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We present preliminary numerical evidence for the hypothesis that the Hamiltonian SU(2) gauge theory
discretized on a lattice obeys the eigenstate thermalization hypothesis (ETH). To do so we study three
approximations: (a) a linear plaquette chain in a reduced Hilbert space limiting the electric field basis to
j ¼ 0; 1

2
, (b) a two-dimensional honeycomb lattice with periodic or closed boundary condition and the same

Hilbert space constraint, and (c) a chain of only three plaquettes but such a sufficiently large electric field
Hilbert space (j ≤ 7

2
) that convergence of all energy eigenvalues in the analyzed energy window is observed.

While an unconstrained Hilbert space is required to reach the continuum limit of SU(2) gauge theory,
numerical resource constraints do not permit us to realize this requirement for all values of the coupling
constant and large lattices. In each of the three studied cases we check first for randommatrix theory (RMT)
behavior in the eigenenergy spectrum and then analyze the diagonal as well as the off-diagonal matrix
elements between energy eigenstates for a few operators. Within current uncertainties all results for (a), (b)
and (c) agree with ETH predictions. Furthermore, we find the off-diagonal matrix elements of the electric
energy operator exhibit RMT behavior in frequency windows that are small enough in (b) and (c). To
unambiguously establish ETH behavior and determine for which class of operators it applies, an extension
of our investigations is necessary.
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I. INTRODUCTION

The question of how thermal behavior emerges in
systems governed by the strong interaction has a long
history, dating back to Fermi’s statistical [1] and Landau’s
hydrodynamical [2] models of multiparticle production and
ultimately culminating in Hagedorn’s statistical bootstrap
model [3]. While these models posited microcanonical or
canonical thermalization, they did not explain its origins.
More recent attempts to show that systems whose dynamics
is governed by non-Abelian gauge theory thermalize
rapidly are based on three approaches: (1) kinetic theory
applicable to weak coupling [4–6]; (2) semiclassical
dynamics in holographic duals of strongly coupled super-
symmetric gauge theories [7–9]; (3) classical simulations

of Hamiltonian SU(2) and SU(3) lattice gauge theories
[10,11]. All of these approaches have their limitations and
do not fully answer the question.
The numerically established fact that SU(2) lattice gauge

theory is extensively chaotic at the classical level [12]
suggests that the theory also exhibits quantum chaos when
quantized. It is generally believed that chaotic quantum
systems satisfy the eigenstate thermalization hypothesis
(ETH) [13,14], which posits that the matrix elements of
generic operators in the energy eigenstate basis are given by

hEαjAjEβi ¼ hAimcðEÞδαβ þ e−SðEÞ=2fAðE;ωÞRαβ; ð1Þ

where E ¼ ðEα þ EβÞ=2 and ω ¼ Eα − Eβ, the Rαβ vary
radically with zero mean and unit variance, forming
a Gaussian distribution in large systems, hAimcðEÞ is the
microcanonical expectation value of A, fAðE;ωÞ is
the spectral response function of the operator, and
the exponential prefactor accounts for the energy level
density in terms of the microcanonical entropy SðEÞ (see
Refs. [15,16] for reviews).
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It is often stated (see e.g., [15]) that ETH behavior is a
generalization of random matrix theory (RMT). It is worth
noting that the matrix Rαβ may not be a random matrix due
to the constraints of the underlying theory. Furthermore, it
is important to recognize that RMT expresses statistical
properties that may apply to any type of mathematical
object, like the zeros of the Riemann zeta function, but the
ETH relation [Eq. (1)] expresses a dynamical property that
is encoded in the spectral function fðE;ωÞ.
While Eq. (1) is at the center of a huge body of work, it

raises many important questions that are still under debate.
Some of these are:

(i) For which operators A does the defining ETH
relation [Eq. (1)] apply? Most likely, this is only
the case for certain classes of “physical” operators,
such as local operators or sufficiently averaged ones.
For non-Abelian gauge theories a restriction to
gauge invariant and multiplicatively renormalizable
operators also seems a natural requirement. As such
constrained operators first come to mind and thus are
typically studied in numerical investigations, it
could be that such numerical studies provide only
a biased perspective and should not be blindly
assumed to generalize.

(ii) What is the thermalization time for a given operator
A? It was shown that if the ETH is satisfied in the
weak sense (i.e., most eigenstates satisfy the ETH), a
two-point correlation function factorizes at late time
[17]. Thermalization happens rapidly for most ob-
servables [18]. However, the thermalization time in
general depends on the initial state. For some
pathological initial states with narrow energy spread,
it can be arbitrarily long [19,20].

(iii) To which precision must Eq. (1) be fulfilled to reach
a certain degree of thermalization? For example, if
equilibrium is reached at late time, only states in a
small ω window are probed.

At present we are unable to answer such questions
rigorously, making numerical studies of specific systems
the most promising avenue to pursue. Comparing the
results with phenomenology allows to check the plausibil-
ity of the assumptions made and helps to develop a better
understanding of the systems studied, without reaching
mathematical rigor. Our contribution is of this kind.
Recently, there have been many numerical studies of the

ETH using classical digital computers [21–26], which are
generally limited to rather small systems, e.g., Oð20Þ Ising
spins, because the size of the Hilbert space basis generally
grows exponentially with the number of degrees of free-
dom. Even so, these studies provided strong indications
that multiparticle states with ergodic dynamics (on the
classical level) obey Eq. (1) for many operators. The
generalization to SU(N) gauge theories [a particular type
of quantum field theories (QFTs) that is invariant under
local gauge transformation] with their infinite number of

degrees of freedom thus is possible if they are discretized,
i.e., if one studies lattice gauge theories (LGTs). At the
same time, the level spectrum must be dense for RMT
and ETH to apply, implying the need for a large number
of states and consequently significant computer power.
Hence, we have to content ourselves to provide some
numerical circumstantial evidence for selected thermal-
ization properties of non-Abelian gauge theories. Still, we
believe that such limited evidence can be phenomeno-
logically quite valuable.
An example of thermalization in QCD [SU(3) gauge

theory with dynamical quarks] is the production of a quark-
gluon plasma as investigated at LHC and RHIC with great
effort. For spin systems it has been demonstrated that the
macroscopic equilibration time can be much smaller than
the Thouless time controlling RMT behavior [27]. This
suggests that, e.g., a system formed by two colliding heavy
ions is not characterized by a single thermalization time
but possibly by a range of such times, depending on the
observable that is being studied. Different equilibration
timescales were indeed observed phenomenologically,
leading researchers to postulate the existence of two
distinct mechanisms, namely fast hydrodynamization and
slow thermalization or phase space equilibration. As the
relevant operators for hydrodynamics, i.e., local energy and
momentum density, are of rather short range compared to
the size of the thermalizing fireball, such a distinction is
plausible, but an oversimplification in view of the dis-
cussion sketched above. An explicit demonstration of the
domain size dependence of the thermalization time was
presented in the context of a holographic (AdS=CFT)
calculation [7,8], which showed for selected operators that
the thermalization time scales linearly with the spatial
support of the operator.
To study the properties of a QFT we follow [28] and

define a continuum SU(N) gauge theory as the limit of
SU(N) LGT for vanishing lattice spacing and an infinite
number of lattice points (the continuum and infinite volume
limits). Current computational limitations force us to
attempt to glean some properties of the full QFT from
the properties of very small lattices. In spite of their small
size, these lattices still involve Hilbert spaces with dimen-
sions 105–106.
The long success story of LGT has established beyond

any reasonable doubt that the Wilson formulation of LGT
gives correct results for a vast range of observables,
reproduces the renormalization group running of the con-
tinuum theory in the ultraviolet (UV), and has a convergent
infrared (IR) behavior for large volumes. The Hamiltonian
formulation of Kogut and Susskind (KS) [29] is equally
accepted as a valid formulation and forms the basis for the
development of quantum computing for non-Abelian gauge
theories [30,31]. Thus, it is sufficient to establish ETH
behavior for these well-studied discretized formulations of
SU(N) LGT, which can be done numerically, although the
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continuum limit is probably out of reach for currently
available computing resources. In the past, this insight made
it possible to establish RMT behavior for Euclidean gauge
theories [32–34]. These studies demonstrated that RMT
behavior could already be observed for quite small lattices,
which makes us optimistic that a demonstration of ETH
behavior for LGT is achievable.
This brings us to the question whether quantum or

classical computers are optimal for such numerical studies.
On one hand, the Wilson (Lagrangian) formulation can be
implemented efficiently on classical computers using
imaginary time propagation. Algorithms have been devel-
oped which allow for a limited description of real time
evolution (see e.g., [35]). However, an attempt to establish
the validity of Eq. (1) within the Wilson framework would
have to go far beyond the demonstrated realm of appli-
cability of such methods. An alternative approach to study
quantum chaotic behavior in matrix models and lattice
gauge theory is the use of Gaussian density matrices with
adjustable parameters [36,37].
On the other hand, very small systems could be

insufficient to obtain the results we aim at and quantum
computers or quantum simulators might be needed to fully
profit from a Hamiltonian formulation. Our present
calculations are performed on classical digital computers
and correspondingly small systems. Our decision was
primarily motivated by previous experience in establish-
ing RMT behavior for gauge theories, which was also
possible using very small lattices. Furthermore, classical
ergodicity of SU(2) gauge theory could be demonstrated
with clearly apparent finite-size scaling on rather small
lattices of size L3 for L ¼ 2, 4, 6 [12].
Presently we also limit ourselves to SU(2) gauge theory

for which an efficient formulation in terms of angular
momentum algebra was developed in [38–40] and extended
to SU(3) in [38,41]. In addition, the studies reported here
will be limited to lattices extending in one and two
dimensions. The one-dimensional plaquette chain has been
studied as a quantum system for very short chains [40,42].
The honeycomb lattice was previously considered by [43],
and point-splitting methods for square lattices were dis-
cussed in [44] as convenient approaches to implement the
KS Hamiltonian in higher dimensions. While the present
study is still an exploratory one, we hope that improved
algorithms and larger computer resources will allow us to
better control the continuum and infinite volume limits in
the future.
For SU(2) there are three lines of investigation which

we pursue in our present study within the constraints of
the available computer resources: the dimensionality of
the lattice, the number of plaquettes, and the maximum
angular momentum representation for electric gauge fields
jmax. To guarantee the exact reproduction of the KS
Hamiltonian convergence in jmax must be demonstrated.
Recently, one of us (X. Y.) proposed a mapping of the

