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We compute the sinð2ϕ − ϕSÞ azimuthal asymmetry in the pion-nucleon induced Drell-Yan process
within transverse momentum dependent factorization. We employ the holographic light-front pion wave
functions to calculate its leading-twist transverse momentum dependent parton distributions (TMDs).
The Boer-Mulders TMD of the pion is then convoluted with the transversity TMD of the proton evaluated
in a light-front quark-diquark model constructed with the wave functions predicted by the soft-wall
AdS/QCD to obtain the azimuthal asymmetry in the Drell-Yan process. The gluon rescattering is pivotal to
predict nonzero pion Boer-Mulders TMD. We investigate the utility of a nonperturbative SU(3) gluon
rescattering kernel going beyond the usual approximation of perturbative U(1) gluons. The holographic
light-front QCD approach provides a powerful tool for exploring the role of nonperturbative QCD effects in
the Drell-Yan process and may help to guide future experimental measurements.
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I. INTRODUCTION

Transverse momentum dependent distribution functions
(TMDs) [1–6] give novel insights into three-dimensional
(3D) partonic structure of hadrons by accounting for parton
transverse motion and spin-orbit correlations. At leading
twist, there exist two quark TMDs for a spin-0 hadron [7],
while for a spin-1=2 hadron, there are eight twist-2 quark
TMDs [8,9]. One of them is the Boer-Mulders function,
denoted as h⊥1 ðx; k2⊥Þ [10,11]. It shows the connection
between the quark spin and the quark transverse momen-
tum, which leads to the transversely polarized asymmetries
of quark inside an unpolarized hadron. However, the
existence of the Boer-Mulders function was not so obvious
initially. Under (naive) time reversal invariance of QCD
[12], the Boer-Mulder function was considered to vanish
with its chiral even partner so-called, Sivers function [13].
Explicit model calculations [14–16] incorporating gluon
exchange between the struck quark and the spectator
system indicate that the T-odd distributions can actually
survive through the Wilson lines [17,18]. The presence of a

Wilson line also shows the process dependence of the
T-odd, Sivers, and Boer-Mulders functions; i.e., they flip
signs between the semi-inclusive deeply inelastic scattering
(SIDIS) and the Drell-Yan processes [15–17], which is a
crucial prediction that will need to be confirmed by future
experiments. In recent decades, various QCD inspired
models and phenomenological analyses have been used
extensively to study the Boer-Mulders function of the
proton and the pion [7,16,19–41].
The Boer-Mulders function is a chiral-odd distribution

function; hence in order to survive in a high energy
scattering process, it must couple with another chiral-
odd distribution/fragmentation function. The unpolarized
Drell-Yan process, which exhibits an azimuthal depend-
ency of the final-state dilepton with a cos 2ϕ modulation, is
a promising method for obtaining the Boer-Mulders func-
tion. As proposed by Boer, such asymmetry can be
generated by the coupling of two Boer-Mulder functions
from each incoming hadron [10]. The convolution of the
Boer-Mulders function and the Collins fragmentation
function H⊥

1 in the unpolarized SIDIS process can give
cos 2ϕ azimuthal asymmetry of the spin-0 produced hadron
state. However, this asymmetry is tainted by the Cahn effect
[42–44], which is a higher-twist kinematical effect caused
by the transverse motion of unpolarized quarks. The single
transversely polarized Drell-Yan process provides another
way to obtain the Boer-Mulders function. In this process,
the sinð2ϕ − ϕSÞ asymmetry (with ϕS, the azimuthal angle
of target transverse spin) can be obtained through the
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convolution of the Boer-Mulders function h⊥1 ðx; k2⊥Þ and
the transversity distribution h1ðx; k2⊥Þ [45,46]. Recently,
the sinð2ϕ − ϕSÞ asymmetry has been measured for the
first time by the COMPASS experiment [47], which has
used a pion beam to collide with a transversely polarized
nucleon target. Due to very high statistical uncertainty,
the sinð2ϕ − ϕSÞ asymmetry does not show a definite
trend, although it does show a negative sign and a sizable
magnitude.
From the perspective of theory, several QCD inspired

models such as the spectator model [7,23], the light-front
constituent quark model [36,38,48,49], the MIT bag model
[35], and the Nambu–Jona-Lasinio model [50,51], etc., have
made predictions for the nonzero pion Boer-Mulders func-
tion by using the perturbative U(1) gluon rescattering. In
Ref. [30], Gamberg and Schlegel have made a major attempt
to overcome this perturbative approximation inside the
antiquark spectator framework. The nonperturbative SU(3)
gluon rescattering kernel has been further employed to
compute the nonzero Boer-Mulders TMD of the pion [52]
and both the Sivers and the Boer-Mulders TMDs of the
proton [39].
In this work, we compute the sinð2ϕ − ϕSÞ asymmetry of

the pion-proton induced Drell-Yan process by considering
the convolution h⊥

1ðπÞ ⊗ h1ðpÞ. We employ the Boer-Mulders

function computed using a holographic light-front pionwave
function with dynamical spin effects. These spin effects,
together with gluon rescattering, are crucial to obtain a
nonzero holographic Boer-Mulders function [52]. Going
beyond the usual approximation of perturbative U(1) gluons,
we investigate the use of a nonperturbative SU(3) gluon
rescattering kernel. On the other hand, we employ the
transversity TMD of the proton evaluated in a light-front
quark-diquark model constructed by the holographic light-
front QCD. We utilize the TMD factorization [3,53–55],
which is appropriate when the transverse momentum of the
dilepton q⊥ is much smaller than the hard scale Q; i.e.,
q⊥ ≪ Q. The TMD factorization has been extensively
employed in the SIDIS [3,53,56–59], eþe− annihilation
[3,60,61], Drell-Yan [3,62], and W=Z boson production
[3,54,63] processes. One of the important aspects of the
TMD formalism is that it gives a systematic way to deal with
the evolution of TMDs. In this TMD formalism, the scale
evolution of TMDs is determined by the Collins-Soper
equation [3,53,54,64]. The solution of the evolution equation
demonstrates that the changes of TMDs from one scale to
another scale may be determined by an exponential form of
the Sudakov-like form factor, which can be divided into
perturbative and nonperturbative parts [3,54,57,65]. The
perturbative Sudakov form factor is perturbatively calcu-
lable, while the nonperturbative Sudakov form factor is
usually obtained by phenomenological extraction from
experimental data. Here, we probe the scale evolution of
the pion Boer-Mulders function as well as the proton trans-
versity to estimate the sinð2ϕ − ϕSÞ asymmetry at the

