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We discuss the possibility to obtain a massive Landau gauge, based on the local composite operator
effective action framework combined with the Zimmermann reduction of couplings prescription. As a way to
deal with the gauge ambiguity, we check that the ghost propagator remains positive, a necessary condition for
gluon field configurations beyond the Gribov region to be negligible. We pay attention to the Becchi-Rouet-
Stora-Tyutin invariance of the construction, allowing for a future generalization to a class of massive linear
covariant gauges. As a litmus test, we compare our predictions to the lattice data for the two-point functions in
Landau gauge introducing the “dynamically infrared-safe” renormalization scheme, including the renorm-
alization group optimization of both the gap equation and the two-point functions.We also discuss the relation
to and differences with the Curci-Ferrari model, the usefulness of which in providing an effective perturbative
description of nonperturbative Yang-Mills theories became clear during recent years.
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I. INTRODUCTION

Recently, the Curci-Ferrari (CF) model [1,2] has wit-
nessed a revived interest in works like [3–11] thanks to its
capability to describe rather well the n-point functions of
gauge theories in the Landau gauge, next to allowing a
perturbative sneak peek into the phase diagram [12–14]. As
of now, however, the success in matching the model to
lattice data relies on the fitting of both the gauge coupling g
and the Curci-Ferrari mass m [4,5,8].
A possible route toward a first-principle derivation of

the model, including a determination of m from the sole
knowledge of g at a given scale, was formulated in [15]
based on a weighing over the Gribov copies. It was
implemented successfully in a class of nonlinear gauges
that contains the Landau gauge as a limiting case [16].
Unfortunately, the dynamical mass generation mechanism
identified in this reference fails precisely in this limit.

A more recent attempt was done in [17], directly in the
Landau gauge. It was found that the system exhibits two
phases, one of which corresponds to a massive implemen-
tation of the Landau gauge bearing some resemblance
with the Curci-Ferrari model, with however gapped ghost
degrees of freedom. As discussed in [17], the presence of
massive ghosts is not incompatible with the lattice results,
for the latter are not a direct measurement of the ghost
propagator but rather the averaging of the Faddeev-Popov
operator −∂μDμ which remains massless in both of the
above mentioned phases. A more serious difficulty is,
however, that the gluon mass identified in [17] appears as a
mere gauge-fixing parameter whose value is not determined
in terms of g. Although it remains yet to be seen how much
the correlators computed within this approach are sensitive
to this gauge-fixing parameter, this could potentially
compromise the comparison to lattice data.
On the other hand, it has been known for some time that

dimension-two condensates such as hAa
μAa

μi can be dynami-
cally generated in the Landau gauge via the local composite
operator (LCO) formalism [18] and the minimization of the
vacuum energy. A natural question that emerges is then
what connection do these condensates bear with the Curci-
Ferrari model (or similar approaches), and to which extent
do they allow one to reproduce the Landau gauge corre-
lators evaluated on the lattice. The current note aims at
investigating these questions. Since our goal is to even-
tually extend the approach to covariant gauges, we will pay
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particular attention to the Becchi-Rouet-Stora-Tyutin
(BRST) invariance of the construction.
Two-dimensional condensates are of course not free of

ambiguities due to their composite nature that requires
extra renormalization. However, since the correlators of the
primordial fields do not depend on this additional sub-
tractions, at least not at an exact level, it is possible to
exploit the reduction of coupling technique [19,20] in order
to fix this arbitrariness in some way, as we recall below.
In fact, one could envisage using similar ideas to fix the
arbitrariness in the choice of the gluon mass in the approach
of [17], at least for the evaluation of physical observables.

II. THE BRST-INVARIANT CONDENSATE

A. BRST-invariant gauge field

Our starting point is the Euclidean Yang-Mills action in
d ¼ 4 − ε dimensions supplemented with a linear covariant
gauge fixing:

Sð1ÞYM ¼
Z

ddx

�
1

4
Fa
μνFa

μν þ
α

2
b2 þ iba∂μAa

μ þ c̄a∂μDab
μ cb

�

ð1Þ

with Fa
μ ¼ ∂μAa

ν − ∂νAa
μ þ gfabcA

b
μAc

ν the non-Abelian field-
strength tensor and Dab

μ ¼ δab∂μ þ gfacbAc
μ the covariant

derivative in the adjoint representation. Since our choice is
to preserve BRST invariance at each step, we should only
consider BRST-invariant gluon mass operators, constructed
out of a BRST-invariant version of the gauge field. To this
purpose, we insert into the corresponding path integral a
unity 1 ¼ N

R
DξDτDη̄Dηe−S1 detðΛðξÞÞ, with

S1 ¼
Z

ddxðτa∂μAh;a
μ þ η̄a∂μDab

μ ðAhÞηbÞ ð2Þ

and

ΛabðξÞ ¼
2i
g
Tr

�
ta
∂h†

∂ξb
h

�
; ð3Þ

the appropriate normalization being collected in N . Here,
we introduced the local but nonpolynomial composite field

Ah
μ ≡ Ah;a

μ ta ¼ h†Aμhþ i
g
h†∂μh; ð4Þ

with

h ¼ eigξ ¼ eigξ
ata ; ð5Þ

where the ta denote the generators of the suðNÞ algebra and
the ξa are akin to Stueckelberg fields. The fields η̄a and ηa

are additional (anticommuting) ghosts that, together with
the ξ-dependent determinant detðΛðξÞÞ, account for the

Jacobian arising from the change of variables ξ → Ah,
which is itself needed in order to treat the functional
distribution δð∂μAh

μÞ that appears after integration over τ.
As we will show in Appendix A, so long as the theory is
defined in dimensional regularization, the determinant
gives no contribution to the partition function at any fixed
order in perturbation theory. For this reason, in what
follows we will drop detðΛðξÞÞ and write the unity in
the form 1 ¼ N

R
DξDτDη̄Dηe−S1 .

