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We discuss the analytic continuation of scaling function in the three-dimensional Zð2Þ, Oð2Þ and Oð4Þ
universality classes using the Schofield representation of the magnetic equation of state. We show that
a determination of the location of Lee-Yang edge singularities and, in the case of Zð2Þ, also the Langer
edge singularity yields stable results. Results for the former are in good agreement with functional
renormalization group calculations. We also present results for the location of the Langer edge singularity
in the 3d, Zð2Þ universality class. We find that in terms of the complex scaling variable z the distance of the
Langer edge singularity to the critical point agrees within errors with that of the Lee-Yang edge singularity.
Furthermore the magnitude of the discontinuity along the Langer branch cut is an order of magnitude
smaller than that along the Lee-Yang branch cut.
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I. INTRODUCTION

In the vicinity of a phase transition point the universal
critical behavior of thermodynamic observables is para-
metrized in terms of scaling functions. In studies of the phase
structure of the theory of strong-interactions, quantum
chromodynamics (QCD), scaling functions in the 3d,
Zð2Þ,Oð2Þ andOð4Þ universality classes play an important
role. In particular, when studying QCD at nonzero temper-
ature and with nonvanishing chemical potentials that are the
external control parameters for the presence of nonvanishing
conserved charge densities, the Oð4Þ universality class
controls properties of QCD in the chiral limit while the
Zð2Þ universality class controls the critical behavior in the
vicinity of the so-called critical endpoint that is expected to
exist for large values of the baryon chemical potential [1–3].
When analyzing the phase structure of QCD on discrete
space-time lattices parts of the global symmetries are broken
explicitly and smaller symmetry groups, e.g. Oð2Þ, start
playing a role.
In QCD with real, nonvanishing chemical potentials the

direct application of numerical methods fails because the
integrand of the path integral, defining the QCD partition
function, becomes complex. One tries to circumvent this
problem by either performing numerical calculations with
imaginary chemical potentials [4,5] or by using Taylor

series expansions [6–8], which are set up at vanishing
values of the chemical potential. In both cases it is of
importance to understand the analytic structure of the QCD
partition function and get control over the location of
singularities in the complex plane that hamper analytic
continuations on the one hand and limit the radius of
convergence of Taylor series on the other hand. This has
led to recent interest in the analysis of analytic properties
of the universal scaling functions [9,10] in universality
classes that are of relevance for studies of the QCD phase
diagram [11–19].
Scaling functions, which describe the singular, univer-

sal part of thermodynamic observables, e.g. the order
parameter (M) and its derivatives with respect to temper-
ature T or external field parameter H, are commonly
parametrized as function of the real scaling variable
z ¼ z0H−1=βδðT − TcÞ=Tc.
Prominent features of the analytically continued scaling

functions in the complex z plane are the occurrence of edge
singularities that mark the endpoint of branch cuts. In
the Zð2Þ universality class these are the Lee-Yang edge
singularity [9,10] and the so-called Langer edge singu-
larity [20]. In fact, these singularities are expected to be
closest to the origin and thus limit the radius of con-
vergence of Taylor series. Both singularities have been
discussed extensively [11,12]. While the phase of the
associated cuts in the plane of complex valued scaling
variable z is rigorously known to be ϕLY ¼ π=2βδ for the
Lee-Yang cut and ϕLan ¼ πð1 − 1=βδÞ for the Langer cut,
the absolute values of the Lee-Yang edge singularity has
only been determined recently in functional renormaliza-
tion group (FRG) calculations [21,22].
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Rather than using ðT;HÞ for the parametrization of
thermodynamical observables another set of parameters,
ðθ; RÞ, has been introduced by Schofield [23,24]. This
provides a convenient parametrization of the magnetic
equation of state [25,26], making its dependence on critical
exponents explicit. Approximations for the unknown func-
tion hðθÞ that enters this parametrization have been determ-
ined in analytic as well as numerical calculations [27,28].
In cases where the analytic form of hðθÞ is exactly known
the Schofield parametrization provides straightforwardly
an analytic continuation of the scaling functions into the
complex z-plane. This is, for instance, the case in the
mean-field approximation (MFA) as well as the N ¼ ∞
limit of the 3d, OðNÞ models. We will discuss this here.
The main goal of this work, however, is to examine the
analytic continuation of scaling functions using the
Schofield parametrization with only approximately known
functions hðθÞ as it is currently the case in the Zð2Þ and
OðNÞ universality classes. We show that a determination
of the location of Lee-Yang edge singularities in these
universality classes provides results in good agreement
with the FRG analysis [22]. Furthermore, we provide first
results for the location of the Langer edge singularity in the
analytically continued scaling functions of the 3d, Zð2Þ
universality class. We also show that the Langer and
Lee-Yang cuts can be identified, although details of the
expected analytic structure in the vicinity of these edge
singularities [9,10,12,20,29,30] can not be reproduced
when using only a truncated series expansion for the
function hðθÞ.
This paper is organized as follows. In Sec. II we

summarize basic definitions of scaling functions in 3d
universality classes and introduce their representation using
the Schofield parametrization of the magnetic equation of
state. Section III is devoted to a discussion of scaling
functions in the MFA, the large-N limit of OðNÞ models,
and theOðϵ2Þ approximation in the Zð2Þ universality class,
where the generalized linear parametric model (LPM)
provides exact results in the Schofield parametrization.
In Sec. IV we discuss our results for Lee-Yang edge and
Langer edge singularities obtained from the analytic
continuation of the Schofield representation of scaling
functions. Finally we give an outlook and conclusions in
Sec. V. Some details on the determination of the para-
metrization of scaling functions in the Zð2Þ universality
class are given in the Appendix.