COMPASS kinematics and compare our prediction with
the latest COMPASS data [47] and the other theoretical
predictions [46].
The rest of the paper is organized as follows: In Sec. II,

we discuss the pion TMDs in the holographic light-front
QCD framework whereas, the proton TMDs in a quark-
diquark model motivated by the soft-wall AdS/QCD has
been discussed in Sec. III. In Sec. IV, we present a brief
discussion on the TMD evolution formalism for both the
unpolarized and the polarized TMDs. In Sec. V, we present
the sinð2ϕ − ϕSÞ asymmetry in the pion-proton Drell-Yan
process by employing the pion Boer-Mulders function and
proton transversity TMD as nonperturbative inputs at the
COMPASS kinematics. We provide a brief summary and
conclusions in Sec. VI.

II. PION TMDs

For a hadron, the quark TMDs are parametrized through
the quark-quark correlation function [7,36,66] as

Φ½Γ�
q ðx; k⃗⊥Þ ¼

1

2

Z
dz−d2z⃗⊥
2ð2πÞ3 eik·z

× hP; Sjψ̄ð0ÞΓWð0; zÞψðzÞjP; Sijzþ¼0; ð1Þ

where kþ ¼ xPþ and k⃗⊥ are the longitudinal and the trans-
verse momenta of the struck quark, respectively. jP; Si is the
bound state of the target hadron with mass M, momenta
ðPþ; P⃗⊥Þ,where the transversemomentum P⃗⊥ ¼ 0 [12], and
spin S. The Dirac matrix Γ governs the Lorentz structure of

the correlatorΦ½Γ�
q and its “twist” τ [67]. The Wilson lineW

maintains the colorgauge invariance of the bilocal quark field
operators in the correlation function [68].
For the pion, there are two leading twist TMDs namely

the unpolarized quark TMD, fq1;πðx; k2⊥Þ, and the polarized
quark TMD, h⊥q

1;πðx; k2⊥Þ, also known as the pion Boer-
Mulders function. They are defined through the paramet-
rizations of the quark-quark correlator with Γ≡ γþ; σiþγ5,
respectively,

1

2
Tr½Φ½γþ�� ¼ fq1;πðx; k2⊥Þ; ð2Þ

1

2
Tr½Φ½iσiþγ5�� ¼ εijT k

j
⊥

Mπ
h⊥q
1;πðx; k2⊥Þ; ð3Þ

where ϵ11T ¼ ϵ22T ¼ 0, and ϵ12T ¼ −ϵ21T ¼ 1.
Ignoring the gauge link, we obtain the explicit expres-

sions of the unpolarized pion TMD fq1;πðx; k2⊥Þ as

fq1;πðx; k2⊥Þ ¼
1

16π3
X
h;h̄

jΨhh̄ðx; k⃗⊥Þj2; ð4Þ

where Ψhh̄ðx; k⃗⊥Þ is the pion light-front wave function in
the momentum space with hðh̄Þ being the helicity of the
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quark (antiquark) in the leading Fock sector. The pion
unpolarized TMD, fq1;πðx; k2⊥Þ satisfies the following nor-
malization condition:

Z
dxd2k⃗⊥fq1;πðx; k2⊥Þ ¼ 1: ð5Þ

Meanwhile, to produce the nonzero pion Boer-Mulders
function h⊥q

1;πðx; k2⊥Þ, we need to consider the gauge link,
which is physically equivalent to taking into account the
initial (final)-state interactions of the active parton with the
target remnant. We refer this collectively as gluon rescat-
tering kernel. The pion Boer-Mulders function is then
expressed as [52]

k2⊥h
⊥q
1;πðx; k2⊥Þ ¼ Mπ

Z
d2k⃗0⊥
16π3

iGðx; jk⃗⊥ − k⃗0⊥jÞ

×
X
h;h̄

Ψ�
−h;h̄ðx; k⃗

0
⊥Þhk⊥eihθk⊥Ψh;h̄ðx; k⃗⊥Þ;

ð6Þ

where k⃗⊥ ¼ k⊥eiθk⊥ with θk⊥ being the polar angle of
2D polar coordinate system and it ranging from 0 to
2π:Gðx; jk⃗⊥ − k⃗0⊥jÞ represents the gluon rescattering kernel
with ðk⃗⊥ − k⃗0⊥Þ being the transverse momentum carried by
the exchanged gluon. The simplest approach is to assume
that the perturbative Abelian gluon rescattering kernel,
which is given by [27,38]

iGpertðx; jk⃗⊥ − k⃗0⊥jÞ ¼
CFαs
2π

1

ðjk⃗⊥ − k⃗0⊥jÞ2
; ð7Þ

withαs being the fixed coupling constant and the color factor
CF ¼ 4=3. An exact computation of nonperturbative gluon
rescattering kernel is yet not available and, in practice, some
approximation scheme is required. Meanwhile, in terms of
the so-calledQCD lensing function Iðx; k⃗⊥ − k⃗0⊥Þ, the gluon
rescattering kernel can be expressed as [52]

iGðx; jk⃗⊥ − k⃗0⊥jÞ ¼ −
2

ð2πÞ2
ð1 − xÞIðx; jk⃗⊥ − k⃗0⊥jÞ

ðjk⃗⊥ − k⃗0⊥jÞ
; ð8Þ

which has been derived from the relation between the
chiral-odd GPD and the first moment of the pion Boer-
Mulders function [26]. In Ref. [30], Gamberg and Schlegel
derived the QCD lensing function [26] from the eikonal
amplitude for final-state rescattering via the exchange of
non-Abelian SU(3) soft gluons. The momentum space
lensing function in Eq. (8) is obtained by the inverse
Fourier transform of the lensing function in impact param-
eter space as [52]

