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We present a comprehensive study of the light-cone generalized parton distribution (GPD) and quasi-
GPD of a flavor-neutral meson in the ’t Hooft model, i.e., two-dimensional QCD (QCD2) in the Nc → ∞
limit. With the aid of the Hamiltonian approach, we construct the light-cone GPD in terms of the meson’s
light-cone wave function in the framework of light-front quantization and express the quasi-GPD in terms of
the meson’s Bars-Green wave functions and the chiral angle in the framework of equal-time quantization.
We show that, both analytically and numerically, the quasi-GPD does approach the light-cone GPDwhen the
meson is boosted to the infinite momentum frame, which justifies the tenet underlying the large momentum
effective theory for the off-forward parton distribution. Upon taking the forward limit, the light-cone and
quasi-GPDs reduce to the light-cone and quasi parton distribution functions (quasi-PDFs). As a bonus, we
take this chance to correct the incomplete expression of the quasi-PDFs in the ’t Hooft model reported in our
preceding work [Y. Jia et al., Phys. Rev. D 98, 054011 (2018)].
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I. INTRODUCTION

Unraveling the internal structure of nucleon is one of
the most important topic in QCD and also constitutes the
major scientific goal of the prospective electron ion collision
experiments, such as electron-ion collider (EIC) and elec-
tron-ion collider in China (EicC) [1,2]. The internal partonic
structure of a nucleon is fruitfully characterized by various
light-cone partonic distribution functions, such as parton
distribution functions (PDFs), transverse momentum de-
pendent parton distributions, and generalized parton dis-
tribution functions (GPDs). These distribution functions are
nonperturbative yet universal objects, which serve as
essential inputs for making accurate predictions for high-
energy collision experiments as required by the QCD
factorization theorem.

Among these light-cone distribution functions, the GPD
encodes much richer information about the partonic struc-
ture of nucleon than the ordinary PDFs. The GPDs embody
the correlation between a parton’s longitudinal momentum
fraction and its transverse position and thus may provide a
three-dimensional tomographic portrait of a nucleon.
The GPDs can in principle be extracted through exclusive

lepton-hadron scattering processes such as deeply virtual
Compton scattering [3] and vector meson production proc-
esses [4,5]. The measurements of GPDs are among the top
priority list in the projected EIC and EicC programs [1,2].
On theoretical grounds, there exist some estimation of the
GPDs from QCD-inspired models, such as the light-cone
quark model [6]. In contrast to the phenomenological
models, lattice QCD is currently viewed as the only reliable
and model-independent approach to compute GPD. It is the
Mellin moments of the GPD which can be directly handled
in lattice QCD, which correspond to the off-forward matrix
elements of some local operators. In principle, the x
dependence of the GPD can be reconstructed once infinite
towers of the Mellin moments are known. Unfortunately,
calculation of higher Mellin moments in lattice suffers from
a severe operator mixing obstacle. Moreover, high-order
derivatives in the operators affiliated with the high-order
Mellin moments demands finer lattice spacing, which is also
computationally expensive. After decades-long efforts, only
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a few lower-order Mellin moments of the GPD have been
computed on the lattice. To the best of our knowledge, so far,
only the first four Mellin moments of GPD have been
available from lattice simulation [7–11].
A theoretical breakthrough in the last decade is the

advent of Large Momentum Effective field Theory
(LaMET), which enables one to directly extract the x
dependence of the light-cone parton distributions on the
lattice [12,13]. In the LaMET framework, a central object is
called quasi-GPD, which is defined as the equal-time yet
spatially nonlocal operator matrix element where the
external nucleon states carry finite momenta and thus
can be directly accessed by lattice simulation. The x
dependence of the light-cone GPD can then be inferred
from the quasi-GPD through the perturbative matching
procedure. Very recently, there have emerged some explor-
atory lattice studies of the GPD following the LaMET
approach. While most of the investigation concentrate on
the zero-skewness (ξ ¼ 0) case [14–16], some study also
considers the nonzero skewness case (jξj ¼ 1=3) [17]. The
tendency of quasi-GPD converging to the light-cone GPD
has also been investigated in the diquark spectator
model [18,19].
Because of greater complexity, there is still a long path

to go to reconstruct the whole profiles of the quasi-GPDs
and light-cone GPDs, even in the framework of LaMET.
Meanwhile, it may look appealing if one can learn some
lessons from toy models of QCD in which the quasi-GPDs
and GPDs may be rigorously computed. In fact, the
’t Hooft model, i.e., the two-dimensional QCD Nc → ∞
limit [20], is an ideal theoretical laboratory to investigate
the light-cone and quasi-parton-distributions of a meson.
As a solvable model, QCD2 resembles the realistic QCD in
several aspects, such as color confinement, Regge trajec-
tories, “naive” asymptotic freedom, the nonzero quark
condensate, etc. Recently, the quasi-PDFs [13,21] and
intrinsic charm PDF of light mesons [22] have been
investigated in this model. GPDs are considerably more
complicated than the PDFs, since they depend on three
kinematic variables instead of a single momentum fraction
variable. The light-cone GPD of a charged meson was
investigated in the ’t Hooft model by Burkardt [23]. It is the
goal of this work to carry out a comprehensive investigation
on both the light-cone and quasi-GPDs of a flavor-neutral
meson with various quark mass. Employing the Hamiltonian
approach, we are able to express the light-cone GPD in terms
of the meson’s light-cone wave function (LCWF) through
light-front quantization and express the quasi-GPD in terms
of the meson’s Bars-Green wave functions (BGWFs)
through equal-time quantization. The highlight of this work
is that, when the meson is boosted faster and faster, the
quasi-GPD does converge to the light-cone GPD. We exhibit
this feature in both analytical and numerical manners.
Therefore, our study corroborates the key assumption of
LaMET in QCD2, that the quasipartonic distributions

smoothly transition into the light-cone counterparts when
a hadron is boosted from the finite momentum to the infinite
momentum frame (IMF).
The rest of the paper is organized as follows. In Sec. II,

we recap the definitions and some basic properties of the
light-cone GPDs and quasi-GPDs and explain how these
definitions are adapted to two-dimensional spacetime. In
Sec. III, we review the Hamiltonian approach in the ’t Hooft
model. Concretely speaking, we recap the bosonization
procedures in the light-front quantization as well as in
equal-time quantization and how to arrive at the respective
bound-state equations: the ’t Hooft equation and Bars-Green
equations. We also organize the Hamiltonian in 1=Nc

expansion, including the Oð1= ffiffiffiffiffiffi
Nc

p Þ terms in both light-
front and equal-time quantization. In Secs. IV and V, we
employ the Hamiltonian approach to construct the explicit
expressions of the light-cone and quasi-GPDs of a flavor-
neutral meson, at the lowest order in 1=Nc. In Sec. VI, we
analytically prove that the light-cone GPD can be reached
from the quasi-GPD in the infinite momentum limit. In
Sec. VII, as a byproduct, we obtain the expressions of the
quasi-PDFs by taking the forward limit Δ → 0 of the quasi-
GPDs. We devote Sec. VIII to a comprehensive numerical
study of the light-cone and quasi-GPDs, with different
choices of quark mass and skewness. We also show the
profiles of various quasi-PDFs with different quark masses.
Finally, we summarize in Sec. IX. In Appendixes A and B,
we present some lengthy formulas for the interacting
Hamiltonian and three-meson vertex functions in light-front
and equal-time quantization, respectively. In Appendix C,
we make a comparative numerical study for the quasi-PDFs
of flavor-neutral mesons between our new correct results
and the incomplete old results.

II. BRIEF REVIEW OF LIGHT-CONE
AND QUASI-GPDs

In this section, we recap the definitions and some key
properties of the light-cone GPD and quasi-GPD. For more
comprehensive reviews on light-cone GPD, we refer the
interested readers to Refs. [24,25]. GPDs generalize PDFs
to the nonforward kinematics where the momentum carried
by the final-state hadron differs from that carried by the
initial-state hadron.
The unpolarized quark GPD inside a spin-1

2
nucleon is

defined as

Fqðx; ξ; tÞ ¼
Z

dη−

4π
eixP

þη−
�
Pþ Δ

2

����ψ̄
�
−
η−

2

�

× P
�
exp

�
−igs

Z η−
2

−η−
2

dζ−Aþ;aðζ−Þta
	


× γþψ
�
η−

2

�����P −
Δ
2

�
; ð1Þ
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where ψ denotes the quark field, ta signifies the SU(3)
generator in fundamental representation, and the path-
ordered exponential Pfexp½� � ��g represents the gauge link
which ensures the gauge invariance of the GPD. x denotes
the light-cone momentum fraction, ξ ¼ Δþ=ð2PþÞ is
known as the skewness parameter, and t ¼ Δ2 is the square
of hadron momentum transfer.1

The quark GPD of a nucleon can be decomposed into
two pieces:

Fqðx;ξ; tÞ¼Hqðx;ξ; tÞū
�
PþΔ

2

�
γþu

�
P−

Δ
2

�

þEqðx;ξ; tÞū
�
PþΔ

2

�
σþρΔρ

2MN
u

�
P−

Δ
2

�
; ð2Þ

where uðP� Δ
2
Þ denotes the incoming and outgoing

nucleon Dirac spinors and the H-type and E-type GPDs
are related to the nucleon electromagnetic form factor F1;2

via [29]

X
q

Z
dxHqðx; ξ; tÞ ¼ F1ðtÞ;

X
q

Z
dxEqðx; ξ; tÞ ¼ F2ðtÞ: ð3Þ

GPDs entail much richer information about how partons
are distributed inside a nucleon than PDF, since they
depend on two extra kinematical variables, ξ and t. In
the special case of ξ ¼ 0, if only the transverse components
of Δ are nonzero, the zero-skewness GPD is related to the
combined distributions of parton’s light-cone momentum
fraction x and transverse position b⊥ (impact parameter
space) through a two-dimensional Fourier transformation
with respect to Δ⊥ [30],

Hqðx;b⊥Þ¼
Z

dΔ2⊥
ð2πÞ2 e

−iΔ⊥·b⊥Hqðx;ξ¼ 0; t¼−Δ2⊥Þ; ð4aÞ

Eqðx;b⊥Þ¼
Z

dΔ2⊥
ð2πÞ2 e

−iΔ⊥·b⊥Eqðx;ξ¼ 0; t¼−Δ2⊥Þ; ð4bÞ

where Hqðx; b⊥Þ can be interpreted as the probability
density of finding a parton carrying light-cone momentum
fraction x at transverse position b⊥ and Eqðx; b⊥Þ character-
izes the distortion of the parton distribution in x; b⊥ space
induced by nucleon’s spin effects [30].

GPD also entails information about the parton’s angular
momentum distribution. For instance, the celebrated Ji’s
sum rule reveals the profound connection between GPDs
and nucleon spin [29]:

S¼
X
f¼q;g

Jf ¼
X
f¼q;g

1

2

Z
dxx½Hfðx;0;0ÞþEfðx;0;0Þ�; ð5Þ

where Jf denotes the quark and gluon contributions to the
nucleon spin.
In the forward limit ξ → 0; t → 0, theH-type GPD of the

nucleon in (2) reduces to the collinear PDF, and the E-type
GPD is related to the angular momentum of the parton, as
indicated in the spin sum rule (5).
In the nonvanishing skewness case, the H-type quark

GPD satisfies the following positivity bound in the DGLAP
region (ξ < x < 1) [31]:

jHqðx; ξ; tÞj ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q

�
x − ξ

1 − ξ

�
q

�
xþ ξ

1þ ξ

�s
; ð6Þ

where qðxÞ signifies the quark PDF. The derivation of the
positivity bound involves the overlap representation of
GPD [25,28,32].
Another peculiar trait of GPD is the polynomiality,

which is a direct consequence of Lorentz symmetry.
Polynomiality of GPD states that the GPD’s nth Mellin
moment is an nth-order polynomial of ξ (for a detailed
discussion, see [24,25,28]).
For a spinless meson exemplified by π, only the H-type

GPD survives [33]:

Hqðx; ξ; tÞ ¼
Z

dη−

4π
eixP

þη−
�
Pþ Δ

2

����ψ̄
�
−
η−

2

�

× P
�
exp

�
−igs

Z η−
2

−η−
2

dζ−Aþ;aðζ−Þta
	


× γþψ
�
η−

2

�����P −
Δ
2

�
: ð7Þ

As we will explain, this definition of GPD is most relevant
for our study in the meson’s GPD in the ’t Hooft model.
The quark quasi-GPD of a spin-0 meson is defined as the

purely spatial correlator [12,13]:

H̃qðx; ξ; t; PzÞ ¼
Z

dz
4π

e−ixP
zz

�
Pþ Δ

2

����ψ̄
�
−
z
2

�

× P
�
exp

�
−igs

Z z
2

−z
2

dζAz;aðζÞta
	


× γzψ

�
z
2

�����P −
Δ
2

�
; ð8Þ

1We emphasize here that we follow the convention of
Refs. [26,27] to define ξ, which differs from some literature
by an extra minus sign. The different convention in defining ξ
does not affect the results of this work because the GPDs
discussed in this work are even functions of ξ due to the time-
reversal invariance [24,25,28].
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where x ¼ kz=Pz signifies the ratio of the longitudinal
momentum of the quark to the average longitudinal
momentum between the initial and final state meson,
ξ ¼ Δz=ð2PzÞ denotes the skewness parameter in quasi-
GPD [26,27], and t ¼ Δ2. The path-ordered exponential
denotes the gauge link along the z direction.
The key idea of the LaMeT is that the light-cone GPD

and quasi-GPD share identical infrared behavior yet differ
in the ultraviolet. The difference can be compensated by a
perturbative matching factor. For instance, the H-type
quasi-GPD is linked with the H-type light-cone GPD via
the following factorization theorem [26,27]:

H̃ðx; ξ; t; PzÞ ¼
Z

1

−1

dy
y
Z

�
x
y
;
ξ

y
; t

�
Hðy; ξ; tÞ þ � � � ; ð9Þ

where Z signifies the perturbative calculable short-distance
coefficient function and the ellipses represents the higher-
twist correction suppressed by powers of 1=Pz. It is the
quasi-GPD that can be computed on the lattice, and
subsequently one can extract the light-cone GPD by
inverting the matching formula (9).
In the rest of the work, we will consider the quark light-

cone GPD and quasi-GPD of a meson in the ’t Hooft model
(since we are dealing with the Nc → ∞ limit, we refrain
from considering the GPD of an infinitely-heavy baryon). In
1þ 1-dimensional spacetime, there is no such notion as
angular momentum (orbital or spin); therefore, the 3þ 1-
dimensional definitions of quark GPD of a spin-0 meson (7)
and the quark quasi-GPD of a spin-0 meson (8) can be
directly carried over to QCD2. Moreover, the absence of
transverse degree of freedom brings in additional simplifi-
cation—that the skewness parameter ξ and the squared
momentum transfer t actually are related to each other:

light-cone GPD

t≡ Δ2 ¼ 4μ2nξ
2

ξ2 − 1
; ð10aÞ

quasi-GPD

t≡ Δ2 ¼ 2

�
μ2n þ ð1 − ξ2ÞP2

z

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ2n þ P2

zðξ2 þ 1ÞÞ2 − 4ξ2P4
z

q �
; ð10bÞ

where μn signifies the mass of the nth excited mesonic state
in the ’t Hooft model. The incoming and outgoing meson
states satisfy the on-shell condition ðP ∓ Δ

2
Þ2 ¼ μ2n. It is

straightforward to verify that (10b) reduces to (10a) in the
Pz → ∞ limit.
Because of the absence of transverse spatial degree in

QCD2, after imposing the physical gauge such as light-
cone gauge Aþ;a ¼ 0, the A−;a field becomes a constrained,

rather than dynamical variable. Hence, the role played by
the gluon is to provide an instantaneous interquark linear
Coulomb potential. As a consequence, the light-cone gluon
GPD trivially vanishes. Therefore, in this work, we con-
centrate on the quark sector of GPDs. Without causing
confusion, we will simply drop the subscript “q” in the
quark light-cone and quasi-GPDs henceforth.

III. BRIEF REVIEW OF HAMILTONIAN
APPROACH IN ’T HOOFT MODEL

Our starting point is the QCD2 Lagrangian with a single
quark flavor,

L ¼ −
1

4
Fμν;aFa

μν þ ψ̄ði=D −mÞψ ; ð11Þ

with Dμ ¼ ∂μ − igsAa
μta signifying color covariant deriva-

tive. The gluon field strength tensor is defined as
Fa
μν ≡ ∂μAa

ν − ∂νAa
μ þ gsfabcAb

μAc
ν. We adopt the chiral-

Weyl representation for the Dirac-γ matrices:

γ0 ¼ σ1; γz ¼ −iσ2; γ5 ¼ γ0γz ¼ σ3; ð12Þ

where σi (i ¼ 1; 2; 3) are Pauli matrices.
To make nonperturbative dynamics more tractable, we

also resort to 1=Nc expansion. It is convenient to introduce
the ’t Hooft coupling constant λ ¼ g2sNc=4π, which bears
mass dimension 2. We are interested in the limit where
Nc → ∞ but λ is kept fixed.
The ’t Hooft model can be solved in both diagrammatic

and Hamiltonian approaches. The bound-state equation
arising from the light-front quantization is dubbed the
’t Hooft equation, which describes the meson viewed in
the IMF. In contrast, the bound-state equations arising from
the equal-time quantization are called Bars-Green equa-
tions, which characterize mesons viewed in a finite momen-
tum frame (FMF). In the rest of this section, we will present
a brief review about the Hamiltonian approach in both light-
front and equal-time quantization, which constitutes the
essential prerequisites to derive the functional forms of the
light-cone GPD and quasi-GPD. See Refs. [21,34–38] for
detailed introduction of Hamiltonian approach.

A. Hamiltonian approach in light-front quantization

We introduce the light-cone coordinates as ξ� ¼
ðξ0 � ξzÞ= ffiffiffi

2
p

and express the Dirac spinor field as

ψ ¼ 2−
1
4

�
ψR

ψL

�
; ð13Þ

where R and L denote the right-handed and left-handed
components.
Substituting (13) into (11), and imposing the light-cone

gauge Aþ;a ¼ 0, one can express A−;a and ψL as functions
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of ψR from equation of motion2 [20]. After Legendre
transformation, one arrives at the light-front (LF)
Hamiltonian solely in terms of ψR [20]. The theory can
then be canonically quantized in equal light-front time.
The canonical quantization rules in equal light-front time
are then

fψ i
Rðx−Þ;ψ j

R
†ðy−Þg ¼ δijδðx− − y−Þ; ð14aÞ

fψ i
Rðx−Þ;ψ j

Rðy−Þg ¼ fψ i
R
†ðx−Þ;ψ j

R
†ðy−Þg ¼ 0; ð14bÞ

with i; j ¼ 1;…; Nc indicating the color indices.
At xþ ¼ 0, the right-handed quark field can be Fourier

expanded as follows:

ψ i
Rðx−Þ ¼

Z
∞

0

dkþ

2π
½biðkþÞe−ikþx− þ di†ðkþÞeikþx− �: ð15Þ

The quark (antiquark) annihilation/creation operator b=b†

(d=d†) obeys the standard anticommutation relations,

fbi†ðkþÞ; bjðpþÞg ¼ 2πδijδðkþ − pþÞ;
fdi†ðkþÞ; djðpþÞg ¼ 2πδijδðkþ − pþÞ; ð16Þ

and all other unspecified anticommutators simply vanish.
Substituting (15) into the light-front Hamiltonian, one

encounters various bilinear terms composed of quark/
antiquark annihilation and creation operators. It is conven-
ient to adopt the bosonization technique to facilitate the
diagonalization of Hamiltonian [34–36,39–43] by intro-
ducing the following bosonic compound operators3:

Mðkþ; pþÞ ¼ 1ffiffiffiffiffiffi
Nc

p
X
i

diðkþÞbiðpþÞ; ð17aÞ

Bðkþ; pþÞ ¼
X
i

bi†ðkþÞbiðpþÞ; ð17bÞ

Dðkþ; pþÞ ¼
X
i

di†ðkþÞdiðpþÞ: ð17cÞ

In the following, the LF Hamiltonian of the ’t Hooft
model will be reexpressed in terms of the bosonized
operators such as mesonic annihilation and creation oper-
ators. The LF Hamiltonian can be organized in powers of
1=Nc:

HLF ¼ HLF;vac þ Hð0Þ
LF þ VLF: ð18Þ

The leading OðNcÞ piece, Hð0Þ
LF , corresponds to the

vacuum energy, which is badly UV and IR divergent
[45]. However, since it is proportional to the unit operator
and does not have any physical impact, we will simply
discard HLF;vac henceforth.
The OðN0

cÞ piece in (18) involves the integration over
BþD and M†M. A key insight is to realize that those
bosonic compound operators in (17) are not independent.
In fact B and D can be expressed as the convolution
between M and M†:

Bðkþ; pþÞ ¼
Z

∞

0

dqþ

2π
M†ðqþ; kþÞMðqþ; pþÞ; ð19aÞ

Dðkþ; pþÞ ¼
Z

∞

0

dqþ

2π
M†ðkþ; qþÞMðpþ; qþÞ: ð19bÞ

The reason is that, in a confining theory like QCD2, one
cannot create an isolated quark or antiquark from the
vacuum and rather can only create a color-singlet quark-
antiquark pair from the vacuum [46]. Substituting (19)
into (18), the LF Hamiltonian can be expressed solely
in terms of M and M†. M and M† satisfy the simple
commutation relations:

½Mðk1; p1Þ;M†ðk2; p2Þ� ¼ ð2πÞ2δðk1 − k2Þδðp1 − p2Þ

þO
�

1

Nc

�
: ð20Þ

To facilitate the diagonalization of Hð0Þ
LF , it is convenient

to introduce a new set of mesonic annihilation/creation
operators mn=m

†
n, which are related to M and M† through

mnðPþÞ ¼
ffiffiffiffiffiffi
Pþ

2π

r Z
1

0

dxϕnðxÞMðð1 − xÞPþ; xPþÞ; ð21aÞ

Mðð1 − xÞPþ; xPþÞ ¼
ffiffiffiffiffiffi
2π

Pþ

r X∞
n¼0

ϕnðxÞmnðPþÞ; ð21bÞ

where the coefficient functions ϕnðxÞ later will be identi-
fied with the ’t Hooft LCWF of the nth excited mesonic
state, with x∈ ð0; 1Þ denoting the light-cone momentum
fraction carried by the quark inside the meson.
If the mesonic annihilation and creation operators are

required to obey the standard commutation relation,

½mnðPþ
1 Þ; m†

rðPþ
2 Þ� ¼ 2πδnrδðPþ

1 − Pþ
2 Þ; ð22Þ

the ’t Hooft wave functions must obey the following
orthogonality and completeness conditions:

2In QCD2, the right-hand spinor is equivalent to the “good”
component because the projection operator 1

2
γ−γþ coincides with

1þγ5
2
.

3Note the normalization of the compound operators B and D
here differs from what is given in our previous work [44]. The
purpose of making this change is to make the 1=Nc expansion of
the Hamiltonian manifest.
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Z
1

0

dxϕnðxÞϕrðxÞ ¼ δnr; ð23aÞ
X
n

ϕnðxÞϕnðyÞ ¼ δðx − yÞ: ð23bÞ

Substituting (19) and (21) into (18), our goal is to put the

Hð0Þ
LF into a diagonalized form, which describes infinite

towers of noninteracting mesons,

Hð0Þ
LF ¼

X
n

Z
∞

0

dPþ

2π
P−
nm

†
nðPþÞmnðPþÞ; ð24Þ

where P−
n ¼ M2

n=ð2PþÞ denotes the light-cone energy of
the nth excited state meson with light-cone momentum Pþ.
To fulfill this goal, one must enforce that all the off-

diagonal terms in Hð0Þ
LF cancel, which in turn imposes the

following constraints on infinite numbers of coefficient
functions ϕnðxÞ:

�
m2− 2λ

x
þm2− 2λ

1− x
−M2

n

�
ϕnðxÞ ¼ 2λ

Z
�1

0

dy
ðx− yÞ2ϕnðyÞ:

ð25Þ

This is nothing but the celebrated ’t Hooft equation in
QCD2, the bound-state equation for the nth excited
mesonic state in the ’t Hooft model in IMF. Note that
the dashed integral

R� in (25) signifies the principle-value
prescription, whose role is to tame the IR divergence
as y → x.
The single mesonic state can be constructed as

jPþi ¼
ffiffiffiffiffiffiffiffiffi
2Pþp

m†
nðPþÞj0i: ð26Þ

The last operator V in the LF Hamiltonian in (18) scales
as Oð1= ffiffiffiffiffiffi

Nc
p Þ, which involves integration of the triple

product of m and m†. For the purpose of computing the
quark light-cone GPD, it is sufficient to know

VLF ¼
λ

ð2πÞ3=2 ffiffiffiffiffiffi
Nc

p
X

n1;n2;n3

Z
∞

0

dkþ1 dk
þ
2 dk

þ
3 dk

þ
4 dq

þ
1

�
−δðkþ1 þ kþ2 − kþ3 þ kþ4 Þ

ðkþ2 þ kþ4 Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðkþ1 þ kþ2 Þðkþ3 þ qþ1 Þðkþ4 þ qþ1 Þ

p
× φn1

�
kþ1

kþ1 þ kþ2

�
φn2

�
kþ3

kþ3 þ qþ1

�
φn3

�
kþ4

kþ4 þ qþ1

�
mn1ðkþ1 þ kþ2 Þm†

n2ðkþ3 þ qþ1 Þmn3ðkþ4 þ qþ1 Þ þ � � �
	
: ð27Þ

The complete expression of VLF is given in Appendix A.
These operators induce one meson to transition into two
mesons, or vice versa, which represents anOð1= ffiffiffiffiffiffi

Nc
p Þ [47]

effect.