II. SCALING FUNCTIONS IN THE SCHOFIELD
PARAMETRIZATION

A. Universal scaling functions

In the vicinity of a critical point the free-energy density,
fðT;HÞ, of a thermodynamic system contains a nonana-
lytic component, the so-called singular part, ffðzÞ, which is
given in terms of a particular combination of the external

control parameters, temperature (T) and symmetry break-
ing field (H),1

fðT;HÞ
T

≡ −
1

V
lnZðT;HÞ ¼ H0h1þ1=δffðzÞ þ reg; ð1Þ

with

z¼ t

h1=βδ
; h≡H=H0; t¼ t−10

T−Tc

Tc
: ð2Þ

Here the critical temperature Tc as well as the scale
parameters H0, t0 are nonuniversal parameters, whereas
the critical exponents β, δ are universal and characteristic
for different universality classes. This is also the case for
the entire scaling function ffðzÞ.
In Eq. (1) “reg.” denotes additional contributions from

regular terms that can be ignored close to the critical point.
Thermodynamic observables and their universal scaling
behavior can then be described in terms of scaling functions
that can be derived from ffðzÞ. We will consider here the
scaling behavior of the order parameter,

M ¼ −
∂f
∂H

≡ h1=δfGðzÞ; ð3Þ

and the magnetic (χh) and thermal (χt) susceptibilities,

χh ¼
∂M
∂H

¼ h1=δ−1

H0

fχðzÞ;

χt ¼ −T2
∂M
∂T

¼ −
T2

t0Tc
hðβ−1Þ=βδf0GðzÞ: ð4Þ

The scaling functions fGðzÞ and fχðzÞ are related to ffðzÞ,

fGðzÞ ¼ −
�
1þ 1

δ

�
ffðzÞ þ

z
βδ

f0fðzÞ;

fχðzÞ ¼
1

δ

�
fGðzÞ −

z
β
f0GðzÞ

�
: ð5Þ

These scaling functions have been determined in the entire
range of real z values using asymptotic expansions for large
jzj, Taylor series at small z, and Monte Carlo simulations
for small and intermediate regions that are either matched
to the asymptotic behavior [27,32,33] or have been
described in terms of the Schofield parametrization of
the magnetic equation of state [28,33]. We will introduce
the Schofield parametrization in the following subsection.

1We consider here only the leading singular behavior and
suppress universal, singular contributions from well-known,
corrections-to-scaling (see, for instance, [31]).
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B. Schofield parametrization of scaling functions

The scaling functions in the 3d, OðNÞ universality
classes, including the Zð2Þ universality class correspond-
ing to N ¼ 1, as well as the N ¼ ∞ limit, have been
determined by using ϵ-expansions and field-theoretic
methods in 3d [34–38] as well as numerically using
Monte Carlo simulations [27,32,33,39]. The scaling func-
tions obtained in analytic calculations are commonly
parametrized using the Schofield parametrization [23] of
the Widom-Griffiths (W-G) [25,26] form of the magnetic
equation of state,

M ¼ m0Rβθ; ð6Þ

t ¼ Rð1 − θ2Þ; ð7Þ
h ¼ h0RβδhðθÞ; ð8Þ

where (R, θ) denotes an alternative coordinate frame
obtained from (t, h) as defined by Eqs. (7) and (8) [23,24].
Using Eqs. (6)–(8) and comparing these with Eqs. (2)

and (3) one easily finds the relation between the scaling
functions expressed in terms of z and θ, respectively,

fGðzÞ≡ fGðθðzÞÞ ¼ θ

�
hðθÞ
hð1Þ

�
−1=δ

; ð9Þ

zðθÞ ¼ 1 − θ2

θ20 − 1
θ1=β0

�
hðθÞ
hð1Þ

�
−1=βδ

: ð10Þ

Aside from an explicit dependence on the universal critical
exponents, ðβ; δÞ, scaling functions then depend on the
function hðθÞ, which usually is represented by a poly-
nomial in θ, containing only odd powers of θ. The function
hðθÞ is positive in the interval 0 < θ < θ0, with θ0 > 1
denoting its first positive real zero. The real z-axis is
mapped onto the interval 0 < θ < θ0. Obviously, θ ¼ 1
corresponds to z ¼ 0, θ ¼ θ0 corresponds to z ¼ −∞, and
θ ¼ 0 corresponds to z ¼ ∞.
The prefactors as well as the normalization with hð1Þ,

appearing in Eqs. (9) and (10), arise from the scale
parameters m0 and h0 which can be chosen such that
the conventional normalizations for the scaling functions
hold; i.e. fG ¼ 1 at z ¼ 0 and fG=ð−zÞβ → 1 for z → −∞.
This leads to the choice [28],

m0¼
ðθ20−1Þβ

θ0
; h0 ¼

mδ
0

hð1Þ : ð11Þ

The function hðθÞ then provides a parametrization of
the magnetic equation of state. Using Eqs. (6)–(8) and (11)
we find

Mδ=h ¼ θδ
hð1Þ
hðθÞ : ð12Þ

Using Eqs. (9) and (10) we also obtain f0GðzÞ as

f0GðzÞ≡dfGðθðzÞÞ
dz

¼dfG
dθ

=dz
dθ

¼−
ðθ20−1ÞðβδhðθÞ−βθh0ðθÞÞ

θ1=β0 ð2βδθhðθÞ−ðθ2−1Þh0ðθÞÞ

�
hðθÞ
hð1Þ

�1−β
βδ

: ð13Þ

With this the scaling function of the magnetic susceptibil-
ity, defined in Eq. (5), is given by

fχðzÞ ¼
ðð2β − 1Þθ2 þ 1Þhð1Þ

2βδθhðθÞ − ðθ2 − 1Þh0ðθÞ
�
hðθÞ
hð1Þ

�
1−1=δ

: ð14Þ

C. Analytic continuation of the
scaling functions

For real values of z the scaling functions fχðzÞ and f0GðzÞ
are finite and vanish in the limit z → �∞. In the Schofield
parametrization they thus vanish at θ ¼ 0 and θ ¼ θ0. For
complex values of θ they, however, develop singularities,
which are endpoints of cuts in the complex plane. The
locations of these edge singularities are obtained as
solutions of

0 ¼ dzðθÞ
dθ

⇔ 0 ¼ 2βδθhðθÞ − ðθ2 − 1Þh0ðθÞ: ð15Þ

Well-known singularities in the complex z-plane refer to
the Lee-Yang edge singularities [9,10] and the Langer edge
singularity [20,40],

zLY ¼ jzLY jeiϕLY ; ϕLY ¼ π=2βδ; ð16Þ

zLan¼ jzLanjeiϕLan ; ϕLan¼ πð1−1=βδÞ; ð17Þ

where the phases ϕLY and ϕLan give the orientation of cuts
in the complex z-plane.
We want to extract here information on the location of

these singularities using an analytic continuation of the
Schofield parametrization with input for the functions hðθÞ
that has been obtained for different universality classes and
real values of θ. As the mapping z ⇔ θ is in general not
unique, we will determine the region in the complex θ-
plane that provides a unique mapping between z and θ and
is connected to the real interval 0 ≤ θ ≤ θ0 onto which the
real z-axis is mapped. We do so by following lines of
complex z values with constant phase,

zðθÞ≡ jzjeiϕ; −π ≤ϕ< π: ð18Þ

All these lines start at θ ¼ 1, which corresponds to jzj ¼ 0,
and will end in points θn that correspond to zeros of the
function hðθÞ. In particular, we note that hðθÞ may change
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sign at θ0 and become negative for real θ in an interval
θ0 < θ < θ1, with θ1 denoting a possibly existing second
real zero of the function hðθÞ. In this interval one finds
from Eq. (10) that z becomes complex with a phase
ArgðzÞ ¼ �πð1 − 1=βδÞ. On the other hand, points on
the imaginary θ-axis correspond to complex z values with
phase ArgðzÞ ¼ �π=2βδ. Certain θ intervals on the real and
imaginary θ-axis thus have phases corresponding to those
of the Langer and Lee-Yang cuts, respectively. However,
we note that Eq. (18) implies that also in the complex
θ-plane lines exist on which the corresponding z-values
have these phase values. We will discuss implications for
the location of edge singularities in the complex θ-plane in
the following sections.