We stress that, when writing equations such as (1) or (2),
we are disregarding the presence of Gribov copies. The
justification is twofold. First, in this work, we restrict to
perturbation theory for the evaluation of both the correla-
tion functions and the vacuum energy. Second, we will
soon check that the dynamically generated condensate is
such that the ghost propagator remains positive, a necessary
condition for the functional integral to be dominated by
configurations within the first Gribov region.
The action (2) is here used as a way to treat, within a

local setup, a BRST-invariant quantity Ah
μ that becomes

nonlocal on shell. The nonlocal on-shell nature of Ah
μ

becomes explicit after one solves the condition ∂μAh
μ ¼ 0

iteratively for ξ using

ðAhÞaμ ¼ Aa
μ − ∂μξ

a − gfabcAb
μξ

c−
g
2
fabcξb∂μξcþ �� � : ð6Þ

Indeed, this leads to the infinite series of terms:

ξ ¼ ∂A
∂
2
þ i

g
∂
2

�
∂A;

∂A
∂
2

�
þ i

g
∂
2

�
Aμ; ∂μ

∂A
∂
2

�
þ i
2

g
∂
2

�
∂A
∂
2
; ∂A

�

þ � � � ; ð7Þ
which eventually gives the transverse on-shell expression

Ah
μ ¼

�
δμν −

∂μ∂ν

∂
2

�
ϕν; ð8Þ

with

ϕν ¼ Aν − ig

�
∂A
∂
2
; Aν

�
þ ig

2

�
∂A
∂
2
; ∂ν

∂A
∂
2

�
þ � � � : ð9Þ

It can be shown that the on-shell expression (9) is gauge or
BRST invariant order per order. We will have nothing to
say about large gauge transformations. At the level of the
off-shell or local formulation (2), the BRST invariance is
explicit if one supplements the usual BRST transformation

sAa
μ ¼ −Dab

μ cb; sca ¼ g
2
fabccbcc;

sc̄a ¼ iba; sba ¼ 0; ð10Þ

with the following transformations for the remaining fields:

sτa ¼ 0; sη̄a ¼ sηa ¼ 0; shij ¼ −igcaðtaÞikhkj: ð11Þ
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The BRST transformation remains nilpotent (s2 ¼ 0) over
the extended field space and it is immediate to check that

sðAhÞaμ ¼ 0; ð12Þ

which is nothing but the infinitesimal version
of ðAU

μ ÞU−1h ¼ ðAUU−1
μ Þh ¼ Ah

μ.
For later purpose, we also mention that Ah

μ becomes Aμ in
the Landau gauge (at least perturbatively) as it is easily
checked from (9) using ∂μAμ ¼ 0. We refer to e.g. [21–23]
for more details, including the connection of the repre-
sentation (9) with the (local) minimization of the l2-norm
of the gauge field.

B. BRST-invariant condensate

Having gone through this preparatory phase, we are now
ready to investigate the vacuum structure of the local action

Sð2ÞYM ≡ Sð1ÞYM þ S1, which is perturbatively equivalent to (1).
In particular, we shall analyze the possible formation
of a BRST-invariant condensate hAh

μAh
μi. To this purpose,

we couple the corresponding gluon mass operator to a
source1 J:

Sð2ÞJ ≡ Sð2ÞYM þ
Z

ddx

�
Z2

J
2
Ah
μAh

μ − ðζ þ δζÞμ−ε J
2

2

�
: ð13Þ

Here, we introduced the relevant renormalization factors
and counterterms in the J-dependent piece of the action, as
these will concern us most here,2 next to the necessary
powers of μ to ensure that dim ζ ¼ 0 (for later use, we also
note that dim J ¼ 2). More precisely, starting from bare
fields, parameters and sources, which we denote by a
subscript b, we write

JbAh
μ;bA

h
μ;b ¼ JZJZAh

Ah
μAh

μ ≡ Z2JAh
μAh

μ; ð14Þ

from which we deduce that the renormalization of the
source is

ZJ ¼
Z2

ZAh

: ð15Þ

Similarly,

ζbJ2b ≡ ðζ þ δζÞμ−εJ2: ð16Þ

The (pure vacuum) counterterm ∝ δζJ2 is necessary to
remove the vacuum divergences in the generating

functional W½J�, with W½J� ¼ − ln
R
D fields e−SJ , hence

its appearance as an additive renormalization. Let us stress
that these vacuum divergences do not affect the divergences
appearing in correlation functions with at most one inser-
tion of AhAh. Therefore, we can (and will) consider only
renormalization schemes where all renormalization factors,
including Z2, are ζ independent.
In general, from (16) it follows that

μ
∂ζ

∂μ
¼ −2γJζ þ δ;

