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We give a general derivation of Ginsparg-Wilson relations for both Dirac and Majorana fermions in any
dimension. These relations encode continuous and discrete chiral, parity and time-reversal anomalies and
will apply to the various classes of free-fermion topological insulators and superconductors (in the
framework of a relativistic quantum field theory in Euclidean spacetime). We show how to formulate the
exact symmetries of the lattice action and the relevant index theorems for the anomalies.
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I. INTRODUCTION

The Ginsparg-Wilson (GW) relations govern how mass-
less lattice fermions without doublers can optimally realize
anomalous continuum symmetries [1–4]. They were origi-
nally derived for describing massless Dirac fermions with
chiral symmetries in even spacetime dimensions, while
analogous relations were posited for a massless Dirac
fermion in three dimensions with a parity anomaly [5].
Lattice operators which satisfy these relations realize
anomalous symmetries in the “best” possible way: the
fermion propagator respects the symmetry at any nonzero
spacetime separation, and as in the continuum, the lattice
action possesses an exact, nearly local form of the sym-
metry [4], which is therefore respected by the Feynman
rules in perturbative calculations. On the other hand, the
lattice integration measure is not invariant under this
“Lüscher symmetry,” and the resultant Jacobian in the
lattice theory correctly reproduces the continuum anomaly
expressed in terms of the index of the fermion operator.
Here we give a unified derivation of such relations for Dirac
and Majorana fermions alike in any dimension, and show
how these continuous and discrete anomalous symmetries
are realized. The connection between GW fermions and
extra dimensions is well-established: the first explicit
solution to the GW equations being the overlap operator
[2,6–9] which was derived to describe edge states of
domain wall fermions in one higher dimension [10–13].

It has since been understood that these relativistic systems
are equivalent to the topological insulators and super-
conductors studied in condensed matter physics, and so
the generalized GW relations we derive apply to the
massless edge states of the wide variety of topological
classes [14,15] of such materials.1

In the following analysis we are interested in the cases of
NF flavors of Dirac or Majorana fermions where: (i) The
massless theory respects a symmetry G; (ii) A mass term is
possible for regulating the theory; and (iii) The mass term
necessarily breaks the symmetry G. In this set of circum-
stances we expect the massless theory to have an ’t Hooft
anomaly involving the G symmetry, a GW relation to exist
for the ideally regulated fermion operator, and the existence
of an exact G symmetry obeyed by the regulated action, for
which the Jacobian reproduces the anomaly of the con-
tinuum theory, a generalization of Lüscher symmetry.2

II. GENERALIZED GINSPARG-WILSON
RELATIONS FOR DIRAC FERMIONS

A. Derivation of the relations

Following the logic of the original derivation, we start by
considering the continuum theory of a free Dirac fermionΨ
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1Soon after this paper appeared on the arXiv, another work
appeared which discusses the topological classes of relativistic
lattice fermions in detail, along with their GW relations [16].

2Notation: we use upper case Greek letters such as ΨðxÞ to
denote continuum fields, and lower case, such as ψn for lattice
variables, generally suppressing indices for the latter. We take
Euclidean γ matrices to be Hermitian with fγμ; γνg ¼ 2gμν; the
gauge covariant Dirac operator D ¼ γμDμ is therefore anti-
Hermitian with imaginary eigenvalues. For a regulated Dirac
operator, such as a generic Ginsparg-Wilson operator, overlap
operator, or Pauli-Villars regulated operator, we use the notation
DGW,Dov,DPV or simplyD. ForMajorana fermions, weworkwith
an antisymmetric kinetic and mass operators denoted as D andm.
We use the mostly plus convention for our Minkowski metric.
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in Euclidean spacetime of arbitrary dimension, possibly in
background gauge or gravitational fields, described by the
path integral

Z ¼
Z

dΨdΨ̄e−SðΨ̄;ΨÞ: ð1Þ

We now do a block transformation, defining a function
fðxÞ whose support lies in a volume ad about the origin,
and our block averaged variables to be

ψn ¼
Z

ddxΨðxÞfðx − naÞ ð2Þ

and similarly for ψ̄n. The parameter a will be our lattice
spacing, and for the rest of this article we will work in
“lattice units” with a ¼ 1. Lattice variables χn and a lattice
action Slat ¼ χ̄Dχ are defined by

e−χ̄Dχ ¼
Z

dΨdΨ̄e−SðΨ̄;ΨÞe−ðψ̄−χ̄Þmðψ−χÞ ð3Þ

so that up to an overall normalization,

Z ¼
Z Y

n

dχdχ̄e−χ̄Dχ : ð4Þ

The parameterm is an invertible Hermitian matrix which we
can take to be a real numberm times the identity matrix, but
we will leave it in matrix form for now so that the identities
for Dirac fermions and Majorana fermions (for which m is
replaced by m, an imaginary antisymmetric matrix) look
similar. Although the subsequent derivations are agnostic
about the form ofm, it should be local for Eq. (3) to represent
a physically reasonable blocking transformation.
We now assume that the continuum action S is invariant

under a global symmetry transformationΨ→ΩΨ, Ψ̄→ Ψ̄Ω̄,
where Ω̄ and Ω are some operators. The symmetry trans-
formations of interest are those which are broken by the
Gaussian term proportional to m that we have added to the
path integral. Examples we will consider include a Uð1ÞA
chiral transformation, a discrete chiral transformation [not
contained in Uð1ÞA], and a coordinate reflection:

Ω ¼ Ω̄ ¼ eiαγ̄ ðchiral symmetryÞ; ð5Þ

Ω ¼ Ω̄ ¼ γ̄ ðdiscrete chiral symmetryÞ; ð6Þ

Ω ¼ −Ω̄ ¼ εR1γ1 ðreflection symmetryÞ; ð7Þ

with γ̄ being the analog of γ5 in arbitrary even dimension,
where R1 reflects the sign of the x1 coordinate; generally
ε ¼ 1, but in certain Majorana theories ε ¼ i. Under reflec-
tions we assume that background fields are similarly
reflected. We will subsequently consider an antilinear

symmetry in Euclidean space related to time reversal in
Minkowski spacetime. We focus primarily on a single flavor
of fermion, and hence do not discuss non-Abelian flavor
symmetries, but our analysis can be easily extended to
include those. Other symmetries which are directly broken
by the discretization function f, such as translation sym-
metry, spacetime rotations, conformal transformations or
supersymmetry transformations do not seem to yield useful
relations and we do not consider these (see [17,18] for
interesting attempts in these directions).
While the action is invariant under the Ω; Ω̄ trans-

formation, the measure generally transforms as dΨdΨ̄ →
dΨdΨ̄e2iA, where A is called the anomaly and arises from
the Jacobian of the transformation [19].
We wish to distinguish between the continuum trans-

formation Ω and the transformation ω of the block-
averaged variables,

ψm →
Z

ΩΨðxÞfðx − amÞddx ¼ ωmnψn: ð8Þ

The matrices ω; ω̄ are the lattice-regulated forms of Ω; Ω̄.
They act as ordinary matrices on the lattice variables ψn,
but in the case of reflections, they also reflect the back-
ground fields. Defining

Dω ¼ ω̄Dω; mω ¼ ω̄mω; ð9Þ

it follows that

e−χ̄Dωχ ¼
Z

dΨdΨ̄e2iAe−SðΨ̄;ΨÞe−ðψ̄−χ̄Þmωðψ−χÞ: ð10Þ

Using the relation Eq. (A2) derived in the Appendix, we
have

e−ðψ̄−χ̄Þmωðψ−χÞ ¼ eTr lnmωm−1
e∂χXω∂χ̄e−ðψ̄−χ̄Þmðψ−χÞ; ð11Þ

where

Xω ¼ m−1 −m−1
ω ; ð12Þ

and so

e−χ̄Dωχ ¼ e2iAeTr lnmωm−1
e∂χXω∂χ̄e−χ̄Dχ

¼ e2iAeTr lnmωm−1þTr lnQωe−χ̄
1

Qω
Dχ ; ð13Þ

where

Qω ≡ ð1 −DXωÞ; ð14Þ

and in the last step we used the identity Eq. (A2) for a
second time.
By equating the χ dependence on both sides of Eq. (13)

we arrive at two equations. The first requires the prefactors
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of the exponentials to be equal, and we will refer to this as
the “anomaly equation”:

e2iA ¼ det ðmωm−1QωÞ−1 ¼ det ðω̄ωQωÞ−1: ð15Þ

The second equation follows from requiring that the
fermion operators in the exponents must be equal,

