the use of the PPIC in applications of Bayesian
model averaging. We note in passing that there are
instances in which the individual data are not accessible
and only the average statistics are known; in these cases, the
PPIC cannot be computed and one of the other ICs must
be used.
In the context of data subset selection, the BPIC in

particular leads to an especially aggressive penalty for data
cuts, which may result in significant finite-sample bias as
seen in the numerical results of Secs. VI B and VI C. Based
on these results, we recommend against the use of BPIC in
particular for problems where data subset selection is an
important part of the model variation problem. Both PPIC
and BAIC should be used for subset variation, with
preference for the PPIC when possible.
While the BAIC, BPIC, and PPIC perform differently in

practice, this is merely an artifact of finite sample sizes.
Being asymptotically unbiased estimators of the KL
divergence, all three ICs will become equivalent in the
limit of infinite data. For this reason, it is logical to consider
the BPIC and PPIC as finite-N corrections to the BAIC. To
better understand the behavior at finite N, it would be
interesting in future work to consider higher-order correc-
tions to the ICs; however, any corrections beyond oðN−1Þ
should be accompanied by a more detailed study of the
finite-N bias corrections. Higher order bias correction

FIG. 13. For the lattice QCD nucleon data, combined results
averaged across both data subsets and the single and double
exponential model for SNRmin ¼ 5 versus the number N of data
samples included in the analysis. The data subset sizes shown are
N ¼ 40, 80, 160, 320, 615. The model-averaged results shown
use the BAIC (blue solid diamonds), BPIC (yellow solid squares),
and PPIC (red solid triangles).

IMPROVED INFORMATION CRITERIA FOR BAYESIAN MODEL … PHYS. REV. D 109, 014510 (2024)

014510-29



similar to that of the so-called “corrected AIC” (abbreviated
as AICC in the literature) could be a fruitful direction for
future improvements [38,82–85]. Studies of nonasymptotic
bias corrections are rare in the model selection literature
but could be theoretically interesting, albeit practically
challenging.
It should be noted that in all of the above cases, we make

use of the approximate result tr½J−1I� → k. This is an
asymptotic result that only holds if the true distribution
belongs to the model space, as discussed in Sec. III A. Use
of the more general formula requires estimation of the I and
J matrices, which can be numerically unstable particularly
at smaller values of N. An interesting direction for future
work could be to explore more reliable numerical methods
for estimation of this trace, such as shrinkage [20,68–71].
In our numerical studies of scaling of model averaging

with sample size N, we sometimes encounter situations
where increasing N results in larger model-average uncer-
tainty. This effect is sharply counterintuitive, since most
familiar statistical error estimators (e.g., the standard error
on a parameter obtained from a single model) decrease
monotonically with N. We interpret this effect as a mani-
festation of bias-variance trade-off (see [28] for a general
discussion of this phenomenon, and our own discussion in
Sec. II B.) Model averaging typically results in increased
uncertainty compared to the use of a single, fixed model.
This is a feature, as the increased error reflects systematic
error due to model uncertainty that is neglected in the fixed-
model case. Removing this potential source of bias with
model-averaging results in increased error. This trade-off,
combined with the discreteness of the model space, some-
times leads to complicated and counterintuitive behavior of
uncertainty versus sample size. Of course, it remains true
that all of the individual model parameter estimates that go
into the model average do have errors which decrease
monotonically with sample size N; therefore, any large
enough increase in N must always tend to reduce the
model-averaged error as well.
It would be very interesting to explore the use of

resampling techniques such as bootstrap estimation with
model averaging. For example, bootstrap methods could be
used to directly estimate IC bias at finite sample size,
possibly leading to improved model-averaging perfor-
mance at finite N. Improvements to bias estimation could
give better control over the bias-variance trade-off. It may
also be interesting to explore whether direct bootstrap
estimation of the KL divergence itself, as in [86] for
example, might lead to useful insights or practical improve-
ments for model averaging.
While we have provided insight into the underlying

statistical theory at play (e.g., the KL divergence), another
objective has been to give results that are useful in practical
applications. While our results are very general and can be
applied to a wide array of fields, we are primarily motivated
by applications to lattice field theory. Bayesian model
averaging is well-suited for lattice applications due to the

physical motivations and relevant functional forms of
lattice models. Furthermore, the practical need for model
and data truncation in lattice analyses fits naturally into the
Bayesian model-averaging framework.
As a brief aside, we should mention that some believe

that the discrete optimization problem of model-averaging
(or model selection) is not a proper usage of Bayseian
inference. For instance, [87] advocates for continuous
model expansion, i.e., forming a larger model that includes
the successful candidate models as special cases. This
procedure poses obvious practical limitations as it contin-
ues ad infinitum and could hide interesting physical insight
within a large and complicated model. Despite philosophi-
cal qualms with model comparison, [87] agrees that model
averaging is still a useful technique given a finite amount of
available information. Furthermore, Bayesian model aver-
aging is a natural procedure when the model space is truly
discrete as is the case for data subset selection in the
analysis of lattice simulation data. That being said, it could
be interesting to incorporate the idea of continuity into
lattice analyses such as with Bayesian mixture models [88].
We conclude with some practical disclaimers. A notable

advantage of model averaging over model selection is
the removal of subjectivity from the analysis (e.g., in the
analyst’s choice of data subset to fit to a two-point
correlator). To this end, we recommend the use of uniform
parameter priors prðMμÞ rather than, say, weighting parsi-
monious models more heavily as this is built into the ICs.
On the other hand, the factor prðMμÞ should not be ignored
in cases where there is good reason to include it. For
example, in cases where there is a strong theoretical reason
not to include a particular model, i.e., prðMμÞ ≈ 0, this
should be reflected in the model priors rather than relying
on the data entirely. The model prior can also be used to
adjust for situations where a uniform prior would result in
bias; for example, if a family of highly similar models are
included in the model space, a uniform prior may over-
weight this class of models solely due to the number of
variations in the family.
We emphasize finally that model averaging is not an

alternative to a statistically correct treatment of the data.
While we have seen the PPIC to be somewhat robust against
these effects, including incorrect results (e.g., failed fits,
excessively small signal-to-noise ratios, autocorrelation
effects) in the average can invalidate statistical estimates.
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APPENDIX A: MARGINALIZED INFORMATION
CRITERIA

