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Infrared (IR) dimension function dIRðλÞ characterizes the space effectively utilized by QCD quarks at
Dirac scale λ, and indirectly the space occupied by glue fields. It was proposed that its nonanalytic behavior
in thermal infrared phase reflects the separation of QCD system into an IR component and an independent
bulk. Here we study the “plateau modes” in the IR component, whose dimensional properties were
puzzling. Indeed, in the recent metal-to-critical scenario of transition to IR phase, this low-dimensional
plateau connects the Anderson-like mobility edge λIR ¼ 0 in Dirac spectrum with mobility edges �λA. For
this structure to be truly Anderson-like, plateau modes have to be exponentially localized, implying that
both the effective distances Leff ∝ Lγ and the effective volumes Veff ∝ LdIR in these modes grow slower
than any positive power of IR cutoff L. Although γ ¼ 0 was confirmed in the plateau, it was found that
dIR ≈ 1. Here we apply the recently proposed multidimension technique to the problem. We conclude that a
plateau mode of pure-glue QCD at UV cutoff a ¼ 0.085 fm occupies a subvolume of IR dimension zero
with probability at least 0.9999, substantiating this aspect of metal-to-critical scenario to a respective
degree.
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I. INTRODUCTION

Recent developments in thermal QCD [1–3], enabled by
studies of lattice-regularized systems, led to a remarkable
alignment of two seemingly unrelated aspects: the recently
proposed infrared (IR) phase [1], and the older suggestion
of Anderson-like localization in Dirac spectra [4–7].
This fusion arose via two new elements. The first one is

the notion of effective counting dimension [8–10] character-
izing probability measures constructed via discrete regu-
larizations. This was adopted as a tool to describe IR and
UV properties of quantum states or Dirac modes in terms
of spatial dimensions dIR and dUV respectively [2]. The
second element is the proposal of Ref. [3], metal-to-critical
scenario, that QCD in IR phase features in fact two types
of Anderson-like mobility edges: in addition to previously
known �λA (λA > 0) [6,7], there is also a strictly IR
mobility edge at λIR ¼ 0 [3]. To visualize the situation, top

left panel in Fig. 1 shows the standard phase diagram of
Anderson models in E −W (energy-disorder strength)
plane. Here the region enclosed by red solid line of critical
points contains extended states. The QCD analogue is in
the bottom left panel, showing the critical lines in λ − T
(Dirac eigenvalue-temperature) plane [3]. Note the extra
line λIRðTÞ≡ 0, TIR ≤ T ≤ TUV, where TIR marks the
transition to IR phase. The region enclosed by critical
lines contains localized modes in this case. Hence, the
relationship between QCD and Anderson situations is of
dual rather than direct nature.
The rationale for dIR is that it properly characterizes the

physical space effectively occupied by electrons/quarks in
various regimes. Indeed, it is based on effective count-
ing [10] which is additive and thus defines meaningful
spatial volumes (measures). This is not the case for
generalized dimensions, such as frequently used D2.
Dimension dIR also conveniently identifies critical lines
as collections of points where dIRðE;WÞ or dIRðλ; TÞ are
nonanalytic. The ðE;WÞ setup defines critical features of
Anderson localization phenomenon [11,12], and known
aspects of dIR in this case are as follows [13–15]. In
extended regime, dIR ¼ 3 is expected, which was con-
firmed numerically to very high accuracy [13]. It was also
determined that dIR ≈ 8=3 at Anderson criticality irrespec-
tive of the universality class [13]. The value of dIR and the
degree of superuniversality are claimed to about 2–3 parts
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per mill.1 Localized wave functions are expected to be
bounded by a decaying exponential, which yields dIR ¼ 0.
While this last aspect is not fully guaranteed (exponential
localization is not rigorously proved in 3 dimensions), the
top right panel of Fig. 1 shows the present-day picture of
generic dIRðEÞ for 0 < W < Wc.
For Dirac spectrum in IR phase of QCD to be truly