Iðx; jk⃗⊥ − k⃗0⊥jÞ
ðk⃗⊥ − k⃗0⊥Þi
jk⃗⊥ − k⃗0⊥j

¼ −
i

ð1 − xÞ3
Z

d2b⃗⊥

× exp

�
−i

ðk⃗⊥ − k⃗0⊥Þ:b⃗⊥
ð1 − xÞ

�

× Iðx; b⃗⊥Þ
b⃗i⊥
jb⃗⊥j

; ð9Þ

where the lensing function in the impact parameter space is
given by

Iðx; b⃗⊥Þ ¼
ð1 − xÞ
2Nc

χ0

4
C

�
χ0

4

�
; ð10Þ

with Cðχ=4Þ being a color function. Here, χ represents the
eikonal phase obtained from the eikonal amplitudes for
final-state rescattering via exchange of generalized infinite
ladders of gluons [30] and χ0 denotes its first derivative. The
eikonal phase χ is expressed as

χ

�
b⊥
1 − x

�
¼ g2

2π

Z
dk⊥k⊥J0

�
b⊥k⊥
1 − x

�
D1ð−k2⊥Þ; ð11Þ

with D1ð−k2⊥Þ being the gauge-independent part of the
gluon propagator and g is the strong coupling [30,52]. The
nonperturbative gluon rescattering kernel, Eq. (8), derived
in Ref. [52] has been successfully employed to compute
T-odd TMDs of the pion [52,69] and the proton [39].
To compute the pion’s leading twist TMDs, we employ

the spin-improved holographic wave function, which is
given by [52,70]

Ψh;h̄ðx; k⃗⊥Þ ¼
h
ðMπxð1 − xÞ þ BmqÞhδh;−h̄

− Bk⊥e−ihθk⊥ δh;h̄
iΨðx; k⃗⊥Þ
xð1 − xÞ ; ð12Þ

with

Ψðx; k⃗⊥Þ ¼ N
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − xÞp exp

�
−

k2⊥ þm2
q

2κ2xð1 − xÞ
�
; ð13Þ

where mq is the quark mass and N is a normalization
constant fixed using

X
h;h̄

Z
dx

d2k⃗⊥
16π3

jΨhh̄ðx; k⃗⊥Þj2 ¼ 1: ð14Þ

The parameter B in Eq. (12) is referred as the dynamical
spin parameter. B → 0 implies no spin-orbit correlations as
in the original holographic wave function [71,72], while, on
the other hand, B ≥ 1 represents a maximal spin-orbit
correlation. We assume that the pion consists only of the
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leading quark-antiquark Fock state. The helicity-dependent
part of the pion’s wave function, Eq. (12), corresponds to
the helicity wave function for a pointlike meson-qq̄
coupling [70,73]. The spin-independent part of this wave
function is obtained by modifying the holographic light-
front wave function, derived within the semiclassical
approximation, where quark masses and quantum loops
are neglected, by accounting for nonzero light quark
masses [71]. The quark mass enters in Eq. (12) is
constituentlike quark mass. It is, a priori, free parameter.
We consider mq ¼ 330 MeV [52,70,73,74] as an effective
parameter to simulate the effects of higher Fock compo-
nents. On the other hand, we use the universal AdS/QCD
scale parameter κ ¼ 523� 24 MeV, which results from a
simultaneous fit to the Regge slopes of mesons and baryons
[75]. The standard deviation associated with κ is ∼5%.
On an equal footing with κ, we set ∼5% uncertainty in
quark mass.
WithB ≥ 1,mq ¼ 330 MeV, and κ ¼ 523 MeV, the pion

wave function has been successfully employed to compute a
wide class of different and related pion observables, e.g., the
electromagnetic form factors and associated radii, transition
form factor, parton distribution function (PDF), TMDs, etc.,
with remarkable overall success [52,70,73].
With the pion wave function given in Eq. (12),

the explicit expression for the unpolarized quark TMD
reads [52]

fq1;πðx; k2⊥Þ ¼
2N 2

16π3
ðMπxð1 − xÞ þ BmqÞ2 þ B2k2⊥

ðxð1 − xÞÞ3

× exp

�
−

k2⊥ þm2
q

xð1 − xÞκ2
�
: ð15Þ

If we employ the perturbative gluon rescattering kernel,
Eq. (7), we obtain an analytical expression for the pion
Boer-Mulders function as

h⊥q
1;πðx; k2⊥Þ ¼ αsBCF

MπN 2

4π3
Mπxð1 − xÞ þ Bmq

ðxð1 − xÞÞ2
�

κ

k⊥

�
2

× exp

�
−

k2⊥ þ 2m2
q

2κ2xð1 − xÞ
�

×

�
1 − exp

�
−

k2⊥
2κ2xð1 − xÞ

��
: ð16Þ

Note that if B → 0, the holographic Boer-Mulders function
vanishes. Meanwhile, it is hardly sensitive to the value of B
for B ≥ 1, since the wave function normalization constant
N ∼ 1=B2 when B ≥ 1. Using a nonperturbative gluon
rescattering kernels [52], the pion Boer-Mulders can not be
expressed analytically. We then compute it numerically.
In Fig. 1, we illustrate the differences between the first

moment of the holographic pion Boer-Mulders function,

h⊥ð1Þ
1;π ðxÞ ¼

Z
d2k⃗⊥

k⃗2⊥
2M2

π
h⊥q
1;πðx; k2⊥Þ; ð17Þ

generated by the perturbative and nonperturbative kernels.
The perturbative result is obtained with the coupling
constant αs ¼ 0.3. We evolve our pion TMDs using the
Collins-Soper TMD evolution prescription [3,76] (see

Sec. IV) and compare our results for h⊥ð1Þ
1;π ðxÞ with the

available COMPASS 2015 preliminary experimental data
at μ2 ¼ 25 GeV2 [77]. We find an acceptable compatibility
for both the perturbatively and nonperturbatively generated
results with the COMPASS data considering their large
uncertainties. However, it becomes apparent that the non-
perturbative kernel does a better job, bringing our pre-
dictions closer to the experimental data.