In this appendix, we connect this work to [26] and
discuss the ABICCV in more detail. As discussed in Sec. III,
there are many ways to analyze parametric models using
the KL divergence. While the simplest is the plug-in
estimator introduced in Sec. III A, a natural alternative is
to marginalize over the parameter space giving the mar-
ginalized KL divergence KLmarg defined in Eq. (36). The
corresponding information criteria is the ABIC [39,40],
defined as

ABICμ ¼ −2 log prðMμÞ − 2 logEa½prðfygja;MμÞ� þ 2k;

ðA1Þ
where we have written the marginalization with Ea½…�, the
expectation with respect to the prior distribution as defined
in Eq. (38).
In [26], the ABIC is applied to the cases of least-squares

regression (see Sec. IV for notation). Computing the
integral to leading order via Laplace’s method gives

ABICμ ≈ −2 log prðMμÞ þ χ2augða�Þ þ 2k − 2 log
det Σ̃
detΣ� ;

ðA2Þ
where Σ̃ and Σ� are the prior and best-fit covariance
matrices, respectively. To argue that the determinant terms
are subleading in the limit of large sample size, [26]
consider the case of cross-validation, where the prior
probabilities scale with the size of the data sample. In this
cases, the ABIC reduces to the “ABICCV” (referred to as
simply the AIC in [26]) defined in Eq. (66) for least squares
or more generally in Eq. (40).
This issue with this derivation is that the determinant

terms can be significant in some cases, such as when priors
are held fixed as is the case for the examples in Sec. VI. In
fact, a similar derivation [38] that retains the N dependence
of det Σ̃= detΣ� leads to Schwarz’s BIC [41]:

BICμ ¼ −2 log prðMμÞ − 2 log prðfygja�;MμÞ þ logðNÞk;
ðA3Þ

which can be thought of as an alternative simplification to
the ABICCV. The BIC will clearly behave much differently
from the BAIC for large N.
Though we do not show this rigorously here, the ABIC

does not share the asymptotic unbiasedness property of
the information criteria studied in the body of the text.
Therefore, it can give asymptotically biased model averag-
ing results when some models in the space of candidate
models poorly reflect the data. This is a result of the
outsized dependence of the ABIC on the prior as opposed
to the data. The BAIC, BPIC, PAIC, and PPIC all depend
directly on the data either through the plug-in estimator a�
or through the posterior average Eajfyg½…�. In contrast, the
ABIC uses an expectation over the prior. As a result, the
ABIC may behave counterintuitively even in the limit of
infinite data. This behavior is related to the so-called
“Jeffreys-Lindley paradox” in which a Bayesian analysis
under certain choices of prior distribution can give incorrect
results compared to, say, the analogous frequentist analysis.
For further discussion, see [89–91].

APPENDIX B: ASYMPTOTIC EQUIVALENCE
OF INFORMATION CRITERIA

In this appendix, we compare the asymptotic forms of
the different KL divergences defined in Sec. III. In doing
so, we will establish that each form of the KL divergence
is asymptotically equivalent in the sense of model choice
(e.g., model selection, model averaging). This is weaker
than asserting that the different forms of the KL divergence
approach each other numerically and only requires con-
vergence of the leading-order terms in respective asymp-
totic expansions in the inverse sample size N−1.
Reproducing only the model-dependent terms here in a

convenient form, and omitting the expectation value Ez½…�
and the model choice Mμ (we want to compare them for a
fixed model), we have

KLplug-in ⊃ log prðzja�Þ; ðB1Þ

KLpost-avg ⊃ Eajfyg½log prðzjaÞ�; ðB2Þ

KLpost-pred ⊃ logEajfyg½prðzjaÞ�; ðB3Þ

where

Eajfyg½…�≡
R
da prðajfygÞð…ÞR
da prðajfygÞ

¼
R
da prðfygjaÞprðaÞð…ÞR
da prðfygjaÞprðaÞ ; ðB4Þ

and prðaÞ is the prior probability distribution for the given
model. Throughout this appendix, we will assume that
the prior information grows sufficiently slowly with N
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compared to the data; specifically, we assume that Eq. (27)
holds (e.g., fixed priors without data dependence).
To proceed, note that for any continuous f

lim
N→∞

R
da prðfygjaÞprðaÞfðaÞ

ð2πÞk=2jJ−1N ða�Þj1=2prða�Þfða�Þ ¼ 1; ðB5Þ

which follows from convergence of the leading-order
Laplace approximation. This is a standard result proven
in many texts (e.g., [50]). A more detailed discussion of the
Laplace approximation is given in Appendix E. Therefore,

Eajfyg½log prðzjaÞ� ¼
R
da prðfygjaÞprðaÞ log prðzjaÞR

da prðfygjaÞprðaÞ
ðB6Þ

→
ð2πÞk=2jJ−1N ða�Þj1=2prða�Þ log prðzja�Þ

ð2πÞk=2jJ−1N ða�Þj1=2prða�Þ ¼ log prðzja�Þ;