B. Hamiltonian approach in equal-time quantization

To describe a moving meson with a finite momentum, it
is more appropriate to adopt the equal-time quantization
rather than light-front quantization. In 1978, Bars and Green
solved the ’t Hooft model from this perspective [37]. Upon
imposing the axial gauge A1;a ¼ 0, Employing the Euler-
Lagrange equation, one can express A0;a as a functional of ψ
and ψ†. After Legendre transformation, one arrives at the
Hamiltonian solely in terms of ψ and ψ†. The canonical
quantization rule at equal time reads

fψ iðzÞ;ψ j†ðz0Þg ¼ δijδðz − z0Þ; ð28aÞ

fψ iðzÞ;ψ jðz0Þg ¼ fψ i†ðzÞ;ψ j†ðz0Þg ¼ 0: ð28bÞ

At t ¼ 0, the quark Dirac field can be Fourier expanded
as follows4:

ψ iðzÞ ¼
Z

∞

−∞

dk
2π

1ffiffiffiffiffiffiffiffiffiffiffiffi
2EðkÞp ½biðkÞuðkÞeikz þ vðkÞdi†ðkÞe−ikz�:

ð29Þ

Here, EðkÞ signifies the dressed quark energy. The spinor
wave functions in (29) are parametrized by

uðpÞ ¼
ffiffiffiffiffiffiffiffiffiffi
EðpÞ

p
TðpÞ

�
1

1

�

and vðpÞ ¼
ffiffiffiffiffiffiffiffiffiffi
EðpÞ

p
Tð−pÞ

�
1

−1

�
; ð30Þ

where TðpÞ is a unitary matrix parametrized as

TðpÞ ¼ exp

�
−
1

2
θðpÞγz

	
; ð31Þ

with θðpÞ denoting the quark chiral angle [37]. The dressed
quark and antiquark annihilation operators in (29) annihilate
the quark vacuum, biðkÞj0i ¼ diðkÞj0i ¼ 0, for all possible
values of k.
Substituting the Fourier expansion of ψ (29) into the

Hamiltonian, and rearranging it into the normal-ordered
form, we decompose the Hamiltonian into three pieces:

H ¼ H0 þ ∶H2∶ þ ∶H4∶; ð32Þ

4In the cases where no confusion can arise, we often frequently
suppress the superscript “z” of a 2-vector to condense the
notation. Therefore, in most cases, k is the shorthand for kz,
the spatial component of a 2-momentum kμ ¼ ðk0; kzÞ.
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which contain 0, 2, and 4 quark creation/annihilation
operators accordingly.
By minimizing the vacuum energy H0 in variation with

θðpÞ or, equivalently, by demanding ∶H2∶ of the diagon-
alized form in the basis of the dressed quark and antiquark,
one arrives at the so-called mass-gap equation [37]

p cosθðpÞ−m sinθðpÞ ¼ λ

2

Z
�

∞

−∞

dk
ðp− kÞ2 sin ½θðpÞ− θðkÞ�;

ð33Þ

and the dressed quark possesses the following dispersion
relation:

EðpÞ≡m cos θðpÞ þ p sin θðpÞ

þ λ

2

Z
�

þ∞

−∞

dk
ðp − kÞ2 cos½θðpÞ − θðkÞ�: ð34Þ

To derive the bound state equation, we must take the
∶H4∶ piece into account. In parallel with the bosonization
procedure for the LF Hamiltonian, it is useful to introduce
the following color-singlet compound operators analogous
to (17):

Mðk; pÞ ¼ 1ffiffiffiffiffiffi
Nc

p
X
i

dið−kÞbiðpÞ; ð35aÞ

Bðk; pÞ ¼
X
i

bi†ðkÞbiðpÞ; ð35bÞ

Dðk; pÞ ¼
X
i

di†ðkÞdiðpÞ: ð35cÞ

The commutation relations between M and M† reads

½Mðk1; p1Þ;M†ðk2; p2Þ� ¼ ð2πÞ2δðk1 − k2Þδðp1 − p2Þ

þO
�

1

Nc

�
: ð36Þ

Because of the confinement nature of QCD2, the same
consideration that leads to (19) can also be applied here;
i.e., not all compound operators in (35) are independent. In
fact, one finds that [46]

Bðp; p0Þ ¼
Z þ∞

−∞

dq
2π

M†ðq; pÞMðq; p0Þ; ð37aÞ

Dðp; p0Þ ¼
Z þ∞

−∞

dq
2π

M†ðp; qÞMðp0; qÞ: ð37bÞ

Expressing everything in (32) in terms of the bosonic
compound operators introduced in (35), eliminating B and
D in line with (37), the Hamiltonian becomes the functional
of M and M† and the chiral angle. In the following, the

Hamiltonian of the ’t Hooft model will be reexpressed in
terms of the bosonized operators such as mesonic annihi-
lation and creation operators. One can rearrange the full
Hamiltonian according to the power of 1=Nc:

H ¼ Hvac þ Hð0Þ þ V ; ð38Þ

where Hvac corresponds to the shifted vacuum energy that
scales as OðNcÞ. Since it has no physical effect, we just
simply drop this constant piece. Hð0Þ scales as OðN0

cÞ, and
V scales as Oð1= ffiffiffiffiffiffi

Nc
p Þ.

To put Hð0Þ in the diagonal form, one can borrow the
Bogoliubov transformation that is used to diagonalize the
Hamiltonian of dilute weakly interacting Bose gas [48], by
introducing a new set of annihilation and creation operators
mn and m†

n (n ¼ 0; 1;…) as the linear combination of the
M and M† operators in (35a) [46]:

mnðPÞ ¼
Z þ∞

−∞

dq
2π

½Mðq − P; qÞφþ
n ðq; PÞ

þM†ðq; q − PÞφ−
n ðq; PÞ�; ð39aÞ

Mðq − P; qÞ ¼ 2π

jPj
X∞
n¼0

½mnðPÞφþ
n ðq; PÞ

−m†
nð−PÞφ−

n ðq − P;−PÞ�; ð39bÞ

where mnðPÞ and m†
nðPÞ will be interpreted as the

annihilation and creation operators for the nth mesonic
state carrying spatial momentumP. The functions φþ

n ðq; PÞ
and φ−

n ðq; PÞ play the role of Bogoliubov coefficients.
Similar to (22) in the LF case, here we again postulate

that the mesonic annihilation and creation operators obey
the canonical commutation relations:

½mnðPÞ; m†
mðP0Þ� ¼ 2πδnmδðP − P0Þ: ð40Þ

To satisfy these commutation relations, the Bogoliubov
functions φn

� must obey the following orthogonality and
completeness conditions5:

Z þ∞

−∞

dp
2π

½φnþðp; PÞφmþðp; PÞ − φn
−ðp;PÞφm

−ðp; PÞ� ¼ δnm;

ð41aÞ
Z þ∞

−∞
dp½φnþðp; PÞφm

−ðp − P;−PÞ

− φn
−ðp;PÞφmþðp − P;−PÞ� ¼ 0; ð41bÞ

5We emphasize that the BGWFs are normalized differently
from our preceding work [21].
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X∞
n¼0

½φnþðp;PÞφnþðq; PÞ − φn
−ðp − P;−PÞφn

−ðq − P;−PÞ�

¼ 2πδðp − qÞ; ð41cÞ

X∞
n¼0

½φnþðp;PÞφn
−ðq;PÞ−φn

−ðp−P;−PÞφnþðq−P;−PÞ�¼0:

ð41dÞ

Note the relative minus sign is reminiscent of the character-
istic of the Bogoliubov transformation [46].
Substituting (39b) into (38), we attempt to put the Hð0Þ

into the diagonalized form, which describes infinite towers
of noninteracting mesons:

Hð0Þ ¼
X
n

Z
∞

−∞

dP
2π

P0
nm

†
nðPÞmnðPÞ; ð42Þ

where P0
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2n þ P2

p
.

We define the mesonic vacuum state jΩi by the condition
mnðPÞjΩi ¼ 0, for all n and P. Consequently, a single nth
excited mesonic state can be constructed via

jPi ¼
ffiffiffiffiffiffiffiffi
2P0

n

q
m†

nðPÞjΩi: ð43Þ

Note the mesonic vacuum state jΩi differs from the quark
vacuum j0i in the equal-time quantization and is highly
nontrivial.
To achieve the intended diagonal form (42), one must

enforce that all the off-diagonal terms in Hð0Þ cancel, which
in turn imposes the following constraints on the Bogliubov
coefficient functions φ�

n ðp; PÞ:

½EðpÞ þ EðP − pÞ ∓ P0
n�φ�

n ðp;PÞ

¼ λ

Z
�

þ∞

−∞

dk
ðp − kÞ2 ½Cðp; k; PÞφ

�
n ðk; PÞ

− Sðp; k; PÞφ∓
n ðk; PÞ�; ð44Þ

with

Cðp; k; PÞ ¼ cos
θðpÞ − θðkÞ

2
cos

θðP − pÞ − θðP − kÞ
2

;

ð45aÞ

Sðp;k;PÞ¼ sin
θðpÞ−θðkÞ

2
sin

θðP−pÞ−θðP−kÞ
2

: ð45bÞ

Equation (44) is the coupled bound-state equations in the
’t Hooft model in equal-time quantization, first derived by
Bars and Green back in 1978 [37]. For this reason, this
equation will be referred to as the Bars-Green equation.
Consequently, the Bogoliubov coefficient functions φn

� are

interpreted as the forward/backward-moving bound-state
wave functions, or simply called Bars-Green wave func-
tions. The BGWFs of a flavor-neutral meson are subject to
the following constraints from discrete symmetries, such as
the parity and charge conjugation symmetries:

φ�
n ð−p; PÞ ¼ ð−1Þnφ�

n ðp;PÞ P; ð46aÞ

φ�
n ðP − p;PÞ ¼ ð−1Þnφ�

n ðp; PÞ C; ð46bÞ

φ�
n ðp − P;−PÞ ¼ φ�

n ðp;PÞ CP: ð46cÞ

Apparently, the Bars-Green equations in (44) are much
more complicated than their counterpart in IMF, the
’t Hooft equation (25). This complication can be largely
attributed to the nontrivial vacuum structures in equal-time
quantization. As indicated in (39b), a meson may be
created out of the vacuum by annihilating a pair of quark
and antiquark, due to the emergence of the backward-
moving component of the BGWF φ−. It is worth emphasiz-
ing that a crucial virtue of Bars-Green equations is that it
preserves Poincaré invariance in the physical sector in a
highly nontrivial way. A specific consequence of Poincaré
invariance is that, when the meson is viewed in the IMF,
that is, in the P → ∞ limit, one would still obtain the
identical mesonic mass spectra. In the P → ∞ limit, by
relabeling the quark momentum by p ¼ xP, one readily
shows that that

θðxPÞ ≈ ϵðxÞ π
2
; tan θðxPÞ ≈ xP

m
;

EðxPÞ ¼ jxjPþm2 − 2λ

2jxjP þO
�

1

P2

�
; ð47Þ

where ϵðxÞ denotes the sign function. Substituting the
above asymptotic behavior (47) into the Bars-Green
equation (44), and only retaining the Oð1=PÞ pieces,
one finds that

lim
P→∞

ffiffiffiffiffiffi
P
2π

r
φþ
n ðxP; PÞ ¼ ΘðxÞΘð1 − xÞφnðxÞ;

lim
P→∞

φ−
n ðxP; PÞ ¼ 0: ð48Þ

Therefore, in the infinite momentum limit, the forward-
moving BGWF φþ

n is approaching the LCWF, while the
backward-moving BGWF φ−

n fades away. Consequently
the Bars-Green equation reduces to the ’t Hooft
equation (25).
The last piece V in the Hamiltonian (38) scales as

Oð1= ffiffiffiffiffiffi
Nc

p Þ, which entails the integration of the triple
product of m and m† operators. Its full expressions are
quite lengthy, and the part that is responsible for the quark
quasi-GPD is collected in Appendix B. Here, we just
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exhibit one typical term in V :

V ¼ λffiffiffiffiffiffi
Nc

p
X

n1;n2;n3

Z
dk1dk2dk3dk4dk5

ð2πÞ3
�
− cos

θðk1Þ − θðk4Þ
2

sin
θðk2Þ − θðk3Þ

2

δð−k1 þ k2 − k3 þ k4Þ
ðk2 − k3Þ2

×m†
n1ðk1 − k2Þm†

n2ðk3 − k5Þmn3ðk4 − k5Þφ−
n1ðk1; k1 − k2Þφ−

n2ðk3; k3 − k5Þφ−
n3ðk4; k4 − k5Þ þ � � �

	
: ð49Þ

These operators induce the three-meson interaction vertex, which represents an Oð1= ffiffiffiffiffiffi
Nc

p Þ effect.