(2þ 1)-dimensional SU(2) gauge theory Hamiltonian onto
an Ising system valid when the Hilbert space for each gauge
link is constrained to the electric field representations j ¼
0; 1

2
[45]. This mapping allows one to find a complete set of

energy eigenstates by direct diagonalization for chains of
N ≲ 20 plaquettes. While the simulated theory is thus not
strictly a discretized version of SU(2) gauge theory, but
rather a truncated model of it, the differences could be
small, especially at strong coupling. This would be indica-
tive of some universality of ETH behavior.
Overall, as we will show, artifacts caused by the small-

ness of the studied systems are substantial, which limits the
parameter range in which we can trust our results. Within
these parameter ranges, however, our results clearly provide
evidence for ETH behavior. However, we caution the reader
at the outset that the question for which operators [Eq. (1)]
in a QFT should be valid is a highly nontrivial one. Physical
operators typically renormalize multiplicatively such that
we do not expect deviations from the generic ETH
distribution properties. For unphysical operators, however,
complications can occur such as operator mixing. The
operators we study here are expected to have physical
meaning in the continuum limit, which gives us hope that
the ETH behavior observed on our small lattices survives in
that limit.
We present three groups of results. First, in Sec. II, we

focus on the system of a SU(2) plaquette chain with
jmax ¼ 1

2
, which can be mapped onto an Ising chain. We

study the statistical properties of matrix elements between
different nearby energy eigenstates and show that their
magnitudes form a Gaussian distribution. We also calculate
the spectral function fAðE;ωÞ and study its dependence on
energy E. Second, in Sec. III, we use a similar mapping for
a two-dimensional honeycomb lattice to calculate the
complete set of eigenstates (within the truncated Hilbert
space) for lattices of size 5 × 4 (for periodic boundary
conditions) and triangular lattices of 15 hexagonal pla-
quettes (for confining boundary conditions). For these we
perform similar studies of their ETH properties. Third, in
Sec. IV, we explore the convergence of the energy spectrum
with respect to the cutoff jmax in the electric field repre-
sentation on small chains of three plaquettes. Also in this
case, we search for the presence of ETH behavior in the
energy range for which convergence of the basis is reached
and investigate the corresponding spectral function
fAðE;ωÞ in more detail. We finally summarize our results
and discuss promising avenues of future research in Sec. V.

II. LINEAR PLAQUETTE CHAIN

The discretized KS Hamiltonian of the (2þ 1)-
dimensional SU(2) gauge theory can be written as [29]

H ¼ g2

2

X
links

ðEa
i Þ2 −

2

a2g2
X

plaquettes

□; ð2Þ
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where g is the coupling constant, a in the denominator the
lattice spacing, Ea

i the electric field operator along the
direction i ¼ x̂ or ŷ with the SU(2) index a (both of which
are implicitly summed) and □≡ Tr½U†ðn; ŷÞU†ðnþ
ŷ; x̂ÞUðnþ x̂; ŷÞUðn; x̂Þ� the plaquette operator at n ¼
ðnxa; nyaÞ that is the trace of the product of four link
variables (Wilson lines) along a square lattice. (In Sec. III,
the honeycomb plaquette operator is defined as the trace of
the product of six link variables and the prefactor of the
magnetic term in the Hamiltonian will differ.) The coupling
constant has the mass dimension of ½g� ¼ 0.5; E2 and□ are
dimensionless operators. Throughout the article, we
express all dimensionful quantities in units of the lattice

spacing a and imply the appropriate factor of powers of a
without denoting it explicitly. For example, when we state
the coupling constant as g2 ¼ 0.9 and the energy as E ¼ 2,
we imply g2 ¼ 0.9a−1 [g2 has dimension of energy in the
(2þ 1)-dimensional gauge theory] and E ¼ 2a−1.
The discretized KS Hamiltonian can be represented in

the electric energy basis, which labels the state on each link
by the angular momentum quantum numbers jjmLmRi.
They specify how the link state transforms under SU(2)
gauge transformations generated by the electric fields at
both the tail (L) and head (R). When the electric field and
the link variable operators act on the corresponding link
state, one has [38,39]

X
i;a

ðEa
i Þ2jjmLmRi ¼ jðjþ 1ÞjjmLmRi;

hj0m0
Lm

0
RjUnLnR jjmLmRi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jþ 1Þ=ð2j0 þ 1Þ

p �
j0m0

L

����jmL;
1

2
nL

��
jmR;

1

2
nR

����j0m0
R

�
; ð3Þ

where hj0m0jjm; JMi denotes Clebsch-Gordan coefficients
and UnLnR denotes one entry of the SU(2) matrix. Physical
states satisfy Gauss’s law which in this lattice setup means
all link states joining the same vertex transform as a SU(2)
singlet. One can write out explicitly the matrix elements of
the plaquette operator □ between physical states by using
Eq. (3) and Gauss’s law, which has been done for a
plaquette chain in [40,42,46] and a honeycomb lattice in
[47]. This allows one to explicitly write out the Hamil-
tonian matrix in the physical Hilbert space and exactly
diagonalize it numerically.
We begin by further analyzing the statistical properties

of the linear color-singlet plaquette chain with periodic
boundary conditions on a truncated Hilbert space with
jmax ¼ 1

2
in the electric field representation. j ≤ jmax

denotes the SU(2) representation of the electric field
operator on the lattice links. It was shown in [45] that
the KS Hamiltonian for this system can be mapped onto the
Hamiltonian for an Ising spin chain with nearest neighbor
interaction

H ¼
XN−1

i¼0

�
Jσziσ

z
iþ1 þ hzσ

z
i þ hxσxi ði

ffiffiffiffiffiffiffi
0.5

p
Þσzi−1þσziþ1

�
; ð4Þ

where N denotes the number of plaquettes in the chain, and
the coupling constants are related to the gauge coupling g
and lattice spacing a as follows:

J ¼ −
3g2

16
; hz ¼ −2J; hx ¼

1

a2g2
: ð5Þ

The periodic boundary condition is imposed by setting
σαN ¼ σα0 . In the following we present results for g2 ¼ 1.2

and N ¼ 19, except where stated otherwise. It is expected
that in the large volume limit all nonzero values of g2 are
equivalent for the purpose of demonstrating the ETH,
because the Hamiltonian is nonintegrable for all non-
vanishing g2. However, for the small lattice sizes that
are numerically accessible on classical computers, some
choices of g2 serve better to demonstrate the ETH behavior.
Other choices will eventually exhibit the ETH behavior
when the lattice becomes sufficiently large. Numerical
evidence for this statement can be found in Appendix A,
where we show the energy spectra in the case with g2 ¼ 1
for different chain length N.
The space of energy eigenstates for this system can be

decomposed into 19 sectors with good linear momentum
pa ¼ 2πk=N with integer k∈ f0; 1;…; N − 1g. k ¼ i and
k ¼ N − i correspond to two sectors that are related by the
reflection. Each sector contains ð2N − 2Þ=N ¼ 27; 594
states with the exception of the k ¼ 0 sector, which
contains two additional states, the states with all the spins
pointing downward or upward.
The energy level spacing statistics and the statistical

properties of the matrix elements of the local one-plaquette
and two-plaquette operators were studied in [45] with
results that supported the assumption that the ETH is
manifested in this system. Because these operators are
not translation invariant, they have nonvanishing matrix
elements between states with different k. Here we consider
matrix elements of the total electric energy operator given
by the first two terms in the Hamiltonian [Eq. (4)]

Hel ¼
XN−1

i¼0

ðJσziσziþ1 þ hzσ
z
i Þ; ð6Þ
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which is translation invariant and only couples states in the
same momentum sector. In the following we focus on
the k ¼ 1 sector; nearly identical results are obtained for
other momentum sectors. [For the k ¼ 0 sector, the
demonstration of Gaussian orthogonal ensemble (GOE)
behavior in the level spacing statistics requires separation
of the sector further into two subsectors with definite
parity [45]. This will be done in Sec. IV where we study the
convergence of the spectrum under changes of the jmax
cutoff for a short plaquette chain.] A histogram of the level
density ρðEÞ is shown in Fig. 1. The distribution has
approximately the form ρðEÞ ¼ A= cosh2½ðE − ẼÞ=Δ� with
A ¼ 2250;Δ ¼ 6.276; Ẽ ¼ 0.342. The figure also shows
three energy windows, which we will use for a statistical
analysis of the off-diagonal matrix elements of the electric
energy Hel.
The distribution of level spacings was already studied

in [45] and shown to be well described by the GOE
distribution. As an additional sensitive statistical measure
of the energy gap distribution, we have calculated the
normalized energy gap ratio [48]

0 < rα ¼
min½δα; δα−1�
max½δα; δα−1�

≤ 1; ð7Þ

where δα ¼ Eαþ1 − Eα is the energy gap between adjacent
levels. The advantage of this measure is that it is not
sensitive to the change of the level density with energy. The
GOE prediction for this distribution is [24]

PGOEðrÞ ¼
27

4

rþ r2

ð1þ rþ r2Þ5=2 ð8Þ

with the mean value hriGOE ≈ 0.5307 for asymptotically
large matrices [49].