Anderson-like, the values of dIR in corresponding regimes
need to match the above. Conversely, the nature of
differences, if any, should be clarified. In the bottom right
panel of Fig. 1 we show the generic dIRðλÞ for TIR < T <
TUV obtained in the pure-glue QCD analysis of Ref. [2]. In
the presumed localized regime ð−λA; 0Þ ∪ ð0; λAÞ, dIR ≈ 1
was found (dotted line) instead of the expected dIR ≈ 0.
Here we resolve this discrepancy. In Sec. II we perform the
first direct calculation of dIR in the Anderson localized
regime and compare it to that in QCD. Similar behaviors
are found with very slow decrease of dIR estimates toward
L → ∞ limit. We attribute this to the logarithmic growth
of effective volume for pure exponential which yields
dIR ¼ 0 but slow L → ∞ convergence. The observed
QCD-Anderson similarities then suggest that dIR ¼ 0 in
both cases. In Sec. III we perform the firstmultidimensional
analysis [15] of both Anderson-localized states and QCD-
localized Dirac modes, which makes a clear case that the
two are indeed dimensionally equivalent.

II. DIRECT EVALUATION

IR dimension dIR is a leading power of linear size L
(L → ∞) in average effective volume hN ⋆½ψ �iL;λ ∝ LdIRðλÞ.
Here ψ denotes Dirac eigenmodes DψðxÞ ¼ iλψðxÞ or

Anderson states at given energy. A useful concept is the
finite-volume IR dimension [13]

dIRðL;sÞ≡ 1

lnðsÞ ln
hN ⋆iL
hN ⋆iL=s

; lim
L→∞

dIRðL;sÞ ¼ dIR ð1Þ

with any 0 < s ≠ 1. If P ¼ ðp1; p2;…; pNÞ, pi ≡ ψ†ψðxiÞ
are probabilities entailed by ψ, then [9]

N ⋆½ψ �≡N ⋆½P� ¼
XN

i¼1

minfNpi; 1g: ð2Þ

As a first step in making the case for dIR ¼ 0 of QCD
plateau modes we compare their dIRðL; sÞ to that in a
generic Anderson model. The Hamiltonian of the latter is
(O class, periodic boundary conditions)

H ¼
X

r

ϵrc
†
rcr þ

X

r;j

c†rcr−ej þ H:c: ð3Þ

where r ¼ ðx1; x2; x3Þ are lattice sites, ej (j ¼ 1, 2, 3) unit
lattice vectors, ϵr ∈ ½−W=2;þW=2� uniformly distributed
random potentials, and cr the electron operators. We focus
on 1-particle states in the vicinity of zero E (energy) at
W ¼ 32, which is deeply in the localized regime [19]. Note
that h…i in Eq. (1) refers to disorder average in this case.
For QCD it is the path-integral average.
In Fig. 2 we show results for dIRðLÞ≡ dIRðL; s ¼ 2Þ.

The left panel features Anderson data at L up to 160.
The JADAMILU package [20] was used to perform the
numerical diagonalization. The right panel shows the
analogous data at available volumes of pure-glue QCD
in the IR-phase setup of Ref. [2], i.e., T ¼ 1.12TIR, Wilson
action at β ¼ 6.054 (a ¼ 0.085 fm, r0 ¼ 0.5 fm),
Nt ¼ 1=ðTaÞ ¼ 7. Eigenmodes of the overlap operator
(ρ ¼ 26=19) were computed and analyzed on systems with
sizes up to L ¼ 72. Numerical implementation is described
in Refs. [21–23]. We used modes in the eigenvalue range
λ∈ ð150; 450Þ MeV which is safely inside the plateau
region [2].

FIG. 1. Phase diagrams of localization in Anderson models
(top) and QCD in IR phase (bottom). In Anderson case, EA is the
critical energy at given disorder strength W. In QCD case [3],
TUV denotes the possible endpoint of IR phase (onset of
perturbative regime), and TA the crossover temperature, both
defined in Ref. [1]. See text for other explanations.