δ ¼ ðε − 2γJÞδζ − μ
∂δζ

∂μ
; ð17Þ

where μ ∂J
∂μ ¼ γJJ. We immediately discarded terms that

vanish in the ε → 0þ limit. We will recall below that, in
principle, it is possible to choose δζ merely proportional to
ζ such that ζ þ δζ ¼ Zζζ, henceforth implementing multi-
plicative renormalization also for the vacuum divergences.
We note that from (17), or directly from (16), it follows

that a finite shift implies that

δζ → δζ þ δζfin ⇒ ζ → ζ − δζfin; ð18Þ

making ζ þ δζ invariant. The shift δζfin can depend on all
other variables. The invariance of ζ þ δζ under such shifts
was first discussed in [25].
From the generating functional W½J�, one can introduce

the field

σ ≡ δW
δJ

¼ Z2

2
hAh

μAh
μiJ − Zζζμ

−εJ; ð19Þ

which becomes the argument of the effective action
ΓðσÞ≡WðJÞ − R

ddxJσ, with δΓ=δσ ¼ −J. As usual,
the benefit of such a construct is that it allows one to
access the zero source limit of σ, and therefore hAh

μAh
μiJ→0,

from the minimization of Γ½σ�. In particular, a nontrivial
minimum is tantamount to the dynamical generation of a
condensate hAh

μAh
μiJ→0 ≠ 0. We mention here that the

nonpositivity of the integration measure associated to the
action (1) could potentially jeopardize the usual relation
between the limit of zero sources and the minimization of
Γ½σ�. However, we shall later verify that the dynamically
generated condensate is such that the ghost propagator
remains positive, suggesting that field configurations with
negative measure have a subdominant effect and, therefore,
that the minimization prescription can be used. Strictly
speaking, a similar check should be done with the new
ghost fields η and η̄.
To actually compute the effective action, it is computa-

tionally simplest to rely on Jackiw’s background field
method [27,28]. In the present context, this is not easily
done a priori due to the coupling of J to a composite
operator and to the presence of the quadratic term ∝ J2.

1The method presented here was first worked out in [24]; see
also [18,25,26]. We will however slightly adapt the discussion to
point out some new, yet unnoticed, features, which also facilitate
the interpretation.

2The other corresponding factors in Sð2ÞYM are tacitly assumed
but not spelled out.
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We can however easily remedy this situation following
[18,24]. We insert a unity 1 ¼ N

R
Dσ e−Sσ, with

Sσ ¼
με

2Zζζ

Z
ddx

�
σ −

Z2

2
Ah
μAh

μ þ Zζζμ
−εJ

�
2

¼ με

2Zζζ

Z
ddx

�
σ −

Z2

2
Ah
μAh

μ

�
2

þ
Z

ddx

�
Jσ − Z2

J
2
Ah
μAh

μ þ Zζζμ
−ε J

2

2

�
: ð20Þ

The last two terms of the third line cancel exactly the two
J-dependent terms in (13) hereby defining a new sourced
action

Sð3ÞJ ¼ Sð3ÞYM þ
Z

ddxJσ; ð21Þ

with Sð3ÞYM ¼ Sð1ÞYM þ S1 þ S2, and

S2 ¼
με

2Zζζ

Z
ddx

�
σ2 − Z2σAh

μAh
μ þ

Z2
2

4
ðAh

μAh
μÞ2

�
: ð22Þ

The source now couples linearly to a primary field σ
[whose expectation value is of course (19)] and the back-
ground field method can be implemented as usual. Of

course, integrating exactly over σ, working with Sð3ÞYM will

give completely equivalent result as with Sð2ÞYM. The sit-
uation will only get interesting if the dynamics of the
theory would prefer to assign a nonvanishing vacuum
expectation value to σ. This is a possibility that we now
investigate. Before doing so, we also notice that the bare
action only depends on the combination3 ζ þ δζ, which
we already argued to be independent of the finite parts
in δζ. Without loss of generality, we can thus renormalize
the vacuum divergences in a computationally efficient
scheme as MS.
To do so, we first notice that, given the BRST invariance

of both the action and the mass operator Ah
μAh

μ as well as the
fact that the α-dependent part of the action is BRSTexact in
the limit of zero sources, the expectation value of σ does not
depend on α in this limit.4 Therefore, we can (and will)
choose to work in the Landau gauge, α → 0, in which case
the ðτ; ξÞ integration can also be done exactly, leading to the
on-shell identification Ah → A [29]. At one-loop order, one
obtains

VðσÞ ¼ μ2εσ2

2ζ

�
1 −

δζ

ζ

�
þ ðN2 − 1Þ d − 1

2
με

×
Z
q
ln

�
q2 −

μεσ

ζ

�
; ð23Þ

where, as usual, we have divided the effective action by the
space-time volume to compute the effective potential VðσÞ
and we have included an extra factor με to ensure that
dimV ¼ 4. We have also treated δZ2 ≡ Z2 − 1 and δZζ ≡
Zζ − 1 ¼ δζ=ζ as higher loop corrections, neglecting them
in the one-loop term and expanding to first order in δζ in
the tree-level term. After explicitly computing the integral
and absorbing the divergence in δζ using the minimal
subtraction scheme, one arrives at the expression

Vðm2Þ ¼ ζ
m4

2
−
3ðN2 − 1Þ

64π2
m4

�
ln

μ̄2

m2
þ 5

6

�
; ð24Þ

where we have defined

m2 ≡ −μεσ=ζ: ð25Þ

C. Reduction of couplings

Various remarks are in order at this point. First, the trivial
solution m2 ¼ 0 is always a maximum of the potential
since V 00ðm2 → 0Þ ¼ −∞. This shows that, in the present
approach and at the present order of evaluation, a con-
densate hAh