III. ANALYTIC CONTINUATION
OF THE (GENERALIZED)

LINEAR PARAMETRIC MODEL

Approximations for the function hðθÞ, which is an odd
function of θ [12], have been derived as polynomials
in θ [34,38]. To order θ3 this function depends on a single
parameter (θ0), which gives the only nontrivial zero of
hðθÞ. Having θ0 > 1 ensures that the real z-axis can be
mapped onto the interval 0 ≤ θ ≤ θ0. This is the so-called
linear parametric model (LPM) [23]. We generalize this
ansatz here to allow θ0 to be a g-fold zero. In the following
we will discuss the two cases,

hðθÞ ¼ θð1 − ðθ=θ0Þ2Þg; g ¼ 1; 2; ð19Þ

which arise as exact results for the function hðθÞ in mean-
field calculations (g ¼ 1) and in the N ¼ ∞ limit of 3d,
OðNÞ models (g ¼ 2). Moreover, the LPM ansatz with
(g ¼ 1) also gives the exact result for hðθÞ in the 3d, Zð2Þ
universality class when calculated to Oðϵ2Þ in a systematic
ϵ-expansion [41,42]. We will discuss these cases in the
following two subsections.

A. Mean-field approximation and
large-N limit of OðNÞ models

In the MFA as well as in the ðN ¼ ∞Þ limit of models in
the 3d, OðNÞ universality class the scaling function fGðzÞ
obeys a simple relation [43],

fGðzþ f2GÞg ¼ 1; ð20Þ

with g ¼ 1 in mean-field models and g ¼ 2 in the ðN ¼ ∞Þ
limit. This equation can easily be solved for g ¼ 1,

fGðzÞ ¼
21=3ð9þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12z3 þ 81

p
Þ2=3 − 2 · 31=3z

62=3ð9þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12z3 þ 81

p
Þ1=3 ; ð21Þ

from which one derives the related susceptibility scaling
functions f0GðzÞ and fχðzÞ introduced in Eqs. (13) and (14).

This, however, is not at all straightforward to be done for
g ¼ 2. In that case the LPM approximation of the magnetic
equation of state provides an easy to handle parametrization
of fGðzÞ.
Making use of Eq. (20) and critical exponents in the

mean-field and (N ¼ ∞) universality classes,

β¼ 1

2
; δ¼

(
3; mean− field

5; N¼∞
; ð22Þ

one can determine the function hðθÞ entering the Schofield
parametrization of the scaling function fGðθðzÞÞ. We solve
Eq. (9) for hðθÞ and insert this in Eq. (10). Inserting this
result for zðθ; fGÞ in Eq. (20) yields

fG ¼
��

θ0
θ

�
2 1

θ20 − 1

�
1 −

�
θ

θ0

�
2
��

−g=δ
: ð23Þ

Here we kept g and δ for clarity. However, in deriving
Eq. (23) we already made use of the relation δ ¼ 1þ 2g.
Inserting this result for fG on the left side of Eq. (9) we can
solve for hðθÞ=hð1Þ,

hðθÞ
hð1Þ ¼ θ

�
θ20

θ20 − 1

�
g
�
1 −

�
θ

θ0

�
2
�

g
; ð24Þ

or equivalently,

hðθÞ ¼ θ

�
1 −

�
θ

θ0

�
2
�

g
: ð25Þ

This is the linear parametric model for the parametrization
of the magnetic equation of state in the MFA (g ¼ 1) and its
generalization to theN → ∞ limit (g ¼ 2). We may use this
form of hðθÞ to analyze the analytic structure of scaling
functions in the MFA and the large-N limit, using the
Schofield parametrization. In particular, we can determine
the location of Lee-Yang edge singularities.

1. Lee-Yang edge singularities

Inserting hðθÞ taken from Eq. (25) in Eq. (15) allows to
determine the location of singularities in the scaling
functions in the complex θ-plane. For the generalized
LPM this gives,

0 ¼ θ20 − ð−2βδθ20 þ 2gþ θ20 þ 1Þθ2
þ ð−2βδþ 2gþ 1Þθ4: ð26Þ

In the case of the MFA and in the large-N limit this quartic
equation in θ reduces to a quadratic equation, and one thus
obtains only one pair of singularities located at

θ̃� ¼ � θ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ − ðδ − 1Þθ20

p : ð27Þ
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Obviously, in the complex θ-plane the location of
singularities in the susceptibilities depends on the value
of θ0. In particular, the singular points are shifted to
infinity for

θ20;∞ ¼ δ

δ − 1
; ð28Þ

while they are real for θ0 < θ0;∞ and purely imaginary for
θ0 > θ0;∞. Nonetheless, one easily verifies that

zðθÞ ¼ ð1 − θ2Þθ20
θ20 − 1

�
θ20 − θ2

θ20 − 1

�−ðδ−1Þ=δ
θ−2=δ ð29Þ

is independent of θ0 for θ ¼ θ̃�. Using θ̃� one finds the
universal location of the Lee-Yang edge singularity in the
complex z-plane,

zLY≡zðθ̃�Þ¼
δ

δ−1
ð1−δÞ1=δ

¼
�
3 ·2−2=3e�iπ=3; mean− field

5 ·2−8=5e�iπ=5; N¼∞:
ð30Þ

We note that in the MFA as well as in the large-N limit the
mapping z ⇔ θ is unique for all z and maps the complex
z-plane to the complex θ half-plane with ReðθÞ ≥ 0. For the
specific choice θ0 ≡�θ0;∞ we show this mapping for both
cases in Fig. 1. The lines z ¼ jzj expð�iπ=2βδÞ approach
the Lee-Yang edge singularity at jθj ¼ ∞ and then bifur-
cate. In both cases the two branches then approach one
of the two points at which hðθÞ vanishes, i.e. they either
approach θ ¼ 0 or θ0. These points get approached by the
two branch cut lines in the complex z-plane that correspond
either to the imaginary or real axis of the θ-plane.