FIG. 2. Function dIRðLÞ≡ dIRðL; 2Þ in the Anderson model
(O-class) atW ¼ 32 (left panel) and “plateau modes” in IR phase
of pure-glue QCD. The dashed line, used to guide the eye,
corresponds to a fit of the form hN ⋆iL ∼ ½logðLÞ�k. The effective
size l [3] of modes is l ≈ 2.9 in the Anderson and l ≈ 5.2 in the
QCD case.

1The expression for dIR in terms of multifractal spectrum has
recently been proposed and slightly higher value dIR ¼ 2.733ð3Þ
(orthogonal class) based on it was suggested [16] but questioned
in [17,18].
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Figure 2 reveals similar dimensional behaviors in the two
cases, with dIRðLÞ ≈ 1 in the region of accessible QCD
sizes, and subsequent slow decrease toward the infrared
in the Anderson case. Hence, the two nominally very
different dynamics can indeed have a common Anderson-
localization origin. Since there is little doubt that dIR ¼ 0 in
Anderson case, one expects the same in QCD. Also, for
decaying exponential of width σ, it is easy to show that
the leading L → ∞ term in N ⋆ðLÞ is proportional to
log3ðL=σÞ. It is this type of behavior that likely causes the
slow decrease of dIRðLÞ.

III. MULTIDIMENSIONAL ANALYSIS

While the above makes dIR ¼ 0 for QCD plateau modes
in IR phase plausible, convincing demonstration of dimen-
sional equivalence to localized Anderson states is essential.
We will show that the recently developed multidimensional
analysis [15] (MDA) provides what is needed.
MDA aims to resolve the dimensional substructure

(if any) in a probability measure defined by a discrete
(e.g. lattice) regularization. It is conceptually different from
effective counting dimensions (e.g. dIR): rather than defin-
ing an effective subset of sample space and specifying its
dimension, MDA considers a family of ordinary fixed
subsets containing points with similar probabilities. Scaling
properties of their volumes can reveal the presence of
distinct dimensions. MDA differs from multifractal for-
malism [24] in that it focuses on physically relevant
populations, namely those whose volumes contain nonzero
total probability in L → ∞ limit (See also Ref. [18].).
Given Anderson states ψ , MDA first orders probabilities

in vectors P½ψ � via p1 ≥ p2 ≥ … ≥ pNðLÞ. Closeness
within P then generically entails closeness of probabilities,
and “populations” are defined by suitable sequential
segments in P. To that end, vector ðq0; q1;…; qNÞ of
cumulative probabilities is formed, namely q0 ¼ 0, qj ¼
qj−1 þ pðjÞ, and function νðqÞ of cumulative counts,
namely νð0Þ ¼ 0, νð1Þ ¼ N, νðqÞ ¼ jðqÞ þ ðq − qjÞ=
ðqjþ1 − qjÞ for 0 < q < 1, is constructed. Here jðqÞ,
q∈ ð0; 1Þ is the largest j such that qj < q. Clearly, νðqÞ
is the number of spatial points with largest probabilities,
summing up to q. Their collection SðqÞ is a subset of lattice
space. MDA then defines

dðqÞ ≔ dimSðqÞ i:e: νðq; LÞ ∝ LdðqÞ for L → ∞ ð4Þ

Given the order in P, νðqÞ is increasing and convex, and
dðqÞ is nondecreasing [15]. Hence, dðqÞ also arises “differ-
entially” as dimension of σðq; ϵÞ ≔ SðqÞnSðq − ϵÞ2