Dω ¼ Q−1
ω D; ð16Þ

or equivalently,

Dω −D ¼ DXωDω; ð17Þ

and this we call the generalized GW equation. If D is
invertible, the GW equation may be written in the simple
form

ω

�
1

D
−

1

m

�
ω̄ ¼

�
1

D
−

1

m

�
; ð18Þ

which states that the propagator is symmetric up to a
constant local subtraction. Assuming m does not couple
neighboring sites, this subtraction is a delta-function in
coordinate space. This relation can be further transformed
to a yet simpler form by writing

D ¼ m
ih

1þ ih
; ð19Þ

in which case the GW relation Eq. (18) reduces to the
statement that mh is invariant under the ω transformation,

ω̄ðmhÞω ¼ mh; ð20Þ

or if m commutes with ω̄, h itself is invariant. The
requirement that D describes a massless Dirac fermion
in the continuum limit means that D → ip for p2 ≪ m2;
thus h → p=m in that limit, which is Hermitian (assuming
for now that m is just a number). If we assume that h both
satisfies Eq. (20) and is Hermitian for allmomenta, then we
can define the unitary matrix V ¼ −ð1 − ihÞ=ð1þ ihÞ and
arrive at another useful expression for D,

D ¼ m
2
ð1þ VÞ; V†V ¼ 1; ð21Þ

with

V → −1þ 2ip
m

þO

��
p
m

�
2
�
: ð22Þ

The eigenvalues of V lie on a unit circle centered at the
origin in the complex plane, and those ofD lie on a circle of
radius m=2 centered at m=2. When the theory is gauged,
low-lying eigenvalues of D lie near V ¼ −1, while large

ones are mapped to the neighborhood of V ¼ þ1. This is
familiar from the discussion in Ref. [2].

B. Solutions to the Ginsparg-Wilson equation

We now examine solutions to the GW equation, which
not only satisfy Eq. (16), but also satisfy D → D in the
continuum limit m ≫ p, in order to describe a massless
Dirac fermion, and which for free fermions only vanish at
zero momentum, so as to describe a single flavor in the
continuum limit.

1. The Pauli-Villars solution

Although the GWequation was derived in the context of
a lattice regularization, it is in fact more general, and a
simple continuum solution to the GW and anomaly
equations existed decades before Ginsparg and Wilson
wrote their paper; a fermion regulated by a Pauli-Villars
(PV) ghost. Examining this case yields insights into the
nature of lattice solutions and symmetries.
We have seen that D ¼ mih=ð1þ ihÞ will solve the GW

equation and describe a massless Dirac fermion in the low
eigenvalue limit if mh obeys the continuum symmetries of
a massless Dirac fermion, andmh → p for a free fermion at
low p. The simplest possible solution to these criteria is to
simply set ih ¼ D=m, in which case the GW solution
describes a PV regulated fermion:

D → DPV ¼ m
D

Dþm
¼ m

2

�
1 −

1 −D=m
1þD=m

�
; ð23Þ

where we will takem > 0with the “continuum” limit being
m → ∞. The operator DPV is not fully regulated, but the
phase of its determinant is, which is where anomalies
appear. The unitary matrix V in Eq. (21) is given by

h ¼ −iD=m; V ¼ −
1 −D=m
1þD=m

: ð24Þ

We will show that the operator DPV simply illustrates
two general properties of solutions to the GW equation
which we discuss below. The first is that the regulated
η-invariant of the continuum operator—which describes the
phase of the fermion determinant—is realized in terms of
ln detV. The second is that when ghost fields are intro-
duced to represent the PV-regulated fermion, the exact
symmetry of the regulated action discovered by Lüscher
can be simply related to the symmetry of the unregulated
action. The PV solution will also help inform our analysis
of massless Majorana fermions in Sec. III C.

2. The overlap solution

The first explicit lattice solution to the GWequation was
the overlap operator of Neuberger [2], based on the earlier
work in conjunction with Narayanan in Refs. [6–8] and on
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the domain wall fermion construction in [10]. This solution
takes the V matrix to be

V ¼ Dwffiffiffiffiffiffiffiffiffiffiffiffiffi
D†

wDw

q ; ð25Þ

where Dw is the lattice operator for a Wilson fermion with
mass −M < 0 and Wilson coupling r ¼ M,3

Dw ¼
X
μ

δμγμ −M −
M
2
Δ; ð26Þ

where δμ is the covariant symmetric difference operator,
and Δ is the covariant lattice Laplacian. Without gauge
fields, this gives

D̃wðpÞ ¼
X
μ

ðiγμ sinpμÞ þM

�
−1þ

X
μ

ð1 − cospμÞ
�

→ M

�
−1þ i

p
M

þOðp2=M2Þ
�
: ð27Þ

Evidently V → ð−1þ i p
M þOðp2=M2ÞÞ and one can see

that near the corners of the Brillouin zone where doublers
reside for naive lattice fermions one finds V ¼ þ1.
Therefore, this operator behaves correctly as a massless
Dirac fermion in the continuum limit.
In even spacetime dimensions, one has chiral symmetry

with ω ¼ ω̄ ¼ eiαγ̄ . Then the GWequation as expressed by
Eq. (20) is equivalent to fγ̄; hg ¼ 0 or γ̄V γ̄ ¼ V†. This latter
property readily seen to be satisfied by the overlap solution.
In odd spacetime dimensions one is interested in reflection
symmetry for which ω ¼ −ω̄ ¼ R1γ1 and Eq. (20) requires
fh;ωg ¼ 0, implying that ωVω−1 ¼ V†, which is also seen
to be satisfied by the overlap operator.

C. An exact symmetry of the lattice action

Equation (16) together with Eq. (9) implies that the
action χ̄Dχ for a GW fermion obeys an exact Lüscher
symmetry,

χ̄ → χ̄Qωω̄; χ → ωχ: ð28Þ

This symmetry constrains the Feynman rules for the theory,
eliminating the possibility of an additive mass renormal-
ization for χ in perturbation theory since a mass term breaks
the symmetry with

χ̄χ → χ̄Qωω̄ωχ; ð29Þ

where Qωω̄ω ≠ 1 for the symmetry transformations of
interest.4 The transformation is also not a symmetry of the χ
measure, with Jacobian equal to ð1= det ω̄ωQωÞ, which we
see from the anomaly equation Eq. (15) exactly reproduces
the expð2iAÞ anomaly in the original continuum theory.
This symmetry was discovered in the context of infinitesi-
mal chiral transformations in even spacetime dimension by
Lüscher [4,21] with ω ¼ ω̄ ¼ 1þ iαγ̄ þOðα2Þ, which we
have generalized here to include discrete symmetries.
This symmetry may seem somewhat peculiar, but

becomes transparent when considering the PV solution.
First one simply adds a Gaussian term for a spinor ghost
with Bose statistics,

Sχ → χ̄DPVχ þmϕ̄ϕ ¼ m

�
χ̄

D
Dþm

χ þ ϕ̄ϕ

�
; ð30Þ

integrating over the ϕ fields, which has no effect other than
modifying the normalization of the path integral. The
fermion operator DPV is defined in Eq. (23). We then
make the simultaneous change of variables

χ̄ ¼ χ̄0ð1þD=mÞ; ϕ̄ ¼ ϕ̄0ð1þD=mÞ; ð31Þ

leaving χ and ϕ unchanged. Because χ̄ and ϕ̄ have opposite
statistics, the Jacobians from these transformations cancel
in the integration measure. The action now looks like