In order to avoid distortions from the tails of the
spectrum, we only include states in the range
ðEmin þ EavÞ=2 < E < ðEmax þ EavÞ=2, where Emin and
Emax are the lowest and highest energy eigenvalues,
respectively, and Eav is the mean energy of the spectrum
[24]. Figure 2 depicts our result for PðrÞ, shown as a
histogram with red bars. The analytical distribution Eq. (8),
shown as a blue line, is seen to provide an excellent
description, and the mean value hri ¼ 0.5340 agrees well
with the GOE prediction.
In order to investigate the statistics of off-diagonal

matrix elements and calculate the spectral function
felðE;ωÞ for the electric energy operator, we select energy
windows of width ΔE ¼ 1 shown in Fig. 1. In the
selection of the energy eigenstates for the study of matrix
element statistics, one has two options. One choice is
to select energy pairs with a constraint on the mean,
jðEα þ EβÞ=2 − Ēj < ΔE=2, where Ē is a chosen constant,
the other is to require that both energies fall into a common
window, jEα − Ēj; jEβ − Ēj < ΔE=2. The first option cor-
responds to selecting a diagonal window in energy pair
space, the second chooses a square window. In the limit
jωj ¼ jEα − Eβj ≪ ΔE=2, the two options effectively
coincide. Here we choose the second option, because it
is more closely related to the long-time behavior of a state
defined by a wave packet with a narrow energy spread.
We begin with the window 0 < E < 1 (shown in red in

Fig. 1 and corresponding to Ē ¼ 0.5, henceforth called
Window 1), where the level density has its maximum. The
window contains 2173 eigenstates. Figure 3 shows a
histogram of the values jMαβj≡ jhαjHeljβij in the ω
window 0.02 < jωj < 0.04 together with a fit to a
Gaussian distribution of the form

wðjMjÞ ¼
ffiffiffiffiffiffiffiffi
2

πσ2

r
e−jMj2=ð2σ2Þ: ð9Þ

FIG. 1. Histogram of the energy level density ρðEÞ (yellow bar)
for the sector k ¼ 1 together with the three energy windows used
in the statistical analysis of the off-diagonal matrix elements of
the electric energy. Window 1, 0 < E < 1 (center, red); Window
2, −2 < E < −1 (left, blue); Window 3, 2 < E < 3 (right, black).

FIG. 2. Histogram of the distribution of restricted energy gap
ratios rα (red horizontal bars), shown together with the GOE limit
distribution PGOEðrÞ (blue line).
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Similarly good fits are obtained for other ω windows of the
same width in the interval jωj < 0.1.
The width of the Gaussian is related to the spectral

function felðE;ωÞ. Using the ETH relation Eq. (1),
Tr½R2�≡ RαβRβα ¼ 1, and eSðEÞ ¼ ρðEÞ, one finds

σ2 ¼ Tr½M2� ¼ felðE;ωÞ2
ρðEÞ ; ð10Þ

which implies felðE;ωÞ ¼ σðωÞ ffiffiffiffiffiffiffiffiffiffi
ρðEÞp

. Figure 4 shows
the spectral function felðE;ωÞ for 0 < jωj < 0.1 in three
energy windows: 0 < E < 1 (Window 1, red), −2 < E <
−1 (Window 2, blue), and 2 < E < 3 (Window 3, black).
For small values of jωj the spectral function is well
described by the functional form

fðE;ωÞ ¼ a
ω2 þ b2

þ c ð11Þ

representing a diffusive transport peak superimposed on a
flat pedestal. The fits are shown as solid, dashed, and dotted
lines, respectively. We shall discuss the shape of the
spectral function in more detail and over a wider ω range
in Sec. IV.
The final statistical test of off-diagonal matrix elements

we perform is to check whether they form a GOE. It is also
worth noting that, although the matrix elements are com-
plex numbers for energy eigenstates with definite momen-
tum, the associated Gaussian ensemble for comparison is
the GOE (and not the Gaussian Unitary Ensemble, GUE),
because the Hamiltonian is time reversal invariant. We
calculate the second and fourth moments of the band matrix
obtained by keeping only matrix elements between eigen-
states that differ in energy by less than ΔEðTÞ ¼ 2π=T
[27]. The idea is that contributions to matrix elements at
time T between wave packets from eigenstate pairs α, β

with jEα − Eβj > ΔEðTÞ cancel out because of their
random energy phases, but the randomness of matrix
elements between states differing by less than ΔEðTÞ
may be required for some thermal properties to manifest
themselves. As time progresses, only the contributions
from an increasingly narrower band of energy eigenstate
pairs are relevant.
We define the projected submatrix elements of an

operator O as

OT
αβ ¼

(
hαjOjβi; jEα − Eβj ≤ ΔEðTÞ
0; jEα − Eβj > ΔEðTÞ; ð12Þ

where the diagonal part is always included. Our definition
differs slightly from the one adopted in [27] in that we
consider all pairs of states within each of the fixed (T-
independent) energy windows shown in Fig. 1. As T
increases, the matrix OT contains a growing number of
vanishing elements. The GOEmeasureΛT is defined as [27]

ΛT ¼ ðTr½ðOT
c Þ2�Þ2

dðTr½ðOT
c Þ4�Þ

; ð13Þ

where d is the number of eigenstates in the chosen energy
window andOT

c ¼ OT − Tr½OT �=d is the traceless part of the
matrix. In our case OT

c is complex but Hermitian, which
ensures that Tr½ðOT

c Þn� is real. For matrices approaching a
perfect GOE at late times, one expects ΛT → 1

2
.

The ΛT measure stands out by being a sensitive test not
only of the Gaussian distribution of the absolute values of
the matrix elements, but also for correlations among their
signs, which encode the orthogonality of the GOE matrix
ensemble. In practice, as a smaller and smaller number of
elements of the projected matrix OT is nonvanishing for

FIG. 3. Distribution of matrix elements jMαβj of the total
electric energy operator Hel in the range 0.02 < jωj < 0.04,
shown together with a Gaussian fit.

FIG. 4. Spectral function felðE;ωÞ together with their analyti-
cal fits of the form a=ðω2 þ b2Þ þ c for three different energy
windows as indicated in the legend: Window 1 (red, solid),
Window 2 (blue, dashed), Window 3 (black, dotted).
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T → ∞, the statistical significance of the result for ΛT

deteriorates. This can be seen if one arbitrarily replaces
many of the elements of a large matrix from the GOE by
zero, converting it into a band matrix with sparse off-
diagonal elements.
Our results for the three energy windows for N ¼ 17

(dashed lines) and N ¼ 19 (solid lines) are shown in Fig. 5.
As can be seen, the value of ΛT increases with the energy of
the window. The values ΛT ≈ 0.45–0.47 closest to the GOE
limit 0.5 are reached for Window 3, for which the deviation
from the GOE value 0.5 is compatible with those expected
for a sparse off-diagonal GOE matrix. However, the
deviations for the other two energy windows are too large
to be explained in this way. This means that the off-
diagonal matrix elements of the operator Hel in these
energy windows do not form GOEs although the
distribution of the absolute values is Gaussian. We
attribute this to the fact that the electric energy operator
in the jmax ¼ 1

2
truncated basis is constrained to have

values that are multiples of jmaxðjmax þ 1Þ ¼ 3
4
. We shall

see in Sec. IV that the off-diagonal matrix elements
of Hel are closer to a GOE when jmax is increased, and
we expect this property to be realized in the continuum
limit where the spectrum of the electric energy operator
becomes continuous. It will be interesting to explore
whether the matrix elements of other operators exhibit
a faster approach to the GOE.

III. HONEYCOMB LATTICE

In this section we will generalize the previous one-
dimensional (1D) plaquette chain study to two dimensions
(2D). The new dissipative mode that contributes to thermal-
ization in 2D, which does not exist in 1D, is the shear mode.
Scale invariance, which is exact in gauge theories at the

classical level and only broken at the quantum level by
the trace anomaly, constrains dissipation of certain modes.
This manifests itself by the strong suppression of bulk
viscosity in gauge theories at high temperature. On the
other hand, dissipation in the shear channel is not sup-
pressed by symmetry and remains finite at strong coupling.
Therefore, the new physical insight one can gain from the
ETH study in 2D is the thermalization dynamics related to
shear viscosity.
We will present the results obtained for the honeycomb

lattice with jmax ¼ 1
2
. At each vertex, physical states can be

fully specified by the j values on the links connecting to the
vertex if the vertex has fewer than four links. If the vertex
has four links connected or more, as on a square lattice in
2D (spatial dimensions) or a cubic lattice in 3D, physical
states depend on the order of how the color representations
on different links are coupled and thus cannot be fully
specified by these j values alone. This motivates the use of
the honeycomb lattice where each vertex is touched by at
most three links. Two examples of honeycomb lattice
setups are shown in Fig. 6.
The Hamiltonian of the 2D SU(2) gauge theory on a

honeycomb lattice with jmax ¼ 1
2
has been mapped onto a

2D spin model in [47] for both periodic and closed
boundary conditions. We will first consider the periodic
boundary condition before discussing the closed boundary
condition.

A. Periodic boundary condition

The spin Hamiltonian for the original SU(2) lattice gauge
theory with jmax ¼ 1

2
on a parallelogram under the periodic

boundary condition can be written as [47]

H¼
X
ði;jÞ

�
Jσzi;jðσziþ1;jþσzi;jþ1þσziþ1;j−1Þþhxð−0.5Þci;jσxi;j

�
;

ð14Þ

where J ¼ − 9
ffiffi
3

p
g2

32
, hx ¼ 4

ffiffi
3

p
9a2g2 and

FIG. 5. The GOE measure ΛT for the projected matrix elements
[Eq. (12)] of the electric energy operator as a function of time T
for eigenstates in Window 2 (bottom), Window 1 (middle) and
Window 3 (top). Solid lines, N ¼ 19; dashed lines, N ¼ 17.

x

y

(a) Parallelogram.

00 01 02

10

20

11

(b) Triangle.