ðB7Þ

logEajfyg½prðzjaÞ� ¼
R
da prðfygjaÞprðaÞprðzjaÞR

da prðfygjaÞprðaÞ ðB8Þ

→ log
ð2πÞk=2jJ−1N ða�Þj1=2prða�Þprðzja�Þ

ð2πÞk=2jJ−1N ða�Þj1=2prða�Þ ¼ log prðzja�Þ;

ðB9Þ
in the N → ∞ limit. This establishes the asymptotic
equivalence of KLpost-avg and KLpost-pred to KLplug-in.
Since the various ICs we considered follow directly from
the KL divergence definitions, this establishes that both the
PPIC and the PAIC/BPIC converge asymptotically to the
BTIC/BAIC.
Similarly to Sec. IV C, this result is established using

Laplace’s method. However, we emphasize that this equiv-
alence is much more generally applicable than to just the
case of least-squares discussed in Sec. IV C. See [50,92] for
the required regularity conditions.
In effect, the above argument indicates

lim
N→∞

prðajfygÞ ∝ δða − a�Þ: ðB10Þ

To understand this we note that both KLpost-avg and
KLpost-pred contain the posterior probability

log prðajfygÞ ∝
X
i

log ½prðyijaÞprðaÞ1=N �: ðB11Þ

Since we have assumed Eq. (27), the influence of the prior
is negligible compared to that of the data as N → ∞, so
that this simply approaches the log likelihood functionP

i log prðyijaÞ. In terms of the parameters, the likelihood
function becomes Gaussian asymptotically with a width
decreasing proportional to N. As a result, we have the
proportionality in Eq. (B10). This connection is not made

rigorous here, but is expected to hold except in pathologi-
cal cases.

APPENDIX C: A BOUND ON THE ASYMPTOTIC
BIAS OF MODEL AVERAGING

Here we derive the bound on the model averaging
asymptotic bias given in Eq. (16). For a general discussion
of asymptotic bias and the relevant notation, see Sec. II B.
First, it will be useful to introduce some new notation
for this appendix. Specifically, dependencies on the
sample size will be shown explicitly with a subscript N.
When the subscript N is absent, this denotes the asymptotic
value (e.g., A≡ limN→∞ AN is the asymptotic value for a
sequence of sample estimators fANgN ∈N). The one excep-
tion is the sample data fyg, for which the N dependence is
clear and the asymptotic value (a random variable drawn
from prT) is denoted by z. For simplicity, we do not
distinguish between by (finite-sample bias) and bz (asymp-
totic bias) as defined in Eqs. (13) and (14) in this appendix,
as making the N-dependence explicit is sufficient.
The bound in Eq. (16) holds (with probability 1) if the

parameter estimation procedure is consistent. The sequence
of sample estimators fXðfygÞgN ∈N of ξ is consistent if it
satisfies [27]

lim
N→∞

prðjXðfygÞ − ξj > ϵÞ ¼ 0; ðC1Þ

for any ϵ > 0. This form of consistency is also known as
weak consistency, in contrast to strong consistency where
fXðfygÞgN ∈N satisfies [93]

prð lim
N→∞

XðfygÞ ¼ ξÞ ¼ 1: ðC2Þ

Weak consistency is defined using convergence in pro-
bability whereas strong consistency is defined using
almost sure convergence. Since almost sure convergence
implies convergence in probability, strong consistency
implies weak consistency. Another related notion is con-
vergence in the sense of distributions, which is implied by
convergence in probability; convergence in probability and
convergence in the sense of distributions are equivalent if
the limiting random variable XðzÞ is a constant.
As discussed in Sec. II B, our primary goal is to remove

asymptotic bias from the model average parameter esti-
mates. For concreteness, consider the bias of a single
parameter a0 given by

bz½ha0iN � ¼ Ez½ha0iN � − a�0;T: ðC3Þ
By Eq. (5), we have

ha0iN ¼ a�0;T;NprðMTjfygÞ þ
X
μ≠T

a�0;μ;NprðMμjfygÞ; ðC4Þ

where prðMμjfygÞ satisfy Eq. (15).
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We wish to derive a bound on bz½ha0iN � in terms of the asymptotic bias in the model weights. To that end, observe that

jbz½ha0iN �j ¼ jEz½ha0iN � − a�0;Tj ðC5Þ

¼
����X

μ

fEz½a�0;μ;NprðMμjfygÞ − a�0;μprðMμjzÞ�g
���� ðC6Þ

¼
����X

μ

fEz½ða�0;μ;N − a�0;μÞprðMμjfygÞ� þ a�0;μbz½prðMμjfygÞ�g
���� ðC7Þ

≤
X
μ

fjEz½ða�0;μ;N − a�0;μÞprðMμjfygÞ�j þ ja�0;μjjbz½prðMμjfygÞ�jg: ðC8Þ

Let ϵ > 0 and observe that

jEz½ða�0;μ;N − a�0;μÞprðMμjfygÞ�j ¼
����
Z

dFMT
ðzÞða�0;μ;N − a�0;μÞprðMμjfygÞ

���� ðC9Þ

≤
Z

dFMT
ðzÞja�0;μ;N − a�0;μjprðMμjfygÞ ðC10Þ

≤
Z

dFMT
ðzÞja�0;μ;N − a�0;μj ðC11Þ

¼
Z
ΩN;ϵ

dFMT
ðzÞja�0;μ;N − a�0;μj

þ
Z
Ωc

N;ϵ

dFMT
ðzÞja�0;μ;N − a�0;μj ðC12Þ

≤ ka�0;μ;N − a�0;μkL∞ðΩN;ϵÞFMT
ðΩN;ϵÞ

þ ka�0;μ;N − a�0;μkL∞ðΩc
N;ϵÞ

FMT
ðΩc

N;ϵÞ; ðC13Þ

where ΩN;ϵ ¼ fz∈Rd∶ ja�0;μ;N − a�0;μj ≤ ϵg and Ωc
N;ϵ ¼ fz∈Rd∶ ja�0;μ;N − a�0;μj > ϵg is its complement. In Eq. (C13),