μAh
μiJ→0 is dynamically generated (independ-

ently of the value of ζ).
Beyond this proof of existence, the next pressing

question is the size of the condensate. Here, however,
we face a serious problem: while the running of ζ with μ̄ is
entirely fixed from the renormalization factor, its value at a
chosen initial scale μ̄0 is arbitrary and impacts directly on
the size of the condensate. On the other hand, it is easily
shown that δW=δζ ∝

R
J2. This means that, were we to

work exactly, ζ should not influence any quantity with less
than two J derivatives, in the limit of zero sources, or, in
other words, at the minimum of the effective action. This
includes the correlation functions for the primary fields but
also the condensate itself hAh

μAh
μiJ→0. Of course, at a given

order of approximation, a spurious dependencewith respect
to ζ is to be expected but the previous argument shows that,
given a prescription for choosing ζ, we can test a priori
how the ζ independence (re)emerges as the approximation
is improved. Let us now discuss two possible prescriptions
that could be used.
A first possibility would be to impose the ζ independ-

ence of certain quantities such as the condensate or the
value of the potential at the minimum. At the present order,
this is not very useful because (i) the constraint does not fix
any particular value of ζ and (ii) it leads to m2 ¼ 0 which
we have already argued to correspond to an unstable state.

3In the more general case where we would not have multipli-
cative renormalizability of the vacuum divergences, we simply
have to replace Zζζ by ζ þ δζ in (22).

4The argument goes as follows:

d
dα

hσiJ→0 ∝ −i
Z

ddxhsðAh;a
μ Ah;a

μ c̄dbdÞi ¼ 0:
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It would be interesting to see how this constraint is
modified at the next order of approximation. We leave
this interesting question for a future investigation.
Another possibility is to follow the prescription of

[18,24]. Indeed, despite the presence of two coupling
constants, g2 and ζ, g2 runs as usual, that is, separately
from ζ. Moreover, at an exact level, the value of ζ does not
affect the quantities that we are after, namely the correlation
functions for the primary fields. This makes our situation
suitable for the Zimmermann reduction of couplings pro-
gram [19] (see also [20] for a recent overview), in which
case one coupling (here ζ) is reexpressed as a series in the
other (here g2), so that the running of ζ controlled by γζðg2Þ
is then automatically satisfied. This selects one consistent
coupling ζðg2Þ from a whole space of couplings ζ, and it is
also the one (unique) choice compatible with multiplicative
renormalizability, ζ þ δζ ¼ Zζδζ. This approach was also
applied to the Gross-Neveu model in [30], reporting very
good agreement with the exactly known mass gap in this
toy model.
In the MS scheme, one finds [3,18]

ζðg2Þ ¼ N2 − 1

g2N
9

13
þ 161

52

N2 − 1

16π2
þ � � �≡ ζ0

g2
þ ζ1 þ � � � ;

ð26Þ

which is a particular solution of

βðg2Þ ∂

∂g2
ζðg2Þ ¼ −2γJðg2Þζðg2Þ þ δðg2Þ; ð27Þ

which evidently draws from (17).
From our point of view, this choice is consistent with the

perturbative approach followed in this work, where any
quantity is assumed to admit an expansion (be it a Laurent
expansion) in powers of g2.
Noticing that

m2 ¼ −
g2μεσ

ζ0 þ g2ζ1
¼ m2

0

�
1 − g2

ζ1
ζ0

�
; ð28Þ

with m2
0 ≡ −g2μεσ=ζ0, and expanding to order Oðg0Þ, the

potential becomes

Vðm2
0Þ ¼

�
ζ0
g2

− ζ1

�
m4

0

2
−
3ðN2 − 1Þ

64π2
m4

0

�
ln

μ̄2

m2
0

þ 5

6

�

¼ 9

13

N2 − 1

N
m4

0

2g2
−
3ðN2 − 1Þ

64π2
m4

0

�
ln

μ̄2

m2
0

þ 113

39

�
:

ð29Þ

As already mentioned above, this potential admits a non-
trivial minimum for m2

0 > 0. Since m2
0 ¼ −g2σ=ζ0 with

ζ0 > 0, we should then expect σ < 0. The sign is

compatible with (19) in the zero-source limit. Indeed,
under the assumption that configurations beyond the
Gribov horizon are negligible (which we check below),
(19) implies Z2σ ≥ 0. Moreover, since Z2 diverges neg-
atively [18,31], it follows that σ ≤ 0 (and in practice we
find σ < 0).

III. TWO-POINT FUNCTIONS

Let us now study how the dynamically generated
condensate affects the Landau gauge two-point correlation
functions. Rewriting the field σ in (22) as its vacuum
expectation value which we also denote σ and a fluctuating
part δσ, we find that the free gluon propagator is similar to
the one in the Curci-Ferrari model:

DμνðpÞ ¼
δabP⊥

μνðpÞ
p2 þm2

; with P⊥
μνðpÞ ¼ δμν −

pμpν

p2
:

ð30Þ
The ghost propagator is simply GðpÞ ¼ δab=p2, while the
δσ propagator is ζ=με. Moreover, in addition to the usual
Landau gauge vertices, we have a AAδσ vertex

με

2ζ
δabδμν ð31Þ

and a new AAAA vertex

−
με

4!ζ
ðδabδcdδμνδρσ þ δacδbdδμρδνσ þ δadδbcδμσδνρÞ: ð32Þ

We mention that, strictly speaking, ζ−1, and therefore m2,
have a perturbative expansion in terms of ζ0; ζ1;… which
one needs to take into account in order to evaluate the
correlation functions at a given order. One could define the
Feynman rules in terms of this expanded parameters.
However, it is more convenient, and equivalent, to consider
the Feynman rules in terms of ζ−1 and m2 and reexpand
them only at the end of the calculation, when necessary.