FIG. 6. Examples of the honeycomb lattice considered in this
work: (a) a parallelogrammatic shape with Nx ¼ Ny ¼ 3; (b) a
triangular shape with N ¼ 3.
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ci;j ¼ Πþ
i;jþ1Π−

iþ1;j þ Πþ
iþ1;jΠ−

iþ1;j−1 þ Πþ
iþ1;j−1Π−

i;j−1

þ Πþ
i;j−1Π−

i−1;j þ Πþ
i−1;jΠ−

i−1;jþ1 þ Πþ
i−1;jþ1Π−

i;jþ1

Π�
i;j ¼

1� σzi;j
2

: ð15Þ

The ði; jÞ symbol labels the plaquette position at j along
the x direction defined by (1, 0) in the Cartesian 2D plane

and i along the y direction defined by ð1
2
;

ffiffi
3

p
2
Þ, as shown in

Fig. 6(a). We assume there are Nx plaquettes along the x
direction and Ny along the y direction. The first term
of Eq. (14) is the electric part of the Hamiltonian while the
second term is the magnetic part. The magnetic part
involves an exponential of Pauli matrices but one can
rewrite it purely in terms of tensor products of Pauli
matrices [47]. In our current studies using classical com-
puters, both work equally well. For a quantum simulation,
the latter format is more convenient to use since it can be
easily mapped onto qubits.
Under the periodic boundary condition, the Hamiltonian

in Eq. (14) is translationally invariant along the x and y
directions by one lattice unit defined above: ½H; T̂x� ¼
½H; T̂y� ¼ 0. As a result, the Hamiltonian and the transla-
tional operators can be simultaneously diagonalized. Each
eigenstate belongs to a particular momentum sector given
by 2πkx=Nx; 2πky=Ny, where kx ∈ ½0; 1;…; Nx − 1� and
ky ∈ ½0; 1;…; Ny − 1�. The Hamiltonian in each momentum
sector can be constructed as discussed in [47] and diagon-
alized exactly for small lattice sizes.
We first study the statistics of the eigenspectrum. We

consider the kx ¼ 1, ky ¼ 1 sector in the Nx ¼ 5, Ny ¼ 4
system, which contains 26163 states. (We choose Nx ≠ Ny

to avoid discrete hexagonal symmetry.) We plot the density
of eigenstates in Fig. 7 for g2 ¼ 0.75, where we also plot
the distributions of the energy gaps δ between nearest
eigenstates and the rescaled gaps s≡ δ=δ̄ (δ̄ is the average
of the gap), and the distribution of the restricted gap ratios
defined in Eq. (7), for the eigenstates in the middle of the
energy spectrum (we removed the first 5000 and last 5000
eigenstates when generating these three plots). The red curve
in the gap distribution [Fig. 7(b)] is a fit from the Wigner
surmise PwsðδÞ ¼ aδ expð−bδ2Þ. The fitted parameter val-
ues are a ≈ 10164541, b ≈ 5337217. Level repulsion is
clearly seen in the gap distribution, which is a feature of
a quantum system whose classical counterpart is chaotic.
We emphasize that level repulsion is very sensitive to any

discrete symmetry of the system. If we plot the gap
distribution for momentum sectors involving a zero
momentum (i.e., kx ¼ 0 and/or ky ¼ 0), level repulsion
cannot be seen and the distribution does not exhibit a
Wigner-Dyson shape. This is due to the remaining parity
symmetry in the zero momentum sectors. If we further
separate each zero momentum sector into a parity-even and
parity-odd sector and plot the gap distribution in each parity

sector, we will see level repulsion clearly again and the
distribution can be well fitted by a Wigner-Dyson shape, as
shown for the chain case in [45]. In Fig. 7(c), the red curve
is a prediction from the GOE of 2 × 2 random matrices
which states

PðsÞ ¼ πs
2
exp

�
−
πs2

4

	
: ð16Þ

In Fig. 7(d), the red curve is a GOE prediction as written in
Eq. (8). The expectation value of the restricted gap ratio can
be calculated as hri ≈ 0.5284, which is very close to the
GOE prediction hriGOE ≈ 0.5307. As can be seen, the
statistics of eigenenergies in the middle of the spectrum
can be well described by the GOE, up to statistical
uncertainties due to the finite size.
Before moving on to operator matrix elements, we want

to comment on the effect of g2 values on the energy
spectrum. Here we focus on the case with jmax ¼ 1

2
. In

Sec. IV, we will discuss how to choose jmax with varying
values of g2 in order to obtain physical results. In the large
volume limit, it is expected that any value of g2 will lead to
qualitatively similar level statistics that are well described
by the GOE. However, with a finite lattice size that is
numerically accessible by current classical computers,
some choices of g2 values will give better results than
others. For example, the reasonably good results shown
above are obtained from the choice g2 ¼ 0.75. If we choose
g2 ¼ 1, we observe a spiky structure in the level density,
which distorts the distributions of gaps and gap ratios

FIG. 7. Density of eigenstates, distributions of gaps, rescaled
gaps and gap ratios in the momentum kx ¼ ky ¼ 1 sector on the
Nx ¼ 5, Ny ¼ 4 lattice for g2 ¼ 0.75. The red curve in (b) is a
Wigner surmise fit and the other two red curves in (c) and (d) are
GOE predictions.
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away from the GOE predictions. We believe these are
finite volume effects and expect them to go away as the
lattice size increases. Numerical evidence for this expect-
ation is shown in Appendix A for the plaquette chain (we
choose the chain to demonstrate this since we can go to a
relatively large lattice size in the quasi-1D case such that
momentum level separation is smaller and so is relevant
kinetic energy).
Next we study the matrix elements of the electric energy

in the energy eigenbasis. The electric energy is given by

Hel ¼
X
ði;jÞ

Jσzi;jðσziþ1;j þ σzi;jþ1 þ σziþ1;j−1Þ; ð17Þ

which is translationally invariant along the x and y
directions. As a result, the off-diagonal matrix elements
of Hel vanish between states in different momentum
sectors. In the following, we will only compute the matrix
elements of Hel in one momentum sector.
We consider the kx ¼ ky ¼ 1 momentum sector on the

Nx ¼ 5, Ny ¼ 4 lattice and plot the magnitudes of the off-
diagonal matrix elements, i.e., jhαjHeljβij in Fig. 8 for
states satisfying 2 < Eα þ Eβ < 4 for two choices of
couplings: g2 ¼ 1 and g2 ¼ 0.75. Since the distributions
are symmetric around ω≡ Eα − Eβ ¼ 0, we only plot the
distributions for ω > 0. If the ETH applies, the distribution
of the off-diagonal matrix elements in a small ω window

should be Gaussian when the number of elements is
large. We test this in the small ω region by comparing
the width obtained in two ways. In the first way, we fit the
random variable distribution in an ω window of size 0.02 to
a Gaussian to obtain the width, shown in magenta.
Alternatively, we calculate the second moment

1

Nterms

X
α;β

jhαjHeljβij2 ð18Þ

of the matrix constrained to pairs of states with ωmin <
ω < ωmax, shown in black (ωmin and ωmax are the lower and
upper bounds of an ω window). If the off-diagonal matrix
elements magnitudes satisfy a Gaussian distribution, the
two methods will give the same result. In the case of g2 ¼ 1
[Fig. 8(c)], we see a noticeable disagreement between the
two methods for small ω, which indicates the magnitudes
of the off-diagonal matrix elements do not exactly follow
Gaussian distributions. On the other hand, we see a very
good agreement between the methods in the case of g2 ¼
0.75 [Fig. 8(d)], which shows the magnitudes of the off-
diagonal matrix elements in the small ω region follow
Gaussian distributions. The contrast between the two cases
of different couplings is consistent with the above studies of
the level statistics, where we see the case with g2 ¼ 0.75
can be well described by the GOE.
We also look at the off-diagonal matrix elements in a

wider ω region. As can be seen, the distributions shown in
Figs. 8(a) and 8(b) exhibit bumpy plateaus at small and
intermediateω and decay exponentially at largeω. The case
with g2 ¼ 1 shown in Fig. 8(a) contains more bumpy
structures, in particular at small ω as shown in Fig. 8(c),
where we fit the ω dependence of the second moment
extracted width by the function a=ðω2 þ b2Þ þ c. The peak
near ω ≈ 0 is likely related to diffusive transport processes.
However, as we decrease the coupling to g2 ¼ 0.75, we find
the peak disappears, as shown in Fig. 8(d). The reason for
the disappearance of the transport peak at weaker coupling
is unclear and may be a small lattice artifact.
We next study the GOE measure ΛT defined in Eq. (13),

which tracks the approach of the off-diagonal part of the
matrix to GOE behavior. We choose four energy windows
in the case of g2 ¼ 0.75 for our analysis: −2 < E < −1,
−1 < E < 0, 0 < E < 1, and 1 < E < 2. The results are
shown in Fig. 9. If the off-diagonal matrix elements are
described by the GOE, the value of ΛT will reach 0.5. We
see some deviations from the GOE prediction, which
indicates the off-diagonal matrix elements are still corre-
lated in their signs. (We have shown in Fig. 8 that the
magnitudes of the off-diagonal matrix elements satisfy
Gaussian distributions in the small ω region. So the
deviations seen here reflect the sign correlations and thus
nonorthogonality rather than the non-Gaussianity.) It is
worth further investigating the ΛT observable on bigger
lattices in future work.