B. LPM for scaling functions
in the 3d, Zð2Þ universality class

Scaling functions in the 3d, Zð2Þ universality class have
been determined using analytic as well as numerical
approaches. In particular, using the ϵ-expansion, it has
been pointed out that to Oðϵ2Þ the LPM approximation for
the function hðθÞ remains exact [41,42]. One thus obtains
hðθÞ as given in Eq. (25) with g ¼ 1 and

θ20 ¼
3

2
ð1 − ϵ2=12Þ þOðϵ3Þ: ð31Þ

New features arise from the fact the product of critical
exponents, βδ now deviates from 3=2. The coefficient of the
Oðθ4Þ term, appearing in Eq. (26), thus no longer vanishes.
Using also results for the critical exponents to Oðϵ2Þ,

β ¼ 1

2
−
1

6
ϵþ 1

162
ϵ2 þOðϵ3Þ;

δ ¼ 3þ ϵþ 25

54
ϵ2 þOðϵ3Þ; ð32Þ

βδ ¼ 3

2
þ 1

12
ϵ2 þOðϵ3Þ; ð33Þ

we may again determine the location of singularities of the
susceptibilities using Eq. (26). We now obtain two pairs of
solutions for the location of singular points in the complex
θ plane,

θ̃2p;m ¼ A�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − 4Bθ20

p
2B

; ð34Þ

with

A ¼ 1þ 2gþ θ20 − 2βδθ20;

B ¼ 1þ 2g − 2βδ: ð35Þ

FIG. 1. Mapping of the complex z-plane to the complex θ-plane. Shown are lines of z with constant phase ϕ as introduced in Eq. (18),
z ¼ jzjeiϕ. The left hand figure is for the MFA and the right hand side shows results for theN ¼ ∞ limit. Dash-dotted lines correspond to
z-values having phase ϕ ¼ π=2βδ ¼ π=δ. Blue dots show points at which hðθÞ ¼ 0.
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Obviously, in the 3d, Zð2Þ universality class2 (g ¼ 1) and
with the critical exponents given in Table I, one has B < 0.
The square root appearing in Eq. (34) thus is positive and

larger than jAj. Therefore, irrespective of the value of θ0
one always finds that θ̃2p and θ̃2m are real, but have opposite
sign. This gives rise to a pair of real as well as a pair of
purely imaginary roots,

θLan;� ≡�
ffiffiffiffiffi
θ̃2p

q
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − 4Bθ20

p
2B

s
;

θLY;� ≡�
ffiffiffiffiffiffi
θ̃2m

q
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − 4Bθ20

p
2B

s
: ð36Þ

Using the Oðϵ2Þ results for θ0 and the critical exponents
β, δ one finds for the location of these singular points in the
θ-plane3

θLan;þ ¼ 2.03038;

θLY;� ¼ �3.31198 i: ð37Þ

As discussed above singular points in the z-plane, corre-
sponding to purely real or imaginary θ values, have phases
πð1 − 1=βδÞ and π=ð2βδÞ, respectively. These are the
expected phases of cuts emerging from the Langer and
Lee-Yang edge singularities.
We get for the singular points

zLan ¼ 2.24047 eiπð1−1=βδÞ;

zLY;� ¼ 2.30674 e�iπ=2βδ: ð38Þ

The corresponding mapping of the complex z-plane to the
θ-plane is shown in Fig. 2. As can be seen, just like in the
MFA, the complex z-plane is mapped onto the entire
complex θ half-plane with ReðθÞ ≥ 0. We will discuss in
the next section that this becomes quite different when

using approximations for hðθÞ that go beyond the LPM
approximation.

IV. BEYOND THE LPM APPROXIMATION

We now consider the Schofield parametrization for
scaling functions in the Zð2Þ and OðNÞ universality classes
making use of the known critical exponents in these
universality classes (see Table I) and all parameters that
have currently been determined for the approximation of
the function hðθÞ. We parametrize corrections to the
generalized LPM approximation as an even polynomial
in θ [36]

hðθÞ ¼ θ

�
1−

�
θ

θ0

�
2
�

g
ð1þ c2θ2þ c4θ4þOðθ6ÞÞ; ð39Þ

with g ¼ 1, 2 for the Zð2Þ and OðNÞ universality classes,
respectively.
In the case of the Zð2Þ universality class we will also use

the commonly used polynomial representation, where the
first nontrivial real zero of hðθÞ is not factored out
explicitly, i.e. we use [34,48]

hðθÞ ¼ θð1þ h3θ2 þ h5θ4 þ h7θ6 þOðθ8ÞÞ: ð40Þ

Obviously the parameters ðθ0; c2; c4;…Þ can be expressed
in terms of ðh3; h5; h7;…Þ. In particular, to this order one
has h7 ¼ −c4=θ20. We give further details on the relation
between ðh3; h5; h7Þ and ðθ0; c2; c4Þ in the Appendix.
In the Zð2Þ universality class the coefficients h3, h5 and

h7 have been calculated [34,35]. However, usually only the
coefficients h3 and h5, corresponding to nonvanishing θ0
and c2, are quoted as the coefficients h7, c4 are small and

FIG. 2. Contours in the complex θ-plane defined by a fixed
phase of z, z ¼ jzj expðiϕÞ obtained by using parameters calcu-
lated in an ϵ-expansion to Oðϵ2Þ [34,42]. The dash-dotted black
lines corresponds to z-values with phase ϕ ¼ �π=2βδ, as
expected for a Lee-Yang edge singularity and the dash-dotted
blue line corresponds to a cut with phase as expected for the
Langer cut, ϕ ¼ πð1 − 1=βδÞ. Blue dots correspond to points at
which hðθÞ ¼ 0 and magenta diamonds correspond to z0ðθÞ ¼ 0.

TABLE I. Critical exponents in the 3d, Zð2Þ, Oð2Þ and Oð4Þ
universality classes.Zð2Þ critical exponents are taken from [44,45]
and the Oð2Þ values are taken from [46]. Exponents used for the
Oð4Þ case are taken from [47]. Also shown are results obtained in
3d mean-field theory, results from Oðϵ2Þ expansion for the 3d,
Zð2Þ theory, and the N ¼ ∞ limit.

M-F Oðϵ2Þ; Zð2Þ Zð2Þ Oð2Þ Oð4Þ Oð∞Þ
β 1=2 0.3395 0.32643(7) 0.34864(7) 0.380(2) 1=2
δ 3 4.4630 4.78982(85) 4.7798(5) 4.824(9) 5
βδ 1.5 1.5833 1.56354(8) 1.6664(5) 1.833(13) 2.5

2For the OðNÞ, N > 1 universality classes one finds B > 0
when g ¼ 2.