νðq; LÞ − νðq − ϵ; LÞ ∝ Ldðq;ϵÞ; dðq; ϵÞ ¼ dðqÞ ð5Þ

for all 0 < ϵ < q. This allows for dimensional decompo-
sition of lattice space L, and well-defined occurrence
probabilities for all dimensions [15]. To that end, MDA
partitions interval [0, 1] into B equal parts of width
ϵB ¼ 1=B, thus defining B-tuple of q-values qb ¼ b=B,
b ¼ 1;…; B. Then LðLÞ ¼∪B

b¼1 σðqb; ϵB; LÞ and

NðLÞ ¼
XB

b¼1

vðqb; ϵB; LÞLdðqb;ϵB;LÞ ð6Þ

with finite-volume d and v introduced via [13,15]

dðq; ϵ; LÞ ¼ 1

log s
log

νðq; LÞ − νðq − ϵ; LÞ
νðq; L=sÞ − νðq − ϵ; L=sÞ ð7Þ

(0 < s ≠ 1) and vðq; ϵ; LÞLdðq;ϵ;LÞ ¼ νðq; LÞ − νðq − ϵ; LÞ.
Relation (6) is exact at each B, and defines formal
expressions such as NðLÞ ¼ R

1
0 dqvðq; LÞLdðq;LÞ. In a

setup with suitable B (thus ϵB), Eq. (7) will be used here
to estimate dðqÞ since limL→∞dðq; ϵ; LÞ ¼ dðqÞ for all
0 < ϵ < q. Probability p of dimension d is pðdÞ ¼R
1
0 dqδðd − dðqÞÞ [15].
We described MDA using a sequence of states ψ ¼ ψðLÞ

labeled by increasing L, and the associated cumulative
counts νðq; LÞ. However, all MDA calculations presented
here are based on ν → hνi, where h…i denotes the disorder
average in Anderson case and the path-integral average in
QCD case.

IV. PLATEAU MODES

We now perform MDA of Anderson states (localized
phase) and of QCD plateau modes (IR phase) using setups
described in Sec. II. Starting with the former, Fig. 3 (left)
shows dðqÞ calculated at B ¼ 103 (s ¼ 2) for increasing
sizes L. Notice that q-dependences at each L already
exhibit the monotonicity that is only guaranteed in L → ∞
limit. From definition of dðqÞ it follows that dð1Þ ¼ 3.
Hence, calculation at given B provides nontrivial informa-
tion about dðqÞ on the interval ½1=B; 1 − 1=B�. Results for
bin b ¼ 1 and b ¼ B − 1 (the first and the last data point
shown for each L) correspond to these endpoint values. The
key observation is that, while nonzero dðqÞ do appear at
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FIG. 3. Finite-L dðqÞ in 3-d Anderson model (O-class) at
W ¼ 32 (s ¼ 2). Left: calculation at B ¼ 103 (last shown bin is
b ¼ B − 1). Right: calculation at B ¼ 106 (last bin is b ¼ B).

2Note that dðqÞ represents the largest dimension present
in SðqÞ.
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finite L, they get quickly reduced as L increases. In the
present case they effectively vanish at L ¼ 160.
The above provides numerical evidence that dðqÞ ¼ 0

for q∈ ð0; 0.999�. However, it does not exclude the pos-
sibility that higher dimensions appear with probability
smaller than ϵB ¼ 10−3. Indeed, this information is hidden
within the last bin, i.e., the q-interval (0.999, 1]. To uncover
its behavior, we divided it into another 103 subintervals,
thus working at resolution ϵB ¼ 10−6. Results for the right-
most edge of q is shown in Fig. 3 (right), this time also
including the last bin. Remarkably, nonzero dimensions
again quickly scale out to zero for q ≤ 1 − 10−6. This is
visible directly in L ¼ 160 data before the L → ∞ extrapo-
lation. Notice that even the q ¼ 1 result (last bin) is already
settled very near the correct value dð1Þ ¼ 3.
To address the numerical rigor in the above, we show the