FIG. 8. Off-diagonal matrix elements of the electric energy in
the eigenbasis in the kx ¼ ky ¼ 1 momentum sector on the
Nx ¼ 5, Ny ¼ 4 lattice for g2 ¼ 1 (left) and g2 ¼ 0.75 (right).
The plots in the top row are in the full ω region while the bottom
row is an enlargement of the small ω region. The black curves are
the widths calculated by the second moment of the matrix
element distribution. The magenta curves are the widths fitted
by Gaussian distributions. The yellow curve is a fit of the second
moment results in the g2 ¼ 1 case with a ≈ 3.50 × 10−5,
b2 ≈ 1.34 × 10−3, and c ≈ 5.77 × 10−3.
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Finally, we study matrix elements of operators that break
the translational invariance. Following [45], we study
Wilson loops corresponding to one-plaquette O1 and
two-plaquette O2 operators. The Pauli matrix representa-
tion of these Wilson loop operators and their matrix
elements in the momentum basis have been worked out
for the honeycomb lattice in [47]. We use all the momen-
tum sectors up to (including) kx ¼ bNx=2c and ky ¼
bNy=2c in the g2 ¼ 1 case. We first investigate lattice size
dependence of the diagonal part of their matrix elements by
considering lattices of size 3 × 3; 4 × 3; 4 × 4, and 5 × 4.
We estimate the deviation of the diagonal part from the
microcanonical ensemble average by using a proxy for the
microcanonical ensemble made up of ten eigenstates below
and ten above the eigenstate under consideration [45]. The
deviation is estimated as

ΔiðαÞ≡ hαjOijαi −
1

21

Xαþ10

β¼α−10
hβjOijβi: ð19Þ

We plot the magnitude of Δi averaged over all eigenstates
except for the 20 lowest and 20 highest states in Fig. 10, as
a function of lattice size. We find that jΔij decreases
approximately exponentially with lattice size, confirming
the exponentially decaying factor e−S=2 in the fluctuating
part of Eq. (1) for most eigenstates, since the entropy is an
extensive quantity, S ∝ NxNy. In other words, we demon-
strated the diagonal matrix elements of the twoWilson loop
operators are exponentially close to the microcanonical
ensemble average value, as the system size increases.
We also plot the off-diagonal matrix elements of the two

Wilson loop operators in Fig. 11. In this plot, we consider
eigenstates within a thin energy shell 1.99 < Eα þ Eβ <
2.01 in all the momentum sectors up to (including) kx ¼ 2

and ky ¼ 2 on the Nx ¼ Ny ¼ 4 lattice with g2 ¼ 1. The
upper envelopes of these distributions also exhibit bumpy
plateaus at small and intermediate ω and show hints of an
exponential falloff at large ω, although the statistics
becomes marginal above ω ¼ 12.5.

B. Closed boundary condition

In this subsection, we consider a triangular honeycomb
lattice with a closed boundary condition, as shown in
Fig. 6(b). The total number of plaquettes of a triangular
lattice is fully determined by the number of plaquettes on
each side N: Ntot ¼ NðN þ 1Þ=2. Closed boundary con-
ditions assume that all links outside the boundary have
vacuum quantum numbers j ¼ 0. With jmax ¼ 1

2
, the 2D

SU(2) lattice gauge theory can be mapped onto a 2D spin
model [47]

FIG. 9. ΛT observable as a function of T for the electric
energy operator in four eigenenergy windows −2 < E < −1,
−1 < E < 0, 0 < E < 1 and 1 < E < 2 in the kx ¼ ky ¼ 1

sector on the Nx ¼ 5, Ny ¼ 4 lattice with g2 ¼ 0.75. (The matrix
still has 7944 nonzero elements at T ¼ 10000.).

FIG. 10. Averaged magnitude of the difference between the
diagonal matrix element and the microcanonical ensemble
average decays roughly exponentially as a function of system
size for both Wilson loop operators.

FIG. 11. Off-diagonal matrix elements of Wilson loop oper-
ators in a small energy shell.
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H ¼
X
ði;jÞ

�
hþΠþ

i;j − hþþΠþ
i;jðΠþ

iþ1;j þ Πþ
i;jþ1 þ Πþ

iþ1;j−1Þ

þ hxð−0.5Þci;jσxi;j
�
; ð20Þ

where hþ ¼ 27
ffiffi
3

p
8a2g2, hþþ ¼ 9

ffiffi
3

p
8
g2, and hx and cij are the

same as in the case of periodic boundary conditions. In the
following, we will consider g2 ¼ 1. As explained earlier,
any value of g2 is expected to give qualitatively similar
results for asymptotically large lattice sizes.
As for the other systems investigated here, we exactly

diagonalize the Hamiltonian and calculate matrix elements
of certain operators in the energy eigenbasis. Here we will
omit the studies of level statistics since the system has a
discrete symmetry given by the dihedral group D3 and
focus on studying operators corresponding to the one-
plaquette and two-plaquette Wilson loops, which were
constructed in [47]. Unlike the periodic case, here the
results of operator matrix elements will depend on the
location of the operator. We consider two scenarios: Wilson
loop operators defined at the center of the lattice, and those
defined at a corner of the triangular lattice shown in
Fig. 6(b).
As in the periodic case, we first plot the deviation of

the diagonal matrix element from the microcanonical
ensemble average in Fig. 12. For the operators defined
at the lattice center, we clearly see an exponential decay of
the averaged deviation magnitude as the system size
increases [Fig. 12(a)], which indicates the diagonal matrix
elements are rapidly approaching the microcanonical
expectation values. For the operators defined at the corner,
we see a cusp in the one-plaquette operator case [upper
panel of Fig. 12(b)], which could be a boundary effect.
However, for the two-plaquette operator the exponential
decrease is visible also for the corner location [lower panel
of Fig. 12(b)].
Then we study the off-diagonal matrix elements of the

Wilson loop operators on the N ¼ 5 lattice. When calcu-
lating the matrix elements, we use only eigenstates within
a thin energy shell 43.999 < Eα þ Eβ < 44.001. [One

cannot simplify the Hamiltonian in the closed boundary
case, i.e., Eq. (20), by simply removing the constant terms,
which shifts the zero energy reference such that the middle
of the spectrum is around zero energy, as done in the case
with a periodic boundary condition. This is because after
removing the constant terms, one has to consider how the
plaquettes (spins) just outside the boundary enters Eq. (20),
which is different for the three edges of the triangular
lattice. So we choose not to shift the zero energy reference
here for convenience in the numerical construction of the
Hamiltonian. This is why the values of the energy windows
in the two cases with different boundary conditions look so
different.]
The results for the absolute values of the matrix elements

are shown in Fig. 13 as a function of ω ¼ Eα − Eβ. Again,
we notice a bumpy plateau in the small ω region (ω≲ 10)
and an exponential falloff at large ω for both operators, no
matter whether they are defined at the center or corner. In
the case of the one-plaquette operator, some off-diagonal
matrix elements have much smaller values (≲10−13) than
others, which are essentially zero within the numerical
precision. This is a result of discrete symmetries in the
system. The one-plaquette operator defined at the center is
symmetric under the dihedral group D3 on the N ¼ 5
triangular lattice. As a result, its matrix element between
two eigenstates with different symmetry under D3 trans-
formations vanishes by virtues of the Wigner-Eckart
theorem. Similarly, the one-plaquette operator defined at
a corner of the triangular lattice respects the reflection
around the perpendicular bisector line going through this
corner. Thus, its matrix element between two eigenstates
that have different reflection symmetry vanishes. We do not
see vanishing off-diagonal matrix elements in the case of
two-plaquette operators, since they break the D3 symmetry
of the lattice.
Finally, we study whether the off-diagonal matrix

elements of the Wilson loop operators can be well
described by Gaussian distributions. To this end, we
consider the two-plaquette operator defined at the center
of the N ¼ 5 lattice studied above and use the eigenstates

FIG. 12. Averaged magnitude of the difference between the
diagonal matrix element and the microcanonical ensemble
average as a function of the lattice size, for Wilson loop operators
defined at the center (left) and the left bottom corner (right).

FIG. 13. Magnitudes of off-diagonal matrix elements of the
Wilson loop operators defined at the center (left) or left bottom
corner (right). The two eigenstates are picked up from a narrow
energy window 43.999 < Eα þ Eβ < 44.001, which leads to the
discontinuity in ω here.
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contained in the same energy shell. The distributions
of the off-diagonal matrix elements hnjO2jmi in different
ω regions are plotted in Fig. 14 together with Gaussian
fits. The two different ω windows are 0 < ω < 4 and
4 < ω < 8. We see in the smaller ω region, the distribution
of hnjO2jmi can be better described by a Gaussian, which
is consistent with the results obtained for the plaquette
chain and the honeycomb lattice with periodic boundary
conditions.

IV. CUTOFF CONVERGENCE

As explained in Sec. I we are interested in the double
limit of a large number of plaquettes N and large enough
jmax to reach convergence. This is not feasible for us with
our present computer resources. Therefore we investigate
separately the cases N large, jmax ¼ 1

2
(Secs. II and III) and

the case N ¼ 3, jmax ≤ 7
2
(this section). More precisely, we

investigate the validity of the ETH relation [Eq. (1)] for a
linear chain of three plaquettes with periodic boundary
conditions in an energy window where we observe good
convergence with the cutoff jmax, i.e., we obtain results for
the KS Hamiltonian in a converged Hilbert space region.
We start by examining this convergence behavior. A few

typical examples of eigenenergies for g2 ¼ 0.8 are shown
in Fig. 15. Eigenstates with different momentum k (which
is discretized) and/or parity do not mix. Therefore, to study
the characteristic RMT behavior in the eigenenergy spec-
trum, one has to choose a specific sector. We concentrate on
the sector with momentum k ¼ 0 and positive parity. An
additional symmetry, namely top-bottom symmetry, arises
for jmax > 1

2
. In this case we chose the sector corresponding

to the eigenvalue þ1. Obviously, very good convergence
can be achieved for states that are not too highly excited,
i.e., E − E1 ≲ 20, where E1 denotes the ground state energy
of the system. This convergence can be tracked quantita-
tively by fitting the eigenvalues as a function of j by simple
exponential curves of the form

EαðjÞ ¼ Aαe−jðjþ1Þg2 þ λα; ð21Þ

and extrapolating to infinite j (see dashed lines in Fig. 15).
Here λα is the αth energy eigenvalue in the limit j → ∞ and
Aα is a fit parameter which does not depend on jmax but on
α. We observe a power law behavior of the parameter Aα

with respect to α which we use to further improve the
extrapolation: We fit Aα by a three-parameter function
Aα ¼ a · αb þ c. This finally leaves a function EαðjÞ with
only one parameter, namely λα, allowing us to define a
precise criterion for a converged eigenvalue,

EαðjmaxÞ − λα
λα

< 5%; ð22Þ

where in our case jmax is 7
2
. Using this criterion we find

convergence for eigenvalues up to Emax ¼ 24.3. It is clear
from Fig. 15 that jmax ¼ 1

2
is typically far from convergence

at this value of the coupling constant (g2 ¼ 0.8), which is
not surprising since even the ground state energy becomes
exact for jmax ¼ 1

2
only in the strong coupling limit.