IV. LIGHT-CONE GPD IN ’T HOOFT MODEL

Employing a diagrammatic approach, the light-cone
GPD of a charged meson in the ’t Hooft model was
considered by Burkadrt [23]. In the following, we will
utilize the Hamiltonian approach to derive the functional
form of the light-cone GPD of a flavor-neutral meson in the
’t Hooft model.

A. 1=Nc expansion of the quark bilinear operator
and meson states in light-front quantization

We first consider the nonlocal quark bilinear operator in
the light-cone GPD defined in (7). Working with the light-
cone gauge Aþ;a ¼ 0, the gauge link in (7) shrinks to the
unit operator. Following the bosonization procedure out-
lined in Sec. III A, we can recast the quark bilinear with

lightlike separation in (7) in terms of the mesonic annihi-
lation and creation operators. We split the bosonzied quark
bilinear operator into three pieces:

ψ̄

�
−
η−

2

�
γþψ

�
η−

2

�
¼ ψ†

R

�
−
η−

2

�
ψR

�
η−

2

�
¼O1ðη−ÞþO1=2ðη−ÞþO0ðη−Þþ � � � ;

ð50Þ

where

O1ðη−Þ ¼ Nc

Z
dkþ

2π
eik

þη− ; ð51aÞ

O1=2ðη−Þ ¼
ffiffiffiffiffiffi
Nc

2π

r X
r

Z
dkþ1 dk

þ
2

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ1 þ kþ2

p �
eiη

−ðkþ
2
−kþ

1
Þ=2m†

rðkþ1 þ kþ2 Þφr

�
kþ1

kþ1 þ kþ2

�
þ ðkþ1 ↔ kþ2 Þ

	
;

O0ðη−Þ ¼
Z

dkþ1 dk
þ
2 dk

þ
3

4π2

�
e−iη

−ðkþ
1
þkþ

2
Þ=2 m

†
n1ðkþ1 þ kþ3 Þmn2ðkþ2 þ kþ3 Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kþ1 þ kþ3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kþ2 þ kþ3
p φn1

�
kþ1

kþ1 þ kþ3

�
φn2

�
kþ2

kþ2 þ kþ3

�

− eiη
−ðkþ

1
þkþ

2
Þ=2m

†
n1ðkþ2 þ kþ3 Þmn2ðkþ1 þ kþ3 Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kþ1 þ kþ3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kþ2 þ kþ3
p φn1

�
kþ3

kþ2 þ kþ3

�
φn2

�
kþ3

kþ1 þ kþ3

�	
; ð51bÞ

where the subscripts of O indicate the power of Nc
affiliated with the respective mesonic operators.
The leading-color operator O1ðη−Þ becomes a unit

operator. When sandwiched between the antinial and final
mesonic states carrying different momenta, the correspond-
ing matrix element vanishes. In the forward limit, the matrix
element involvingO1 is affiliated with the disconnected part
and can be subtracted according to the definition of light-
cone PDF. Thus, we do not need consider the contribution
of O1.
O1=2ðη−Þ involves integrations of a single mn (m†

n)

operator, while O0ðη−Þ involves integrations of m†
n1mn2 .

Recalling the definition of the single meson state in the
light-front quantization in (26), one immediately sees that

the matrix element involving O0ðη−Þ yields a nonvanishing
OðN0

cÞ contribution.
At first sight, the matrix element involving O1=2ðη−Þ is

expected to vanish, which originates from the vacuum
matrix element of the product of an odd number of mesonic
annihilation and creation operators. Nevertheless, one has
to caution that the meson states defined in (7) are the
eigenstates of the full light-front Hamiltonian HLF in (18),
rather than the eigenstates of the free mesonic Hamiltonian

Hð0Þ
LF , exemplified by the single meson state in (26).

Including the first-order quantum mechanical perturbation,
the physical meson state can be expressed as

jPi0 ¼ jPi þ 1

P− − Hð0Þ
LF þ iϵ

VLFjPi þ � � � : ð52Þ
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VLF represents the OðN−1=2
c Þ interacting Hamiltonian that

induces a meson to transition into two mesons, as exem-
plified by (49). Therefore, the second term in the right-hand
side of (52) represents a two-meson higher Fock state,
which is suppressed by Oð1= ffiffiffiffiffiffi

Nc
p Þ with respect to the

leading Fock component.
In fact, the matrix element of O1=2ðη−Þ yields a net

OðN0
cÞ contribution from the higher Fock components of

the initial- or final-state mesons. This piece of contribution
to the light-cone GPD should be supplemented to the
matrix element of O0ðη−Þ, both of which scale as OðN0

cÞ.

B. Deriving the functional form of light-cone GPD

Substituting the bosonized quark bilinear (51) and (52)
into (7), we find that the leading OðN0

cÞ contribution to the
light-cone GPD/quasi-GPD consists of two parts

Hðx; ξÞ ¼ Hð0Þðx; ξÞ þHð1Þðx; ξÞ; ð53Þ

where

Hð0Þðx;ξÞ¼
Z

dη−

2π
eixP

þη−
�
PþΔ

2

����O0ðη−Þ
����P−

Δ
2

�
; ð54aÞ

Hð1Þðx; ξÞ ¼
Z

dη−

4π
eixP

þη−
��

Pþ Δ
2

����VLF
1

P− þ Δ−

2
− Hð0Þ

LF − iϵ
O1=2ðη−Þ

����P −
Δ
2

�

þ
�
Pþ Δ

2

����O1=2ðη−Þ
1

P− − Δ−

2
− Hð0Þ

LF þ iϵ
VLF

����P −
Δ
2

�

: ð54bÞ

The superscript in Hðx; ξÞ indicates the order of the Fock component of the mesonic state which contributes to the light-
cone GPD.
Computation of (54a) is straightforward. For the nth excited mesonic state, we have

Hð0Þ
n ðx; ξÞ ¼ Θðx − ξÞΘð1 − xÞΘðξþ xÞφn

�
x − ξ

1 − ξ

�
φn

�
xþ ξ

1þ ξ

�
;

− Θð1þ xÞΘð−x − ξÞΘðξ − xÞφn

�
−x − ξ

1 − ξ

�
φn

�
−xþ ξ

1þ ξ

�
: ð55Þ

Note that Hð0Þ is only nonvanishing in the so-called DGLAP region ξ < jxj < 1, where the quark light-cone GPD is
interpreted as the amplitude of emission an (anti)quark from the meson then being absorbed again by the meson [25].
As pointed out by Burkadrt [23], theHð0Þðx; ξÞ in the DGLAP region exactly saturates the positivity bound (6). This may

be attributed to a peculiarity of QCD2 that there is no transverse degrees of freedom.
In contrast to (54a), computation of Hð1Þ

n ðx; ξÞ is more involved and needs some explanations. We take the first term
in (54b) as a concrete example to demonstrate the derivation. Inserting a unit operator between VLF and the energy
denominator, we obtain�
Pþ Δ

2

����VLF
1

P− þ Δ−

2
− Hð0Þ

LF − iϵ
O1=2ðη−Þ

����P −
Δ
2

�

¼ 1

2!

X
n1;n2

Z
dqþ1 dq

þ
2

ð2πÞ22qþ1 2qþ2

�
Pþ Δ

2
; n

����VLFjq1; n1; q2; n2ihq1; n1; q2; n2jO1=2ðη−Þ
����P −

Δ
2
; n

�
1

P− þ Δ−

2
− q−1 − q−2

; ð56Þ

where q−1;2 ¼ μ2n1;2=ð2qþ1;2Þwith μn1;2 denoting the masses of the n1;2th mesonic state. We have utilized the fact that when the
unit operator is expanded in the basis of all possible light-front energy eigenstates, only those spanned by all two-meson
intermediate states can render a nonvanishing contribution:

I ¼ 1

2!

X
n1;n2

Z
dqþ1 dq

þ
2

ð2πÞ22qþ1 2qþ2
jq1; n1; q2; n2ihq1; n1; q2; n2j þ � � � : ð57Þ

The first matrix element in the integrand in (56) can be expressed as

�
Pþ Δ

2
; n

����VLFjq1; n1; q2; n2i≡ 2πδ

�
Pþ þ Δþ

2
− qþ1 − qþ2

�
Γn;n1;n2

�
qþ1

Pþ þ Δþ=2
;

qþ2
Pþ þ Δþ=2

�
: ð58Þ
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The three-meson vertex function Γ in light-front quantiza-
tion was first introduced by Callan et al. [47], which can be
expressed as the convolution of three meson’s LCWFs. Its
explicit expression is given in Appendix A.
For the second matrix element in the integrand in (56), it

is the m† component of the operator O1=2ðη−Þ that yields a
nonvanishing contribution. Using Bose symmetry and the
commutation relation (22), one can decompose this matrix
element into the product of two clusters:

hq; n1; q2; n2jO1=2ðη−Þ
����P −

Δ
2
; n

�

¼
�
q1; n1

����P −
Δ
2
; n

�
hq2; n2jO1=2ðη−Þj0i

þ ðq1 ↔ q2; n1 ↔ n2Þ: ð59Þ
Apparently, these two terms yield identical contributions
to (56) upon integrating over q1 and q2 and summing over
n1 and n2.
Equation (59) involves the inner product between two

single meson states, which is subject to the orthogonality
condition:�
q1; n1

����P −
Δ
2
; n

�
¼ ð2πÞð2qþ1 Þδn;n1δ

�
Pþ −

Δþ

2
− qþ1

�
:

ð60Þ
In addition, the momentum conservation in (58) enforces
that qþ1 þ qþ2 ¼ Pþ þ Δþ=2. Thus, combining these two δ
functions can uniquely determine qþ1 ¼ Pþ − Δþ=2 ¼
ð1 − ξÞPþ, qþ2 ¼ Δþ ¼ 2ξPþ, as well as n1 ¼ n.
Consequently, one can make the following substitution

for energy denominator in (73):

1

P− þ Δ−

2
− q−1 − q−2

→
4ξPþ

t − μ2n2
; ð61Þ

where t≡ Δ2 ¼ 4μ2nξ
2

ξ2−1 , as given in (10a).
It is convenient to introduce an auxiliary function Ψ,

Ψs

�
x;
qþ

Pþ

�
≡

Z
dη−

4π
eixP

þη−hq; sjO1=2ðη−Þj0i; ð62Þ

with the single mesonic state labeled by the principle
quantum number s and the light-cone momentum qþ.
After some straightforward manipulation, we are able to

express Hð1Þ
n ðx; ξÞ in (54b) as

Hð1Þ
n ðx;ξÞ ¼

X
r

1

t−μ2r

�
ΘðξÞΓn;n;r

�
1− ξ

1þ ξ
;
2ξ

1þ ξ

�
Ψrðx;2ξÞ

þΘð−ξÞΓn;n;r

�
1þ ξ

1− ξ
;
2ξ

ξ− 1

�
Ψrðx;−2ξÞ

	
;

ð63Þ

where n2 has been relabeled by r.
One can readily work out the closed form for the

auxiliary function:

Ψrðx; 2ξÞ ¼
ffiffiffiffiffiffi
Nc

4π

r
Θðξþ xÞΘðξ − xÞφr

�
xþ ξ

2ξ

�
: ð64Þ

Substituting (64) and Γ’s explicit form (A2) into (63), we

finally derive an analytic expression for Hð1Þ
n :

Hð1Þ
n ðx; ξÞ ¼ ΘðξÞΘðξþ xÞΘðξ − xÞ2λ

Z
2ξ

0

dw
Z

1−ξ

0

dy
1

ðyþ wÞ2
X
r

1

t − μ2r
φr

�
w
2ξ

��
φr

�
ξ − x
2ξ

�
− φr

�
ξþ x
2ξ

�	

×
�
φn

�
2ξ − w
1þ ξ

�
− φn

�
2ξþ y
1þ ξ

�	
φn

�
y

1 − ξ

�
þ ðξ → −ξÞ: ð65Þ

Note that Hð1Þ
n is only nonvanishing in the so-called

Efremov-Radyushkin-Brodsky-Lepage (ERBL) region
(jxj < ξ), which can be interpreted as the amplitude of
extracting a quark-antiquark pair from the hadron [25].
It is straightforward to check that the light-cone GPD is

an even function of ξ. One can also verify that the light-
cone GPD is an odd function of x, reflecting the charge
conjugation symmetry of a flavor-neutral meson [28].
Equations (55) and (65) constitute two of the most

important equations in this work, which express the light-
cone GPD of a flavor-neutral meson in the ’t Hooft model in
a closed form. Our result is supplementary to the expression
of the light-cone GPD for a flavored meson in the ’t Hooft
model [23]. It may be worth emphasizing that the light-cone

PDF in the ’t Hooft model is exceedingly simple, which is
expressed in term of a single meson’s LCWF. In contrast, the
light-cone GPDHð1Þ

n in this model already contains very rich
information, which receives contribution from an infinite
tower of excited mesonic states. In the large-Nc limit of
QCD4, the light-cone GPD of a meson is expected to also
involve the sum of infinite towers of excited mesons. It is
hard to imagine how complicated the light-cone GPD in
realistic QCD might look.