III. PROTON TMDs

In this section, we briefly discuss about the leading twist
T-even TMDs of the proton in a light-front quark-diquark
model, where the proton wave functions are constructed
from the solution of soft-wall anti–de Sitter (AdS)/QCD
[80]. In this model, the proton state is expressed as a two-
particle bound state of a quark and a diquark within a spin-
flavor SU(4) structure,

jP;�i ¼ CSju S0i� þ CV juA0i� þ CVV jdA1i�; ð18Þ

where ju S0i, juA0i, and jdA1i are two particle states
with isoscalar-scalar, isoscalar-axialvector, and isovector-
axialvector diquark, respectively [27,81]. The proton states

FIG. 1. The x dependence of the first moment of pion Boer-
Mulders TMD at the scale μ2 ¼ 25 GeV2. The blue and magenta
lines correspond to the results generated by using the perturbative
and nonperturbative gluon rescattering kernels, respectively. The
uncertainty bands in our results are due to the uncertainties in the
model parameters, κ ¼ 523� 24 MeV [75,78] and mq ¼ 330�
16 MeV with the dynamical spin parameter B ¼ 1 [52,79]. Our
predictions are compared with the available COMPASS 2015
preliminary data [77].
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with helicities plus and minus correspond to the states with
Jz ¼ þ 1

2
and Jz ¼ − 1

2
, respectively. The modified form of

the soft-wall AdS/QCD wave functions for two particle
Fock state is given by [80,82,83]

φðνÞ
i ðx; k⃗⊥Þ ¼

4π

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=xÞ
1 − x

r
xa

ν
i ð1 − xÞbνi

× exp

�
−δν

k⃗2⊥
2κ2

logð1=xÞ
ð1 − xÞ2

�
: ð19Þ

Here ν stands for the quark flavors inside the proton. The
explicit form of the wave functions in the AdS/QCD
inspired quark-diquark model is given in Ref. [80]. The
AdS/QCD scale parameter is taken as κ ¼ 0.4 GeV as
determined in Ref. [84]. The parameters aνi ; b

ν
i and δν are

fixed by fitting the nucleon form factors [80].
At the leading twist, the TMD correlator, Eq. (1), for the

proton is connected with the corresponding eight TMDs for
different Dirac structures as [8,11,66]

Φ½γþ�ðx; k⃗⊥Þ ¼ f1 −
ϵij⊥ki⊥S

j
⊥

M
f⊥1T; ð20Þ

Φ½γþγ5�ðx; k⃗⊥Þ ¼ S3g1L þ k⃗⊥ · S⃗⊥
M

g1T; ð21Þ

Φ½iσjþγ5�ðx; k⃗⊥Þ ¼ Sj⊥h1 þ S3
kj⊥
M

h⊥1L

þ Si⊥
2ki⊥k

j
⊥ − ðk⃗⊥Þ2δij
2M2

h⊥1T

þ ϵji⊥ki⊥
M

h⊥1 ; ð22Þ

where i; j ¼ 1; 2 and antisymmetric tensor ϵ12⊥ ¼ −ϵ21⊥ ¼ 1.
S3 and S⊥ correspond to the helicity and transverse
component of the proton’s spin, respectively.
Using the light-front wave functions of the quark-

diquark model inspired by soft-wall AdS/QCD [80] in
the correlator of Eq. (1) and comparing with the para-
metrizations in Eqs. (20)–(22), the unpolarized and the
transversity TMDs contributing to the sinð2ϕ − ϕsÞ azimu-
thal asymmetry reads explicitly as

fν1;pðx;k2⊥Þ¼
�
C2
SN

ν2
S þC2

V

�
1

3
Nν2

0 þ2

3
Nν2

1

��
lnð1=xÞ
πκ2

×

�
Tν
1ðxÞþ

k2⊥
M2

Tν
2ðxÞ

�
exp½−RνðxÞk2⊥�; ð23Þ

and

hν1;pðx; k2⊥Þ ¼
�
C2
SN

ν2
S − C2

V
1

3
Nν2

0

�
lnð1=xÞ
πκ2

× Tν
1ðxÞ exp½−RνðxÞk2⊥�; ð24Þ

respectively, where Tν
1ðxÞ, Tν

2ðxÞ and RνðxÞ are given by

Tν
1ðxÞ ¼ x2a

ν
1ð1 − xÞ2bν1−1;

Tν
2ðxÞ ¼ x2a

ν
2
−2ð1 − xÞ2bν2−1;

RνðxÞ ¼ δν
lnð1=xÞ

κ2ð1 − xÞ2 : ð25Þ

All the model parameters can be found in Ref. [80]. The
prefactors containing Cjðj ¼ S; V; VVÞ together with the
normalization constants Nrðr ¼ S; 0; 1Þ satisfy the quark
counting rules for unpolarized TMDs.
In Fig. 2, we show the quark transversity distribution for

the up (upper panel) and the down (lower panel) quarks,

FIG. 2. The transversity distribution xhν1ðxÞ as a function of x at
Q2 ¼ 2.4 GeV2 for the up (upper panel) and down (lower panel)
quarks. Our results (blue bands) are compared with various global
analyses and model computations. The gray bands with dashed
borders correspond to the global fits from Bacchetta-Radici
(2018) [85]. The orange bands with orange solid lines represent
the global analyses from JAM20 Collaboration [86], while red-
dashed, solid-cyan, and purple-dashed curves correspond to the
light-front constitute quark model (LFCQM) [87–89], Torino
extractions [90], and spectator model (SPM) [25], respectively.
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respectively. We compared the quark-diquark model trans-
versity PDFs at the scale μ2 ¼ 2.4 GeV2 with the recently
extracted fits from the global analysis by Bacchetta and
Radici [85]. In addition, we perform a comparative analysis
with the JAM20 global fits [86], the results from the LFCQM
model [87–89], and the SPM model [25] as well as with the
Torino extractions [90]. We observe that the quark trans-
versity distributions in the quark-diquark model are more or
less consistent with the Bacchetta-Radici global fits [85],
however, they are somewhat underestimated compared to the
other global analyses and model predictions.