Sχ ¼ ½χ̄0Dχ þ ϕ̄0ðDþmÞϕ�; ð32Þ

which is the conventional form for PV regularization in
perturbative applications with a massless Dirac fermion and
a ghost of mass m.
Using the identity

Qωω̄ ¼ 1

ð1þD=mÞ ω̄ð1þD=mÞ: ð33Þ

the Lüscher symmetry transformation of Eq. (28) becomes
very simple in terms of our new variables,

χ → ωχ; χ̄0 → χ̄0ω̄; ð34Þ

with ϕ and ϕ̄0 not transforming at all. In other words, the
transformations of the χ and χ̄0 fields are just the symmetry
transformations that leave the continuum Dirac action
invariant. Furthermore, as in the continuum, violation of
the symmetry comes from the path integral measure since
Eq. (34) has no compensating transformation of the ghost
field. It is clear that since the Feynman rules for χ and χ̄0 in
this theory with ghosts respect the ω symmetry, no

3As shown in [11,12] there is actually an interesting sequence
of topological phase transitions as a function of M=r, and taking
M=r ¼ 1 places the theory in one of several possible topological
phases.

4This symmetry does not protect against finite nonperturbative
additive mass renormalizations, such as those that can be
generated by instantons as discussed in [20].

CLANCY, KAPLAN, and SINGH PHYS. REV. D 109, 014502 (2024)

014502-4



symmetry-violating operators will be generated by radia-
tive corrections in perturbation theory.

D. The anomaly equation

The anomaly equation Eq. (15) states that the continuum
anomaly expð2iAÞ ¼ 1= detQω for chiral symmetry trans-
formations (for which det ω̄ω ¼ 1), while expð2iAÞ ¼
1= detð−QωÞ for reflections (where ω̄ω ¼ −1), which in
both cases equals the Jacobian for the symmetry trans-
formation in Eq. (28). This relates A, which is a functional
of the background fields, to properties of the fermion
spectrum. Here we show that in even spacetime dimensions
the equation reproduces the Atiyah-Singer index theorem
as shown in Ref. [4], while in odd spacetime dimensions it
reproduces the relation between the parity anomaly and the
η-invariant discovered in Ref. [22]. For recent work on the
η-invariant in the context of the overlap operator, see
Refs. [23,24].
We first consider the PV solution in both odd and even

dimensions. The phase of the determinant for a massless
Dirac fermion may be expressed as expð−iπηDð0Þ=2Þ,
where ηD is defined as a regulated sum of the signs of
eigenvalues of iD, and ηDð0Þ is the universal value as the
regulator is removed [25]. The PV solution to the GW
equation replaces D by its regulated form DPV ¼
ðm=2Þð1þ VÞ where V is unitary. It follows that

detDPV

detD†
PV

¼ eTr ln
1þV
1þV† ¼ eTr lnV: ð35Þ

The eigenvalues of V are ð−iλ=m − 1Þ=ð−iλ=mþ 1Þ ¼
−1 − 2iλ=mþOð1=m2Þ, and so we have

Tr lnV ¼ −iπ
X
λ

λ

jλj þOð1=mÞ≡ −iπηDð1=mÞ: ð36Þ

Thus, we see that

ηDð0Þ ¼ lim
m→∞

i
π
ln detV ð37Þ

and the phase of the fermion determinant detDPV may be
written as e−i

π
2
ηD . This result applies generally to solutions

of the GW equation.
In odd spacetime dimensions with a space reflection

transformation as in Eq. (7) we have ω̄ω ¼ −1, mω ¼ −m
and −Qω ¼ −1þ 2D=m ¼ V. Therefore the anomaly
equation states that A ¼ − 1

2
Tr lnV ¼ iπηD=2, correctly

realizing the parity anomaly as the regulator is removed
[22]. The perturbative expansion of ηD yields the Chern-
Simons action, a result also consistent with Ref. [26].
In even spacetime dimensions for a Uð1ÞA chiral trans-

formation the anomaly equation states expð2iAÞ ¼
1= detQω. In this case it is simplest to expand to linear
order in α and one finds

Qω ¼ 1 − 2iα=mDγ̄ þOðα2Þ; ð38Þ

and the anomaly equation states that

2iA ¼ 2iα
m

Trγ̄D ð39Þ

where the continuumanomaly functionalA is proportional to
α. The Atiyah-Singer index theorem states that the right side
of the above equation should equal −2iα times the index of
the Dirac operator, ðnþ − n−Þ, wherem� equals the number
of �1 chirality zeromodes. This result follows from the
analysis by Lüscher [4], after taking into account the relative
normalization of am=2 between D and the GW operator
analyzed in that paper.

E. Antilinear symmetry

A theory that possesses an antilinear time-reversal
symmetry ψðx; tÞ → T ψðx;−tÞ in Minkowski spacetime
will respect a related antilinear symmetry in Euclidean
spacetime that does not reverse any coordinates. This is
simply because after replacement of t with −iτ, the
conjugation of the i in −iτ has the same effect as
t → −t. For this symmetry Ω ¼ Ω̄† ¼ T̂ T where the
operator T̂ reverses time in Minkowski spacetime but acts
trivially in Euclidean, while T is a unitary matrix satisfying
T†γμT ¼ �γTμ . When this transformation is a symmetry of
the massless theory but is necessarily broken by a fermion
mass term, then it will in general be anomalous and there
will be corresponding GW relations. A simple example is a
massless Dirac fermion in 2þ 1 dimensions where we can
take the γ matrices to be γ0 ¼ iσ1, γ1 ¼ σ2, γ2 ¼ σ3, and
T ¼ σ2. Under time reversal the fields transform as
ψðx; tÞ → Tψðx;−tÞ and ψ̄ðx; tÞ → ψ̄ðx;−tÞT which is
a symmetry of the action for a massless Dirac fermion, but
for a massive fermion the transformation flips the sign of
the mass term. In Euclidean spacetime the symmetry
transformation is identical, ψ → Tψ and ψ̄ → ψ̄T, except
that there is no change in the coordinates; again one finds
that the massless Dirac action is invariant but that a mass
term is odd.
Our derivation of the generalized GW relations proceed

as above, only now Ω and Ω̄ are antilinear, while the ω and
ω̄ remain as ordinary matrices. This change results in
Eq. (9) being replaced by

Dω ¼ ω̄D�ω; mω ¼ ω̄m�ω; ð40Þ

With these changes, the anomaly equation Eq. (15) and the
GW equation Eq. (16) remain valid. It is evident that DPV
satisfies this antilinear GW equation since h ∝ D; one can
easily check that Dov satisfies it as well.
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III. GENERALIZED GINSPARG-WILSON
RELATIONS FOR MAJORANA FERMIONS

The edge states of topological insulators are typically
massless Dirac fermions such as described in the previous
section; on the other hand, the edge states of topological
superconductors without a conserved fermion number are
massless Majorana fermions. Majorana edge states were
first discussed in Ref. [27] in the context of simulating
gluinos in d ¼ 3þ 1 dimensions, and in Ref. [28] for
d ¼ 1þ 1 condensed matter systems. Here we derive the
GW relations for Majorana fermions.