V. QUASI-GPD IN ’T HOOFT MODEL

In this section, we will utilize the Hamiltonian approach
to derive the functional form of the quasi-GPD of a flavor-
neutral meson in the ’t Hooft model. A significant
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difference is that we turn to the equal-time quantization.
Otherwise, the derivation is parallel to the light-cone GPD
case as outlined in Sec. IV.

A. 1=Nc expansion of the quark bilinear operator
and meson states in equal-time quantization

We begin with the nonlocal quark bilinear operator in the
quasi-GPD defined in (8). Imposing the axial gauge
Az;a ¼ 0, the gauge link disappears in (8). Following the
bosonization procedure outlined in Sec. III B, we can recast
the quark bilinear with purely spacelike separation in (8) in

terms of the mesonic annihilation and creation operators.
We break the bosonzied quark bilinear operator into three
pieces:

ψ̄

�
−
z
2

�
γzψ

�
z
2

�
¼ Õ1ðzÞþ Õ1=2ðzÞþ Õ0ðzÞþ � � � ; ð66Þ

where

Õ1ðzÞ ¼
Nc

2π

Z
dk sin θðkÞe−ikz; ð67aÞ

Õ1=2ðzÞ ¼ −
ffiffiffiffiffiffi
Nc

p
4π2

Z
dk1dk2eizðk1þk2Þ=2

X
n1

½m†
n1ðk1 − k2Þφ−

n1ðk1; k1 − k2Þ þmn1ðk2 − k1Þφ−
n1ðk2; k2 − k1Þ

−m†
n1ðk1 − k2Þφþ

n1ðk1; k1 − k2Þ −mn1ðk2 − k1Þφþ
n1ðk2; k2 − k1Þ� cos

θðk1Þ þ θðk2Þ
2

; ð67bÞ

Õ0ðzÞ ¼
1

8π3

Z
dk1dk3dk3eizðk1þk2Þ=2

X
n1;n2

½φ−
n1ðk2; k2 − k3Þφ−

n2ðk1; k1 − k3Þmn1ðk2 − k3Þm†
n2ðk1 − k3Þ

þ φ−
n1ðk3; k3 − k1Þφ−

n2ðk3; k3 − k2Þmn1ðk3 − k1Þm†
n2ðk3 − k2Þ

− φ−
n2ðk3; k3 − k2Þφþ

n1ðk1; k1 − k3Þm†
n1ðk1 − k3Þm†

n2ðk3 − k2Þ
− φ−

n2ðk1; k1 − k3Þφþ
n1ðk3; k3 − k2Þm†

n1ðk3 − k2Þm†
n2ðk1 − k3Þ

− φ−
n1ðk3; k3 − k1Þφþ

n2ðk2; k2 − k3Þmn1ðk3 − k1Þmn2ðk2 − k3Þ
− φ−

n1ðk2; k2 − k3Þφþ
n2ðk3; k3 − k1Þmn1ðk2 − k3Þmn2ðk3 − k1Þ

þ φþ
n1ðk1; k1 − k3Þφþ

n2ðk2; k2 − k3Þm†
n1ðk1 − k3Þmn2ðk2 − k3Þ

þ φþ
n1ðk3; k3 − k2Þφþ

n2ðk3; k3 − k1Þm†
n1ðk3 − k2Þmn2ðk3 − k1Þ� sin

θðk1Þ þ θðk2Þ
2

; ð67cÞ

where the subscript in ÕðzÞ indicates the power of Nc affiliated with the respective mesonic operators.

The leading-color operator Õ1ðzÞ is proportional to a unit
operator and does not contribute to the quasi-GPD; there-
fore, we will simply discard it. Õ1=2ðzÞ involves integra-

tions of a single mn (m†
n) operator, while Õ0ðzÞ involves

integrations of m†
n1mn2 .

It is apparent that the matrix element involving Õ0ðzÞ
yields a nonvanishing OðN0

cÞ contribution. It is worth
emphasizing that, similar to the light-cone GPD case,
the Õ1=2ðzÞ operator also makes a nonvanishing OðN0

cÞ
contribution to the matrix element, provided that the next-
to-leading-order Fock component of a physical mesonic
state is considered. Incorporating the first-order quantum
mechanical perturbation, the physical meson state can be
expressed as

jPi0 ¼ jPi þ 1

P0 − Hð0Þ þ iϵ
V jPi þ � � � ; ð68Þ

where V represents the OðN−1=2
c Þ interacting Hamiltonian

that induces a meson to fluctuating into two mesons, which
is introduced in (38). The second term in the right-hand side
of (68) thus represents a two-meson Fock component,
which is suppressed by Oð1= ffiffiffiffiffiffi

Nc
p Þ with respect to the

leading Fock component. Consequently, the matrix element
of Õ1=2ðzÞ yields an OðN0

cÞ contribution from the higher
Fock component of the initial meson state or final meson
state. Therefore, both the Õ0ðzÞ and Õ1=2ðzÞ operators
result in an OðN0

cÞ contribution to the quasi-GPD of
a meson.

B. Deriving the functional form of quasi-GPD

Plugging the bosonized quark bilinear (67) and (68)
into (8), we find that the leading OðN0

cÞ contribution to the
quasi-GPD contains two parts:
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H̃ðx; ξ; PzÞ ¼ H̃ð0Þðx; ξ; PzÞ þ H̃ð1Þðx; ξ; PzÞ; ð69Þ

where

H̃ð0Þðx;ξ;PzÞ¼
Z

dz
2π

e−ixPz
�
PþΔ

2

����Õ0ðzÞ
����P−

Δ
2

�
; ð70aÞ

H̃ð1Þðx; ξ; PzÞ ¼
Z

dz
4π

e−ixPz
�
Pþ Δ

2

����V 1

P0 þ Δ0

2
− Hð0Þ − iϵ

Õ1=2ðzÞ
����P −

Δ
2

�

þ
�
Pþ Δ

2

����Õ1=2ðzÞ
1

P0 − Δ0

2
− Hð0Þ þ iϵ

V

����P −
Δ
2

�
: ð70bÞ

The superscript in H̃ indicates the order of the respective Fock component of the mesonic state that contributes to the
quasi-GPD.
Computation of (70a) is straightforward. Repeatedly using the commutation relation in (40), we find that for the nth

excited mesonic state,

H̃ð0Þ
n ðx; ξ; PzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
E1E2

p
2π

sin
θðk1Þ þ θðk2Þ

2
½φþ

n ðk1; P1Þφþ
n ðk2; P2Þ þ φþ

n ð−k2; P1Þφþ
n ð−k1; P2Þ

þφ−
n ðk1; P1Þφ−

n ðk2; P2Þ þ φ−
n ð−k2; P1Þφ−

n ð−k1; P2Þ�; ð71Þ

where

P1 ¼ ð1 − ξÞPz; P2 ¼ ð1þ ξÞPz; k1 ¼ ðx − ξÞPz; k2 ¼ ðxþ ξÞPz; E1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2n þ P2

1;2

q
: ð72Þ

The computation of H̃ð1Þ is more involved, but the strategy is quite parallel to the computation of Hð1Þ as expounded in
Sec. IV B. We demonstrate the derivation by taking the first term in (70b) as an concrete example. Inserting a unit operator
between V and the energy denominator, we find

�
PþΔ

2
; n

����V 1

P0 þ Δ0

2
−Hð0Þ − iϵ

Õ1=2ðzÞ
����P−

Δ
2
; n

�

¼ 1

2!

X
n1;n2

Z
dq1dq2

ð2πÞ22q012q02

�
PþΔ

2
; n

����V jq1; n1;q2; n2ihq1; n1;q2; n2jÕ1=2ðzÞ
����P−

Δ
2
; n

�
1

P0 þ Δ0

2
− q01 − q02

; ð73Þ

where q01;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2n1;2 þ q21;2

q
with μn1;2 denoting the masses of the n1;2th mesonic states. Here, we have used the fact that

when the unit operator is expanded in the basis of all possible energy eigenstates only those intermediate two meson states
can yield a nonvanishing contribution:

I ¼ 1

2!

X
n1;n2

Z
dq01dq

0
2

ð2πÞ22q012q02
jq1; n1; q2; n2ihq1; n1; q2; n2j þ � � � : ð74Þ

The first matrix element in the integrand in (73) can be expressed as

�
Pþ Δ

2
; n

����V
����q1; n1; q2; n2

�
≡ 2πδ

�
Pz þ Δz

2
− qz1 − qz2

�
Γ̃n;n1;n2ðq1; Pþ Δ=2Þ: ð75Þ

Analogous to its light-cone counterpart (58), here we introduce the three-meson vertex function Γ̃ in the equal-time
quantization. It can be expressed as a convolution of three mesonic BGWFs together with the Bogoliubov-chiral angle. The
explicit form of the triple meson vertex function is too lengthy to reproduce here. We present its full expression in
Appendix B.
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For the second matrix element in the integrand in (73), it
is the m† component of the operator Õ1=2ðzÞ that renders a
nonvanishing result. Using Bose symmetry and the com-
mutation relation (40), one can factorize this matrix
element into the product of two clusters:

hq; n1; q2; n2jÕ1=2ðzÞ
����P −

Δ
2
; n

�

¼
�
q1; n1

����P −
Δ
2
; n

�
hq2; n2jÕ1=2ðzÞjΩi

þ ðq1 ↔ q2; n1 ↔ n2Þ. ð76Þ

Apparently, these two terms yield identical contributions to
(73) after integrating over q1 and q2 and summing over n1
and n2.
The first matrix element in (76) is simply determined by

the orthogonality condition:

�
q1; n1

����P −
Δ
2
; n

�
¼ ð2πÞð2q01Þδn;n1δ

�
Pz −

Δz

2
− qz1

�
:

ð77Þ

Furthermore, the momentum conservation in (75) enforces
qz1 þ qz2 ¼ Pz þ Δz

2
. By combining these two δ functions,

one can uniquely determine the spatial momenta
qz1 ¼ Pz − Δz=2 ¼ ð1 − ξÞPz, qz2 ¼ Δz ¼ 2ξPz, as well
as n1 ¼ n.
As a consequence, one can make the following sub-

stitution for energy denominator in (73):

1

P0 þ Δ0

2
− q01 − q02

→
1

Δ0 − q02
; ð78Þ

where q02 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2n2 þ q22

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2n2 þ 4ξ2P2

q
, and Δ0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ ξÞ2P2 þ μ2n
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ξÞ2P2 þ μ2n

p
≠ q0. Clearly, qμ2

and Δμ are different 2-momenta.
Similar to (62), we also introduce an auxiliary

function Ψ̃:

Ψ̃sðx; P; qÞ≡
Z þ∞

−∞

dz
4π

eixPzhq; sjÕ1=2ðzÞjΩi; ð79Þ

with the single mesonic state labeled by the momentum q
and principle quantum number s.
After some manipulation on (70b), we are able to express

H̃ð1Þ
n ðx; ξ; PÞ as

H̃ð1Þ
n ðx; ξ; PÞ ¼

X
r

�
Ψ̃rðx; Pz;−ΔzÞ
2q0ð−Δ0 − q0Þ Γ̃n;n;rðP1;P2Þ

þ Ψ̃rðx; Pz;ΔzÞ
2q0ðΔ0 − q0Þ Γ̃n;n;rðP2;P1Þ

	
; ð80Þ

where q2 and n2 have been renamed by q and r. The
expression of Γ̃ is too lengthy to reproduce here.
Nevertheless, the interested readers can find its complete
expressions in Appendix B. The auxiliary function Ψ̃ can
be worked out and expressed in terms of the BGWGs and
Bogoliubov chiral angle:

Ψ̃rðx; P; qÞ ¼
ffiffiffiffiffiffi
Nc

p
4π

ffiffiffiffiffiffiffi
2q0r

q
cos

θðk1Þ þ θðk2Þ
2

× ½φþ
r ðk1; qÞ − φ−

r ðk1; qÞ�: ð81Þ

One readily sees that the quasi-GPD H̃ðx; ξÞ is an even
function of ξ. Making the transformation x → −x (or
equivalently, k1;2 → −k2;1) in (71) and (80), using (46)
and the fact that θðkÞ is an odd function [37], one readily
proves that the quasi-GPD H̃ðx; ξÞ is an odd function of x.
Similar to the light-cone GPD, this trait can be attributed to
the charge-conjugation symmetry of a flavor-neutral meson.
Equations (71) and (80) constitute the major new results

of this work, which express the OðN0
cÞ quasi-GPD of a

flavor-neutral meson in the ’t Hooft model in terms of
forward- (backward-)moving Bars-Green wave functions
and the Bogoliubov-chiral angle. The support of x is no
longer limited in the range 0 ≤ x ≤ 1 but becomes
unbounded.