3Note that θLan;− lies outside the region used for the unique
mapping z ⇔ θ.
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vanish within current errors. For the case of the OðNÞ
universality class (N ¼ 2, 4) a first determination of c4,
based on fits to Monte Carlo simulation data for Oð2Þ
and Oð4Þ scaling functions [39], has been presented
recently [28] and also results, based on a 3d, perturbative
calculation have been obtained for the Oð2Þ universality
class [37]. We note that results obtained for θ0 and c2
obtained in this calculation are in good agreement with the
Monte Carlo results when setting c4 ¼ 0. However, values
for c4 obtained in the analytic calculations differ in sign
from the current Monte Carlo results. Like in the Zð2Þ case,
we thus expect that current results on c4 still have large
uncertainties.
In order to be able to discuss the influence of a non-

vanishing next to leading-order correction (c4 ≠ 0) on the
structure of the Schofield parametrization of scaling func-
tions we also calculated c4 for the Zð2Þ case using results
obtained already in [34,35]. Although c4 vanishes within
errors, including it in our analysis allows to discuss the
influence of such a correction on the determination of
singularities of scaling functions in the complex z-plane.
Some details on the calculation of h7 and as such c4 are
given4 in the Appendix. This results in the expansion
coefficients (h3, h5, h7) in the Zð2Þ universality class,

h3¼−0.7595ð18Þ; h5¼ 0.00813ð68Þ;
h7¼ 0.00045ð127Þ: ð41Þ

Here we also made use of recent updates on critical
exponents in the Zð2Þ universality class [44,45]. The effect
mainly is to reduce errors on h3 and h5. The parameter sets
ðθ0; c2; c4Þ, used in our calculations for the determination
of edge singularities in the Zð2Þ; Oð2Þ and Oð4Þ univer-
sality classes, are given in Table II.
Aside from the zero θ0, which is factored out explicitly in

the representation of hðθÞ given in Eq. (39), the additional
polynomial factor up to Oðθ4Þ gives rise to two additional
zeros in terms of θ2,

hðθÞ¼θ

�
1−

�
θ

θ0

�
2
�

g
�
1−

�
θ

θ1

�
2
��

1−
�
θ

θ2

�
2
�
: ð42Þ

Results for the zeros, θ1 and θ2, are also given in Table II.
The main difference in the singular structure of the Zð2Þ

and OðNÞ scaling functions in the complex z-plane arises
from the first correction to the generalized LPM approxi-
mation, i.e. from c2 being nonzero and having different
signs in both cases. In the Zð2Þ universality class c2 < 0,
while c2 > 0 in theOðNÞ universality classes. For c4 ¼ 0 it
is straightforward to see that as a consequence the new zero,
θ1, is real in the case of Zð2Þ and imaginary for the OðNÞ

cases. This in turn results in the presence of the Langer
cut [20] in the Zð2Þ universality class and its absence in the
OðNÞ universality classes.
As discussed in Sec. II, points at which susceptibility

scaling functions become singular, are obtained as zeros of
z0ðθÞ. The condition z0ðθÞ ¼ 0 led to Eq. (15), which we
may rewrite as

z0ðθÞ ¼ 0 ⇔
h0ðθÞ
hðθÞ ¼ 2βδ

θ

θ2 − 1
: ð43Þ

This relation makes it clear that:
(i) a singularity in the scaling functions exists in the

interval 0 < jθj < jθ1j on the imaginary θ-axis, if
hðθÞ has a zero, θ1, on the imaginary θ-axis,

(ii) a singularity in the scaling functions is located on
the real θ-axis, if hðθÞ has a second real zero,
θ1 > θ0 > 1, on the real axis.

In the Zð2Þ case h5 > 0 and it follows from Eq. (A11) that
c2 < 0 as c4 is at least an order of magnitude smaller and
vanishes within errors. One thus finds a singularity on the
real θ-axis. This singularity is located at a complex valued
z≡ zLan with a phase ϕLan ¼ πð1 − 1=βδÞ. It is the Langer
edge singularity.
In the OðNÞ cases c2 > 0. Consequently one finds a

singularity on the imaginary θ-axis. Actually, it is present
for all c4 ≤ 0. This singularity is located at a complex
valued z≡ zLY;b, with a phase ϕLY ¼ π=2βδ, which is the
phase expected for a Lee-Yang edge singularity. Apparently
this singularity in theOðNÞ universality class is the counter
part to the Langer edge singularity in the Zð2Þ universality
class. It is located on the Lee-Yang cut, but it is not located
at its edge. The Lee-Yang edge singularity arises from the
second pair of singular points that is present for c2 ≠ 0 and
lies in the complex θ- or z-plane, respectively. This is the
case in the Zð2Þ as well as the OðNÞ universality classes.
The phase of z corresponding to this singular point is not
immediately apparent from the general structure of hðθÞ.
However, we show in the following that, within the current
statistical and truncation errors in the approximation for
hðθÞ, the phase of z is indeed consistent with ϕLY . These
singular points in the complex valued θ-plane with nonzero

TABLE II. Parameters entering the definition of hðθÞ in the 3d,
Zð2Þ, Oð2Þ and Oð4Þ universality classes. Zð2Þ values are taken
from [35] and the Oð2Þ and Oð4Þ values are taken from [28].

Zð2Þ [35] Oð2Þ [28] Oð4Þ [28]
θ0 1.1564(40) 1.610(14) 1.359(10)
c2 −0.0117ð33Þ 0.162(20) 0.306(34)
c4 −0.0006ð17Þ −0.0226ð18Þ −0.00338ð25Þ
θ1 9.2(1.3) 1.993(86) i 1.777(106) i
θ2 � � �a 3.34(21) 9.68(92)

aFor Zð2Þ we only quote a result for the second zero of hðθÞ
obtained with c4 ¼ 0 as h7 and as such c4 vanish within errors.

4This also allows to correct the expression given for h7 in [34],
where a sign factor for one of the terms contributing to h7 does
not show up.
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real and imaginary parts of θLY define the Lee-Yang edge
singularities at z≡ zLY . We present their determination in
the Zð2Þ and OðNÞ universality classes separately in the
following two subsections.