A. Continuum Majorana fermions

We begin by summarizing properties of continuum
Majorana fermions in arbitrary d dimensions, and enumer-
ate the symmetries of interest.5

1. The Majorana constraint

To obtain a single flavor of massless Majorana fermion
we impose a Lorentz-covariant Majorana constraint on a
massless Dirac fermion,

ψ ¼ ψK; ψK ≡K†ψ̄T; ð41Þ

where for Lorentz invariance and self-consistency of the
constraint, K must equal either an antisymmetric C matrix,
or a symmetric T matrix, C and T being unitary matrices
which satisfy

CγμC† ¼ −ðγμÞT; T γμT † ¼ ðγμÞT: ð42Þ

The Majorana constraint as expressed above is equally
valid in Minkowski and Euclidean spacetimes. In Ref. [29]
fermions satisfying these constraints are referred to as
Majorana (K ¼ C) or pseudo-Majorana (K ¼ T ); here we
will refer to them as C-Majorana and T -Majorana respec-
tively when distinguishing between them, and simply by
“Majorana” when not. The massless Majorana action can
then take the form6

S ¼
Z

ddx
1

2
ψTKDψ : ð43Þ

Table I lists the properties of the C and T matrices in
different dimensions, and we see that for a single Majorana
flavor we can takeK ¼ C in d ¼ 2; 3; 4 mod 8, andK ¼ T
in d ¼ 1; 2; 8 mod 8, while there is no solution in

d ¼ 5; 6; 7 mod 8. Instead of one flavor, one could con-
sider two flavors and replace K → K ⊗ τ2, where τ2 is the
antisymmetric Pauli matrix in flavor space. Then one
requires K to equal either a symmetric C matrix, or an
antisymmetric T matrix. Such fermions are sometimes
referred to as symplectic Majorana fermions. In this way
one can discuss massless fermions with a reality constraint
(C-Majorana, T -Majorana, symplectic Majorana) in any
dimension. In this section we will only discuss a single
flavor of massless Majorana and are therefore restricted to
d ¼ 2, 3, 4. We give examples of these theories with
discrete symmetry anomalies, as well as an anomalous
example of symplectic Majoranas.
In order to follow the GW program we must be able to

define a mass term for the Majorana fermion. This can be
included in the Euclidean action as 1

2

R
ψTmψ , where

m ¼ μM ¼ −mT; ð44Þ

μ being a number with dimension of mass, while M is
required by Lorentz invariance and fermion statistics to be
either an antisymmetric C or antisymmetric T matrix. No
such matrix exists in d ¼ 1; 7; 8 mod 8. In these cases we
can consider symplectic Majoranas (two flavors) in which
case μ may be replaced by μτ2 acting in flavor space, and
M must now be a symmetric C or T matrix.7

As can be seen from Table I, the requirement that both K
and M exist still restricts us to discussing d ¼ 2, 3, 4 for a
single flavor. In d ¼ 3 there is the unique choice
K ¼ M ¼ C. In d ¼ 2 we have the single choice M ¼ C
while K may equal C or T . In d ¼ 4, the reverse is true;
K ¼ C whileMmay equal C or T . For the two mixed cases

TABLE I. The C and T matrices in Euclidean dimensions d ¼
1;…; 8 mod 8 defined in Eq. (42). S and A represent whether the
corresponding matrix is symmetric or antisymmetric, while a dot
indicates it does not exist. The last row denotes whether
Cγ̄C−1 ¼ T γ̄T −1 ¼ �ðγ̄ÞT , where γ̄ is the chiral matrix for even
d satisfying fγ̄; γμg ¼ 0 for μ ¼ 1;…; d. For a single Majorana
flavor, only bold entries can play the role of K in Majorana
kinetic terms, and only antisymmetric entries (A) can appear as
M in Majorana mass terms. We refer the reader to Ref. [29] for a
pedagogical discussion of this table.

d: 1 2 3 4 5 6 7 8

T S S · A A A · S
C · A A A · S S S
γ̄ · − · þ · − · þ

5For a detailed discussion of Majorana fermions in Minkowski
and Euclidean spacetimes, see Ref. [29].

6A Majorana fermion may carry gauge charges so long as it is
in a (pseudo-)real representation of the gauge group. In that case,
C and T will have to include the appropriate matrices to effect the
similarity transformation from the generators Ta to the conjugate
generators −TT

a .

7It is stated in Ref. [29] that T -Majorana fermions are
necessarily massless, but that assumes that a mass term must
have the form ψTT ψ . When allowing for a ψTCψ mass term the
statement is no longer true. This can be generated from a Dirac
action by applying the T -Majorana constraint to a Dirac mass
term of the form iψ̄ γ̄ ψ .
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ðK;MÞ ¼ ðT ; CÞ in d ¼ 2 and ðC; T Þ in d ¼ 4 we have T
equal to γ̄C, up to a phase, and Hermiticity in Minkowski
spacetime is guaranteed if we take

M−1K ¼
�
1 ðC; CÞ
iγ̄ ðT ; CÞ; ðC;T Þ : ð45Þ

2. Symmetries

In dimensions d ¼ 2, 3, 4 the massless Dirac action
possesses a Uð1ÞV fermion number, reflection symmetry
and charge conjugation symmetries, while in d ¼ 2, 4 it
also possesses a Uð1ÞA chiral symmetry. Here we examine
what subgroup is left unbroken by the Majorana constraint,
and then what is the effect of the regulator.
In all dimensions Uð1ÞV fermion number symmetry is

broken to aZ2 subgroup which acts as ð−1ÞF, an element of
the Lorentz group. What happens to the Uð1ÞA chiral
symmetry in d ¼ 2, 4 depends on the fact that Kγ̄TK−1 ¼
−γ̄ in d ¼ 2 andþγ̄ in d ¼ 4. In d ¼ 2 in addition to ð−1ÞF
the Majorana constraint leaves unbroken a Z2 subgroup of
Uð1ÞV × Uð1ÞA corresponding to ψ → γ̄ψ , while in d ¼ 4
the entire Uð1ÞA remains unbroken. The latter result should
not be surprising since a massless Majorana fermion in
d ¼ 4 Minkowski spacetime is equivalent to a massless
Weyl fermion, whose action possesses a Uð1Þ symmetry;
this is not true in d ¼ 2.
The charge conjugation symmetry of the Dirac fermion

survives the Majorana constraint, but either acts trivially on
the Majorana fermion, or as ð−1ÞF.
For reflections we consider transformations of the Dirac

field ψðxÞ → RψðxÞ ¼ εγ1ψðx̃Þ and ψ̄ðxÞ → Rψ̄ðxÞ ¼
−ε�ψ̄ðx̃Þγ1, where ε is a phase and x̃ has the sign of x1
flipped. This is consistent with the Majorana condition
Eq. (41) if ε ¼ 1 when K ¼ C and ε ¼ i when K ¼ T
and is therefore always a symmetry for themasslessMajorana
action. Note that this means that for C-Majoranas we have
R2 ¼ 1 while for T -Majoranas, R2 ¼ ð−1ÞF.
When a Majorana mass term m is included the ð−1ÞF

symmetry is not broken, but the discrete chiral symmetry in
d ¼ 2 and the continuous chiral symmetry in d ¼ 4 are;
therefore it is reasonable to expect anomalies and GW
relations for these transformations. The situation for
reflection symmetry is more complicated. Reflection sym-
metry is broken by the mass term if the M matrix is the
same as the K matrix, and unbroken if they are unlike [e.g.
ðK;MÞ ¼ ðC; T Þ or ðK;MÞ ¼ ðT ; CÞ]. Therefore we
should expect reflection symmetry to be anomalous for
Majorana fermions in d ¼ 2, 3 and in d ¼ 4 whenM ¼ C.
It will not be anomalous for T -Majorana fermions in d ¼ 2
or C-Majorana fermions in d ¼ 4 with M ¼ T . These two
cases are quite different from each other, however: in d ¼ 2
both C- and T -Majoranas exist with only one way to
regulate them (with M ¼ C), and we find that reflections
are anomalous in the former but not the latter. For d ¼ 4 we

only have a C-Majorana, but two ways to regulate, with
M ¼ C or M ¼ T , the former breaking reflections sym-
metry and the latter not. In this case we would say that
choosing M ¼ C is a poor choice of regulator, needlessly
breaking the symmetry of the massless fermion, and we
would not expect the symmetry to be anomalous.8

We have summarized the situation with reflection and
chiral symmetries in Table II; cases for which GW relations
pertain are the entries with the “✗.”