IV. EVOLUTION OF TMDs

In order to compare the model calculations of asymmetry
with experimental data, it is necessary to evolve the
distribution functions. In this section, we focus on the
evolution formalism of TMDs by using the TMD factori-
zation process [3,54]. The scale evolution of TMDs can be
done conveniently in coordinate (b⊥) space. The distribu-
tion functions in b⊥-space are obtained by performing
Fourier transformation of the TMDs with respect to the
parton transverse momentum k⊥ [57],

F̃ðx; b⊥Þ ¼
Z

∞

0

dk⊥k⊥J0ðk⊥b⊥ÞFðx; k⊥Þ; ð26Þ

where F̃ðx; b⊥Þ and Fðx; k⊥Þ are the distribution functions
in the position as well as momentum spaces, respectively.
The TMD evolution for the unpolarized distributions of the
proton and the pion in b⊥-space can be obtained by solving
the Collins-Soper (CS) and renormalization group (RG)
evolution equations and the general solution for the energy
dependence of f̃1;qðx; b⊥Þ is given by [59,91,92]

f̃1;qðx; b⊥;QfÞ
¼ f̃1;qðx; b⊥ÞRpertðQf;Qi; b�ÞRNPðQf; b⊥Þ; ð27Þ

where f̃1;qðx; b⊥Þ is the unpolarized TMD in the b⊥-space
at the model scale, RpertðQf;Qi; b�Þ and RNPðQf; b⊥Þ are
the perturbative and nonperturbative evolution kernels of
TMDs, respectively. Qi ¼ 2e−γE=b� (with γE ≃ 0.577)
with the choice of b� in such a way that b�ðb⊥Þ ¼
b⊥=ð1þ b2⊥

b2max
Þ1=2 ≃ bmax at b⊥ → ∞ and b�ðb⊥Þ ≃ b⊥,

when b⊥ → 0 [93]. These allow one to avoid hitting the
Landau pole by freezing the scale b⊥ [54]. bmax separate the
perturbative and nonperturbative regions of the TMDs,
and it is fixed phenomenologically as bmax ¼ 1.5 GeV−1

[94]. The perturbative part of the evolution kernel
RpertðQf;Qi; b�Þ is same for all type of distributions;

i.e., it is spin independent and has the following form
[59,91,92,95,96]:

RpertðQf;Qi;b�Þ

¼ exp

�
−
Z

Qf

Qi

dμ̄
μ̄

�
Aðαsðμ̄ÞÞ ln

Q2
f

μ̄2
þBðαsðμ̄ÞÞ

��
; ð28Þ

where the coefficients A and B in Eq. (28) can be expanded
perturbatively as

A ¼
X∞
n¼1

AðnÞ
�
αs
π

�
n
; B ¼

X∞
n¼1

BðnÞ
�
αs
π

�
n
; ð29Þ

with coefficients AðnÞ and BðnÞ corresponding to next-to-
leading-logarithmic (NLL) accuracy [54,57,59],

Að1Þ ¼ CF; ð30Þ

Að2Þ ¼ CF

2

�
CA

�
67

18
−
π2

6

�
−
10

9
TRnf

�
; ð31Þ

Bð1Þ ¼ −
3

2
CF: ð32Þ

Here, CF and nf are the color factor and number of flavors
in the hadron, respectively.
Meanwhile, the nonperturbative part of the evolution

kernel in Eq. (27) has been studied phenomenologically. In
Ref. [54], a generic form for the nonperturbative evolution
kernel, RNPðQf; b⊥Þ, was proposed,

RNPðQf; b⊥Þ ¼ exp

�
−
�
g1ðb⊥Þ þ g2ðb⊥Þ ln

Qf

Q0

��
; ð33Þ

where Q0 is the model scale, g1ðb⊥Þ and g2ðb⊥Þ depend on
the hadronic distribution functions and for the proton they
are given by

gp1 ðb⊥Þ ¼
gp1
2
b2⊥; gp2 ðb⊥Þ ¼

gp2
2
ln
b⊥
b�

; ð34Þ

with gp1 ¼0.212�0.006GeV2 and gp2 ¼0.84�0.037GeV2

[97,98]. For the pion,

gπ1ðb⊥Þ ¼ gπ1b
2⊥; gπ2ðb⊥Þ ¼ gπ2 ln

b⊥
b�

: ð35Þ

The numerical values of gπ1 and g
π
2 are obtained by fitting to

the π−N Drell-Yan data [99]: gπ1 ¼ 0.082� 0.022 GeV2

and gπ2 ¼ 0.394� 0.103 GeV2. After performing the
scale evolution of the unpolarized TMD distributions in
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b⊥-space, one obtains the evolved distributions in k⊥-space
by taking the inverse Fourier transformation of F̃ as

f1;qðx; k⊥;QfÞ ¼
Z

∞

0

d2b⊥
ð2πÞ2 J0ðk⊥b⊥Þf̃1;qðx; b⊥;QfÞ:

ð36Þ

To date, a definitive method for the evolution of proton
transversity TMD has not been established. However, in
Refs. [100,101], the authors have made notable progress by
revealing that the scale evolution of the proton transversity
TMD can be approached similarly to the evolution of the
unpolarized distribution function as

h̃1ðx; b⊥;QfÞ ¼ h̃1ðx; b⊥ÞRpertðQf;Qi; b�ÞRNPðQf; b⊥Þ;
ð37Þ

where h̃1ðx; b⊥Þ is the transversity distribution in the
coordinate space. The nonperturbative evolution kernel
associated with the proton transversity distribution is
also assumed to be the same as that for the unpolarized
distribution function [100].
Finally, we look into the evolution of the pion Boer-

Mulders distribution function. The Boer-Mulders function
in the b⊥-space can be defined as [38]

h̃⊥α
1;q=πðx; b⊥Þ ¼

Z
d2k⊥e−ik⊥·b⊥

kα⊥
Mπ

h⊥q
1;πðx; k2⊥Þ: ð38Þ

In the small b⊥ region, the pion Boer-Mulders function h⊥q
1;π

can also be written in terms of collinear chiral-odd twist-3

quark-gluon-quark correlation function TðσÞ
q=π;Fðx; xÞ [48] as

h̃⊥α
1;q=πðx; b⊥Þ ¼

−ibα⊥
2

TðσÞ
q=π;Fðx; xÞ: ð39Þ

The collinear distribution TðσÞ
q=π;Fðx; xÞ, known as Qiu-

Sterman function, is related to the first transverse moment

of the Boer-Mulders function h⊥ð1Þ
1;q=π [45,102], which is

expressed as

TðσÞ
q=π;Fðx; xÞ ¼

Z
d2k⊥

k2⊥
Mπ

h⊥q
1;πðx; k2⊥Þ

¼ 2Mπh
⊥ð1Þ
1;q=πðxÞ: ð40Þ

The nonperturbative evolution kernel for the pion Boer-
Mulders function is still unknown. Here, we assumed that