A. Ghost propagator and Gribov horizon

Using the above derived Feynman rules, we find that the
one-loop ghost propagator coincides with the one com-
puted in the CF model. We can use this remark to elucidate
the role of the dynamical condensate within the context of
Gribov’s construction [32] to avoid multiple solutions to
the Landau gauge condition.
Following Gribov’s original setup [32], the ambiguity

related to the presence of Gribov copies is handled by
restricting the domain of integration in the functional
integral to the Gribov region Ω ¼ fAa

μj∂μAa
μ ¼ 0;

MabðAÞ > 0g, whereMab is the Faddeev-Popov operator,
Mab ¼ −∂μDab

μ . As it is apparent from the definition of the
region Ω, the ghost propagator hc̄acbip, i.e., the inverse of
Mab, remains positive within Ω. The positiveness of the
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ghost propagator is thus a necessary condition for any
approach to be compatible with a restriction to the Gribov
region Ω, and we can check to what extent our gluon mass
scale is consistent with such condition.
We parametrize the ghost two-point vertex as

Γð2Þ
c̄c ¼ Zcp2 þ Σghðp2Þ

¼ p2ð1 − σghðp2ÞÞ; ð33Þ

where Σghðp2Þ ¼ −p2½σghðp2Þ þ δZc�, with δZc ¼ Zc − 1,
is the ghost self-energy and we have factored out the trivial
color structure δab. At one-loop order, one finds—modulo
renormalization—

σghðp2Þ ¼ g2N
pμpν

p2

Z
ddq
ð2πÞd

P⊥
μνðqÞ

ðp − qÞ2ðq2 þm2Þ ; ð34Þ

where, to the present accuracy, m2 can be expanded to
leading order in g2 that is replaced by m2

0 (which we keep
denoting m2 for simplicity from here onward). As σghðp2Þ
is a decreasing function of the momentum square p2 [33],
the positivity of the ghost propagator will be ensured by
demanding that σghð0Þ < 1. Using dimensional regulariza-
tion in the MS scheme,5 one finds

σghðp2Þ ¼ λ

4

�
−
ðp2 þm2Þ3

m2p4
ln
�
p2 þm2

m2

�

þ p2

m2
ln

p2

m2
þm2

p2
− 3 ln

m2

μ̄2
þ 5

�
; ð35Þ

where we have reparametrized the coupling by defining

λ ¼ Ng2

16π2
: ð36Þ

This leads to

σghð0Þ ¼
3λ

4

�
ln

�
μ̄2

m2

�
þ 5

6

�
; ð37Þ

in the zero-momentum limit. The positivity condition
translates then into

m2 > μ̄2eð56− 4
3λÞ: ð38Þ

On the other hand, the minimum of the potential (24) is
located at

m2 ¼ μ̄2eð18778
− 6
13λÞ: ð39Þ

It is easily checked that this value obeys the positivity
bound (38) for any value of λ, clarifying then the role the
dynamical condensate plays in relationship to the issue of
gauge copies.

B. Gluon propagator

Similarly, the gluon two-point vertex reads

Γð2Þ
AμAν

¼ ZAp2P⊥
μν þ ð1þ δZ2 − δZζÞm2δμν þ ½Πm2

CF;1l�μν

−
4 · 2
2!

�
με

2ζ

�
2 ζ

με

Z
Q
DμνðQÞ

þ 4 · 3
4!

με

ζ

�
δμν

Z
Q
Dcc

ρρðQÞ þ 2

Z
Q
DμνðQÞ

�
; ð40Þ

where we have again factored out the trivial color structure
δab and it is understood that m2 and ζ need to be expanded
to the appropriate order, namely to leading order, except for
the tree-level mass term m2 that needs to be expanded to
next-to-leading order according to (28). Up to the combi-
nation Z2 − Zζ whose relation to the mass counterterm in
the CF model we have not worked out yet, the first line is

the one-loop Γð2Þ
AA as computed in the CF model with mass

m2. The two other contributions correspond to two new
diagrams that arise from the vertices (31) and (32).
Now, the terms involving Dμν cancel between the last

two lines of (40) and we are left with

Γð2Þ
AμAν

¼ ZAp2P⊥
μν þ ð1þ δZ2 − δZζÞm2δμν þ ½Πm2

CF;1l�μν
þ ðN2 − 1Þ d − 1

2

με

ζ
δμν

Z
q

1

q2 þm2
: ð41Þ

Writing (23) in terms of m2 and setting V 0ðm2Þ ¼ 0,
we find

0 ¼ ð1 − δZζÞm2 þ ðN2 − 1Þ d − 1

2

με

ζ

Z
q

1

q2 þm2
: ð42Þ

This implies that

Γð2Þ
AμAν

¼ ZAp2P⊥
μν þ δZ2m2δμν þ ½Πm2

CF;1l�μν: ð43Þ

For the above equation to make sense, we see that m2δZ2

should correspond to the mass counterterm in the CF model
δm2

CF ¼ m2ðδZA þ δZCF
m2Þ. We have checked that this is

indeed the case using the value for δZ2 given in [18]. This is
of course no surprise since a constant source J plays exactly
the same role as the Curci-Ferrari mass and therefore
ZJ ¼ ZCF

m2 , or, owing to (15), Z2 ¼ ZAZCF
m2 .