k…kL∞ðΩÞ denotes the L∞-norm with respect to the true probability measure FMT
ðzÞ [defined in Eq. (17)] on the set Ω, i.e.,

kfkL∞ðΩÞ ≡ inffM∈R∶jfðΩÞj ≤ M almost surely with respect toFMT
ðzÞg ðC14Þ

¼ ess supz∈ΩðjfðzÞjÞ; ðC15Þ

where “ess sup” denotes the essential supremum with respect to FMT
ðzÞ. For simplicity, we have also adopted the notation

that the measure of a set Ω is denoted by

FMT
ðΩÞ≡

Z
Ω
dFMT

ðzÞ: ðC16Þ

To proceed, we assume the parameter estimation procedure is weakly consistent, i.e.,

lim
N→∞

prðja�0;μ;N − a�0;μj > ϵÞ ¼ 0: ðC17Þ

This will be true for, say, least-squares regression, which is in fact strongly consistent in some cases [94,95]. It follows from
this assumption that, in the large N limit, ΩN;ϵ has unit measure and Ωc

N;ϵ has measure zero. Therefore,

lim
N→∞

jEz½ða�0;μ;N − a�0;μÞprðMμjfygÞ�j ≤ lim
N→∞

ka�0;μ;N − a�0;μkL∞ðΩN;ϵÞ ≤ ϵ: ðC18Þ
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Taking ϵ arbitrarily small, Eq. (C8) gives the following bound on the asymptotic bias:

jbz½ha0i�j ¼ lim
N→∞

jbz½ha0iN �j ≤
X
μ

ja�0;μj limN→∞
jbz½prðMμjfygÞ�j ðC19Þ

¼
X
μ

ja�0;μjjbz½prðMμjzÞ�j; ðC20Þ

which holds with probability 1. Using Eq. (5), a similar
argument holds for hfðaÞi giving the bound in Eq. (16).
While this derivation seems rather technical, it is related

to Hölder’s inequality [45]:����
Z
Ω
dμfg

���� ≤ kfkLpðΩÞkgkLqðΩÞ; ðC21Þ

where ðΩ;S; μÞ is a measure space (S being some
σ-algebra on Ω), fg∈L1ðΩÞ, f∈LpðΩÞ, and g∈LqðΩÞ
with respect to μ. We have assumed that 1 ≤ p; q ≤ ∞
satisfy 1=pþ 1=q ¼ 1 (i.e., p and q are Hölder con-
jugates); “1=∞” is defined as zero in this context.
We are able to achieve a somewhat sharper bound
on jEz½ða�0;μ;N − a�0;μÞprðMμjfygÞ�j using the fact that
prðMμjfygÞ is bounded between zero and one and assum-
ing consistency (along with partitioning Ω as above).

APPENDIX D: FORMULAS FOR THE LEAST
SQUARES PAIC

In this appendix, we discuss approximations to
Eq. (80)—the PAIC for least-squares regression—in the
various cases of interest and the practical complications
that arise.
Similarly to the BPIC in Sec. IV D and the PPIC in

Sec. IV E, the PAIC can be approximated by

PAICμ ≈ χ̂2ða�Þ þ 1

2
ĤbaðΣ�Þab −

1

2
ĝdTcbaðΣ�

2Þabcd þ 2k;

ðD1Þ

where we have assumed that the correct model is in the
family of candidates so that tr½J−1ða�ÞIða�Þ� → k and

ĝa ≡ ∂χ̂2

∂aa

����
a¼a�

; Ĥab ≡ ∂
2χ̂2

∂aa∂ab

����
a¼a�

: ðD2Þ

One might suspect that Eq. (D1) is an NLO asymptotic
expansion in the inverse sample size N−1. However, there
are some subtleties in the power counting for nominally
Oð1Þ terms 1

2
ĤbaðΣ�Þab and − 1

2
ĝdTcbaðΣ�

2Þabcd. First,
note that

1

2
tr½ĤΣ�� ¼ tr

��
Σ�−1 −

1

2
H̃

�
Σ�

�
¼ k −

1

2
tr½H̃Σ��; ðD3Þ

where the substitution for Ĥ follows from the definition
χ2aug ¼ χ̂2 þ χ̃2 and from Eq. (69). So, we see that the
second term in Eq. (D1) includes an OðN−1Þ contribu-
tion − 1

2
H̃baðΣ�Þab.

Second, a� is chosen so that the gradient of χ2augðaÞ
vanishes. It follows that −ĝ ¼ g̃, and thus

−
1

2
ĝdTcbaðΣ�

2Þabcd ¼
1

2
g̃dTcbaðΣ�

2Þabcd; ðD4Þ

giving rise to another OðN−1Þ term.
Therefore,

PAICμ ¼ χ̂2ða�Þ þ 3kþOðN−1Þ: ðD5Þ

In applying Laplace’s method to Eq. (80)—an integral with
OðNÞ integrand—we have already neglected someOðN−1Þ
terms [cf. Eq. (E6)]. So, we again must neglect the OðN−1Þ
terms in order to maintain a consistent Oð1Þ asymptotic
expansion giving

PAICμ ≈ χ̂2ða�Þ þ 3k: ðD6Þ

The corresponding superasymptotic expansion is

PAICμ ≈
�
χ̂2ða�Þ þ 3k; k < χ̂2ða�Þ;
χ̂2ða�Þ þ 2k; otherwise;

ðD7Þ

which should be used for nonlinear least squares. For linear
least squares, the NLO expansion is exact and Eq. (D1) can
be used (with T ¼ 0), which is also identical to the form of
the BPIC in Eq. (131).
For data subset selection, the derivation is similar to that

of the BPIC in Sec. V; the PAIC is modified simply by the
addition of a factor of 3dC for the cut portion of the data, i.e.