VI. INFINITEMOMENTUM LIMIT OF QUASI-GPD

The tenet of LaMET is that all the quasi-partonic
distributions are expected to converge to the light-cone
partonic distributions when the hadron is boosted to the
infinite momentum. In this section, we prove that it is
indeed the case for the quasi-GPDs in the ’t Hooft model.
In the infinite momentum limit, only the forward-moving

BGWFs survive in (71), whereas the backward-moving
BGWFs die out. With the aid of (47) and (48), in the
Pz → ∞ limit, we find asymptotically

sin
θðk1Þ þ θðk2Þ

2
→ Θðxþ ξÞ − Θðξ − xÞ;

cos
θðk1Þ þ θðk2Þ

2
→ Θðξ − xÞΘðξþ xÞ; ð82aÞ

ffiffiffiffiffiffiffiffi
E1;2

p
φþ
n ðk1;2; P1;2Þ →

ffiffiffiffiffiffi
2π

p
φn

�
x ∓ ξ

1 ∓ ξ

�
;

ffiffiffiffiffiffiffiffi
E1;2

p
φþ
n ð−k2;1; P1;2Þ →

ffiffiffiffiffiffi
2π

p
φn

�
−x ∓ ξ

1 ∓ ξ

�
; ð82bÞ

ffiffiffiffiffiffiffiffi
2q0n

q
φþ
n ðk1;�ΔzÞ →

ffiffiffiffiffiffi
4π

p
φn

�
� x − ξ

2ξ

�
;

1

2q0ð�Δ0 − q0Þ → Θð�ξÞ 1

t − μ2r
: ð82cÞ
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Substituting these asymptotic expressions into (71), one
observes that H̃ð0Þ indeed reduces to the expression of the
light-cone counterpart Hð0Þ (55).
In the Pz → ∞ limit, the auxiliary function Ψ̃rðx; Pz;ΔzÞ

in (81) also reduces to its light-cone counterpart Ψrðx; 2ξÞ
in (64). Furthermore, as shown in Appendix A, in the
infinite momentum limit, the three-meson vertex function
Γ̃n;n;rðP1;2; P2;1Þ in (80) also reduces to its light-cone
counterpart Γð1∓ξ

1�ξ ;� 2ξ
1�ξÞ in (63). As a consequence, we

prove that the H̃ð1Þ in (80) indeed converges to its light-
cone counterpart Hð1Þ in (65).

VII. FORWARD LIMIT OF THE LIGHT-CONE
AND QUASI-GPDs

In the forward limit ξ → 0, t → 0, light-cone GPD
reduces to the light-cone PDF, and quasi-GPD also reduces
to the quasi-PDF. This relation can be readily seen by
setting Δ → 0 in the operator definitions of light-cone and
quasi-GPD in (7) and (8). Therefore, the purpose of this
section is to reinvestigate the light-cone and quasi-PDF, as a
byproduct of our studies on light-cone and quasi-GPD.
The advent of LaMET motivated a flurry of studies of

quasi-PDFs by employing the two-dimensional QCD as a

toy model [21,49,50]. The convergence of quasi-PDFs into
the light-cone PDF in the large momentum limit with
different meson species has been numerically verified [21].
Unfortunately, the expression of the quasi-PDF given in
Ref. [21] is incomplete because the authors of Ref. [21]
have neglected the contribution from Õ1=2ðzÞ and the next-
to-leading Fock component of the mesonic state, which
actually renders a net OðN0

cÞ contribution. In the other
words, the forward limit of H̃ð1Þ in (70b) is absent in
Ref. [21]. We take this opportunity to present the complete
and correct expression of the OðN0

cÞ quasi-PDF in this
section.
Taking the forward limit of the quasi-GPD in (69), we

can break the quasi-PDF of a flavor-neutral meson into two
pieces:

q̃nðxÞ ¼ q̃ð0Þn ðxÞ þ q̃ð1Þn ðxÞ; ð83Þ

with

q̃ð0Þn ðx; PÞ ¼
Z

dz
2π

eixP
zzhPjÕ0ðzÞjPi: ð84aÞ

q̃ð1Þn ðx; PÞ ¼
Z

dz
2π

eixP
zz

�
hPjÕ1=2ðzÞ

1

P0 − Hð0Þ þ iϵ
V jPi þ hPjV 1

P0 − Hð0Þ − iϵ
Õ1=2ðzÞjPi

	
; ð84bÞ

which are obtained from (70) by setting Δ → 0.
The analytic expression of q̃ð0Þ in (84) can be readily obtained from taking the forward limit of H̃ð0Þ in (71),

q̃ð0Þn ðx; PÞ ¼ P0

2π
sin θðxPÞ½φ−

n ðxP; PÞφ−
n ðxP; PÞ þ φ−

n ð−xP; PÞφ−
n ð−xP; PÞ þ φþ

n ðxP; PÞφþ
n ðxP; PÞ

þ φþ
n ð−xP; PÞφþ

n ð−xP; PÞ�; ð85Þ

which agrees with Ref. [21].

q̃ð1Þn represents a new contribution that has been
neglected in Ref. [21]. Taking the forward limit in (80),
we obtain

q̃ð1Þn ðx; PÞ ¼ −2
X
r

1

μ2r
Ψ̃rðx; P; 0ÞΓ̃n;n;rðP;PÞ; ð86Þ

with

Ψ̃rðx;P;0Þ¼
ffiffiffiffiffiffi
Nc

p
2π

ffiffiffiffiffiffiffi
2μr

p
cosθðxPÞ½φþ

r ðxP;0Þ−φ−
r ðxP;0Þ�:

ð87Þ

Equations (85) and (86) represent the complete OðN0
cÞ

expressions of the quasi-PDF of a flavor-neutral meson in
the ’t Hooft model. From (86), one realizes that one has to
include an infinite tower of excited mesonic states to

obtain the correct quasi-PDF at leading color, which is
far more involved than naively thought in the preceding
work [21,49,50]. In Appendix C, we make a detailed
numerical comparison between the profiles of the com-
plete and correct quasi-PDFs and the incomplete, old
ones [21], with different meson momenta and for different

meson species. The effect of the new q̃ð1Þn ðx; PÞ piece

becomes less important relative to q̃ð0Þn ðx; PÞ with the
increasing quark mass. However, its effect becomes
pronounced if for a light meson carrying soft momentum.
Interestingly, in the infinite momentum limit, the new

term q̃ð1Þn ðx; PÞ actually fades away due to θðxPÞ → ϵðxÞ π
2
,

and only the q̃ð0Þn ðx; PÞ survives, so one reproduces the
well-known light-cone PDF of the nth excited mesonic
state:

qnðxÞ ¼ φnðxÞ2: ð88Þ
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In contrast to the light-cone GPD, the light-cone PDF of a
meson does not entail the sum over an infinite tower of
excited mesonic states.
The vanishing of q̃ð1Þðx; PÞ in the infinite momentum

limit is equivalent to the vanishing of the light-cone GPD
Hð1Þðx; ξÞ in the forward limit. Setting ξ → 0 in (65), one
observes that Hð1Þðx; 0Þ simply vanishes because the
integration over w has zero interval. Since the Hð1Þðx; ξÞ
GPD is relevant only in the ERBL region (jxj < ξ), the
support of x shrinks to x ¼ 0 in the forward limit. This can
be clearly seen in (64), where the auxiliary function Ψr
becomes nonvanishing only at x ¼ 0. Because the GPD is
an odd function of x, we conclude Hð1Þð0; 0Þ ¼ 0.
One can understand this trait by inspecting the definition

of the auxiliary function Ψr in (62). The forward limit
ξ → 0 implies that qþ → 0, where qþ represents the light-
cone momentum carried the on-shell mesonic state in (62).
It is simply impossible for a meson to carry zero light-cone
momentum, so the Ψr function must vanish in the forward
limit, and the same is true for Hð1Þ in the forward limit.

VIII. NUMERICAL RESULTS OF LIGHT-CONE
AND QUASI-GPDS IN ’T HOOFT MODEL

In this section, we present a comprehensive numerical
study for both the light-cone and quasi-GPDs of a flavor-
neutral meson in the ’t Hooft model. We consider the quark
GPD of four different species of mesons: chiral pion πχ ,
physical pion π, strangeonium ss̄, and charmonium cc̄. The
quark masses are tuned to reproduce the masses of the
lowest-lying states for each meson species in the realistic
QCD. We refer the interested readers to Ref. [38] for
technical details. The ’t Hooft coupling constant λ ¼
g2sNc=4π in QCD2 is of mass dimension 2, which is related
to the value of string tension in the realistic QCD by
choosing

ffiffiffiffiffi
2λ

p ¼ 340 MeV [23]. For simplicity, we will useffiffiffiffiffi
2λ

p
as the mass unit throughout this section.

For each given quark mass, we calculate the light-cone
and quasi-GPDs of both the ground state (n ¼ 0) meson
and the first excited (n ¼ 1) state. We choose three
benchmark values for the skewness parameter: ξ ¼ 0.25,
0.5, 0.75. In Table I, we enumerate the values of quark
masses, mesons’ masses, and mesons’ momenta Pz used in
the calculation. Note that the momenta carried by the initial

and final state mesons are ð1þ ξÞPz and ð1 − ξÞPz,
respectively.
The numerical recipes of solving the ’t Hooft equation

and Bars-Green equations are elaborated in detail in
Ref. [38]. Here, we briefly outline some key ingredients.
Following ’t Hooft’s original method [20], we expand the
mesonic light-cone wave functions in terms of the follow-
ing basis functions:

φnðxÞ ¼ C0xβ1ð1 − xÞ2−β1 þ C1ð1 − xÞβ2x2−β2
þ
X
k

Ck sinðkπxÞ: ð89Þ

The parameters β1;2 are determined by the boundary
conditions πβ1;2 cotðπβ1;2Þ ¼ 1 −m2=ð2λÞ [20]. In (89),
the first two boundary terms determine the asymptotic
behavior of LWCF when x → 0, 1.
We follow the recipe given in Refs. [38,51] to solve the

bound-state wave functions in equal-time quantization. The
chiral angle θðpÞ has been solved in very high numerical
accuracy in Ref. [38]. The Bars-Green wave functions of a
moving meson are expanded in terms of the Hermite
polynomials and Gaussian functions [38,51]:

φ�
n ðxP; PÞ ¼

X
k

Cn;�
k Hk

�
αP
2

ð1 − 2xÞ
�
e−

α2P2ð1−2xÞ2
8 : ð90Þ

α is a variational parameter that is tuned to minimize the
mass of the ground state.
A sum over an infinite tower of excited mesonic states is

encountered in evaluating the Hð1Þ component of the light-
cone GPD in (65) as well as the H̃ð1Þ piece of the quasi-GPD
in (80). We truncate the sum with r < Nmax. With trial and
error, we find that for Nmax ¼ 48 the sum has already
exhibits satisfactory convergence behavior.
The profiles of the light-cone and quasi-GPD for the

n ¼ 0 and n ¼ 1 mesons with four different quark masses
are plotted in Figs. 1–8. For simplicity, we have only plotted
the x > 0 region. The plots can be straightforwardly
extended to negative x regime since the light-cone and
quasi-GPDs are odd functions of x.
From Figs. 1 and 3, we observe an interesting pattern of

the GPDs of the ground states πχ and π, that the light-cone
GPD of (π) πχ (nearly) vanishes in the ERBL region jxj < ξ.