it is same as the unpolarized one; i.e., R
h⊥q
1;π

NP ¼ R
fq
1;π

NP as
mentioned in Ref. [45]. Therefore, we can obtain the
evolved Boer-Mulders function of the pion in b⊥-space as

h̃⊥α
1;q=πðx;b⊥;QfÞ ¼ −

ibα⊥
2

TðσÞ
q=π;Fðx; xÞ

×RpertðQf;Qi;b�ÞRNPðQf;b⊥Þ: ð41Þ
The pion Boer-Mulders function can also be transformed
into k⊥ space by performing the inverse fourier trans-
formation of h̃⊥α

1;q=πðx; b⊥;QfÞ as
k⊥
Mπ

h⊥q
1π ðx; k⊥;QfÞ

¼
Z

∞

0

b⊥
d2b⊥
ð2πÞ2 J1ðk⊥b⊥ÞRpertðQf;Qi; b�Þ

× RNPðQf; b⊥Þh⊥ð1Þ
1;q=πðxÞ: ð42Þ

V. sinð2ϕ−ϕSÞ AZIMUTHAL ASYMMETRY

The computation of the sinð2ϕ − ϕSÞ asymmetry results
from the convolution of the Boer-Mulders function of the
pion beam and the transversity distribution of the proton
target at leading twist and taking into account the scale
evolution effects of the TMDs. The process we investigate,
the pion-induced Drell-Yan process, is expressed as

π−ðPπÞ þ p↑ðPpÞ → γ⋆ðqÞ þ X

→ lþðlÞ þ l−ðl0Þ þ X; ð43Þ
where Pπ , Pp, and q stand for the incoming four-momenta
of the pion, the target proton, and the virtual photon,
respectively. The up arrow (↑) stands for the transverse
polarization of the target. The experimental observables are
characterized by the following kinematic variables:

s ¼ ðPπ þ PpÞ2; xπ ¼
Q2

2Pπ:q
; xp ¼ Q2

2Pp:q
;

xF ¼ xπ − xp ¼ 2qL=s; τ ¼ Q2=s ¼ xπxp;

y ¼ 1

2
ln
qþ

q−
¼ 1

2
ln
xπ
xp

; ð44Þ

where s is square of the total center-of-mass energy, xπ and
xp are the Bjorken variables of the incoming pion and the
target proton, respectively. The longitudinal momentum of
the virtual photon in the incident hadron c.m. frame is
denoted by qL. xF is the Feynman variable, and y is the
lepton pair rapidity.
The differential cross section in π-p Drell-Yan process

for a transversely polarized target is described by the
following generic form [62,103]:

dσ
d4qdΩ

¼ α2em
Fq2

σ̂Ufð1þD½sin2 θ�A
cos 2ϕ
U cos 2ϕÞ

þ jST j½AsinϕS
T sinϕS

þD½sin2 θ�ðAsinð2ϕþϕSÞ
T sinð2ϕþ ϕSÞ

þ Asinð2ϕ−ϕSÞ
T sinð2ϕ − ϕSÞÞ�g: ð45Þ
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In the above Eq. (45), the azimuthal angle of the target
polarization vector ST in the target rest frame is denoted by
ϕS, and the azimuthal and polar angles of the lepton
momentum in the Collins-Soper frame [104] are denoted
by ϕ and θ, respectively. In the Collins-Soper frame,
σ̂U is given by σ̂U ¼ F1

Uð1þ cos2 θÞ with F1
U being the

unpolarized structure function. The D½fðθÞ� denotes the
depolarization factor, which depends only on θ, and at
leading-order (LO), it is reduced to sin2 θ=ð1þ cos2 θÞ.
Furthermore, Af½ϕ;ϕS�

P stands for the azimuthal asymmetry
with a f½ϕ;ϕS� modulation, where P ¼ U or T stands for
the polarization of the target proton (U: unpolarized, T:
transversely polarized). The ratio between the related

structure function Ff½ϕ;ϕS�
P and the unpolarized structure

function F1
U can be used to express the asymmetry Af½ϕ;ϕS�

P .
Here, we emphasize on the sinð2ϕ − ϕSÞ weighted asym-
metry, which is defined as

Asinð2ϕ−ϕSÞ
T ðxp; xπ; q⊥Þ ¼

Fsinð2ϕ−ϕSÞ
T ðxp; xπ; q⊥Þ
F1
Uðxp; xπ; q⊥Þ

; ð46Þ

where the denominator, F1
Uðxp; xπ; q⊥Þ, is the convolution

of the unpolarized distribution functions from each
hadron,

F1
U ¼ C½f1;q̄=πf1;q=p�; ð47Þ

and the numerator, Fsinð2ϕ−ϕSÞ
T ðxp; xπ; q⊥Þ, is the convolu-

tion of the pion Boer-Mulders TMD and the proton
transversity distributions [45,46],

Fsinð2ϕ−ϕSÞ
T ¼ −C

�
ĥ · k⃗⊥π

Mπ
h⊥1;q̄=πh1;q=p

�
; ð48Þ

with ĥ ¼ q⃗⊥=jq⃗⊥j. The convolution of unpolarized TMDs
in Eq. (47) is defined in the momentum space as [62]

C½ωðk⃗⊥π; k⃗⊥pÞf1;q̄=πf1;q=p�

¼ 1

Nc

X
q

e2q

Z
d2k⃗⊥πd2k⃗⊥pδ

2ðk⃗⊥π þ k⃗⊥p− q⃗⊥Þωðk⃗⊥π; k⃗⊥pÞ

× ½f1;q̄=πðxπ;k2⊥πÞf1;q=pðxp;k2⊥pÞ�; ð49Þ

where eq is the fractional charges of the flavors; Nc ¼ 3 is

the number of colors; q⃗⊥, k⃗⊥π and k⃗⊥p denote the trans-
verse momenta of the lepton pair, antiquark, and quark in
the initial hadrons, respectively, and ωðk⃗⊥π; k⃗⊥pÞ is weight
factor, which projects out the corresponding azimuthal
angular dependence. The sum over q ¼ u; ū; d and d̄
includes the active flavors in the initial state hadrons.
Using the property of the Fourier transformation,