PAICμ;P ¼ PAICμ þ 3dC ðD8Þ

with PAICμ given by the superasymptotic formula in
Eq. (D7). For use in model averaging, Eq. (11) applies.

APPENDIX E: LAPLACE’S METHOD AND
GAUSSIAN INTEGRAL FORMULAS

Here we summarize the derivation of the NLO Laplace
approximation applied to the integrals needed for the
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various information criteria appearing in the body of
the paper in the case of least squares. A more rigorous
treatment of Laplace method can be found in many texts on
asymptotics [96,97], and generalizations appear in the
asymptotics literature [50].
Here we consider integrals of the form

I ½ψ � ¼
Z

da exp

�
−
1

2
χ2augðaÞ

�
ψðaÞ: ðE1Þ

In the limit of large sample size, χ2augðaÞ ¼ OðNÞ. In the
N → ∞ limit, the integrand becomes sharply peaked about
the best-fit parameter a� ¼ argminaχ2augðaÞ. Assuming for
simplicity that a� is on the interior of the parameter space

(as is the case for the examples considered above), the
integral becomes localized to Bϵða�Þ ¼ fa∶ka − a�k < ϵg,
the ball of radius ϵ > 0 centered at a�:

I ½ψ � ≈
Z
a∈Bϵða�Þ

da exp

�
−
1

2
χ2augðaÞ

�
ψðaÞ: ðE2Þ

Assuming ϵ is small, we can use truncated Taylor expan-
sions about ka − a�k ¼ 0. To obtain the leading-order
integral expansion, we would Taylor expand χ2aug and ψ
to Oðka − a�k2Þ and Oðka − a�k0Þ, respectively (see [26]
for example). For the NLO integral expansion, we need
to include two more terms in both Taylor expansions
(cf. [96,97]):

χ2augðaÞ ¼ χ2augða�Þ þ ðΣ�−1Þbaδaδb þ Tcbaδaδbδc þ Fdcbaδaδbδcδd þOðkδk5Þ; ðE3Þ

ψðaÞ ¼ ψða�Þ þ gaδa þ
1

2
Hbaδaδb þOðkδk3Þ; ðE4Þ

where δ≡ a − a�, the inverse parameter covariance matrix Σ� is defined in Eq. (69), and the remaining tensors T, F, g, H
are defined in Eq. (71) and (72). Substituting Eq. (E3) and (E4) into Eq. (E2) gives

I ½ψ � ≈
Z
δ∈Bϵð0Þ

dδ exp

�
−
1

2
ðχ2augða�Þ þ ðΣ�−1Þbaδaδb þ Tcbaδaδbδc þ FdcbaδaδbδcδdÞ

�

×

�
ψða�Þ þ gaδa þ

1

2
Hbaδaδb

�
ðE5Þ

≈
Z
δ∈Bϵð0Þ

dδ exp

�
−
1

2
ðχ2augða�Þ þ ðΣ�−1ÞbaδaδbÞ

�

×

�
ψða�Þ þ 1

2
Hbaδaδb −

1

2
gdTcbaδaδbδcδd −

1

2
ψða�ÞFdcbaδaδbδcδd

þ 1

8
ψða�ÞTfedTcbaδaδbδcδdδeδf

�
; ðE6Þ

where the second approximation is obtained by Taylor expanding the highest order terms of the exponential
exp ½− 1

2
ðTcbaδaδbδc þ FdcbaδaδbδcδdÞ� about δ ¼ 0, neglecting terms that only contribute to NNLO, and omitting odd

terms that do not contribute to the integral. Again using the fact that the integral is sharply peaked about δ ¼ 0 in the
N → ∞ limit, expanding the domain of integral to all of Rk introduces only a small error. After doing so, we are left with

I ½ψ � ≈
Z
Rk

dδ exp

�
−
1

2
ðχ2augða�Þ þ ðΣ�−1ÞbaδaδbÞ

�

×

�
ψða�Þ þ 1

2
Hbaδaδb −

1

2
gdTcbaδaδbδcδd −

1

2
ψða�ÞFdcbaδaδbδcδd

þ 1

8
ψða�ÞTfedTcbaδaδbδcδdδeδf

�
: ðE7Þ

After extending the domain, each term of the integral is proportional to one of the following Gaussian integrals:

Z
Rk

dδ exp

�
−
1

2
ðΣ�−1Þbaδaδb

�
¼ ð2πÞk=2ðdetΣ�Þ1=2; ðE8Þ
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Z
Rk

dδ exp

�
−
1

2
ðΣ�−1Þbaδaδb

�
δaδb ¼ ð2πÞk=2ðdetΣ�Þ1=2ðΣ�Þab; ðE9Þ

Z
Rk

dδ exp

�
−
1

2
ðΣ�−1Þbaδaδb

�
δaδbδcδd ¼ ð2πÞk=2ðdetΣ�Þ1=2ðΣ�

2Þabcd; ðE10Þ

Z
Rk

dδ exp

�
−
1

2
ðΣ�−1Þbaδaδb

�
δaδbδcδdδeδf ¼ ð2πÞk=2ðdetΣ�Þ1=2ðΣ�

3Þabcdef; ðE11Þ

where the high-order contractions of the covariance matrix are defined in Eq. (70). Using these integral identities, we
obtain Eq. (68):