B. Derivation of the relations

Similar to the discussion of Dirac fermions in Sec. II, we
can derive a GW relation for Majorana fermions, which we
denote as Ξ in the continuum. We follow the same block-
spin prescription as for Dirac fermions and perform a
transformation Ξ → ΩΞ which is assumed to be a sym-
metry of the continuum action but not a symmetry of either
the block-spin Gaussian or the measure. The analog of
Eq. (10) is

e−
1
2
ηTDωη ¼

Z
dΞeiAe−S½Ξ�−ðη−ξÞTmωðη−ξÞ; ð46Þ

where ξn are block-averaged lattice fields related to Ξ as in
Eq. (2),

ξn ¼
Z

ddxΞðxÞfðx − naÞ ð47Þ

and m is an invertible, imaginary, antisymmetric matrix.
We have defined

Dω ¼ ωTDω; mω ¼ ωTmω; ð48Þ

TABLE II. Reflection (R) and chiral (discrete or continuous)
symmetries for a single massless Majorana flavor in d ¼ 2, 3, 4
for different combinations of the K and M matrices, where K
defines the kinetic term and M is used as the regulating mass
term. A “✓” indicates a nonanomalous symmetry, an “✗” denotes
that the regulator choice M breaks the symmetry indicating a
possible anomaly, and a dot means that the ðK;MÞ combination
does not exist. For d ≠ 2, 3, 4, we need multiple flavors.

d: 2 3 4

ðK;MÞ R γ̄ R R eiαγ̄

ðC; CÞ ✗ ✗ ✗ ✗ ✗
ðC; T Þ · · · ✓ ✗
ðT ; CÞ ✓ ✗ · · ·
ðT ; T Þ · · · · ·

8In some cases, it may be useful to consider regulator choices
that break a nonanomalous symmetry. In these cases, the
symmetry is not completely lost and a modified form of the
symmetry still persists, as has been noted in Refs. [30–32] for
continuous symmetries.
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where ω is related to Ω in analogy with Eq. (8), and
suppress lattice indices as before. The path integral identity
we derive in Eq. (A4) allows us to recast this equation as

e−
1
2
ηDωη ¼ eiAe

1
2
Tr lnmω

m Qωe−
1
2
ηQ−1

ω Dη; ð49Þ

where

Qω ¼ ð1 − DXωÞ; Xω ¼ m−1 −m−1
ω : ð50Þ

Comparing both sides, we find two equations, the first of
which is a generalized GW relation for Majorana fermions

Dω ¼ Q−1
ω D: ð51Þ

This can be rewritten in a form analogous to the conven-
tional GW relation as

Dω − D ¼ DXωDω: ð52Þ

If there are no zero modes, then D is invertible and the GW
equation is equivalent to

ωT

�
1

D
−

1

m

�
ω ¼

�
1

D
−

1

m

�
; ð53Þ

similar to what we found for the Dirac case in Eq. (18).
As in the Dirac case, the second equation obtained is the

anomaly equation,

eiA ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detmω

m Qω

q : ð54Þ

As we shall show, the square root is well-defined.

C. Solutions to the Majorana
Ginsparg-Wilson equation

Just as we identified both the PVand overlap solutions to
the GW relations for Dirac fermions, we can do the same
for Majoranas. The PV solution allows one to easily derive
certain useful properties of a solution which generalize.

1. Pauli-Villars solution

If we write

D ¼ m
ih

ihþ 1
ð55Þ

then the GW relation in Eq. (53) is equivalent to the
statement

ωTmhω ¼ mh; ð56Þ

or that mh possesses the same symmetry as the continuum
operator for amasslessMajorana fermion,KD. Furthermore,

the continuum limit requiring that D → iKp in the low
momentum limit for a free fermion implies thath → m−1Kp.
As in theDirac example discussed in Sec. II B 1, the simplest
solution to simply set mh ¼ KD, and the interpretation to
this solution of the GWequation is a PV regulated Majorana
fermion,

DPV ¼ μKD
1

M−1KDþ μ
; ð57Þ

whereM−1K ¼ 1 orM−1K ¼ �iγ̄, depending onwhich of
the “✗” cases in Table II one is discussing, while μ is the PV
mass scale. Given that KD and M are antisymmetric, it is
easy to show that DPV is antisymmetric as well.
This solution can be written as

DPV ¼ m
2
ð1þ VmajÞ; Vmaj ¼ −

μ −M−1KD
μþM−1KD

; ð58Þ

whereVmaj is a unitarymatrix. The eigenvalues ofVmaj lie on
a circle, as in the Dirac case, where zero modes of D are
mapped toVmaj ¼ −1, while infinite eigenvalues aremapped
to Vmaj ¼ þ1. For the cases whereM ¼ K ¼ C, Vmaj is the
same matrix we found for Dirac PV solution, Eq. (24).
Various general properties of Vmaj can be derived from

the expression in Eq. (58). Antisymmetry of DPV implies
that

mVmajm−1 ¼ MVmajM−1 ¼ VT
maj: ð59Þ

Since Vmaj is unitary, we can its eigenvalue equation as
Vmajψn ¼ eiθnψn, while it follows from Eq. (59) that
VmajM†ψ�

n ¼ eiθnM†ψ�
n. Furthermore, ψn and M†ψ�

n

are mutually orthogonal due to the antisymmetry of M.
Therefore it follows that the eigenvalues of Vmaj are all
doubly degenerate. This will be relevant below when we
discuss the square root of the determinant of Vmaj.
Next we show how symmetries impact the eigenvalue

spectrum of Vmaj. In the continuum, reflection symmetry
for a Dirac fermion takes ψ → ðγ1R1Þψ where R1 reflects
the x1 coordinate, with ðγ1R1ÞDðAÞðγ1R1Þ ¼ −DðÃÞ,
assuming that background fields A are also suitably
reflected to Ã. It follows that since M−1K equals one in
the ðC; CÞ theories and iγ̄ in the ðC; T Þ and ðT ; CÞ theories
that

ðγ1R1ÞVmajðγ1R1Þ ¼
�
V†
maj ðC; CÞ

Vmaj ðC; T Þ; ðT ; CÞ
; ð60Þ

again assuming a reflection of background fields in the Vmaj

matrices on the right.
The effect of γ̄ in d ¼ 2, 4 is seen to be the same as seen

in the Dirac case, namely
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γ̄Vmajγ̄ ¼ V†
maj: ð61Þ

We will be interested in the anomalous symmetries
marked by the “✗” in Table II. We see that in each of
these cases we have a unitary matrix U satisfying
UVmajU† ¼ V†

maj. This implies that if Vmajψn ¼ eiθnψn,

then VmajU†ψn ¼ e−iθnU†ψn, and therefore, not only are all
eigenvalues of Vmaj doubly degenerate, but the V ≠ �1

eigenvalues also come in complex conjugate pairs.9

2. Overlap solution

Armed with insight from the above PV solution, it is
straightforward to find a lattice overlap solution to the
Majorana GW equation,

Dov ¼
m
2
ð1þ VmajÞ; ð62Þ

Vmaj ¼
Dwffiffiffiffiffiffiffiffiffiffiffiffiffi
D†

wDw

q ; ð63Þ

where

Dw ¼ M−1Kγμδμ − μð1þ Δ=2Þ; ð64Þ

where δμ and Δ are the lattice derivative and Laplacian
respectively. The overlap solution for Vmaj obeys the
properties we found for the PV solution, Eqs. (59)–(61).
Without gauge fields and in momentum space,

D̃wðpÞ ¼ M−1K
X
μ

γμi sinðpμÞ

þ μ

�
−1þ

X
μ

ð1 − cosðpμÞÞ
�
: ð65Þ

Near the origin p ≪ π=a we have

D̃wðpÞ ¼ M−1KipþOðp2=μ2Þ: ð66Þ

and thus

Vmaj ¼ −1þM−1Kip
jμj þOðp2=μ2Þ;

DovðpÞ ¼
m
2
ð1þ VmajÞ ¼

i
2
KpþOðp2=μ2Þ; ð67Þ

the correct continuum dispersion relation for a massless
Majorana fermion. At the corners of the Brillouin zone,
however, μ½−1þP

μð1 − cosðpμÞÞ� > 0 and Vmaj ≃ 1 so

that Dov does not have low-lying eigenvalues associated
with these states.