Interestingly, the constant ζ disappears from the gluon
self-energy [see Eq. (43)] once the latter is computed on
the shell of the gap equation. This could have been
foreseen, given that such a parameter was not present in

5This can be checked against the more general one-loop result
for σðp2Þ derived in Sec. II B in [34], by setting there a ¼ 1

2
,

v ¼ m2, w ¼ 0, and b ¼ 0.
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the Faddeev-Popov action in the first place; see our earlier
made comments. Nonetheless, an implicit dependence on ζ
still survives via the solutions of the mass gap equation.
From (43), it is evident that, although the condensate acts

as a mass for the tree-level propagator, it disappears from the
tree-level term at one-loop order.6 Thus the LCO approach
does not lead to the CF model but rather to something more
akin to the screened massive approach of [35–37] where the
mass disappears from the loops as the order of approximation
is increased. Of course, such a reorganization of the pertur-
bative expansion does not necessarily lead to a trivial
reformulation of the theory without condensates. In this
respect, it would be interesting to push the present approach
to the next order and identify quantities that remain constant
and different from their corresponding predictions in the
absence of condensate. We leave this interesting question for
future work. Nonetheless, in Appendix B we already offer a
generic argument as towhy the tree-levelmass indeed should
cancel upon using the gap equation.

C. The dynamically infrared-safe scheme
and the renormalization group

Wewould now like to compare our results to lattice data.
To this purpose, we need to choose a renormalization
scheme that is free of Landau poles and that yields a gluon
propagator which displays the desired infrared behavior.
The renormalization factors we need to fix are ZA, Zc, Zλ

and Z2. We will also redefine Zζ to better match our
scheme, rather than using MS like we did in Sec. II B. Since
Zζ ultimately only affects the solution to the gap equation,
we will postpone this to the next section.
To begin with, since we are in the Landau gauge, in order

to fix the coupling renormalization Zλ we can impose the
Taylor condition

ZλZAZ2
c ¼ 1: ð44Þ

In the Taylor scheme, the running of λ is completely
determined by the anomalous dimensions γA and γc of the
gluon and ghost propagators:

βλ ¼ μ
dλ
dμ

¼ −μ
d lnZλ

dμ
λ ¼ λðγA þ 2γcÞ; ð45Þ

where

γA ¼ d lnZA

d ln μ
; γc ¼

d lnZc

d ln μ
: ð46Þ

ZA and Zc themselves can be defined in the momentum
subtraction (MOM) scheme, as is appropriate for a com-
parison with the lattice data. Namely, if we renormalize the
gluon and ghost propagators at the scale μ so that

Γð2Þ⊥
AA ðp2 ¼ μ2Þ ¼ Γð2Þ

c̄c ðp2 ¼ μ2Þ ¼ μ2 ð47Þ

(here Γð2Þ⊥
AA denotes the transverse component of the gluon

two-point vertex), then, going back to (43) and (33),

ZA ¼ 1 − δZ2

m2

μ2
−
Πm2⊥

CF;1lðp2 ¼ μ2Þ
μ2

; ð48Þ

Zc ¼ 1 −
Σghðp2 ¼ μ2Þ

μ2
; ð49Þ

where Πm2⊥
CF;1l is the transverse component of the CF gluon

polarization [5]:

Πm2⊥
CF;1lðμ2Þ ¼ −

λm2

6

�
13t −

9

2

��
2

ε
þ ln

μ̄2

m2

�

−
λm2

24t2

�
242

3
t3 − 126t2 þ 2tþ ðt2 − 2Þt3 ln t

− 2ðtþ 1Þ3ðt2 − 10tþ 1Þ lnðtþ 1Þ
− t3=2ðtþ 4Þ3=2ðt2 − 20tþ 12Þ

× ln
� ffiffiffiffiffiffiffiffiffiffi

tþ 4
p

−
ffiffi
t

p
ffiffiffiffiffiffiffiffiffiffi
tþ 4

p þ ffiffi
t

p
��

; ð50Þ

with t ¼ μ2=m2. Observe that the first of the conditions in
(47) is especially suitable to our model, which does not
have a tree-level mass term in the inverse propagator.
Indeed, due to the cancellations which occur in (41) as
soon as the gap equation is enforced, (47) is favored over

conditions such as Γð2Þ⊥
AA ðμ2Þ ¼ μ2 þm2, which is often

used for renormalizing the gluon propagator in the CF
model [5].
At this stage, δZ2 in (48) remains yet undetermined.