I ½ψ � ≈ ð2πÞk=2jΣ�j1=2 exp
�
−
1

2
χ2augða�Þ

�

×

�
ψða�Þ þ 1

2
HbaðΣ�Þab −

1

2
gdTcbaðΣ�

2Þabcd −
1

2
ψða�ÞFdcbaðΣ�

2Þabcd

þ 1

8
ψða�ÞTfedTcbaðΣ�

3Þabcdef
�
: ðE12Þ

We will also need to consider the case were I ½ψ � is normalized by I ½1�:

I ½ψ �
I ½1� ¼

R
da exp ½− 1

2
χ2augðaÞ�ψðaÞR

da exp ½− 1
2
χ2augðaÞ�

: ðE13Þ

To approximate ratios such as this, we first apply the NLO Laplace approximation Eq. (E12) to both the numerator and
denominator to obtain

I ½ψ �
I ½1� ≈

ψða�Þ þ 1
2
HΣ� − 1

2
gTΣ�

2 − 1
2
ψða�ÞFΣ�

2 þ 1
8
ψða�ÞTTΣ�

3

1 − 1
2
FΣ�

2 þ 1
8
TTΣ�

3

; ðE14Þ

where tensor indices are suppressed for simplicity. By the tensor power counting summarized at the end of Sec. IV C, we
can expand the denominator as a geometric series; this expansion will maintain the same order of accuracy and is known in
the probability literature [51]. Keeping enough terms to maintain an overall NLO approximation, we obtain

I ½ψ �
I ½1� ≈

�
ψða�Þ þ 1

2
HΣ� −

1

2
gTΣ�

2 −
1

2
ψða�ÞFΣ�

2 þ
1

8
ψða�ÞTTΣ�

3

��
1þ 1

2
FΣ�

2 −
1

8
TTΣ�

3

�
ðE15Þ

≈ ψða�Þ
�
1þ 1

2
FΣ�

2 −
1

8
TTΣ�

3

�
þ 1

2
HΣ� −

1

2
gTΣ�

2 −
1

2
ψða�ÞFΣ�

2 þ
1

8
ψða�ÞTTΣ�

3 ðE16Þ

¼ ψða�Þ þ 1

2
HbaðΣ�Þab −

1

2
gdTcbaðΣ�

2Þabcd; ðE17Þ

where we have restored the indices in the last line.
Outside the context of the Laplace method, we also make use of some additional Gaussian integrals in the exact treatment

of perfect model KL divergences in Sec. V. Consider an integral of the following form:

J 1 ≡
Z
Rk

da exp

�
−
1

2
ðμ0 − aÞTðΣ−1

0 Þðμ0 − aÞ
�
ðμ1 − aÞTΣ−1

1 ðμ1 − aÞ: ðE18Þ

Defining the change of variables

δ≡ a − μ0; ðE19Þ
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ξ≡ μ0 − μ1; ðE20Þ
we can rewrite the integral as

J 1 ¼
Z
Rk

dδ exp

�
−
1

2
ðΣ−1

0 Þbaδaδb
�
ðΣ−1

1 Þbaðδþ ξÞaðδþ ξÞb: ðE21Þ

Using the Gaussian integral formulas above to simplify gives the result:

J 1 ¼ ð2πÞk=2ðdetΣ0Þ1=2ðξTΣ−1
1 ξþ tr½Σ0Σ−1

1 �Þ: ðE22Þ
We need one more additional integral:

J 2 ≡
Z
Rk

da exp

�
−
1

2
ðμ0 − aÞTðΣ−1

0 Þðμ0 − aÞ − 1

2
ðμ1 − aÞTðNΣ0Þ−1ðμ1 − aÞ

�
: ðE23Þ

where N is an integer. Applying the same change of variables as above and gathering terms, we have

J 2 ¼
Z
Rk

dδ exp

�
−
1

2

�
N þ 1

N
Σ−1
0

�
ba
δaδb −

1

2N
ðΣ−1

0 Þbaðξaξb þ ξaδb þ δaξbÞ
�
: ðE24Þ

We change variables again to δ0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN þ 1Þ=Np
δ to absorb the extra factor in the first term. Pulling the δ-independent

exponential factor out front, we then have

J 2 ¼ e−ξ
TΣ−1

0
ξ=ð2NÞ

�
N

N þ 1

�
k=2

Z
Rk

dδ0 exp

"
−
1

2
ðΣ−1

0 Þbaδ0aδ0b −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NðN þ 1Þ

s
ðΣ−1

0 Þbaðξaδ0b þ δ0aξbÞ
#

ðE25Þ

¼ e−ξ
TΣ−1

0
ξ=ð2NÞ

�
N

N þ 1

�
k=2

ð2πÞk=2ðdetΣ0Þ1=2 exp
�

1

2NðN þ 1Þ ξ
TΣ−1

0 ξ

�
ðE26Þ

or simplifying,

J 2 ¼
�

N
N þ 1

�
k=2

ð2πÞk=2ðdetΣ0Þ1=2 exp
�
−

1

2ðN þ 1Þ ξ
TΣ−1

0 ξ

�
: ðE27Þ

APPENDIX F: ALTERNATIVE DERIVATIONS
FOR DATA SUBSET SELECTION

In this appendix, we give an alternative derivation for the
data subset selection formulas given in Sec. V that uses
the partition of data and the least-squares ICs rather than
computing the KL divergences directly.
In the case of least-squares regression with correct model

specification, the BPIC and PPIC (before the integral
approximations) are given by

BPICμ ¼ χ2augða�Þ −
R
da exp ½− 1

2
χ2augðaÞ�χ̃2ðaÞR

da exp ½− 1
2
χ2augðaÞ�

þ 3k;