D. Exact lattice symmetry for Majorana fermions

As in the Dirac case for the anomalous chiral and parity
symmetries, the Majorana GW action respects exact ver-
sions of the various anomalous symmetries listed in
Table II, with the Jacobians of the transformations repro-
ducing the anomaly A. Here we discuss the exact form
respected by the GW operator for each of the symmetries
listed in that table. In the next subsection we examine the
anomaly equation [Eq. (54)] and show how the Jacobians
of the exact lattice symmetry transformations correctly
reproduce the known continuum anomaly A.
The Majorana GW equation in Eq. (52) implies an exact

Lüscher symmetry for any antisymmetric D which satisfies
it. To see this, we can rearrange theMajorana GW relation as

D ¼
ffiffiffiffiffiffiffi
Qω

p
Dω

ffiffiffiffiffiffiffi
Qω

p
T; ð68Þ

where Qω ¼ ð1 − DXωÞ and QT
ω ¼ ð1 − XωDÞ.

Care must be taken in the definition of the square root.
Our convention is to define the square root of Qω to be the
unique matrix with the same eigenvectors asQω and whose
eigenvalues are the square roots of the eigenvalues of Qω

with non-negative real part. We take the cut for the square
root to be along the negative real axis, and for negative real
eigenvalues of Qω we will either define the corresponding
eigenvalues of

ffiffiffiffiffiffiffi
Qω

p
to all lie on the positive imaginary or

negative imaginary axes, denoting the choice by
ffiffiffiffi�p
Qω

respectively. We will see in Sec. III D 2 that both choices
come into play. When giving general arguments we will
omit the � designation.
Equation (68) can be derived by noting that

QωD ¼ DQT
ω, and so

ffiffiffiffiffiffiffi
Qω

p
D ¼ D

ffiffiffiffiffiffiffi
Qω

p T . For a discrete

symmetry transformation, Qω ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−VT

maj

q
. Therefore, cor-

responding to the continuum symmetry η → ωη, any GW
regulated lattice action has an exact Lüscher symmetry

η → ω
ffiffiffiffiffiffiffi
Qω

p
Tη: ð69Þ

In terms of D ¼ m
2
ð1þ VmajÞ, we can write

ffiffiffiffiffiffiffi
Qω

p
T ¼ ½1 − XωD�1=2

¼
�
1

2
ð1þm−1

ω mÞ − 1

2
ð1 −m−1

ω mÞVmaj

�
1=2

: ð70Þ

The low-energy (m → ∞) limit we have Xω → 0 and
Qω → 1. The symmetry transformation then reduces to
η → ωη, as would be expected in the continuum limit.
Although the action is invariant under this symmetry, the

fermion measure is, in general, not. The transformation in
Eq. (69) produces a Jacobian detðω ffiffiffiffiffiffiffi

Qω
p TÞ. We will see in

9One can relax the assumption that Vmaj is unitary and still
conclude the eigenvalues come in fλ; λ−1g pairs for λ ≠ �1.
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next subsection that this Jacobian reproduces the correct
anomaly, once care is taken with eigenvalues of Qω which
lie on the cut of the square root. While the exact symmetry
in Eq. (69) is completely general for any (continuous or
discrete) symmetry, we will restrict now to the symmetries
discussed in Table II for a single-flavor Majorana. We will
also assume Vmaj is unitary for simplicity, and obeys the
properties in Eqs. (59)–(61), but the arguments can be
generalized for the nonunitary case.

1. Discrete chiral and reflection Z2 symmetries in d = 2, 3

In d ¼ 2, 3 a massless C-Majorana has a Z2 reflection
symmetry which is anomalously broken by the regulating
mass term. The same is true in d ¼ 2 for the discrete chiral
symmetry for either type of Majorana.
In all these cases of a Z2 symmetry broken by the

regulator, the mass term flips sign, mωm−1 ¼ −1. In this
case QT

ω ¼ −Vmaj and the exact symmetry takes the simple
form

η → ω
ffiffiffiffiffiffiffiffiffiffiffiffi
−Vmaj

p
η; ð71Þ

where ω ¼ R1γ1 for the reflection symmetry and ω ¼ γ̄ for
the discrete chiral symmetry. We can equally well define
the square root as either

ffiffiffiffiffiffiffiffiffiffiffiffi
−Vmaj

�
p

for these discrete
symmetries. We will analyze the Jacobian in the next
subsection and compare with the continuum anomaly.
The massless C-Majorana in d ¼ 4 and the T -Majorana

in d ¼ 2 also have reflection symmetries R, but they are
nonanomalous since a regulating mass term exists which is
R-invariant. In such cases, a GW formulation is trivially
invariant under the corresponding continuum symmetry,
without any modification.

2. Uð1ÞA symmetry in d = 4

In d ¼ 4, the continuum C-Majorana fermion has an
anomalous continuous Uð1ÞA symmetry η → eiαγ̄η, since
either choice of the regulating mass term breaks this
symmetry, as discussed in Table II. Under the Uð1ÞA
transformation ω ¼ eiαγ̄ , the mass term transforms such
thatm−1

ω m ¼ e−2iαγ̄ . The exact lattice symmetry of Eq. (69)
can then be simplified to

η → eiαγ̄=2fcos α − iγ̄Vmaj sin αg1=2η: ð72Þ

In the low-energy limit, Vmaj → −1, and this reduces to the
continuum symmetry, η → eiαγ̄η.
This continuum Uð1ÞA for Majorana fermions descends

from the anomalous Uð1ÞA symmetry for Dirac fermions
upon imposing a reality condition. However, the Majorana
Uð1ÞA symmetry in Eq. (72) is distinct from the Dirac case
of Eq. (28). So one might wonder how these two definitions
of the symmetry are related. To reconcile this, we note that
for Majorana fermions, a straightforward analogy of

Eq. (28) is not possible, since for Dirac fermions we
exploited the freedom to transform ψ̄ and ψ independently,
which is not consistent with the Majorana constraint.
However, that choice for how the Dirac fields transform
was not unique. To illustrate this, we consider the same
example considered in Ref. [4], a Dirac fermion in d ¼ 4
with D ¼ m

2
ð1þ VÞ, only assuming that D obeys the GW

equation so that γ̄V γ̄ ¼ V−1. The infinitesimal transforma-
tion corresponding to Eq. (28) is

δχ ¼ γ̄χ; δχ̄ ¼ χ̄ð−V γ̄Þ; ð73Þ

where in the continuum limit (V → −1) this reduces to the
conventional chiral symmetry transformation. However the
action m

2

R
χ̄ð1þ VÞχ is invariant under the more general

transformation, namely

δχ ¼ γ̄fðVÞχ; δχ̄ ¼ χ̄gðVÞγ̄; ð74Þ

with fð−1Þ ¼ gð−1Þ ¼ 1, provided that the functions f, g
satisfy

gðVÞV−1 ¼ γ̄fðVÞγ̄ ð75Þ

projected on the subspace orthogonal to V ¼ −1.
Furthermore, one finds that so long as Eq. (75) is satisfied,
the Jacobian of the transformation reproduces the correct
anomaly. Equation (28) satisfies this with f ¼ 1 and
g ¼ −V; alternatively, a symmetric form compatible with
Minkowski spacetime where χ and χ̄ are not independent is
f ¼ g ¼ ð1 − VÞ=2 [4,33]. It is easily checked that this
infinitesimal transformation keeps the Majorana action
invariant. This result holds equally well for both ðC; CÞ
and ðC; T Þ regularizations. However, a drawback with this
transformation is that γ̄ð1 − VÞ=2 does not generate a
compact Uð1Þ symmetry, its eigenvalues not in general
being integer.
Equation (75) suggests a different symmetric form con-

sistent with theMajorana constraint, however f¼ g¼ ffiffiffiffiffiffiffi
−V

p
,

which is precisely Eq. (69). This choice has the feature that
γ̄

ffiffiffiffiffiffiffi
−V

p
is Hermitian and has �1 eigenvalues so that it

generates a compact Uð1Þ symmetry; on the other hand,
one must take care of the branch cut of the square root, as
discussed following Eq. (68), where we defined

ffiffiffiffiffiffiffi
−V�p as�i

when acting on the eigenstate of V with eigenvalue V ¼ 1
which lies on the cut for the square root. Such eigenvalues
correspond to the corners of theBrillouin zone for the overlap
solution, or infinite momentum for the PV solution. The
solution to Eq. (75) is then f ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