1=L → 0 extrapolations for q ¼ 1 − 10−6 (next to last bin)
and q ¼ 1 (last bin) in Fig. 4. The L-dependence was fitted
to dðqÞ plus general power using 5 largest values of L, and
had excellent χ2=dof. Note that dð1Þ for the smallest (not
fitted) lattice is significantly larger than dimension of the
underlying space. This occurs because, by construction, the
last bin has to accommodate all low-d populations whose
total probability vanishes in thermodynamic limit. Such
transport proceeds via a flow of volume toward the last bin
at finite L, and results in an unphysically large finite-L
dimension. Our results (indicated in Fig. 4) substantiate
the conclusion that, for E ¼ 0 Anderson states at W ¼ 32
(O-class)

pðdÞ ¼ ð1 − ΔÞδðdÞ þ Δp̄ðdÞ; Δ < 10−6 ð8Þ

In other words, that the probability of encountering a
nonzero spatial dimension [potentially featured in an
unknown distribution p̄ðdÞ] is smaller than 10−6.
Turning now to QCD in IR phase, we again work with

plateau modes in the range λ∈ ð150; 450Þ MeV [2]. In

Fig. 5 (left) we show finite-L result at L ¼ 64 (B ¼ 103).
Note that, even without an extrapolation, d is consistent
with zero in almost the entire q-domain. To decipher the
behavior at the very right edge where dðq; LÞ rises, we
again re-analyze the last bin using B ¼ 106. Results for
various pairs of sizes are shown in Fig. 5 (right). Similarly
to the Anderson case [Fig. 3 (right)], the rise gets quickly
reduced as L increases, leaving behind yet narrower and
weaker rise at L ¼ 72.
Statistical strength and the range of sizes in available

QCD data is not sufficient to perform numerical analysis
at ϵB ¼ 10−6 in the same way as in Anderson case [see
Eq. (8)]. Nevertheless, the point can be made convincingly
here as well. To that end, we plot in Fig. 6 (left) average
counts in the next-to-last bin (q ¼ 1 − ϵB, ϵB ¼ 10−6) and
observe a tentative saturation involving the largest two
systems L ¼ 64, 72. True saturation would imply that
dðqÞ ¼ 0 for q ≤ 1 − ϵB. Whether this is indeed taking
place can be checked farther away from q ¼ 1 edge, where
counts should saturate at smaller L. Fig. 6 (right) shows this
for q ¼ 0.9999, revealing that a wider plateau is indeed
formed. This leads us to propose that Eq. (8) in fact holds
also in the QCD case.

V. SUMMARY

While the notion of IR phase in QCD [1] was sparked by
the IR behavior of Dirac spectral density ρðλÞ, it is the
unusual effective spatial dimensions of Dirac modes [2],
expressed by spectral function dIRðλÞ, that became a key

FIG. 4. Extrapolation (L → ∞) of dðq; ϵB; LÞ for q ¼ 1 − ϵB
(left) and q ¼ 1 (right) in 3-d Anderson model (O-class) at
W ¼ 32. See text for details.
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FIG. 5. Function dðq; ϵB; LÞ for QCD plateau modes. Left: at
B ¼ 103 and L ¼ 64, s ¼ 2. Right: at B ¼ 106 and indicated
pairs of L. The last shown bin is always b ¼ B − 1 (q ¼ 1 − ϵB).
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FIG. 6. Average counts νðqÞ − νðq − ϵBÞ in QCD plateau
modes at ϵB ¼ 10−6 for q ¼ 1 − ϵB (left) and q ¼ 0.9999 (right).
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element in understanding the phase and detecting it.
Indeed, essential attributes of IR phase, namely the exist-
ence of deep IR fields [1,25] and their separation (decou-
pling) from the bulk [1], became natural in metal-to-critical
picture of IR transition [3]. The underlying mechanism
gives special role to Anderson-like critical points in Dirac
spectra: the pair �λA, λA > 0 facilitates the decoupling,
while λIR ¼ 0 governs the proposed long-range and
possibly exactly scale-invariant physics of the IR compo-
nent [1,3]. Since Anderson critical points transform the
space available to a particle by changing its dimension
(see [13–15]), metal-to-critical scenario entails a specific
discontinuous dIRðλÞ: a blueprint of IR phase.
However, evidence that produced [1–3] and later cor-