In the selected converged energy regions we proceed
with the analysis of ETH properties. In line with our
discussion in Sec. I we choose a physical observable,
namely the electric energy Hel, in a specific symmetry
sector to check the validity of Eq. (1). Furthermore, we
study the structure of the spectral response function fðE;ωÞ
in more detail. Since the possibilities of creating gauge
invariant states on our lattice increase with increasing jmax,
new energy eigenvalues emerge such that the available
statistics improve rapidly with increasing jmax.
Again, we proceed as in Secs. II and III and follow the

template of similar investigations of possible ETH behavior
(see e.g. [24]): We first check for RMT behavior in the
eigenenergy spectrum, before we analyze the diagonal, and
then the off-diagonal matrix elements of Eq. (1). However,

FIG. 14. Gaussian fits for distributions of hnjO2jmi (the
operator is defined at the center) in two ω slots: 0 < ω < 4
(left) and 4 < ω < 8 (right). The fitted Gaussian widths are
roughly 0.00200 and 0.00174 for the left panel and the right
panel, respectively.

FIG. 15. Some energy eigenvalues for the k ¼ 0, positive parity
and positive top-down symmetry sector plotted against the cutoff
for g2 ¼ 0.8 with a corresponding exponential fit of the form of
Eq. (21).
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the KS Hamiltonian has a special property one needs to be
aware of. As one can see in Eq. (2), the KS Hamiltonian
has an electric and a magnetic part. A sufficient contri-
bution of the magnetic part to the overall Hamiltonian is
essential for observing chaotic behavior. Thus, for fixed
lattice spacing a and size N the degree of ergodicity
depends on g. For sufficiently large g the theory becomes
nonergodic and the resulting energy level statistics
approach a Poisson distribution while for moderate g
its RMT behavior should be clearly visible. For example,
the mean gap ratio should interpolate smoothly between
the Poisson and RMT (GOE) values, which is exactly
what we observe in Fig. 16. This plot also shows in which
range g2 has to be chosen to observe ergodic properties for
N ¼ 3, namely g2 ≤ 1.2. We choose typically g2 ¼ 0.8 or
g2 ¼ 1. Smaller values of g2 are not practical, because the
slow convergence with respect to jmax would yield an
insufficient converged region size.
Overall, requiring convergence with respect to jmax, a

value of g2 for which the system behaves ergodically, and
the magnitude of discretization and finite size artifacts
strongly limit the usable statistics and parameter range.
This is illustrated in Fig. 17 for the histograms of the
complete spectra for electric field cutoffs jmax ∈ f5

2
; 3; 7

2
g.

While there is still a large difference in the level density in a
wide energy region between jmax ¼ 3 and jmax ¼ 7

2
, our

convergence studies described above allow us to assess
the convergence beyond jmax ¼ 7

2
, i.e., confirm that

ρ7=2ðEÞ ≈ ρ∞ðEÞ for E≲ Emax, where the index of
ρjðEÞ denotes the j cutoff. In order to suppress finite
size effects, we discard 14% of the states at both edges of
the full spectrum. As a result, the low-energy part of the
converged spectrum is not taken into account. The
truncated converged energy window, used in our analysis,
is thus determined by the upper bound derived from our

convergence criterion (22) and the lower bound from
the finite size truncation. The converged window is
highlighted by a blue shaded rectangle in Fig. 17. The
remaining number of states and matrix elements of Hel is
large enough to obtain rather precise results.
Another standard test for GOE behavior in the eigene-

nergy spectrum is the nearest-neighbor level spacing
statistics. Figure 18 shows a histogram of the normalized
level spacing distribution PðsÞ in the converged energy
window for g2 ¼ 0.8 in comparison with the Wigner-
Dyson distribution (16). The agreement is good, but not
perfect, suggesting that there are still deviations from exact
RMT behavior in this energy window.
Next, we analyze the diagonal part of Eq. (1) for the

matrix elements of the electrical energy operator in the
specified symmetry sector. Equation (1) predicts the pres-
ence of exponentially suppressed rapidly varying fluctua-
tions superimposed on a smooth function of E. This ensures
the existence of a well-defined microcanonical ensemble
average that is obtained by averaging hEαjHeljEαi over a

FIG. 16. Average restricted gap ratio hri plotted against the
coupling constant g2 for N ¼ 3 plaquettes and jmax ¼ 3.5. The
value for a GOE distribution is 0.53 and that for a Poisson
distribution is 0.39. Obviously hri extrapolates between the
ergodic and nonergodic regime as a function of g2.

FIG. 17. Histograms of the whole energy spectra for
jmax ∈ f5

2
; 3; 7

2
g and g2 ¼ 0.8. The blue rectangle depicts the

converged region, leaving out states affected by finite size effects.

FIG. 18. The normalized level spacing s ¼ δα=δ̄ (as defined in
Sec. III A) distribution in the converged energy window com-
pared to the Wigner-Dyson distribution PðsÞ.
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small energy window. Figure 19 shows the distribution of
the expectation value of the electric energy as a function of
the energy for all energy eigenstates of the system in the
selected symmetry sector. The values for states inside the
chosen energy window are highlighted in red. The spread
of the distribution around a nearly linear dependence on
energy is seen to be small, i.e., the electric energy operator
has a well-defined microcanonical average hHelimcðEÞ
over a wide range of the spectrum. The width of the
distribution is expected to shrink exponentially with the
lattice size as observed for the plaquette operators in
the truncated (jmax ¼ 1

2
) version of the gauge theory (see

Figs. 10 and 12).
As an aside, let us note that Fig. 19 shows that the

electrical energy contributes the dominant part to the total
energy, with Eel ranging between 0 and 56.7, whereas the
magnetic energy is limited to the range −15 < Emag < 15

in lattice units. This shows that the system is still far from
the thermodynamic limit of the continuum gauge theory.
We now proceed with the analysis of the off-diagonal

matrix elements of the electric energy, i.e., hEαjHeljEβi, in
the converged energy window. Figure 20 shows these
matrix elements in the energy window

jðEα þ EβÞ=2 − Ēj < ΔE=2 ð23Þ

with Ē ¼ 21.5 and ΔE ¼ 1 for g2 ¼ 0.8. In order to
analyze the spectral behavior with respect to jωj ¼ jEα −
Eβj we calculate the second moment as defined in Eq. (18).
For the spectral function, one expects several character-

istic ω regions (see Alessio et al. [15], Sec. 4.3.1.2): an
exponential decay at large ω, a bumpy region at inter-
mediate ω reflecting quasiparticle contributions, and a
diffusive plateau at the smallest values of ω. For non-
Abelian gauge theories an effective description in terms of
quasiparticles is typically based on analogs of glueballs; at

high excitation energy such quasiparticles may or may not
exist depending on the strength of the coupling. Such
quasiparticles show up as broad peaks in the spectral
function. Typically these structures are quite broad but
details are specific to the theory under investigation. These
properties are visible in Figs. 20(a) and 20(b).
For many systems, one also observes a transport peak

and a diffusive plateau at very low ω. Whether a prominent
transport peak exists for non-Abelian gauge theories and, if
so, for which operators and in which parameter range, is
still under investigation [50–52]. Interestingly, our results
shown in Figs. 20 and 21 support the existence of such a
diffusive transport peak, at least for the pure SU(2) gauge
theory.
Therefore we now focus our analysis specifically on the

small ω regime, i.e., the transport peak region. We start by
discussing the g dependence of the transport peak, shown in
Fig. 21. In order to be able to compare the behavior for
different coupling constants we define the equivalent
energy regions with respect to each ground state. In
the following we restrict ourselves to the energy window

FIG. 19. Diagonal matrix elements of the electric energy in the
energy basis hEαjHeljEαi plotted against the respective energy
eigenvalues Eα − E1. The red colored part corresponds to the
converged energy window used.

FIG. 20. Absolute values of the off-diagonal matrix elements of
the electric energy in the energy basis jhEαjHeljEβij against ω ¼
Eα − Eβ in the energy window jðEα þ EβÞ=2 − Ēj < ΔE=2 with
Ē ¼ 21.5 and ΔE ¼ 1. Part (a) presents a logarithmic plot of all
matrix elements (blue) and their Gaussian widths (orange),
obtained by the second moment method, whereas (b) shows a
linear plot of the Gaussian widths only.

FIG. 21. Gaussian widths of off-diagonal matrix elements,
obtained by the second moment method, for the equivalent
energy windows Ē ¼ E1 þ 31 and ΔE ¼ 1 for coupling constant
g2 ∈ f0.8; 1.0; 1.2g in the small ω region.
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with Ē − E1ðg2Þ ¼ 31 and ΔE ¼ 1. We know from our
discussion of Fig. 16 that the chaotic nature of our system is
lost if the coupling constant exceeds g2 ≈ 1.2. As the
diffusive transport peak is part of this dynamics, it is
natural to expect it to become less well defined when g2

approaches or exceeds 1.2. Indeed, Fig. 21 suggests that the
diffusive plateau at small jωj disappears right around this
value of the coupling constant although there is still a
pronounced peak in the spectral function.
As explained in Sec. III, the spectral function can be

obtained in different ways. On one hand, it can be defined
via the second moment of matrix elements as already
shown in Figs. 20 and 21. On the other hand, the
distribution of matrix elements magnitudes in small ω
windows appears Gaussian, suggested by the central limit
theorem, which is clearly supported by Fig. 22. Similar
plots are obtained in the whole ω spectrum. Thus, we are in
the position to define the spectral function from Eq. (10),
using the Gaussian width of the matrix element distribu-
tions. The comparison of these two methods for g2 ¼ 0.8 is
depicted in Fig. 23. Both the second moment and the
Gaussian fit methods show very good agreement, even for
the diffusive plateau jωj < 0.02, supporting that the off-
diagonal matrix element magnitudes follow a Gaussian
distribution. The plot also supports a functional form of a
diffusive transport peak, i.e., Eq. (11).
Finally, we want to discuss certain limitations of the

GOE indicator used by considering the ΛT measure defined
in Eq. (13). Unlike the above analyses, the calculation of
the ΛT measure does include the original matrix elements
without taking the absolute value. In Fig. 24 we show ΛT

for three different sizes of the energy windows, namely
ΔE ¼ 1, ΔE ¼ 1.3 and ΔE ¼ 1.6, around the same mean
energy Ē ¼ 23.5 (all of which lie in the blue band denoting
the converged energy region indicated in Fig. 17). All three
plots exhibit the expected monotonic growth with increas-
ing T, i.e., decreasing number of allowed nonzero matrix

elements, and convergence to some saturation value Λ∞
ΔE.