−Vmaj
þ
p

and g ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
−Vmaj

−
p

(or with the � reversed). However, this is still not a
satisfactory symmetry for the d ¼ 4 Majorana fermion
because the different treatment of the branch cut for ψ
and ψ̄ is not consistent with the Majorana constraint,
ψ ¼ C†ψ̄T .
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We are forced then to define the “pseudo-Lüscher
symmetry” with f ¼ g ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

−Vmaj
þ
p

which is consistent
with the Majorana constraint, but fails to be a symmetry
of the action for Vmaj ¼ þ1 eigenstates. This is a failure at
short distance and does not destroy the desirable feature of
Lüscher symmetry that chiral symmetry violating operators
can only be multiplicatively renormalized. One does lose
the feature that the Jacobian of the transformation repro-
duces the correct anomaly, as there now appears a spurious
contribution 2ðn̄þ − n̄−Þ where n̄� are the number of �
chirality Vmaj ¼ 1 modes, but this is exactly compensated
by a symmetry violation in the action under such a
transformation. Typically, the chiral anomaly comes from
a transformation under which the action is invariant but the
measure is not, so that the path integral acquires a phase
under a transformation which is classically a symmetry.
Although this symmetry is violated in V ¼ 1 subspace,
the path integral acquires the same phase under such a
transformation as it would choosing f ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

−Vmaj
þ
p

and
g ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

−Vmaj
−
p

. Integrating over such modes one recovers
the expected anomalous Ward-Takahashi identities, so that
this symmetry has the same properties as any anomalous
quantum symmetry.
If gauge fields or other parameters in the theory are

varied such that an eigenvalue of Vmaj passes through þ1,
the operator

ffiffiffiffiffiffiffiffiffiffiffiffi
−Vmaj

þ
p

will be discontinuous. Because of
this nonanalyticity, our Uð1ÞA transformation is nonlocal in
spacetime, thereby evading a recent no-go theorem [34]. As
we showed at the end of Sec. III C 1, however, the
eigenvalues of Vmaj are doubly degenerate, and therefore
the determinant of

ffiffiffiffiffiffiffiffiffiffiffiffi
−Vmaj

þ
p

is continuous at such points.

E. The anomaly equation

We have seen in Eq. (54) that the anomaly equation gives
eiA ¼ ðdetmω

m QωÞ−1=2. On the other hand, the exact sym-
metry of theGWoperator is not symmetry of the path integral
measure and gives rise to a Jacobian 1= detðω ffiffiffiffiffiffiffi

Qω
p TÞ. The

first thing wewill show is that these are equivalent. Note that
the square of the anomaly fromEq. (54) is clearly equal to the
square of the Jacobian, so these two agree up to a sign. It is
easy to see that the anomaly equation and the Jacobian agree
for any infinitesimal symmetry transformation, and so it is
only the case of discrete symmetries that needs careful
examination.
For the anomalous discrete symmetries in Table II we

have mωm−1 ¼ −1 and so Eq. (70) gives us QT
ω ¼ −Vmaj.

The matrix Vmaj has eigenvalues −eiθn with −π < θn ≤ π,
where the θn are doubly degenerate and which occur in
� pairs for θn ≠ 0; π (due to reflection and chiral symmetry
in odd and even dimensions, respectively). Thus, there we
can write

dimVmaj ¼ νþ þ ν− þ νc; ð76Þ

where ν� are the numbers of eigenvalues of Vmaj equal to
�1 and νc is the number of complex eigenvalues (the � is
not related to chirality). Here, ν� are even integers and νc is
a multiple of 4. The eigenvalues of

ffiffiffiffiffiffiffiffiffiffiffiffi
−Vmaj

þ
p

are then eiθn=2

and only the θn ¼ π eigenvalues contribute nontrivially to
its determinant, so that det

ffiffiffiffiffiffiffi
Qω

þp T ¼ iνþ ¼ ð−1Þνþ=2. Since
νþ is even and iνþ ¼ ð−iÞνþ , it makes no difference which
of the two definitions of the square root

ffiffiffiffiffiffiffiffiffiffiffiffi
−Vmaj

�
p

is used.
The matrix ω is traceless and squares to 1, so
detω ¼ ð−1ÞdimVmaj=2. Thus, we get

detðω
ffiffiffiffiffiffiffi
Qω

p
TÞ ¼ ð−1ÞdimVmaj=2ð−1Þνþ=2 ¼ ð−1Þν−=2; ð77Þ

where we used Eq. (76). Since ν− corresponds to the
zeromodes of D, we find that the Jacobian of our exact
symmetry yields the mod 2 index of D. In comparison,
for our anomaly equation in Eq. (54) we computeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detmωm−1Qω

p
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detVmaj
p

which directly gives the
same result, ð−1Þν−=2, since only the −1 eigenvalues of
Vmaj contribute.

F. Examples

In this section, we present examples of the Majorana
anomaly equation in which the GW construction reprodu-
ces global anomalies of Majorana fermions. In all the
examples below we have m−1

ω m ¼ −1 and Xω ¼ 2μ−1M,
so the specification of ðK;MÞ matrices completely fixes
the GW equation and its solutions.

1. Two dimensions

In two dimensions it is possible to have either a
2-component C- or T -Majorana fermion, but only C can
be chosen as the mass term in the regulator. In this section,
we show that the GW formulation reproduces known
nonperturbative anomalies for both these theories.
The continuum T -Majorana theory with the actionR
ηTT DηþmηTCη corresponds to the field theory of the

Kitaev chain. This has an exact (nonanomalous) reflection
symmetry with R2 ¼ ð−1ÞF (equivalent to T2 ¼ 1 in
Minkowski space), but the mass term breaks a discrete
chiral symmetry: η → γ̄η, suggesting an anomaly for the
discrete chiral symmetry. Indeed, the anomaly is given by
the mod-2 index of the Dirac operator on modes of one
chirality [35–37]. With the choice ðK;MÞ ¼ ðT ; CÞ, we
can formulate GW equation for the massless T -Majorana
fermion and solutions to it. The exact Lüscher symmetry
corresponds to η → γ̄

ffiffiffiffiffiffiffiffiffiffiffiffi
−Vmaj

p
. As shown in the previous

section, the Jacobian gives detω
ffiffiffiffiffiffiffiffiffiffiffiffi
−Vmaj

p ¼ ð−1Þν−=2,
where ν− is the number of modes with Vmaj ¼ −1, which
correspond to exact zeromodes of D. We have seen in
Sec. III C 1 that γ̄Vmajγ̄ ¼ V†

maj, so the Vmaj ¼ −1 eigenm-
odes can be taken to be simultaneous eigenstates of γ̄.
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We also showed that the eigenvalues of Vmaj are doubly
degenerate with eigenfunctions ψ and M†ψ�. The d ¼ 2

relationMγ̄M−1 ¼ −γ̄T then tells use that the eigenvalues
of the Vmaj ¼ −1 eigenmodes come in� chiral pairs. Thus,
we can write ν− ¼ nþ þ n− ¼ 2nþ, where n� are the
number of positive and negative chirality zero modes of
D. Therefore, the Jacobian of the discrete chiral Lüscher
symmetry reduces to ð−1Þnþ, which is precisely the
continuum result. On a torus with periodic boundary
conditions in both directions, nþ ¼ n− ¼ 1, and therefore
we find a nontrivial anomaly.
Next we consider the case of a single C-Majorana fermion

in d ¼ 2. This theory has a reflection symmetry RηðxÞ ¼
γ1ηðx̃ÞwithR2 ¼ 1 and a discrete chiral symmetry, but the C
mass term violates them both. It is known that this theory has
amixed anomaly betweenR and ð−1ÞF symmetrywhich can
be detected in the continuumby computing amod-2 index on
a two-dimensional unorientable manifold [36]. In the GW
formulation definedwith ðK;MÞ ¼ ðC; CÞ, this can again be
obtained simply from the Jacobian of the exact reflection
symmetry for the GW Majorana fermion. The Lüscher
symmetry is η → γ1

ffiffiffiffiffiffiffiffiffiffiffiffi
−Vmaj

p
ηðx̃Þ. By the same argument

as before, the Jacobian for this symmetry reduces to
ð−1Þν−=2. On a torus with periodic boundary conditions,
we have two zero modes. Then ð−1Þν−=2 ¼ −1 and therefore
the measure acquires a sign under the reflection symmetry.