roborated [26] the metal-to-critical scenario also generated
an inconsistency. Indeed, the mechanism requires that
plateau modes of IR phase (e.g. λIR < λ < λA) are expo-
nentially localized, and thus of zero IR dimension. But the
numerical evidence pointed toward dIR ≈ 1 instead. Here
we resolved this issue by direct confrontation of Anderson-
model data and QCD data, both in terms of dIR and the new
multidimensional technique function dðqÞ. Our analysis
leaves little doubt that Anderson localized states and QCD
plateau modes are dimensionally equivalent, both behaving
as spatial probabilistic objects of IR dimension zero. This
removes the above inconsistency.
We finally wish to convey four important points.

(i) Summarizing the accumulated knowledge, we propose
that the dimensional blueprint dIRðλÞ of QCD in IR phase is
shown in Fig. 7 (right). At the transition temperature TIR,
this nonanalytic behavior replaces the constant dIRðλÞ ¼ 3
shown on the left. (ii) Strictly speaking, the extraordinary
dimensional transformation at TIR, represented by Fig. 7,
has a robust numerical support in pure-glue QCD.
However, the results of recent extensive study [26] strongly
suggest that, at least the structure near λIR ¼ 0 is also
featured in “real-world” QCD. (iii) The previous comment

applies to the entire QCD phase diagram in Fig. 1 (bottom
left). While the multidimensional analysis has not yet been
done in full-QCD case, the fact that the singularity structure
at λIR ¼ 0 is preserved [26] strongly suggests that the fate
of the plateau is similar. Note also that dashing in T ¼ TIR
and T ¼ TUV sections of critical lines expresses that these
regions were not sufficiently studied yet, not even in pure-
glue QCD [3]. (iv) The precise meaning of dIR at λIR ¼ 0,
represented in Fig. 7 (right) by two distinct values, is as
follows. While dIRð0Þ≡ limL→∞dIRð0; LÞ ¼ 3 is simply
the IR dimension of exact zeromodes,

dþIRð0Þ≡ lim
ϵ→0

lim
L→∞

dIRð0; ϵ; LÞ ≈ 2 ð9Þ

reflects the volume scaling of smallest nonzero modes.
In Eq. (9) we introduced the notation dIRðλ1; λ2; LÞ, where
IR dimension is obtained from average N ⋆ involving
modes from the range λ1 < λ < λ2. Surprising results of
Refs. [2,26], support the indicated dþIRð0Þ ≠ dIRð0þÞ.

ACKNOWLEDGMENTS

A. A. is supported in part by the U.S. DOE Grant
No. DE-FG02-95ER40907. I. H. acknowledges the dis-
cussions with Peter Markoš and his input on localization
lengths.

[1] A. Alexandru and I. Horváth, Phys. Rev. D 100, 094507
(2019).

[2] A. Alexandru and I. Horváth, Phys. Rev. Lett. 127, 052303
(2021).

[3] A. Alexandru and I. Horváth, Phys. Lett. B 833, 137370
(2022).

[4] A. M. Garcia-Garcia and J. C. Osborn, Nucl. Phys. A770,
141 (2006).

[5] A. M. Garcia-Garcia and J. C. Osborn, Phys. Rev. D 75,
034503 (2007).

[6] T. G. Kovacs and F. Pittler, Phys. Rev. Lett. 105, 192001
(2010).

[7] M. Giordano, T. G. Kovacs, and F. Pittler, Phys. Rev. Lett.
112, 102002 (2014).

[8] I. Horváth, P. Markoš, and R. Mendris, Entropy 25, 482
(2023).

[9] I. Horváth and R. Mendris, Entropy 22, 1273 (2020).
[10] I. Horváth, Quantum Rep. 3, 534 (2021).
[11] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[12] P. W. Anderson, D. J. Thouless, E. Abrahams, and D. S.

Fisher, Phys. Rev. B 22, 3519 (1980).
[13] I. Horváth and P. Markoš, Phys. Rev. Lett. 129, 106601

(2022).
[14] I. Horváth and P. Markoš, Phys. Lett. A 467, 128735 (2023).