A. Lee-Yang edge singularities
in the Zð2Þ universality class

Using the parametrization of hðθÞ given in Eq. (40) we
determined the zeros of hðθÞ and those of z0ðθÞ. The latter
define the location of singular points at which the suscep-
tibility scaling functions f0GðzÞ and fχðzÞ diverge, and the
former gives points at which zðθÞ diverges. In the limit

jzj → ∞ they are thus attractors for lines defined
by z ¼ jzj expðiϕÞ.
Contrary to the situation met in the LPM approximation

the complex z-plane is no longer mapped onto the entire
complex θ half-plane with ReðθÞ ≥ 0, but only to a finite
region in that half-plane. The mapping z ⇔ θ is multi-
valued. In Fig. 3 we show the contour plot of lines, z ¼
jzj expðiϕÞ for constant phase ϕ obtained in the entire z
plane for a particular set of parameters (h3, h5, h7). The part
that provides a unique mapping is shown in Fig. 4. This
unique mapping, z ⇔ θ, is defined by lines z ¼ jzj expðiϕÞ,
with −π < ϕ ≤ π emerging from the point θ ¼ 1 at which
z ¼ 0 for all ϕ. These lines flow to θ ¼ 0 or one of the two
real and positive zeros, θ0 and θ1, respectively.
As z0ðθÞ is even in θ one always finds sets of zeros with

positive and negative ReðθÞ. As a unique mapping of the
complex z-plane to the θ-plane is already obtained by
keeping only zeros with ReðθÞ ≥ 0, we will quote in the
following only zeros of hðθÞ and z0ðθÞ with ReðθÞ > 0. We
also note that due to the fact that hðθÞ is an odd function
in θ z-values obtained from θ and its negative counterpart
are related to each other by

zð−θÞ¼ zðθÞe−is=βδ; s¼ArgðθÞ=jArgðθÞj: ð44Þ

The region providing a unique mapping of the entire
z-plane to the complex θ-plane is bounded by lines corre-
sponding to zðθÞ ¼ jzje�irϕLY , which bifurcate at the com-
plex points θLY and θ�LY , respectively. For r ¼ 1 these points
correspond to the Lee-Yang edge singularities, located in
the complex z-plane at zLY ¼ jzLY j expð�i rϕLYÞ [Fig. 4
(right)]. However, as will be discussed below, due to
truncation errors for the function hðθÞ and statistical errors
on the expansion parameters used in the definition of hðθÞ
one generally only finds r ≃ 1 [Fig. 4 (left)]. At the
bifurcation point �θLY the two emerging branches define
branch cuts in the complex z-plane with phase ϕbi ≡ rϕLY .

FIG. 3. Contours in the entire complex θ-plane. Shown are lines
z ¼ jzjeiϕ with constant phase ϕ∈ ½−π; π�. Blue dots correspond
to points at which hðθÞ ¼ 0 and magenta diamonds correspond
to z0ðθÞ ¼ 0. The dash-dotted lines correspond to the cases
ϕ ¼ ϕLan (black) and ϕ ¼ �ϕLY (red/green), respectively.

FIG. 4. Contours in the complex θ-plane defined by values of z with constant phase ϕ, z ¼ jzj expðiϕÞ. Shown are results for the Zð2Þ
universality class using the function hðθÞ with central values for ðh3; h5; h7Þ given in Eq. (41) (left) and tuned parameters that lead to a
phase ϕ ¼ ϕLY (right). Dots show the location of zeros of hðθÞ and diamonds give locations of singularities in the susceptibility scaling
functions f0GðzðθÞÞ and fχðzðθÞÞ.
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The scaling function fGðzðθÞÞ is discontinuous across this
cut as well as across the Langer cut.
In Table III we give results for the Langer and Lee-Yang

edge singularity obtained by (i) setting c2 ¼ c4 ¼ 0 (LPM
approximation), (ii) setting only c4 ¼ 0, and (iii) keeping
all three coefficients in the parametrization of hðθÞ to be
nonzero, respectively. As can be seen, the results for the
absolute values of the edge singularities are fairly stable.
The phase of the singularity, identified as the Lee-Yang
edge singularity, agrees with ϕLY ¼ π=2βδ to better
than 1%.
Already for c2 ¼ c4 ¼ 0 one obtains a pair of complex

(purely imaginary) valued singular points, θ ¼ �θLY , and
a real, positive one at θ≡ θLan, which correspond to the
location of the Lee-Yang and Langer edge singularities,
respectively. For c2 ≠ 0 the singular points�θLY move into
the complex plane.
With c4 ≠ 0 the location of the value of θLY and as such

zLYðθLYÞ changes only slightly. In addition another pair of
singularities shows up at θLY;b. Given the currently large
errors on c4 the location of this second pair of zeros of z0ðθÞ
is not well-controlled. For c4 > 0 the singularity is located
on the real θ-axis. For c4 < 0 it lies on the imaginary axis.
While variations of c4 within its current errors thus

influences the singular structure in the θ-plane, the location
of Lee-Yang and Langer edge singularities at θLY gets
modified only little. The main effect of a variation of c4
within its errors is to increase the current error on the
location of zLY ≡ zðθLYÞ and zLan ≡ zðθLanÞ. We obtain

zLY ¼ 2.418ð55Þe�irϕLY ; r¼ 0.9935þ45
−191;

zLan¼ 2.379ð36ÞeiϕLan : ð45Þ

In Fig. 4 (left) we show the unique region for the mapping
z ⇔ θ and the location of zeros and singular points in the
θ-plane corresponding to the central values of (h3, h5, h7)
given in Eq. (41) that have been used to determine the
location of the edge singularities given in Eq. (45). In the
right-hand figure we show results for a tuned set of
parameters (h3, h5, h7), which leads to a bifurcation point

having the correct phase of a Lee-Yang edge singularity.
Branch cuts emerge from these edge singularities located
on the dashed-dotted lines, which correspond to contours
having the phase�ϕLY (black) and ϕLan (red), respectively.
Starting from the edge singularities branch cuts emerge.

These lead to discontinuities in the real and imaginary part of
the scaling function fGðzÞ. In Fig. 5 we show the gaps of
jfGðzÞj on the Langer and Lee-Yang branch cuts, respec-
tively. As can be seen the magnitude of the discontinuity is
quite different on these cuts. It is an order of magnitude
larger on the Lee-Yang cut than on the Langer cut, which
may be taken as an indication for the Langer edge singularity
being an essential singularity [20] which leads to only a
weak discontinuity across the cut. This, however, is not
accessiblewith the truncated polynomial expansion used for
hðθÞ. A more complicated form of hðθÞ will be needed to
reproduce the essential singularity at the Langer cut, as well
as the universal form of the Lee-Yang edge singularity,
which is expected to be described by aϕ3-theory [12,29,30].
We conclude that results for the location of edge

singularities in the Zð2Þ universality class are quite stable
and vary only little when adjusting the phase of zðθLYÞ.
Even when moving from the LPM approximation to the
currently known parametrization of the function hðθÞ up to
Oðθ7Þ the variation of jzLY j is only about 5%.