ðF1Þ

PPICμ ¼ −2
XN
i¼1

log

R
da exp ½− 1

2
ðχ2augðaÞ þ χ2i ðaÞÞ�R

da exp ½− 1
2
χ2augðaÞ�

þ 2k:

ðF2Þ

For data selection, k → kþ dC, to account for the addi-
tional dC parameters for the “perfect” model as before. We
now must understand how the chi-squared functions and
integrals transform as well.
As described in the main body in Sec. V, we partition the

χ2 functions into kept, cut, and off-block-diagonal pieces:

χ̂2ðaÞ ¼ ðȳ − ϕM;PðaÞÞTΣ̂−1ðȳ − ϕM;PðaÞÞ ðF3Þ

¼
�

ȳC − aC
ȳK − fMðaKÞ

�T� ðΣ̂−1ÞC ðΣ̂−1ÞO
ðΣ̂−1ÞTO ðΣ̂−1ÞK

�

×

�
ȳC − aC

ȳK − fMðaKÞ

�
ðF4Þ

≡ χ̂2CðaCÞ þ χ̂2KðaKÞ þ 2χ̂2OðaC; aKÞ; ðF5Þ

where
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χ̂2CðaCÞ≡ ðȳC − aCÞTðΣ̂−1ÞCðȳC − aCÞ; ðF6Þ

χ̂2KðaKÞ≡ðȳK−fMðaKÞÞTðΣ̂−1ÞKðȳK−fMðaKÞÞ; ðF7Þ

χ̂2OðaC; aKÞ≡ ðȳC − aCÞTðΣ̂−1ÞOðȳK − fMðaKÞÞ ðF8Þ

¼ ðȳK − fMðaKÞÞTðΣ̂−1ÞTOðȳC − aCÞ: ðF9Þ

Similarly, we define

χ2K;iðaKÞ≡ ðyK;i − fMðaKÞÞTðΣ−1ÞKðyK;i − fMðaKÞÞ;
ðF10Þ

χ2C;iðaCÞ≡ ðyC;i − aCÞTðΣ−1ÞCðyC;i − aCÞ; ðF11Þ

χ2O;iðaC; aKÞ≡ ðyC;i − aCÞTðΣ−1ÞOðyK;i − fMðaKÞÞ: ðF12Þ

Furthermore,

χ̃2ðaÞ ¼ ðaC − ȳCÞTΣ̃−1
C ðaC − ȳCÞ þ ðaK − ãÞTΣ̃−1

K ðaK − ãÞ
≡ χ̃2CðaCÞ þ χ̃2KðaKÞ; ðF13Þ

where Σ̃−1 ¼ diagðΣ̃−1
C ; Σ̃−1

K Þ by construction. It follows
that

χ2augðaÞ ¼ χ2C;augðaCÞ þ χ2K;augðaKÞ þ 2χ̂2OðaC; aKÞ; ðF14Þ

where χ2C;aug and χ2K;aug are defined analogously to Eq. (63)
with the cut and kept statistics, respectively. We note for
later use that χ̂2CðȳCÞ, χ̃2CðȳCÞ, χ2C;augðȳCÞ, and χ̂2OðȳC; aKÞ
vanish identically (for all aK).
With these definitions, the information criteria become

BPICμ;P ¼ −
R
daCdaK exp ½− 1

2
ðχ2K;aug þ χ2C;aug þ 2χ̂2OÞ�ðχ̃2K þ χ̃2CÞR

daCdaK exp ½− 1
2
ðχ2K;aug þ χ2C;aug þ 2χ̂2OÞ�

þ χ2K;augða�KÞ þ 3ðkþ dCÞ; ðF15Þ

PPICμ;P ¼ −2
XN
i¼1

log

R
daCdaK exp ½− 1

2
ðχ2K;aug þ χ2C;aug þ 2χ̂2O þ χ2K;i þ χ2C;i þ 2χ2i;OÞ�R

daCdaK exp ½− 1
2
ðχ2K;aug þ χ2C;aug þ 2χ̂2OÞ�

þ 2ðkþ dCÞ; ðF16Þ

where we have suppressed the arguments of the χ2

functions in the integrands for simplicity.
As in the main body, here we assume that the off-block-

diagonal elements of the sample covariance Σ̂O are small
(in the sense of induced operator norm) relative to the
on-block-diagonal elements Σ̂C and Σ̂K. It follows from
this approximation that χ2i;C; χ

2
i;K ≫ χ2i;O and χ̂2C; χ̂

2
K ≫ χ̂2O.

Therefore,

BPICμ;P ≈ χ2K;augða�KÞ −
R
daK exp ½− 1

2
χ2K;aug�χ̃2KR

daK exp ½− 1
2
χ2K;aug�

þ 3k

−
R
daC exp ½− 1

2
χ2C;aug�χ̃2CR

daC exp ½− 1
2
χ2C;aug�

þ 3dC; ðF17Þ

PPICμ;P ≈−2
XN
i¼1

log

R
daK exp ½− 1

2
ðχ2K;aug þ χ2K;iÞ�R

daK exp ½− 1
2
χ2K;aug�

þ 2k

− 2
XN
i¼1

log

R
daC exp ½− 1

2
ðχ2C;aug þ χ2C;iÞ�R

daC exp ½− 1
2
χ2C;aug�

þ 2dC:

ðF18Þ
The “K” integrals can be approximated using the NLO

Laplace approximation as in the previous sections, leading
to the same IC formulas that we found previously over
the kept data, but with a subtle difference: the inverse
covariancematrix appearing in χ̂2K is the sub-block of the full

inverse matrix ðΣ̂−1ÞK, as opposed to the inverse of the sub-
block covariance matrix ðΣ̂KÞ−1. Under our block-diagonal
assumption Σ−1 ≈ diagðΣ−1