2. One dimension

In one dimension, fermi statistics forbid any mass term
for a N ¼ 1 flavor 1-component Majorana, To apply the
GW construction, we therefore need at least N ¼ 2 flavors,
which allows for the choice ðK;MÞ ¼ ð1; τ2Þ with the
continuum action S ¼ R

ηT∂0ηþ μηTτ2η, where ηT ¼
ðη1; η2Þ and η1;2 are one-component Majoranas. Note that
the kinetic term is invariant under a R2 ¼ ð−1ÞF reflection
symmetry which acts as RηðtÞ ¼ iηð−tÞ, but the mass term
is odd under this symmetry. Indeed, this system corre-
sponds to the edge modes of the Fidkowski-Kitaev chain
and is afflicted by a well-known Z8 anomaly between R
and ð−1ÞF [36,38].
With ðK;MÞ ¼ ð1; τ2Þ, we can proceed with the GW

construction for N ¼ 2 flavors. If na is the number of zero
modes corresponding to flavor a, the antisymmetric mass
matrix M ¼ τ2 ensures a doubling of spectrum and
n1 ¼ n2. As before, the Jacobian for the exact reflection
symmetry produces a phase of ð−1Þν−=2 and ν− ¼ 2n1.
Since n1 ¼ n2 ¼ 1 on a circle with periodic boundary
conditions, this represents an anomaly. It is interesting to
note that since for two flavors we find a Z2 anomaly, the
GW formulation implies a Z4 anomaly for a single
Majorana flavor, even though a mass term cannot be
written in such a theory. The correct answer though is
that there should be a Z8 anomaly. See a discussion in

Ref. [39], Eq. (2.26), which suggests that the Z4 follows
from being insensitive to a bosonic anomaly.

IV. CONCLUSIONS

The early work on anomaly descent equations [40–42]
and their embodiment in the bulk/boundary correspon-
dence of gapped fermions [43] has been greatly expanded
upon in recent years with the discussions about more
general classes of topological materials and a wider variety
of anomalies (see, for example, [25]). A parallel develop-
ment from lattice gauge theory had shown that for the case
where the boundary theory is described by a Dirac fermion,
one can describe the physics, including chiral anomalies, in
terms of a theory that makes no reference to the bulk. Such
a theory is governed by the Ginsparg-Wilson equation [1]
which has an explicit solution in the form of the overlap
operator [2]. In this paper we have shown how to generalize
the GW analysis to encompass a wide range of topological
materials that have been classified in the condensed matter
literature, focusing on topological superconductors with
Majorana edge states, which are less familiar to those
working in lattice-gauge theory. In each case we have
generalized the notion of a Lüscher symmetry; an exact
symmetry of the lattice action which becomes identical to
the continuum symmetry in the continuum limit, under
which the lattice integration measure transforms by the
appropriate phase to account for the anomaly. The class of
theories for which we can derive GW relations contain only
those for which a fermion mass term can be included,
and therefore does not include chiral gauge theories, for
example.
Open questions remain. In particular the Dai-Freed

anomalies discussed in the literature [36,44,45] do not
seem apparent in this approach. Thus, for example, one of
the results in this work was the derivation of a Z4 discrete
time-reversal anomaly for the Fidkowski-Kitaev Majorana
chain, but not the fullZ8 anomaly known to be correct [45].
On the other hand, we know that the overlap operator which
solves the GW equation is derived by integrating out bulk
modes from a higher-dimension theory [9,10], which one
would expect “knows” about such anomalies.
The solutions presented here for the generalized GW are

all formulated in Euclidean spacetime, and are not ame-
nable to a Hamiltonian description of the physics in
continuous time. Furthermore, not being ultralocal in
Euclidean time makes the derivation of a transfer matrix
and Hamiltonian problematic. We note, though, that we
defined the anomalous Uð1ÞA pseudo-Lüscher symmetry
that acts on ψ and ψ̄ in a way consistent with a Minkowski
interpretation, and find that it is not analytic in momentum,
and hence not a local operator in spacetime, evading the no-
go theorem in Ref. [34]. Pursuing a Hamiltonian formu-
lation of the ideas presented here in order to render the
results more applicable to real condensed matter systems
seems like another avenue to explore in the future.
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Finally, while it has been assumed that the fermions we
consider are propagating in smooth, background gauge and
gravitational fields, we have not examined in any detail the
role played by the role played by unorientable manifolds,
which are understood to play an important role in under-
standing the reflection (time-reversal) anomalies [45].
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APPENDIX: DERIVATION OF PATH INTEGRAL
IDENTITIES

Here we derive two identities used in this paper. For
Dirac fermions and an invertible Hermitian operator A we
write

e−χ̄Aχ ¼ detA
Z

dψdψ̄eψ̄A
−1ψþψ̄χþχ̄ψ : ðA1Þ

It follows that

e∂χB∂χ̄e−χ̄Aχ ¼ detA
Z

dψdψ̄e−ψ̄ðA−1−BÞψþψ̄χþχ̄ψ

¼ det ð1 − ABÞe−χ̄ð 1
1−ABAÞχ

¼ eTr logð1−ABÞe−χ̄ð 1
1−ABAÞχ : ðA2Þ

The above result extends to noninvertible A.
An analogous identity can be derived for Majorana

fermions. Assuming an invertible imaginary antisymmetric
operator A we have

e
1
2
ηAη ¼ 1

PfðA−1Þ
Z

dνe
1
2
νA−1νþνη: ðA3Þ

From this one derives for antisymmetric B

e
1
2
∂ηB∂ηe−

1
2
ηAη ¼ 1

Pfð−AÞ−1
Z

dνe
1
2
νð−A−1þBÞνþνη

¼ PfðAÞPfð−A−1 þ BÞe−1
2
ηð 1

1−ABAÞη;

¼ e
1
2
Tr lnð1−ABÞe−1

2
ηð 1

1−ABAÞη; ðA4Þ
where for the last line we used the identity PfðAÞPfðBÞ ¼
exp 1

2
Tr lnð−ABÞ. The above result also extends to non-

invertible A.
The Majorana result of Eq. (A4) can be seen to be

consistent with the Dirac result of Eq. (A2) by writing a
Dirac fermion as a Majorana one with

η¼
�
χ

χ̄

�
A¼

�
0 −AT

A 0

�
; B¼

�
0 B

−BT 0

�
: ðA5Þ

Then the left and right sides of Eq. (A4) are equal to

e
1
2
∂ηB∂ηe−

1
2
ηAη ¼ e∂χB∂χ̄e−χ̄Aχ ; ðA6Þ

e
1
2
Tr lnð1−ABÞe−1

2
ηð 1

1−ABAÞη ¼ eTr logð1−ABÞe−χ̄ð 1
1−ABAÞχ ; ðA7Þ

which match the two sides of Eq. (A2).
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