FIG. 7. Transition to QCD IR phase produces nonanalyticity in
dIRðλÞ, whose generic blueprint is shown on the right.

LOCALIZED MODES IN THE IR PHASE OF QCD PHYS. REV. D 109, 014501 (2024)

014501-5

https://doi.org/10.1103/PhysRevD.100.094507
https://doi.org/10.1103/PhysRevD.100.094507
https://doi.org/10.1103/PhysRevLett.127.052303
https://doi.org/10.1103/PhysRevLett.127.052303
https://doi.org/10.1016/j.physletb.2022.137370
https://doi.org/10.1016/j.physletb.2022.137370
https://doi.org/10.1016/j.nuclphysa.2006.02.011
https://doi.org/10.1016/j.nuclphysa.2006.02.011
https://doi.org/10.1103/PhysRevD.75.034503
https://doi.org/10.1103/PhysRevD.75.034503
https://doi.org/10.1103/PhysRevLett.105.192001
https://doi.org/10.1103/PhysRevLett.105.192001
https://doi.org/10.1103/PhysRevLett.112.102002
https://doi.org/10.1103/PhysRevLett.112.102002
https://doi.org/10.3390/e25030482
https://doi.org/10.3390/e25030482
https://doi.org/10.3390/e22111273
https://doi.org/10.3390/quantum3030035
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRevB.22.3519
https://doi.org/10.1103/PhysRevLett.129.106601
https://doi.org/10.1103/PhysRevLett.129.106601
https://doi.org/10.1016/j.physleta.2023.128735


[15] I. Horváth and P. Markoš, Entropy 25, 1557 (2023).
[16] I. S. Burmistrov, Phys. Rev. Lett. 131, 139701 (2023).
[17] I. Horváth and P.Markoš, Phys. Rev. Lett. 131, 139702 (2023).
[18] I. Horváth and P. Markoš, arXiv:2212.02912.
[19] P. Markoš, Acta Phys. Slovaca 56, 561 (2006).
[20] M. Bollhöfer and Y. Notay, Comput. Phys. Commun. 177,

951 (2007).
[21] A. Alexandru, M. Lujan, C. Pelissier, B. Gamari, and

F. X. Lee, in Application Accelerators in High-Performance
Computing (SAAHPC), 2011 Symposium on (2011),
pp. 123–130, arXiv:1106.4964.

[22] A. Alexandru, Comput. Sci. Eng. 17, 14 (2014).
[23] A. Alexandru, C. Pelissier, B. Gamari, and F. Lee,

J. Comput. Phys. 231, 1866 (2012).

[24] T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and
B. I. Shraiman, Phys. Rev. A 33, 1141 (1986).

[25] A. Alexandru and I. Horváth, Phys. Rev. D 92, 045038
(2015).

[26] X.-L. Meng, P. Sun, A. Alexandru, I. Horváth, K.-F. Liu, G.
Wang, and Y.-B. Yang (χQCD and CLQCD Collaborations),
arXiv:2305.09459.

Correction: A formatting error introduced in the pro-
duction cycle resulted in a misspelling in the third affili-
ation and has been fixed.

ALEXANDRU, HORVÁTH, and BHATTACHARYYA PHYS. REV. D 109, 014501 (2024)

014501-6

https://doi.org/10.3390/e25111557
https://doi.org/10.1103/PhysRevLett.131.139701
https://doi.org/10.1103/PhysRevLett.131.139702
https://arXiv.org/abs/2212.02912
https://doi.org/10.1016/j.cpc.2007.08.004
https://doi.org/10.1016/j.cpc.2007.08.004
https://arXiv.org/abs/1106.4964
https://doi.org/10.1016/j.jcp.2011.11.003
https://doi.org/10.1103/PhysRevA.33.1141
https://doi.org/10.1103/PhysRevD.92.045038
https://doi.org/10.1103/PhysRevD.92.045038
https://arXiv.org/abs/2305.09459