δ2ðk⃗⊥π þ k⃗⊥p − q⃗⊥Þ ¼
Z

d2b⊥
ð2πÞ2 e

−ib⃗⊥·ðk⃗⊥πþk⃗⊥p−q⃗⊥Þ; ð50Þ

one can express explicitly the unpolarized structure func-
tion F1

Uðxp; xπ; q⊥Þ as [93]

F1
Uðxp; xπ; q⊥Þ

¼ 1

Nc

X
q

e2q

Z
d2k⃗⊥πd2k⃗⊥p

Z
d2b⊥
ð2πÞ2

× e−iðk⃗⊥πþk⃗⊥p−q⃗⊥Þ·b⃗⊥f1;q̄=πðxπ; k2⊥πÞf1;q=pðxp; k2⊥pÞ

¼ 1

Nc

X
q

e2q

Z
∞

0

b⊥db⊥
2π

J0ðq⊥b⊥Þf̃1;q̄=πðxπ; b⊥;QfÞ

× f̃1;q=pðxp; b⊥;QfÞ; ð51Þ

where J0 is the Bessel function of zeroth order and f̃1;q̄=π
and f̃1;q=p are the unpolarized pion and proton evolved
TMDs in position space, respectively.
Similarly, the spin dependent structure function

Fsinð2ϕ−ϕSÞ
T ðxp; xπ; q⊥Þ can be written as

Fsinð2ϕ−ϕSÞ
T ðxp; xπ; q⊥Þ ¼ −

1

Nc

X
q

e2q

Z
d2k⃗⊥πd2k⃗⊥p

Z
d2b⊥
ð2πÞ2 e

−ib⃗⊥·ðk⃗⊥πþk⃗⊥p−q⃗⊥Þ ĥ · k⃗⊥π

Mπ
h⊥1;q̄=πðxπ; k2⊥πÞh1;q=pðxp; k2⊥pÞ

¼ −
1

Nc

X
q

e2q

Z
∞

0

db⊥
4π

b2⊥J1ðq⊥b⊥Þh̃1;q=pðxp; b⊥;QfÞ

× TðσÞ
q̄=π;Fðx; xÞRpertðQf;Qi; b�ÞRNPðQf; b⊥Þ; ð52Þ

where J1 is the modified Bessel function of first kind, h̃1;q=p
is the evolved proton transversity distribution in the

position space, TðσÞ
q̄=π;F is the twist-3 Qiu-Sterman function

and Rpert and RNP are the perturbative and nonperturbative

evolution kernels, respectively. The above structure func-
tions also depend on the final evolution scale Qf. Here, we
do not indicate it in the expressions. Along with the
evolution scale Qf, the asymmetry and the structure
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functions, Eq. (46), are the functions of the variables xπ , xp,
and q⊥. However, while presenting the numerical results,
we display the asymmetry as a function of one of the above
variables. It is obvious that the structure functions are
integrated over the other variables within the accepted
experimental domain.
We compute the sinð2ϕ − ϕSÞ azimuthal asymmetry in

the pion-induced transversely polarized Drell-Yan process
at the kinematics of the COMPASS Drell-Yan program and
compare it with the recent experimental data [47]. We
employ the distribution functions of the pion evaluated in
Eqs. (15) and (16), as well as the distribution functions of
the proton target given in Eqs. (23) and (24) to evaluate the
azimuthal asymmetry. It should be noted that in our
calculations, we neglect the contributions from sea quarks.
The covered kinematical ranges of the COMPASS experi-
ment are given by [47]

0.05< xN < 0.4; 0.05< xπ < 0.9; −0.3< xF < 1

4.3 GeV<Q< 8.5 GeV; s¼ 357 GeV2: ð53Þ

Based on the TMD factorization formalism as stated in
Eqs. (46), (47), and (48), we present our numerical results
of the sinð2ϕ − ϕSÞ azimuthal asymmetry in the pion-
induced Drell-Yan process in Fig. 3, where we compare our
predictions with the COMPASS data [47] in the kinemati-
cal region given in Eq. (53). We evolve our pion TMDs
from the model scale Q0 ∼ 0.316 GeV [70] to the scale
Qf ∼ 6.4 GeV relevant to the experimental data for the
asymmetries following QCD evolutions discussed in
Sec. IV. Meanwhile, the proton TMDs are also evolved
from the model scale of the quark-diquark model Q0 ∼
0.8 GeV [105] to the relevant experimental scale. We
perform the integration over transverse momentum q⊥ in
the 0 < q⊥ < 2 GeV range that validates the TMD fac-
torization in the q⊥ ≪ Q kinematic region [106]. The lines
in Fig. 3 represent the results calculated from the center
values of the model parameters, while the bands represent
the uncertainties in our model calculations determined by
the uncertainties of those parameters [70,105]. In this
figure, the black circles show the experimental data
measured by the COMPASS Collaboration [47] with the
error bars corresponding to the sum of the systematic error
and the statistical error. From the top to bottom panels of
the figure show the asymmetry as a functions of xπ , xp, and
q⊥, respectively. Neglecting the sea quark contributions,

Asinð2ϕ−ϕSÞ
T ∝−h⊥ð1Þū

1;π− ðxπÞhu1;pðxpÞ. Note that both h⊥ð1Þū
1;π− ðxπÞ

and hu1;pðxpÞ are positive in our model calculations, as can
be seen from Figs. 1 and 2, respectively. Consequently,
Fig. 3 displays a negative sinð2ϕ − ϕSÞ azimuthal asym-
metry in the π−-p Drell-Yan obtained from our pure model
calculations, which is compatible with the COMPASS data.