TABLE I. The values of quark masses, mesons’masses, and a variety of meson’s momenta (averaged between the
initial- and final-state mesons). μ0 and μ1 signify the masses of the ground state and the first excited state.

Meson m=
ffiffiffiffiffi
2λ

p
μ0=

ffiffiffiffiffi
2λ

p
μ1=

ffiffiffiffiffi
2λ

p
Pz

πχ 0 0 2.43 f2; 4; 8; 16g × 0.41
ffiffiffiffiffi
2λ

p
π 0.045 0.41 2.50 f2; 4; 8; 16g × μ0
ss̄ 0.749 2.18 3.72 f1; 2; 4; 8g × μ0
cc̄ 4.19 9.03 10.08 f1=2; 1; 2g × μ0
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FIG. 2. Light-cone and quasi-GPDs of the first excited (n ¼ 1) state in the chiral pion family.

FIG. 1. Light-cone and quasi-GPDs of the ground state (n ¼ 0) chiral pion. μπ stands for the mass of ground-state physical pion.
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FIG. 4. Light-cone and quasi-GPDs of the first excited pionic state.

FIG. 3. Light-cone and quasi-GPDs of the ground-state physical pion.
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FIG. 6. Light-cone and quasi-GPDs of the first excited strangeonium state.

FIG. 5. Light-cone and quasi-GPDs of the ground-state strangeonium.
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FIG. 7. Light-cone and quasi-GPDs of the ground-state charmonium.

FIG. 8. Light-cone and quasi-GPDs of the first excited charmonium state.
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Recall that the LCWF of the massless chiral pion (with
vanishing quark mass) is just the product of two Heaviside
step functions φ0ðxÞ ¼ ΘðxÞΘð1 − xÞ. Substituting this
expression into (65), one can prove that the combination
φ0ð2ξ−w1þξ Þ − φ0ð2ξþy

1þξ Þ inside the square bracket of (65) strictly
vanishes; therefore, the Hð1Þ exactly vanishes in the ERBL
region. The shape of LCWF of a physical pion (with
m ¼ 0.045

ffiffiffiffiffi
2λ

p
, β1 ¼ 0.024, and β2 ¼ 1.976) is quite close

to that of the chiral pion, which has a wide plateau in the
middle and very steep rises and fall near the end points
x ¼ 0; 1 [38]. Therefore, we also observe a near vanishing
of its light-cone GPD in the ERBL region.
From Figs. 1–8, one observes a clear pattern for all

different types of mesons: with the increasing of the

momentum, the quasi-GPDs in the physical support −ξ <
x < 1 tend to approach the light-cone GPD, while the
quasi-GPDs in the unphysical support x < −ξ and x > 1

fade away. This finding provides numerical verification of
the analytical proof in Sec. VI: the quasi-GPD is expected
to converge to its light-cone counterpart in the infinite
momentum limit. Therefore, our numerical results can
be viewed as the support for the validity of the LaMET
in two-dimensional QCD.
For a given average meson momentum P, by varying

the values of the skewness parameter, we observe from
Figs. 1–8 a notable pattern: the speed for the quasi-GPD to
approach the light-cone GPD with larger ξ is slower than
with smaller ξ. This pattern may be partly attributed to a

FIG. 9. Quasi-GPD of the ground-state strangeonium. In each plot, we juxtapose various quasi-GPDs with the same average
momentum P yet with different values of skewness.
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simple kinematic effect. The momentum carried by the
initial-state meson is ð1 − ξÞPz. Even if the averaged
momentum Pz is large enough, the 1 − ξ factor suppresses
the initial state’s momentum, especially for the large ξ;
thus, the pace of approaching the light-cone GPD from the
quasi-GPD gets slowed down with increasing ξ. This
problem may pose an obstacle for the attempts to calculate
GPD with wide kinematic coverage in the LaMET
approach, especially when ξ becomes close to 1.
It is also interesting to examine how the dependence of

the quasi-GPDs on the momentum transfer Δ evolves with
meson momentum. In Figs. 9 and 10, we juxtapose the
quasi-GPDs of the lowest-lying and first-excited strangeo-
nia states with the same average meson momentum Pz yet
with different skewness (recall ξ and Δ are interrelated in

QCD2). We choose several different values of Pz, ranging
from half of to eight times the strangeonium mass. We
observe that disparity among the quasi-GPDs with different
values of ξ become amplified with the increasing mesonic
momentum Pz. Nevertheless, as Pz > 4μ0, the disparity
pattern appears to become frozen, indicating the quasi-GPD
with each ξ has approached the respective IMF limit.
In Sec. VII, we obtain the expressions of the quasi-PDFs

by taking the the forward limitΔ → 0 from the quasi-GPDs.
As indicated in (83), the completeOðN0

cÞ quasi-PDF can be

decomposed into q̃nðx; PÞ ¼ q̃ð0Þn ðx; PÞ þ q̃ð1Þn ðx; PÞ, where
the q̃ð1Þn ðx; PÞ piece arising from the higher Fock state has
been missed in the preceding work [21,49,50]. In Figs. 11
and 12, we plot the quasi-PDFs and light PDFs for different

FIG. 10. Same as Fig. 9, but the meson is replaced with the first excited strangeonium state.
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types of mesons, starting from the correct expression (83)
for quasi-PDFs.
It turns out that the only case where the effect of the new

q̃ð1Þðx; PÞ piece becomes pronounced is for a soft light
hadron (πχ or π). When the meson is boosted to large
momentum, the contribution of q̃ð1Þðx; PÞ quickly dies out.
We devote Appendix C to a detailed numerical comparison
between the magnitudes of the q̃ð0Þðx; PÞ and q̃ð1Þðx; PÞ.

IX. SUMMARY

As the generalization of collinear PDF to off-forward
kinematics, GPD entails rich information on the multidi-
mensional structure of nucleon. The determination of GPDs
from the first principle of QCD is highly desirable. The
LaMETapproach provides a promising program that allows
one to directly extract the x dependence of the nucleon GPD
with nonzero skewness by comporting the quasi-GPDs in
the lattice. However, because of greater theoretical complex-
ity and the expensive computational cost, the exploration
along this direction is still in the beginning phase.
On the other hand, it might be rewarding to glean some

lessons about the light-cone and quasi-GPDs from toy
models of QCD. Among several solvable field theory

models, the ’t Hooft model, i.e., (QCD2) in the Nc → ∞
limit, occupies a special position because it resembles the
realistic QCD4 in several aspects, such as color confine-
ment, the Regge trajectory, the nonzero quark condensate,
and (naive) asymptotic freedom. In this work, we have
conducted a thorough investigation of the light-cone and
quasi-GPDs of a flavor-neutral meson in the ’t Hooft model.
We hope that our study can shed some light on our
understanding of the quasi-GPDs and light-cone GPDs.
Employing the Hamiltonian approach and bosonization

procedure, we deduce the functional form of the light-cone
GPD, expressed in terms of the meson’s light-cone wave
functions in the framework of light-front quantization. We
also derive the functional form of the quasi-GPD, expressed
in terms of the meson’s Bars-Green wave functions together
with the Bogoliubov-chiral angle in the framework of equal-
time quantization. We have verified the key assumption of
the LaMET for the off-forward parton distributions in two-
dimensional QCD, both analytically and numerically, that
the quasi-GPDs do approach their light-cone counterparts
when the meson is boosted to the infinite momentum limit.
We find that the quasi-GPD with small skewness parameter
tends to converge to the light-cone GPD faster than that with
large ξ. This pattern may be partly ascribed to the 1 − ξ

FIG. 11. Numerical results for light-cone and quasi-PDFs of light mesons (πχ and π). The solid curves represent the quasi-PDFs
obtained from (83), by taking the forward limit of the quasi-GPD.
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suppression factor affiliated with the momentum carried by
the initial-state meson.
Taking the forward limit of the quasi-GPD, we also

obtain the analytical expression of the quasi-PDF as a
byproduct. We find that our preceding work [21] conveys
an incomplete expression for quasi-PDF, which misses a
piece of leading color [OðN0

cÞ] contribution stemming from
the higher-order Fock component. We take this opportunity
to correct the mistake made in Ref. [21] and present a
complete expression for quasi-PDFs. This new contribution
to the quasi-PDF quickly fades away when the hadron gets
heavier or boosted with larger momentum, and it has an
significant impact only for soft light hadrons.
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APPENDIX A: INTERACTING HAMILTONIAN
AND THREE-MESON VERTEX IN LIGHT-FRONT

QUANTIZATION

In Sec. III A, we decompose the light-front Hamiltonian
HLF in three pieces, as indicated in (18). There is a piece
representing the mesonic interacting Hamiltonian, VLF,
starting with Oð1= ffiffiffiffiffiffi

Nc
p Þ. We have listed one typical term

in (27). Here, we present the complete expression of the
VLF:

FIG. 12. Same as Fig. 11, but with mesons replaced by the strangeonium and charmonium.
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VLF ¼
λ

ð2πÞ3=2 ffiffiffiffiffiffi
Nc

p
X

n1;n2;n3

Z
∞

0

dkþ1 dk
þ
2 dk

þ
3 dk

þ
4 dk

þ
5

"
−δðkþ1 þ kþ2 − kþ3 þ kþ4 Þ

ðkþ2 þ kþ4 Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ1 þ kþ2 Þðkþ3 þ kþ5 Þðkþ4 þ kþ5 Þ

q
× φn1

�
kþ1

kþ1 þ kþ2

�
φn2

�
kþ3

kþ3 þ kþ5

�
φn3

�
kþ4

kþ4 þ kþ5

�
mn1ðkþ1 þ kþ2 Þm†

n2ðkþ3 þ kþ5 Þmn3ðkþ4 þ kþ5 Þ

þ −δðkþ1 þ kþ2 þ kþ3 − kþ4 Þ
ðkþ1 þ kþ3 Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ1 þ kþ2 Þðkþ3 þ kþ5 Þðkþ4 þ kþ5 Þ

q φn1

�
kþ2

kþ1 þ kþ2

�
φn2

�
kþ3

kþ3 þ kþ5

�
φn3

�
kþ4

kþ4 þ kþ5

�

×m†
n1ðkþ1 þ kþ2 Þm†

n2ðkþ3 þ kþ5 Þmn3ðkþ4 þ kþ5 Þ

þ δðkþ1 þ kþ2 þ kþ3 − kþ4 Þ
ðkþ1 þ kþ3 Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ1 þ kþ2 Þðkþ3 þ kþ5 Þðkþ4 þ kþ5 Þ

q φn1

�
kþ1

kþ1 þ kþ2

�
φn2

�
kþ5

kþ3 þ kþ5

�
φn3

�
kþ5

kþ4 þ kþ5

�

×m†
n1ðkþ1 þ kþ2 Þm†

n2ðkþ3 þ kþ5 Þmn3ðkþ4 þ kþ5 Þ

þ δð−kþ1 − kþ2 þ kþ3 − kþ4 Þ
ðkþ3 − kþ1 Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ1 þ kþ2 Þðkþ3 þ kþ5 Þðkþ4 þ kþ5 Þ

q φn1

�
kþ2

kþ1 þ kþ2

�
φn2

�
kþ5

kþ3 þ kþ5

�
φn3

�
kþ5

kþ4 þ kþ5

�

×mn1ðkþ1 þ kþ2 Þm†
n2ðkþ3 þ kþ5 Þmn3ðkþ4 þ kþ5 Þ þ H:c:

#
þ � � � : ðA1Þ

The ellipsis represents the operators containing three m† or m and those suppressed by a factor of 1=Nc or more, which are
irrelevant to the light-cone GPD.
The three-meson vertex function Γ in light-front quantization is defined in (58). Its explicit expression reads [47]

Γn1;n2;n3ðx; x̄Þ ¼ 4λ

ffiffiffiffiffiffi
π

Nc

r Z
x̄

0

dy1

Z
x

0

dy2
1

ðy1 þ y2Þ2
�
φn1ðx̄y1Þφn2

�
y2
x

�
φn3

�
1 −

y1
x̄

�

− φn1ðxþ y1Þφn2

�
1 −

y2
x

�
φn3

�
y1
x̄

�	
þ ðx ↔ x̄ andn2 ↔ n3Þ; ðA2Þ

with x̄≡ 1 − x.