In the case of ΔE ¼ 1 at T ¼ 14; 000, we find this value to
be ΛT

1 ≈ 0.429, where we are left with 905 nonzero matrix
elements. For the two larger energy windows and the same
T, we obtain ΛT

1.3 ≈ 0.482 and ΛT
1.6 ≈ 0.490 with 1182 and

1474 nonzero matrix elements, respectively. We observe a
sustained approach to the GOE prediction ΛGOE ¼ 0.5 for
increasing energy window width ΔE. We interpret this as a
result of the larger number of nonzero matrix elements at
each T as the energy window width ΔE increases. This
finding highlights our numerical limitations for small
energy windows, e.g., the case ΔE ¼ 1. These results also
show similar saturation timescales of ΛT for the electric
energy Hel of order T ∼ 104 as found in Sec. III.

FIG. 22. Distribution of matrix elements jMαβj ¼ jhEαjHeljEβij
of the total electric energy operator Hel in the range 0.06 < jωj <
0.10 for g2 ¼ 0.8, shown together with a Gaussian fit.

FIG. 23. Double logarithmic plot of the spectral function
felðE;ωÞ, which is obtained by both the second moment and
Gaussian fit methods in the energy window defined by Ē ¼ 23.5
and ΔE ¼ 1. The blue bars represent the ω regions of matrix
elements used for the Gaussian distribution fit. The blue dashed
line represents an analytical fit of the blue dots, which is of the
form a=ðω2 þ b2Þ þ c for small ω. We find a ≈ 1.50 × 10−2, b ≈
9.81 × 10−2 and c ≈ 0.835.

FIG. 24. ΛT measure for the electric energy within the energy
windows defined by the mean energy Ē ¼ 23.5 and the window
sizes ΔE ¼ 1, ΔE ¼ 1.3, and ΔE ¼ 1.6 for g2 ¼ 0.8.
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V. SUMMARY AND OUTLOOK

We investigated several truncated versions of lattice-
discretized (2þ 1)-dimensional SU(2) gauge theory with
respect to the properties underpinning the eigenstate
thermalization hypothesis. The systems we studied include
linear plaquette chains up to length N ¼ 19, honeycomb
lattices with up to 20 plaquettes with the electric field
Hilbert space truncated at jmax ¼ 1

2
, and the N ¼ 3 pla-

quette chain on the fully converged electric field Hilbert
space. Our results are encouraging: All of these truncated
versions of lattice gauge theory exhibit clear signs of
behavior that is consistent with the ETH: The energy level
spectrum obeys GOE statistics within the limits of stat-
istical and systematic uncertainties. The fluctuations of
diagonal matrix elements of the operators we studied (the
total electric energy as well as one- and two-plaquette
Wilson loops) were found to exponentially decay with the
lattice area. We studied the off-diagonal matrix elements of
several operators between nearby energy eigenstates and
found their magnitudes follow Gaussian distributions.
Their signs are correlated and only become more random
in smaller ω windows. We also calculated the spectral
function fðE;ωÞ for all three truncated LGT models and
found that they conform to the expectations for a system
that exhibits quantum chaos.
While encouraging, these pioneering studies were lim-

ited to small systems due to lack of computer resources and
thus rather constitute a proof of principle than definitive
evidence that (2þ 1)-dimensional SU(2) lattice gauge
theory exhibits ETH behavior in the continuum limit.
However, they motivate hope that along these lines the
numerical evidence can be significantly strengthened if
more computer resources are invested. In addition to
substantial hardware resources this will also require the
development and implementation of efficient algorithms for
the calculation of matrix elements between energy eigen-
states in very large Hilbert spaces, such as the kernel
polynomial method [53].
The following bullet points illustrate the range of

possible future work extending the results reported here:
(i) Explore the convergence of Hilbert space trunca-

tions for lattices with a larger number of plaquettes.
(ii) Extend our investigations to more operators A to

better understand for which operators the defining
ETH relation (1) holds.

(iii) Extend our studies to three spatial dimensions using
point-splitting methods as in [44].

(iv) Determine the Thouless energy for (2þ 1)-
dimensional SU(2) gauge theory if it exists, i.e.,
the value of ΔE below which the RMT behavior in
the off-diagonal matrix elements is observed, as a
function of lattice size.

(v) Extend our studies to SU(3) gauge theory using the
techniques of [40].

(vi) Include dynamical quarks.

Obviously, realizing this agenda will require years of
dedicated work. Our present contribution only marks its
beginning.
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APPENDIX A: ENERGY LEVEL DENSITY
ON PLAQUETTE CHAINS WITH jmax = 1

2

In Fig. 25, we plot the normalized energy level density
ρðEÞ in the k ¼ 1 sector on the plaquette chain with jmax ¼
1
2
and g2 ¼ 1 for two lattice sizes N ¼ 13, 19. As can be

seen, the level density becomes smoother as the lattice size
increases, such that the behavior of the system should agree
better with ETH predictions. However, the level density
depends also on g2 as can be seen by comparing theN ¼ 19

case for g2 ¼ 1 [Fig. 25(b)] with that of Fig. 1 for g2 ¼ 1.2.
Obviously, the spectrum is smoother for the latter case,
indicating that for the former case N has to be chosen larger
to get the same quality results.

FIG. 25. Normalized energy eigenvalue density ρðEÞ in the
k ¼ 1 sector on the plaquette chain with jmax ¼ 1

2
and g2 ¼ 1 for

two different lattice sizes: (a) N ¼ 13, (b) N ¼ 19.
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APPENDIX B: THERMAL PROPERTIES

It is instructive to study the thermal properties of some
of our truncated lattice models. Figure 26 depicts the
internal energyU of the linear plaquette chain with jmax ¼
1
2
for N ¼ 19 (solid blue line) and N ¼ 17 (black dashed

curve) as functions of the temperature T in lattice units.
The flattening out of UðTÞ at high temperatures is an
artifact of the finite lattice spacing, which eliminates high-
momentum modes of the gauge field. This is even more
apparent in the entropy SðTÞ, which approaches the value

S∞ ¼ N ln 2 for T → ∞ as all energy levels are demo-
cratically populated. In the continuum, for the one-
dimensional plaquette chain and without electric field
cutoff, UðTÞ would grow quadratically with T at large T.
The figure clearly shows that the system is still far from
the continuum limit.
Similarly, we investigate the internal energy UðTÞ for

the N ¼ 3 plaquette chain with different momentum
cutoffs jmax ∈ f2; 5

2
; 3; 7

2
g in Fig. 27. Obviously, the

quadratic temperature dependence of UðTÞ in the con-
tinuum theory is only attained in the jmax → ∞ limit,
illustrating the necessity to perform this limit (as well as
the N → ∞ limit).

[1] E. Fermi, Prog. Theor. Phys. 5, 570 (1950).
[2] L. D. Landau, Izv. Akad. Nauk Ser. Fiz. 17, 51 (1953).
[3] R. Hagedorn, Nuovo Cimento Suppl. 3, 147 (1965).
[4] A. Kurkela and G. D. Moore, J. High Energy Phys. 12

(2011) 044.
[5] Y. Fu, J. Ghiglieri, S. Iqbal, and A. Kurkela, Phys. Rev. D

105, 054031 (2022).
[6] J. Brewer, B. Scheihing-Hitschfeld, and Y. Yin, J. High

Energy Phys. 05 (2022) 145.
[7] V. Balasubramanian, A. Bernamonti, J. de Boer, N. Copland,

B. Craps, E. Keski-Vakkuri, B. Muller, A. Schafer, M.
Shigemori, and W. Staessens, Phys. Rev. Lett. 106,
191601 (2011).

[8] V. Balasubramanian, A. Bernamonti, J. de Boer, N.
Copland, B. Craps, E. Keski-Vakkuri, B. Müller, A.
Schäfer, M. Shigemori, and W. Staessens, Phys. Rev. D
84, 026010 (2011).

[9] S. Waeber and L. G. Yaffe, J. High Energy Phys. 03 (2023)
208.

[10] B. Müller and A. Trayanov, Phys. Rev. Lett. 68, 3387
(1992).

[11] C.-q. Gong, Phys. Lett. B 298, 257 (1993).
[12] J. Bolte, B. Müller, and A. Schäfer, Phys. Rev. D 61, 054506

(2000).
[13] J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
[14] M. Srednicki, Phys. Rev. E 50, 888 (1994).
[15] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, Adv.

Phys. 65, 239 (2016).
[16] T. Mori, T. N. Ikeda, E. Kaminishi, and M. Ueda, J. Phys. B

51, 112001 (2018).
[17] A. M. Alhambra, J. Riddell, and L. P. García-Pintos, Phys.

Rev. Lett. 124, 110605 (2020).
[18] A. S. L. Malabarba, L. P. García-Pintos, N. Linden,

T. C. Farrelly, and A. J. Short, Phys. Rev. E 90, 012121
(2014).

[19] A. Dymarsky, Phys. Rev. B 99, 224302 (2019).
[20] S. Goldstein, T. Hara, and H. Tasaki, Phys. Rev. Lett. 111,

140401 (2013).

FIG. 26. Internal energy UðTÞ as a function of temperature T
for N ¼ 19 (solid, blue) and N ¼ 17 (dashed, black) plaquette
chains with jmax ¼ 1

2
. UðTÞ saturates at large T because the

system contains only a finite number of degrees of freedom. All
quantities are shown in lattice units.