FIG. 3. The sinð2ϕ − ϕSÞ azimuthal asymmetry from π−N↑

Drell-Yan process. The panels from top to bottom show the
variation of the azimuthal asymmetry with xπ , xN , and q⊥,
respectively. The black open circles represent the COMPASS data
[47]. Our estimations (blue and magenta bands) are compared
with the results obtained from pure model and hybrid calculations
reported in Ref. [46]. The orange (LFCQM-JAM20) and cyan
(SPM-JAM20) bands represent the hybrid computations, where
the nonperturbative input for h⊥q

1;π− is taken from the LFCQM and
the SPM, respectively, but the proton transversity TMD hq1;p is
adopted from the JAM20 global fit. The red-solid (LFCQM-
LFCQM) and purple-dashed (SPM-SPM) lines correspond to the
pure-model calculations, where both h⊥q

1;π− and h
q
1;p are taken from

the LFCQM and the SPM, respectively.
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Based on the analysis of the COMPASS data [47], it can be
inferred that the sign of pion Boer-Mulders function is
positive. This is an important observation, which can be
used to test the process dependence of other chiral-odd
functions.
We illustrate the differences between the asymmetries

generated by using the perturbative and nonperturbative
gluon rescattering kernels [52] for the pion Boer-Mulders
TMD. We find that both the perturbatively and nonpertur-
batively generated asymmetries are more or less consistent
with the experimental data. It can also be noted that the
nonperturbatively generated asymmetries are slightly larger
in magnitude compared to that for the perturbatively
generated asymmetries.
In Fig. 3, we also compare our predictions for the

sinð2ϕ − ϕSÞ asymmetry with the results reported in
Ref. [46], where the nonperturbative input for the pion
Boer Mulders TMD is taken from the LFCQM model [36]
and the SPM [30], and the proton transversity TMD is
adopted from the LFCQM [87–89] and the SPM [25] as
well as from the available parametrizations of TMDs
extracted from the experimental data by JAM20
Collaboration [86] and Torino Collaboration [90]. We find
that our results are compatible with the predictions yielding
from both the pure-model and the hybrid calculations [46].
This allows us to quantitatively assess the holographic
light-front QCD models in future when more precise data
will become available. In Table I, we list our predicted
values of the asymmetry including their uncertainties for
some selected values of xπ , xp, and q⊥ within the
COMPASS kinematical region.

VI. CONCLUSION

In this work, we studied the sinð2ϕ − ϕSÞ azimuthal
asymmetry in the single transversely polarized π−p Drell-
Yan process with focus on the kinematics of the COMPASS
experiment. The asymmetry originates from the convolution

of the Boer-Mulders function of the pion beam and the
transversity TMD of the proton target. As no phenomeno-
logical extractions are available for the pion Boer-Mulders
TMD,we employed the holographic light-front QCDmodel
for the pion, which leads to an excellent simultaneous
description of a wide class of different and related pion
observables together with widely used quark-diquark model
for the proton. The gluon rescattering is crucial to obtain
nonzero pion’s Boer-Mulders TMD.We investigated the use
of a nonperturbative SU(3) gluon rescattering kernel going
beyond the usual approximation of perturbative U(1)
gluons. After implementing the TMD evolution effect, we
found fair agreement between the first moment of the pion’s
Boer-Mulders function generated by both the perturbative
and the nonperturbative gluon rescattering kernels and the
COMPASS data. Meanwhile, the transversity distributions
of the proton computed in the quark-diquark model and the
Bacchetta-Radici global fits [85] displayed good mutual
agreement; however, the quark-diquark model predictions
were somewhat underestimated compared to the other
global analyses and model predictions.
We then presented the pure-model computations of the

sinð2ϕ − ϕSÞ azimuthal asymmetry at the kinematics of
COMPASS. Our analysis showed that the sinð2ϕ − ϕSÞ
asymmetry at COMPASS can be qualitatively described
(sign and magnitude) by the present analysis of the TMDs
of the pion within the framework of the holographic light-
front QCD and the proton TMDs in a light-front quark-
diquark model constructed by the soft-wall AdS/QCD. In
regard to the interpretation of the first data from the pion-
induced Drell-Yan process with polarized protons, we
observed a robust picture. The data favor a positive quark
Boer-Mulders distribution in the pion. More precise
upcoming data from COMPASS and other experimental
facilities will allow us to solidify the picture. Our inves-
tigation helped to provide quantitative tests of the appli-
cation of holographic light-front QCD model to the
description of pion.

TABLE I. Our predictions for the sinð2ϕ − ϕSÞ asymmetry with both perturbatively and nonperturbatively generated pion Boer-
Mulders function for selected values of xπ , xp and q⊥ðin GeVÞ.

Asinð2ϕ−ϕSÞ
UT ðxπÞ Asinð2ϕ−ϕSÞ

UT ðxpÞ Asinð2ϕ−ϕSÞ
UT ðq⊥Þ

xπ Perturbative Nonperturbative xp Perturbative Nonperturbative q⊥ Perturbative Nonperturbative

0.05 −0.0248�0.0122 −0.0148�0.0075 0.05 −0.0354�0.0167 −0.0555�0.0272 0.05 −0.010�0.0055 −0.0041�0.0020
0.10 −0.0218�0.0110 −0.0400�0.022 0.10 −0.0396�0.186 −0.0620�0.0312 0.25 −0.0132�0.0158 −0.0205�0.0103
0.20 −0.0350�0.0178 −0.0797�0.0392 0.15 −0.0410�0.0206 −0.0644�0.0322 0.50 −0.0252�0.0125 −0.0397�0.0394
0.30 −0.0432�0.0212 −0.0965�0.0485 0.20 −0.0418�0.0211 −0.0656�0.0327 0.75 −0.0385�0.0196 −0.0566�0.0283
0.45 −0.0490�0.0246 −0.0906�0.0453 0.25 −0.0424�0.0212 −0.0665�0.0332 0.90 −0.0412�0.0216 −0.0652�0.0327
0.60 −0.0478�0.0234 −0.0638�0.0320 0.30 −0.0430�0.0216 −0.0675�0.0337 1.15 −0.0484�0.0242 −0.0764�0.0382
0.75 −0.0396�0.0186 −0.0301�0.0152 0.35 −0.0436�0.0219 −0.0685�0.0342 1.65 −0.0568�0.0258 −0.0897�0.0448
0.90 −0.0218�0.0109 −0.0044�0.0021 0.40 −0.0446�0.0222 −0.0693�0.0346 2.0 −0.0614�0.0317 −0.0972�0.0486
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