K ;Σ−1
C Þ, these matrices are iden-

tical; even when off-diagonal correlations are present, the
inverse of the sub-block is often used in practice to define χ̂2K.
For further discussion of this point, see Sec. V.
Wewill also compute the “C” integrals using our Laplace

approximation formulas, but since we can takeMperf;μ to be
linear (e.g., a polynomial of degree dC − 1), the BPIC
formula will be exact; the PPIC is not exact here, but the
result in Sec. V is exact. Beginning with the BPIC, we have
the result R

daC exp ½− 1
2
χ2aug;C�χ̃2CR

daC exp ½− 1
2
χ2aug;C�

¼ tr½Σ̃−1
C Σ�

C�; ðF19Þ

taking Σ� ≈ diagðΣ�
K;Σ�

CÞ which follows from our
assumption that Σ−1 ≈ diagðΣ−1

K ;Σ−1
C Þ. Since we are work-

ing in the limit of infinitely diffuse priors over the cut data,
we have ðΣ�

CÞ−1 ¼ Σ̂−1
C þ Σ̃−1

C → Σ̂−1
C , and thus

tr½Σ̃−1
C Σ�

C� → tr½Σ̃−1
C Σ̂C� → 0: ðF20Þ

So the only additional contribution to the BPIC for data
subset selection is a penalty term of þ3dC. We turn next to
the PPIC, where the Laplace approximation formula gives
us the result:
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XN
i¼1

log

R
daC exp ½− 1

2
ðχ2aug;C þ χ2C;iÞ�R

daC exp ½− 1
2
χ2aug;C�

¼
XN
i¼1

log

�
1þ 1

2
tr

��
1

4
ðgCiÞðgC;iÞT −

1

2
HC;i

�
Σ�
C

��
: ðF21Þ

In summary, the ICs (up to constant terms) for data subset selection are

BAICμ;P ¼ χ̂2ða�Þ þ 2kþ 2dC; ðF22Þ

BPICμ;P ≈ χ̂2ða�Þ − 1

2
H̃baðΣ�Þab þ

1

2
g̃dTcbaðΣ�

2Þabcd þ 3kþ 3dC; ðF23Þ

PPICμ;P ≈ χ̂2ða�Þ þ 2kþ 2

�
1þ 1

2N

�
dC

− 2
XN
i¼1

log

�
1þ 1

2

�
1

4
ðgiÞbðgiÞa −

1

2
ðHiÞba

�
ðΣ�Þab þ

1

4
ðgiÞdTcbaðΣ�

2Þabcd
�
; ðF24Þ

where we have dropped all “K” subscripts.
It is worth noting that the PPIC in Eq. (F24) disagrees

with Eq. (127) even to OðN−1Þ. This disagreement comes
from higher-order terms in the bias correction of the PPIC
on the perfect model. By computing the KLC exactly, the
result in Eq. (127) accounts for these corrections where as
Eq. (F24) does not. Studying higher-order corrections to IC
bias could be an interesting direction for future work.

APPENDIX G: RELEVANT DERIVATIVES

In this appendix, we give expressions for the relevant
derivative tensors used in Sec. VI. Wewrite these in terms of
derivatives of the model function fðaÞ (with the model index
μ suppressed), whichwe calculated using auto-differentiation

(specifically using the Python package JAX [98]) to obtain the
results in Sec. VI. For brevity, we only give expressions for
derivatives for χ2aug, as theother relevant derivatives (i.e., those
of χ̃2, χ̂2, and χ2i ) can be deduced from

χ2augðaÞ ¼ χ̃2ðaÞ þ χ̂2ðaÞ ¼ χ̃2ðaÞ þ
XN
i¼1

χ2i ðaÞ − ðN − 1Þd:

ðG1Þ
The derivative tensors are written in index summation
notation where indices at the beginning of the (roman)
alphabet (i.e., a, b, c, d) denote parameter dimensions and
at the end of the alphabet (i.e., x, y) data dimensions. The
expressions are as follows:

χ2aug ¼ ða − ãÞaðΣ̃−1Þabða − ãÞb þ ðȳ − fÞxðΣ̂−1Þxyðȳ − fÞy; ðG2Þ

∂χ2aug
∂aa

¼ 2

�
ðΣ̃−1Þabða − ãÞb −

�
∂f
∂aa

�
x
ðΣ̂−1Þxyðȳ − fÞy

�
; ðG3Þ

∂
2χ2aug

∂aa∂ab
¼ 2

�
ðΣ̃−1Þab −

�
∂
2f

∂aa∂ab

�
x
ðΣ̂−1Þxyðȳ − fÞy þ

�
∂f
∂aa

�
x
ðΣ̂−1Þxy

�
∂f
∂ab

�
y

�
; ðG4Þ

∂
3χ2aug

∂aa∂ab∂ac
¼ 2

�
−
�

∂
3f

∂aa∂ab∂ac

�
x
ðΣ̂−1Þxyðȳ − fÞy þ

�
∂
2f

∂aa∂ab

�
x
ðΣ̂−1Þxy

�
∂f
∂ac

�
y

þ
�

∂
2f

∂aa∂ac

�
x
ðΣ̂−1Þxy

�
∂f
∂ab

�
y
þ
�

∂
2f

∂ab∂ac

�
x
ðΣ̂−1Þxy

�
∂f
∂aa

�
y

�
: ðG5Þ

Note that we omit ð∂4χ2augÞ=ð∂aa∂ab∂ac∂adÞ as it cancels to NLO in any case (see Sec. IV D for details).
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