TABLE III. Absolute values of the Langer and Lee-Yang edge
singularities obtained with different approximations for the
function hðθÞ. The last column gives results for the phase ϕbi
of the complex valued z at the bifurcation point. This should
equal the Lee-Yang phase ϕLY ¼ π=2βδ with better controlled
approximations for hðθÞ.

jzLanj jzLY j r≡ ϕbi=ϕLY

c2 ¼ 0, c4 ¼ 0 2.5429(8) 2.3177(40) 1
c2 ≠ 0, c4 ¼ 0 2.3693(93) 2.4398(63) 0.9855(23)
c2 ≠ 0, c4 ≠ 0 2.379(36) 2.418(55) 0.9935þ45

−191

Fig. 4 (left) 2.3783 2.4177 0.9935
Fig. 4 (right) 2.3827 2.4019 1

FIG. 5. The absolute value of the Zð2Þ scaling function fGðzÞ
on the Langer (top) and Lee-Yang (bottom) cuts. Shown are
results for the Zð2Þ universality class using hðθÞ with the tuned
set of parameters (h3, h5, h7) also used in Fig. 4 (right).
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B. Lee-Yang edge singularities
in the OðNÞ universality classes

Aside from a twofold zero in the generalized LPM
approximation for the function hðθÞ, which also is imple-
mented in the general ansatz for hðθÞ [37], the most
important difference in corrections to the LPM approxi-
mation for Zð2Þ and OðNÞ universality classes, respec-
tively, is due to the different sign of the coefficient c2 in the
leading-order correction. As discussed above a conse-
quence of this is that one always finds a pair of complex
conjugate singularities in the susceptibility scaling func-
tions located on the imaginary θ-axis at �θLY;b, which
corresponds to complex z-values with the Lee-Yang phase
ϕLY ¼ π=2βδ. Moreover, already for c2 ¼ c4 ¼ 0 one
obtains a pair of singularities located at θLY in the complex
θ-plane. As discussed in the previous subsection for the
case of Lee-Yang singularities in the Zð2Þ universality
class, also in the OðNÞ case the phase ϕbi at this singular

point, zðθLYÞ, is not exactly at ϕLY . However, already for
c2 ≠ 0 the phase ϕbi agrees with ϕLY within current
statistical errors and this remains to be the case for
c2 ≠ 0 and c4 ≠ 0. This behavior is found for the Oð2Þ
as well as the Oð4Þ universality classes.
As has been done in the previous subsection for the

Zð2Þ universality class we also determined the absolute
values of the Lee-Yang phase and the values for the phase
ϕbi ¼ rϕLY for three different cases: (i) c2 ¼ c4 ¼ 0;
(ii) c2 ¼ 0; c4 ≠ 0; (iii) c2 ≠ 0, c4 ≠ 0. Our results are
summarized in Table IV. In analogy to Fig. 4 we show in
Fig. 6 contour plots in the Oð4Þ universality class. Figure 6
(top left) is for the set of central values for ðθ0; c2; c4Þ
corresponding to r ¼ 1.023 and the (bottom left) figure
corresponds to a parameter set with ϕbi ¼ ϕLY , which lies
inside the region defined by the current errors on ðθ0; c2; c4Þ.
We note that the absolute value of the Lee-Yang edge

singularity changes little when using only the LPM

FIG. 6. Contours in the complex θ-plane defined by values of z with constant phase ϕ, z ¼ jzj expðiϕÞ. Shown are results for theOð4Þ
universality class using hðθÞ with the central values for (θ0, c2, c4) given in Table II (top, left) and for a specific nearby choice of
parameters (within the current errors) that correspond to ϕ ¼ ϕLY (bottom, left). The figures on the right show jfGðzÞj for both cases. In
the left-hand figures dots show the location of zeros of hðθÞ and diamonds give locations of singularities in the susceptibility scaling
functions f0GðzðθÞÞ and fχðzðθÞÞ. Similar results can be obtained in the Oð2Þ universality class.
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approximation for hðθÞ or including the parameters c2
and c4.
In the right-hand column of Fig. 6 figure we show the

absolute value of fGðzðθÞÞ, evaluated on lines with constant
phase z ¼ jzjeiϕ, ϕ ≃ ϕbi, versus jzj. The gap along the
Lee-Yang branch cut clearly is visible. It is of similar
magnitude as the discontinuity found in the Zð2Þ univer-
sality class. We note that results obtained with the tuned
parameter set (θ0, c2, c4) and the central values determined
for (θ0, c2, c4) differ little in the location of the edge
singularity as well as the size of the gap along the Lee-Yang
branch cut.

V. CONCLUSIONS AND OUTLOOK

Wegive our final results for the location of Lee-Yang edge
singularities of scaling functions in theZð2Þ,Oð2Þ andOð4Þ
universality classes as well as the Langer edge singularity
appearing in the scaling functions of the Zð2Þ universality
class in Table V. Here we have averaged over the results
obtainedwhen setting c4 ¼ 0 or using c4 ≠ 0 as discussed in
the previous section. The difference between these two
results is included as a systematic error that is added to the
statistical error in quadrature. These results are compared
with results obtained in FRG calculations [21,22], which
are given in the last row of Table V. As can be seen results in
the Zð2Þ and Oð2Þ universality classes, obtained from the
Schofield parametrization of the magnetic equation of state
and the FRG calculations, agree within the quoted errors
while the result obtained in theOð4Þ universality class differ
by about 15%.
Also shown in the first row of Table V are results for the

additional singularity at zLY;b that arises on the branch cuts.
To what extent these singularities are artifacts of our current
approximation for hðθÞ remains to be analyzed by using
higher order approximations for hðθÞ.
Also shown in Table V is the absolute value, jzLanj, for the

location of the Langer edge singularity in. Although its
central value is smaller than that for the location of the Lee-
Yangedge singularity, it is consistentwith jzLY jwithin errors.
We also have shown that the discontinuity of fGðzÞ on

the Langer branch cut is an order of magnitude smaller than

the discontinuity occurring on the Lee-Yang branch cut.
This may reflect the different critical behavior expected to
control the divergence of susceptibilities at the edge
singularities. This, however, cannot be resolved with the
truncated series approximation used for the function hðθÞ
appearing in the Schofield parametrization of scaling
functions. At present, the singular behavior at the edge
singularities is identical at the Langer and Lee-Yang edge
singularity as well as in all universality classes, due to the
polynomial ansatz used for hðθÞ. This is because in all cases
the singularity is determined by a zero of Eq. (15). With
hðθÞ being a polynomial in θ one can Taylor-expand in the
vicinity of any of these zeros, which generates a divergence
at the Lee-Yang or Langer edge singularities being given by
1=ðθ − θiÞ, with i ¼ LY or Lan. It would be interesting to
explore more refined analytic ansatz for hðθÞ in the future.