Before discussing its definition, let us explore how Z2 is
relevant to renormalization, starting from the gluon mass
m2. In the present model, we do not really have a mass
renormalization factor since m2 ¼ −g2σ=ζ0 is defined only
at the renormalized level. This is at variance with the CF
model, where it is found [4,5,26] that βm2 ¼ m2ðγA þ γcÞ.
However, we can rewritem2 in terms of μ-independent bare
quantities modulo μ-dependent renormalization factors.
Explicitly, we have

6Strictly speaking, the gluon propagator is obtained after
considering Γð2Þ

Aδσ , Γ
ð2Þ
δσA and Γð2Þ

δσδσ and inverting

Γð2Þ
AA − Γð2Þ

Aδσ ½Γð2Þ
δσδσ �−1Γð2Þ

δσA:

Fortunately, using that ζ−1 ∼ g2, it is easily shown, however, that
Γð2Þ
Aδσ ∼ Γð2Þ

δσA ∼ g3 while Γð2Þ
δσδσ ∼ g2 which means that the extra

term can be neglected at the present order of accuracy. We also
note that Γð2Þ

Aδσ vanishes in the zero-momentum limit from
symmetry considerations.
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m2 ¼ −
g2μ̄ε

2ζ0
Z2hA2i ¼ −

g2bμ̄
ε

2ζ0

Z2

ZλZA
hA2

bi: ð51Þ

It follows that the μ dependence of m2 is encoded in the
prefactor

Z2

ZλZA
¼ Z2Z2

c; ð52Þ

where we have used the Taylor condition (44). In particular,
the μ dependence of m2 is entirely governed by Z2 and Zc,
with the square mass beta function βm2 reading

βm2 ¼ μ
dm2

dμ
¼ m2ðγ2 þ 2γcÞ: ð53Þ

Furthermore, as we have seen in Sec. II B, Z2 plays
the same role as ZAZCF

m2 in the CF model. Since the latter
enjoys a non-nilpotent BRST symmetry which implies that
ZCF
m2ZAZc is UV finite, we deduce that, in the present model,

Z2Zc should also be UV finite.7 The most obvious con-
dition to impose for defining Z2 would then be Z2Zc ¼ 1
[26]. However, there are good reasons to use a slightly
different definition.
To see why an alternative condition to Z2Zc ¼ 1 is

appropriate in the present renormalization scheme, it is
instructive to compute the low-energy limit of the beta
function βλ while keeping δZ2 arbitrary. As μ2 → 0, we
have—see Eqs. (35), (37), and (50)—

Πm2⊥
CF;1lðμ2Þ ¼

3λm2

4

�
2

ε
þ 5

6
þ ln

μ̄2

m2

�
þOðμ2Þ; ð54Þ

Σghðμ2Þ ¼ −
3λμ2

4

�
2

ε
þ 5

6
þ ln

μ̄2

m2

�
þOðμ4Þ; ð55Þ

where the Oðμ2Þ term in Πm2⊥
CF;1l contains a logarithm of μ2.

Plugging these into (48) and (49) and using (46) while
neglecting any higher-order term in the renormalization
scale and in the coupling, we find that the gluon and ghost
anomalous dimensions have the following asymptotic
behavior:

γA ¼
�
2δZ2 þ

3λ

2

�
2

ε
þ 5

6
þ ln

μ̄2

m2

��
m2

μ2
þOðμ0Þ; ð56Þ

γc ¼ Oðμ2Þ: ð57Þ

By (45), these yield

βλ ¼
�
2δZ2 þ

3λ

2

�
2

ε
þ 5

6
þ ln

μ̄2

m2

��
λm2

μ2
þOðμ0Þ: ð58Þ

For most values of δZ2, subject to the sole condition that γA
(or, equivalently, βλ) do not contain divergences, we find
that

μ
dλ
dμ

∝
λ2m2

μ2
ðμ → 0Þ; ð59Þ

which is equivalent to8

λðμÞ ∝ μ2

m2
→ 0ðμ → 0Þ: ð60Þ

This behavior is consistent with the one found for the Taylor
coupling on the lattice [38]. On the other hand, suppose that
δZ2 ¼ −δZc, as would be the case to one loop if we decided
to choose our renormalization condition according to
Z2Zc ¼ 1. Then we would have, by (49) and (55),

δZ2 ¼ −δZc ¼ −
3λ

4

�
2

ε
þ 5

6
þ ln

μ̄2

m2

�
þOðμ2Þ; ð61Þ

yielding βλ → constant × λ2 in the low-energy limit. This is
equivalent to λðμÞ ∝ 1= ln μ2 → 0 as μ → 0.
While having a running coupling that vanishes logarith-

mically at zero momentum might not be an issue in and of
itself, if we insist that Z2Zc ¼ 1 in the Taylor scheme, then
we run into the conclusion that the gluon propagator
remains massless at low energy, when improved by the
methods of the renormalization group (RG). In order to see
this, let us first write down the explicit expression for the
RG-improved gluon two-point vertex in the present

scheme. Denoting by Γð2Þ⊥
AA ðp; μÞ the two-point vertex

renormalized by minimal subtraction at the scale μ, one has

Γð2Þ⊥
AA ðp; μÞ ¼ p2 exp

�
−
Z

p

μ

dμ̃
μ̃
γAðμ̃Þ

�
: ð62Þ

As already observed in [39] based on the relation
m2 ∝ g2hA2i, Z2Zc ¼ 1 implies γ2 ¼ −γc, so that, by (53),

βm2 ¼ γcm2: ð63Þ

The gluon anomalous dimension γA can then be rewritten as

γA ¼ βλ
λ
− 2

βm2

m2
; ð64Þ

where in deriving the above equality we used the Taylor
condition. We then compute7This can also be seen either by an explicit calculation starting

from (48) and (49) or from the fact that a constant source J plays
the role of the square mass in the Curci-Ferrari model and
therefore ZJ ¼ Z2=ZA ¼ ZCF

m2 .
8Here we are assuming that m2 does not vanish as μ → 0. As

we will see later on, this is indeed the case.
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Z
p