FIG. 27. Internal energy UðTÞ for the three-plaquette chain and
increasing jmax at g2 ¼ 1. The quantity saturates at large T
because the system contains only a finite number of degrees of
freedom.

EIGENSTATE THERMALIZATION IN (2þ 1)-DIMENSIONAL … PHYS. REV. D 109, 014504 (2024)

014504-17

https://doi.org/10.1143/ptp/5.4.570
https://doi.org/10.1007/JHEP12(2011)044
https://doi.org/10.1007/JHEP12(2011)044
https://doi.org/10.1103/PhysRevD.105.054031
https://doi.org/10.1103/PhysRevD.105.054031
https://doi.org/10.1007/JHEP05(2022)145
https://doi.org/10.1007/JHEP05(2022)145
https://doi.org/10.1103/PhysRevLett.106.191601
https://doi.org/10.1103/PhysRevLett.106.191601
https://doi.org/10.1103/PhysRevD.84.026010
https://doi.org/10.1103/PhysRevD.84.026010
https://doi.org/10.1007/JHEP03(2023)208
https://doi.org/10.1007/JHEP03(2023)208
https://doi.org/10.1103/PhysRevLett.68.3387
https://doi.org/10.1103/PhysRevLett.68.3387
https://doi.org/10.1016/0370-2693(93)91816-6
https://doi.org/10.1103/PhysRevD.61.054506
https://doi.org/10.1103/PhysRevD.61.054506
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1088/1361-6455/aabcdf
https://doi.org/10.1088/1361-6455/aabcdf
https://doi.org/10.1103/PhysRevLett.124.110605
https://doi.org/10.1103/PhysRevLett.124.110605
https://doi.org/10.1103/PhysRevE.90.012121
https://doi.org/10.1103/PhysRevE.90.012121
https://doi.org/10.1103/PhysRevB.99.224302
https://doi.org/10.1103/PhysRevLett.111.140401
https://doi.org/10.1103/PhysRevLett.111.140401


[21] M. Rigol, V. Dunjko, and M. Olshanii, Nature (London)
452, 854 (2008).

[22] H. Kim, T. N. Ikeda, and D. A. Huse, Phys. Rev. E 90,
052105 (2014).

[23] R. Mondaini, K. R. Fratus, M. Srednicki, and M. Rigol,
Phys. Rev. E 93, 032104 (2016).

[24] D. Jansen, J. Stolpp, L. Vidmar, and F. Heidrich-Meisner,
Phys. Rev. B 99, 155130 (2019).

[25] J. Richter, A. Dymarsky, R. Steinigeweg, and J. Gemmer,
Phys. Rev. E 102, 042127 (2020).

[26] N. Mueller, T. V. Zache, and R. Ott, Phys. Rev. Lett. 129,
011601 (2022).

[27] J. Wang, M. H. Lamann, J. Richter, R. Steinigeweg, A.
Dymarsky, and J. Gemmer, Phys. Rev. Lett. 128, 180601
(2022).

[28] S. R. Sharpe, in Workshop on Constructing Quantum The-
ories (Zoom, 2021) (2021), https://sites.google.com/uw.edu/
bfeintze/events/quantization-workshop/#h.r24av7lq1kyx.

[29] J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).
[30] M. C. Bañuls et al., Eur. Phys. J. D 74, 165 (2020).
[31] C. W. Bauer, Z. Davoudi, N. Klco, and M. J. Savage, Nat.

Rev. Phys. 5, 420 (2023).
[32] M. E. Berbenni-Bitsch, S. Meyer, A. Schäfer, J. J. M.

Verbaarschot, and T.Wettig, Phys. Rev. Lett. 80, 1146 (1998).
[33] A. M. Halasz, A. D. Jackson, R. E. Shrock, M. A.

Stephanov, and J. J. M. Verbaarschot, Phys. Rev. D 58,
096007 (1998).

[34] J. J. M. Verbaarschot and T. Wettig, Annu. Rev. Nucl. Part.
Sci. 50, 343 (2000).

[35] X. Ji, Phys. Rev. Lett. 110, 262002 (2013).
[36] P. V. Buividovich, M. Hanada, and A. Schäfer, Phys. Rev. D

99, 046011 (2019).
[37] C. Gong, B. Müller, and T. S. Biro, Nucl. Phys. A568, 727

(1994).

[38] T. Byrnes and Y. Yamamoto, Phys. Rev. A 73, 022328
(2006).

[39] E. Zohar and M. Burrello, Phys. Rev. D 91, 054506 (2015).
[40] N. Klco, J. R. Stryker, and M. J. Savage, Phys. Rev. D 101,

074512 (2020).
[41] A. Ciavarella, N. Klco, and M. J. Savage, Phys. Rev. D 103,

094501 (2021).
[42] S. A Rahman, R. Lewis, E. Mendicelli, and S. Powell, Phys.

Rev. D 104, 034501 (2021).
[43] T. Hayata and Y. Hidaka, J. High Energy Phys. 09 (2023)

126.
[44] T. V. Zache, D. González-Cuadra, and P. Zoller, Phys. Rev.

Lett. 131, 171902 (2023).
[45] X. Yao, Phys. Rev. D 108, L031504 (2023).
[46] S. A Rahman, R. Lewis, E. Mendicelli, and S. Powell, Phys.

Rev. D 106, 074502 (2022).
[47] B. Müller and X. Yao, Phys. Rev. D 108, 094505 (2023).
[48] V. Oganesyan and D. A. Huse, Phys. Rev. B 75, 155111

(2007).
[49] Y. Atas, E. Bogomolny, O. Giraud, and G. Roux, Phys. Rev.

Lett. 110, 084101 (2013).
[50] Y. Akamatsu, H. Hamagaki, T. Hatsuda, and T. Hirano,

J. Phys. G 38, 124184 (2011).
[51] B. B. Brandt, A. Francis, B. Jäger, and H. B. Meyer, Phys.

Rev. D 93, 054510 (2016).
[52] J. Casalderrey-Solana, S. Grozdanov, and A. O. Starinets,

Phys. Rev. Lett. 121, 191603 (2018).
[53] A. Weisse, G. Wellein, A. Alvermann, and H. Fehske, Rev.

Mod. Phys. 78, 275 (2006).
[54] https://iqus.uw.edu.

Correction: The caption to Fig. 8 contained an error and
has been fixed.

EBNER, SCHÄFER, SEIDL, MÜLLER, and YAO PHYS. REV. D 109, 014504 (2024)

014504-18

https://doi.org/10.1038/nature06838
https://doi.org/10.1038/nature06838
https://doi.org/10.1103/PhysRevE.90.052105
https://doi.org/10.1103/PhysRevE.90.052105
https://doi.org/10.1103/PhysRevE.93.032104
https://doi.org/10.1103/PhysRevB.99.155130
https://doi.org/10.1103/PhysRevE.102.042127
https://doi.org/10.1103/PhysRevLett.129.011601
https://doi.org/10.1103/PhysRevLett.129.011601
https://doi.org/10.1103/PhysRevLett.128.180601
https://doi.org/10.1103/PhysRevLett.128.180601
https://sites.google.com/uw.edu/bfeintze/events/quantization-workshop/#h.r24av7lq1kyx
https://sites.google.com/uw.edu/bfeintze/events/quantization-workshop/#h.r24av7lq1kyx
https://sites.google.com/uw.edu/bfeintze/events/quantization-workshop/#h.r24av7lq1kyx
https://sites.google.com/uw.edu/bfeintze/events/quantization-workshop/#h.r24av7lq1kyx
https://sites.google.com/uw.edu/bfeintze/events/quantization-workshop/#h.r24av7lq1kyx
https://sites.google.com/uw.edu/bfeintze/events/quantization-workshop/#h.r24av7lq1kyx
https://doi.org/10.1103/PhysRevD.11.395
https://doi.org/10.1140/epjd/e2020-100571-8
https://doi.org/10.1038/s42254-023-00599-8
https://doi.org/10.1038/s42254-023-00599-8
https://doi.org/10.1103/PhysRevLett.80.1146
https://doi.org/10.1103/PhysRevD.58.096007
https://doi.org/10.1103/PhysRevD.58.096007
https://doi.org/10.1146/annurev.nucl.50.1.343
https://doi.org/10.1146/annurev.nucl.50.1.343
https://doi.org/10.1103/PhysRevLett.110.262002
https://doi.org/10.1103/PhysRevD.99.046011
https://doi.org/10.1103/PhysRevD.99.046011
https://doi.org/10.1016/0375-9474(94)90357-3
https://doi.org/10.1016/0375-9474(94)90357-3
https://doi.org/10.1103/PhysRevA.73.022328
https://doi.org/10.1103/PhysRevA.73.022328
https://doi.org/10.1103/PhysRevD.91.054506
https://doi.org/10.1103/PhysRevD.101.074512
https://doi.org/10.1103/PhysRevD.101.074512
https://doi.org/10.1103/PhysRevD.103.094501
https://doi.org/10.1103/PhysRevD.103.094501
https://doi.org/10.1103/PhysRevD.104.034501
https://doi.org/10.1103/PhysRevD.104.034501
https://doi.org/10.1007/JHEP09(2023)126
https://doi.org/10.1007/JHEP09(2023)126
https://doi.org/10.1103/PhysRevLett.131.171902
https://doi.org/10.1103/PhysRevLett.131.171902
https://doi.org/10.1103/PhysRevD.108.L031504
https://doi.org/10.1103/PhysRevD.106.074502
https://doi.org/10.1103/PhysRevD.106.074502
https://doi.org/10.1103/PhysRevD.108.094505
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevLett.110.084101
https://doi.org/10.1103/PhysRevLett.110.084101
https://doi.org/10.1088/0954-3899/38/12/124184
https://doi.org/10.1103/PhysRevD.93.054510
https://doi.org/10.1103/PhysRevD.93.054510
https://doi.org/10.1103/PhysRevLett.121.191603
https://doi.org/10.1103/RevModPhys.78.275
https://doi.org/10.1103/RevModPhys.78.275
https://iqus.uw.edu
https://iqus.uw.edu
https://iqus.uw.edu