All data from our calculations, presented in the figures of
this paper, can be found in Ref. [49].
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APPENDIX: Zð2Þ PARAMETERS

We summarize here the determination of h3, h5 and h7
entering the parametrization of the function hðθÞ in the
Zð2Þ universality class. We follow Ref. [35].
We use the critical exponents, also used in that calculation

β ¼ 0.3258ð14Þ;
γ ¼ 1.2396ð13Þ: ðA1Þ

In addition we also give results obtained by using recent,
more accurate results for the critical exponents, obtained in
MonteCarlo [44] and conformal bootstrap [45] calculations.
Both approaches yield consistent resultswith similarly small

TABLE V. Summary of results for absolute values of the
location of the Lee-Yang edge singularities (jzLY j and the Langer
edge singularity (jzLanj. In the first row we give the value for the
location of a second singularity on the Lee-Yang branch cut
(jzLY;bj (see discussion in the text). The last row gives results from
a FRG calculation [22].

Zð2Þ: Oðϵ2Þ Zð2Þ Oð2Þ Oð4Þ
jzLY;bj 2.281(72) 1.977(73)
jzLanj 2.240 2.374(36)
jzLY j 2.307 2.429(56) 1.95(7) 1.47(3)

jzLY j ½FRG� 2.43(4) 2.04(8) 1.69(3)

TABLE IV. Absolute values of the Lee-Yang edge singularities
in the Oð2Þ and Oð4Þ universality classes obtained with different
approximations for the function hðθÞ.

Oð2Þ Oð4Þ
jzLY j ϕbi=ϕLY jzLY j ϕbi=ϕLY

c2 ¼ 0, c4 ¼ 0 1.815(27) 0.868(7) 1.387(15) 0.789(9)
c2 ≠ 0, c4 ¼ 0 1.999(44) 1.037(33) 1.474(20) 1.027(34)
c2 ≠ 0, c4 ≠ 0 1.900(46) 1.024(30) 1.469(20) 1.023(34)

Fig. 6 (top) � � � � � � 1.469 1.023
Fig. 6 (bottom) � � � � � � 1.456 1
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errors. The latter gives ν ¼ 0.62999ð5Þ, η ¼ 0.03631ð3Þ.
Using hyperscaling relations we obtain

β ¼ 0.32643ð7Þ;
γ ¼ 1.23711ð12Þ: ðA2Þ

Using the hyperscaling relation, δ ¼ ðγ þ βÞ=β, we obtain
δ ¼ 4.8048ð20Þ using Eq. (A1) and δ ¼ 4.7898ð12Þ
using Eq. (A2).
We compare results for ðh3; h5; h7Þ obtained with these

updated critical exponents to those obtained in Ref. [35] in
Table VI.
The coefficients ðh3; h5; h7Þ have been determined

in [35] using resummed results of a 3d perturbative
expansion of the function FðzÞ, which is defined as
derivative of the free energy with respect to a variable z̃,

Fðz̃Þ ¼ z̃þ 1

6
z̃3 þ F5z̃5 þ F7z̃7; ðA3Þ

with

F5¼ 0.01711ð7Þ; F7¼ 0.00049ð5Þ: ðA4Þ

The expansion parameter z̃ is related to the variable θ, used
in the Schofield parametrization, through,

z̃ ¼ ρθ=ð1 − θ2Þβ: ðA5Þ

In [35] the scale parameter ρ2 ¼ 2.8656 is used. We assign
an error of 10−2 to it.5

The function Fðz̃Þ is related to hðθÞ through

hðθÞ ¼ ρ−1ð1 − θ2ÞβδFðz̃ðθÞÞ: ðA6Þ

Expanding the right-hand side of this equation in terms of θ
and using

hðθÞ ¼ θð1þ h3θ2 þ h5θ4 þ h7θ6 þ � � �Þ; ðA7Þ

one arrives at relations for ðh3; h5; h7Þ in terms of the
expansion coefficients ðF3; F5; F7Þ,

h3 ¼
1

6
ρ2 − γ; ðA8Þ

h5 ¼
1

2
γðγ − 1Þ þ 1

6
ð2β − γÞρ2 þ F5ρ4; ðA9Þ

h7 ¼ −
1

6
γðγ − 1Þðγ − 2Þ

þ 1

12
ð2β − γÞð2β − γ þ 1Þρ2

þ ð4β − γÞF5ρ4 þ F7ρ6: ðA10Þ

Note that the sign of the first term in the relation for h7 is
opposite to that quoted in [35]. Using these relations we
reproduce the expansion coefficients h3, h5, given in [35]
and obtain results for h7 consistent with statements made in
the [35] about the magnitude of h7. These numbers are
given in Table VI. We also reproduce the errors quoted for
h3 and h5 in [35].
Using results for ðh3; h5; h7Þ we can calculate the

coefficients ðθ0; c2; c4Þ appearing in the parametrization
of hðθÞ given in Eq. (39). For c2 and c4 one obtains,

c2 ¼ −ðh5 þ h7θ20Þθ20; ðA11Þ

c4 ¼ −h7θ20; ðA12Þ

and θ0 is obtained as the real, positive zero of hðθÞ, defined
in Eq. (40), which is closest to θ ¼ 1.
Using the parameters given in the last row of Table VI we

obtain for the first zero of hðθÞ,

θ0 ¼ 1.1564ð39Þ; ðA13Þ

and the absolute value of the Langer edge singularity is

jzLanj ¼ 2.379ð36Þ: ðA14Þ

We furthermore find two singular points with a phase that is
close to or identical to that expected for the Lee-Yang cut,
ϕLY ¼ π=2βδ. The edge singularity has an absolute value,

jzLY j ¼ 2.418þ0.043
−0.068 ; ðA15Þ

with a phase that is consistent with ϕLY . For the second
singular point the absolute value is

jzLY;bj ¼ 2.452þ0.034
−0.012 ; ðA16Þ

and the phase equals ϕLY .

TABLE VI. Expansion coefficients of hðθÞ. The first row gives
results obtained by using the critical exponents determined in
[35] and the last row uses the bootstrap results from [45].

h3 h5 h7

−0.7620ð30Þ 0.00818(92) 0.00024(128)
−0.7595ð18Þ 0.00813(68) 0.00045(127)

5No error on ρ2 has been quoted in [35]. The error assigned by
us, however, reproduces the error on h3 and h5 given in that
reference.
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