APPENDIX B: INTERACTING HAMILTONIAN AND THREE-MESON VERTEX
IN EQUAL-TIME QUANTIZATION

As indicated in (38) in Sec. III B, we split the Hamiltonian H in three pieces. There is a piece representing the mesonic
interacting Hamiltonian, V , beginning with Oð1= ffiffiffiffiffiffi

Nc
p Þ. We have listed one typical term in (49). Here, we present the

complete expression of the V :

V ¼ λffiffiffiffiffiffi
Nc

p
X

n1;n2;n3

Z
dk1dk2dk3dk4dk5

ð2πÞ3
�
−cos

θðk1Þ−θðk4Þ
2

sin
θðk2Þ−θðk3Þ

2
m†

n1ðk1−k2Þm†
n2ðk3−k5Þmn3ðk4−k5Þ

1

ðk2−k3Þ2

×δð−k1þk2−k3þk4Þφ−
n1ðk1;k1−k2Þφ−

n2ðk3;k3−k5Þφ−
n3ðk4;k4−k5Þ

− cos
θðk2Þ−θðk4Þ

2
sin

θðk1Þ−θðk3Þ
2

m†
n1ðk1−k2Þm†

n2ðk5−k3Þmn3ðk5−k4Þ
1

ðk2−k4Þ2
×δð−k1þk2þk3−k4Þφ−

n1ðk1;k1−k2Þφ−
n2ðk5;k5−k3Þφ−

n3ðk5;k5−k4Þ
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þ cos
θðk1Þ − θðk2Þ

2
sin

θðk3Þ − θðk4Þ
2

m†
n1ðk1 − k5Þm†

n2ðk3 − k2Þmn3ðk4 − k5Þ
1

ðk4 − k3Þ2
× δð−k1 þ k2 − k3 þ k4Þφ−

n1ðk1; k1 − k5Þφþ
n2ðk3; k3 − k2Þφ−

n3ðk4; k4 − k5Þ

þ cos
θðk1Þ − θðk3Þ

2
sin

θðk2Þ − θðk4Þ
2

m†
n1ðk5 − k1Þm†

n2ðk3 − k2Þmn3ðk5 − k4Þ
1

ðk1 − k3Þ2
× δðk1 þ k2 − k3 − k4Þφ−

n1ðk5; k5 − k1Þφþ
n2ðk3; k3 − k2Þφ−

n3ðk5; k5 − k4Þ

− cos
θðk2Þ − θðk3Þ

2
sin

θðk1Þ − θðk4Þ
2

m†
n1ðk5 − k1Þm†

n2ðk2 − k5Þmn3ðk3 − k4Þ
1

ðk1 − k4Þ2
× δðk1 − k2 þ k3 − k4Þφþ

n1ðk5; k5 − k1Þφ−
n2ðk2; k2 − k5Þφ−

n3ðk3; k3 − k4Þ

− cos
θðk2Þ − θðk4Þ

2
sin

θðk1Þ − θðk3Þ
2

m†
n1ðk1 − k5Þm†

n2ðk5 − k2Þmn3ðk3 − k4Þ
1

ðk2 − k4Þ2
× δð−k1 þ k2 þ k3 − k4Þφþ

n1ðk1; k1 − k5Þφ−
n2ðk5; k5 − k2Þφ−

n3ðk3; k3 − k4Þ

− cos
θðk2Þ − θðk3Þ

2
sin

θðk1Þ − θðk4Þ
2

m†
n1ðk1 − k2Þm†

n2ðk3 − k5Þmn3ðk4 − k5Þ
1

ðk2 − k3Þ2
× δð−k1 þ k2 − k3 þ k4Þφ−

n1ðk1; k1 − k2Þφþ
n2ðk3; k3 − k5Þφþ

n3ðk4; k4 − k5Þ

− cos
θðk1Þ − θðk3Þ

2
sin

θðk2Þ − θðk4Þ
2

m†
n1ðk1 − k2Þm†

n2ðk5 − k3Þmn3ðk5 − k4Þ
1

ðk2 − k4Þ2
× δð−k1 þ k2 þ k3 − k4Þφ−

n1ðk1; k1 − k2Þφþ
n2ðk5; k5 − k3Þφþ

n3ðk5; k5 − k4Þ

þ cos
θðk1Þ − θðk3Þ

2
sin

θðk2Þ − θðk4Þ
2

m†
n1ðk5 − k1Þm†

n2ðk2 − k5Þmn3ðk4 − k3Þ
1

ðk4 − k2Þ2
× δðk1 − k2 − k3 þ k4Þφþ

n1ðk5; k5 − k1Þφ−
n2ðk2; k2 − k5Þφþ

n3ðk4; k4 − k3Þ

þ cos
θðk1Þ − θðk4Þ

2
sin

θðk2Þ − θðk3Þ
2

m†
n1ðk1 − k5Þm†

n2ðk5 − k2Þmn3ðk4 − k3Þ
1

ðk4 − k1Þ2
× δð−k1 þ k2 − k3 þ k4Þφþ

n1ðk1; k1 − k5Þφ−
n2ðk5; k5 − k2Þφþ

n3ðk4; k4 − k3Þ

− cos
θðk3Þ − θðk4Þ

2
sin

θðk1Þ − θðk2Þ
2

m†
n1ðk1 − k5Þm†

n2ðk3 − k2Þmn3ðk4 − k5Þ
1

ðk4 − k3Þ2
× δð−k1 þ k2 − k3 þ k4Þφþ

n1ðk1; k1 − k5Þφþ
n2ðk3; k3 − k2Þφþ

n3ðk4; k4 − k5Þ

− cos
θðk2Þ − θðk4Þ

2
sin

θðk1Þ − θðk3Þ
2

m†
n1ðk5 − k1Þm†

n2ðk3 − k2Þmn3ðk5 − k4Þ
1

ðk1 − k3Þ2

× δðk1 þ k2 − k3 − k4Þφþ
n1ðk5; k5 − k1Þφþ

n2ðk3; k3 − k2Þφþ
n3ðk5; k5 − k4Þ þ H:c:

	
þ � � � : ðB1Þ

The ellipsis represents the operators containing three m† or m and those suppressed by a factor of 1=Nc or more, which are
irrelevant to the quasi-GPDs.
The three-meson vertex function Γ̃ in equal-time quantization is introduced in (58). Its special form, when considering a

parent meson decaying to two mesons in the parent meson’s rest frame, can be found in Ref. [46]. Here, we present the
general expression of Γ̃ in terms of the chiral angle and BGWFs:
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Γ̃n1;n2;n3ðp;PÞ ¼ λ

0
B@2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ μ2n1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ μ2n2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP − pÞ2 þ μ2n3

q
Nc

1
CA

1=2Z
� dl1dl2

2π

1

ðl1 − l2Þ2

×

�
sin

θðl1Þ − θðl2Þ
2

cos
θðl1 þ pÞ − θðl2 þ pÞ

2
φ−
n2ðl2 þ p; pÞφ−

n1ðl1 þ p;PÞφ−
n3ðl1; P − pÞ

þ cos
θðl1Þ − θðl2Þ

2
sin

θðl1 þ pÞ − θðl2 þ pÞ
2

φ−
n1ðl1 þ P;PÞφ−

n2ðl2 þ p; pÞφ−
n3ðl1 þ P;P − pÞ

þ sin
θðl1Þ − θðl2Þ

2
cos

θðl1 − pÞ − θðl2 − pÞ
2

φ−
n1ðl2; PÞφþ

n2ðl1; pÞφ−
n3ðl2 − p;P − pÞ

þ cos
θðl1Þ − θðl2Þ

2
sin

θðl1 − pÞ − θðl2 − pÞ
2

φþ
n2ðl1; pÞφ−

n1ðl2 − pþ P;PÞφ−
n3ðl2 − pþ P;P − pÞ

þ cos
θðl1Þ − θðl2Þ

2
sin

θðl1 − PÞ − θðl2 − PÞ
2

φþ
n1ðl2; PÞφþ

n2ðl1; pÞφ−
n3ðl1 − p;P − pÞ

þ sin
θðl1Þ − θðl2Þ

2
cos

θðl1 þ PÞ − θðl2 þ PÞ
2

φ−
n1ðl1 þ P;PÞφþ

n2ðl2 þ p; pÞφ−
n3ðl2 þ P;P − pÞ

þ cos
θðl1Þ − θðl2Þ

2
sin

θðl1 þ pÞ − θðl2 þ pÞ
2

φ−
n2ðl2 þ p; pÞφþ

n1ðl1 þ p;PÞφþ
n3ðl1; P − pÞ

þ sin
θðl1Þ − θðl2Þ

2
cos

θðl1 − PÞ − θðl2 − PÞ
2

φþ
n1ðl2; PÞφ−

n2ðl1; pÞφþ
n3ðl1 − p;P − pÞ

þ sin
θðl1Þ − θðl2Þ

2
cos

θðl1 þ pÞ − θðl2 þ pÞ
2

φþ
n1ðl1 þ P;PÞφ−

n2ðl2 þ p; pÞφþ
n3ðl1 þ P;P − pÞ

þ cos
θðl1Þ − θðl2Þ

2
sin

θðl1 þ PÞ − θðl2 þ PÞ
2

φ−
n1ðl1 þ P;PÞφ−

n2ðl2 þ p; pÞφþ
n3ðl2 þ P;P − pÞ

þ sin
θðl1Þ − θðl2Þ

2
cos

θðl1 − pÞ − θðl2 − pÞ
2

φþ
n2ðl1; pÞφþ

n1ðl2 − pþ P;PÞφþ
n3ðl2 − pþ P;P − pÞ

þ cos
θðl1Þ − θðl2Þ

2
sin

θðl1 − pÞ − θðl2 − pÞ
2

φþ
n1ðl2; PÞφþ

n2ðl1; pÞφþ
n3ðl2 − p;P − pÞ

þ ðp ↔ P − p andn2 ↔ n3Þ
	
: ðB2Þ

In the P → ∞ limit, the backward-moving BGWF
φ−
n ðk; PÞ vanishes, and the forward-moving BGWG

approaches the LCWF, φþ
n ðk; PÞ →

ffiffiffiffi
2π
P

q
φnðkPÞ, as indicated

in (48). Therefore, only the last three lines in (B2), which
entail the product of three φþ wave functions, survive in the
infinite boost limit. Rewriting the momenta as l1 ¼ y2P,
l2 ¼ −y1P, p ¼ xP and l1 ¼ ðx − y2ÞP, l2 ¼ ðxþ y1ÞP,
and exploiting the limiting forms of the trigonometric
functions from (47)

sin
θðl1Þ− θðl2Þ

2
→

ϵðy1Þþ ϵðy2Þ
2

;

cos
θðl1−pÞ− θðl2−pÞ

2
→

ϵðxþ y1Þϵðx− y2Þþ 1

2
; ðB3Þ

one immediately verifies that the three-meson vertex
function Γ̃ in (B2) reduces to its IMF counterpart (A2).

APPENDIX C: COMPARISON BETWEEN QUASI-
PDF IN THIS WORK AND IN REF. [21]

The complete OðN0
cÞ contribution of the quark quasi-

PDF of a flavor-neutral meson is decomposed into

q̃nðx; PÞ ¼ q̃ð0Þn ðx; PÞ þ q̃ð1Þn ðx; PÞ, as indicated in (83).
Here, we make a numerical assessment on the importance

of the new q̃ð1Þn ðx; PÞ piece with respect to the old

incomplete expression for quasi-PDF, q̃ð0Þn ðx; PÞ [21]. In
Figs. 13 and 14, we juxtapose q̃ð1Þðx; PÞ and q̃ð0Þðx; PÞ in
each plot for different types of mesons. One can clearly
observes that, for light meson cases (πχ and π), q̃ð1Þðx; PÞ is
comparable in magnitude with q̃ð0Þðx; PÞ when the light
meson carries soft momentum. With the increasing quark
mass, the effect of q̃ð1Þðx; PÞ becomes negligible compared
to q̃ð0Þðx; PÞ, which is exemplified by the ss̄ and cc̄mesons.
In addition, the qð1Þðx; PÞ appears to be more sizable for the
first excited-state meson than that for the ground state. In all
cases, q̃ð1Þðx; PÞ quickly fade away when the meson is
boosted to large momentum.
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FIG. 13. Comparison between q̃ð1Þðx; PÞ and q̃ð0Þðx; PÞ, for the light mesons (πχ and π).

FIG. 14. Same as Fig. 13, but the mesons are replaced with the ss̄ and cc̄ quarkonia.
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