μ

dμ̃
μ̃
γAðμ̃Þ ¼

Z
p

μ
dμ̃

�
1

λ

dλ
dμ̃

−
2

m2

dm2

dμ̃

�

¼ ln

�
λðpÞ
λðμÞ

m4ðμÞ
m4ðpÞ

�
: ð65Þ

Our final expression for the RG-improved gluon two-point
vertex therefore reads

Γð2Þ⊥
AA ðp; μÞ ¼ p2

λðμÞ
λðpÞ

m4ðpÞ
m4ðμÞ : ð66Þ

We remark that this expression is valid in any scheme in
which γ2 ¼ −γc holds together with the Taylor condition.
Now, since according to (57) (and by dimensional

counting)

γcðμÞ ∝ λ
μ2

m2
ðμ → 0Þ; ð67Þ

using βm2 ¼ γcm2, we find that

μ
dm2

dμ
∝ λμ2 ðμ → 0Þ: ð68Þ

Provided that the running coupling vanishes at zero
momentum (whether logarithmically or quadratically is
irrelevant), the above equation implies that m2ðμÞ saturates
to a constant in the low-energy limit. Therefore, as p → 0,
we find that

Γð2Þ⊥
AA ðp; μÞ ∼ p2

λðpÞ ðp → 0Þ: ð69Þ

We now see why having a logarithmically vanishing cou-
pling spoils the infrared behavior of the RG-improved gluon

propagator: if λðpÞ ∼ 1= lnp2, then Γð2Þ⊥
AA ðpÞ ∼ p2 lnp2,

implying that the propagator diverges at p ¼ 0.
Ultimately, the reason why we found this divergence is

that the specific choice Z2Zc ¼ 1, which to one loop is
equivalent to δZ2 ¼ −δZc, kills the deep-infrared m2=μ2

term in the beta function βλ. Using such a condition,
however, is not at all forced on us by any consistency
requirement: so long as the divergences in δZ2 and δZc are
taken to be equal with an opposite sign, we are free to
choose the finite part of Z2 according to the needs of our
scheme. Therefore, instead of picking the single value that
yields a diverging propagator, we decide to use a slightly
different renormalization condition for δZ2, namely

δZ2 ¼ −δZc þ lim
μ→0

½δZc�fin; ð70Þ

where ½δZc�fin is the finite part of δZc. In other words, we
start from δZc and subtract from it its zero-energy finite
term. Note that in the MOM scheme any μ̄-dependent term

must actually be regarded as part of the divergence, since μ̄
is an arbitrary scale introduced by dimensional regulari-
zation which needs to be absorbed by renormalization.
Going back to (61), we see that, to leading order, the

above condition is equivalent to

δZ2 ¼ −δZc þ
5λ

8
or Z2Zc ¼ 1þ 5λ

8
: ð71Þ

Immediately, we find that in the scheme defined by (70),
which henceforth we will refer to as the dynamically
infrared-safe (DIS) scheme, the beta function βλ regains
its infrared m2=μ2 term:

βλ ¼
5λ2

4

m2

μ2
þOðμ2Þ: ð72Þ

As discussed earlier, this implies that λ vanishes quadrati-
cally as μ → 0. Furthermore, since the difference between
δZ2 and −δZc is a μ-independent constant, the relation
γ2 ¼ −γc still holds despite being Z2Zc ≠ 1. Therefore,
the expression in (66) for the RG-improved gluon two-
point vertex is still valid in the DIS scheme, as well as the
asymptotic behavior described by (69). However, this time
λðpÞ ∼ p2, so that

Γð2Þ⊥
AA ðp; μÞ → constðp → 0Þ ð73Þ

and the propagator saturates to a constant at zero momen-
tum, as it should be.
In the present scheme, the gluon and ghost anomalous

dimensions γA and γc read, respectively,

γA ¼−
λ

6t3

�
17t3−

163

2
t2þ 12t− t5 ln t

þð2t− 3Þðt− 2Þ2ðtþ 1Þ2 lnðtþ 1Þ

þ t3=2
ffiffiffiffiffiffiffiffiffiffi
tþ 4

p ðt3− 9t2þ 20t− 36Þ ln
� ffiffiffiffiffiffiffiffiffiffi

tþ 4
p

−
ffiffi
t

p
ffiffiffiffiffiffiffiffiffiffi
tþ 4

p þ ffiffi
t

p
��

;

ð74Þ

γc ¼ −
λ

2t2
½2t2 þ 2t − t3 ln tþ ðt − 2Þðtþ 1Þ2 lnðtþ 1Þ�;

ð75Þ

where t ¼ μ2=m2. In the UV, the ordinary Yang-Mills
behavior, namely

γA → −
13λ

3
; γc → −

3λ

2
ðμ → ∞Þ; ð76Þ

is recovered. As we will see, the RG-improved gluon and
ghost propagators computed from these anomalous dimen-
sions are in very good agreement with the lattice data over a
wide range of momenta.
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Finally, let us write down an expression analogous
to (66) for the RG-improved ghost two-point vertex. In
general, the two-point vertex Γð2Þ

c̄c ðp; μÞ renormalized by
minimal subtraction at the scale μ can be written as

Γð2Þ
c̄c ðp; μÞ ¼ p2 exp

�
−
Z

p

μ

dμ̃
μ̃
γcðμ̃Þ

�
: ð77Þ

Since in our scheme γc ¼ βm2=m2, we compute

Z
p

μ

dμ̃
μ̃
γcðμ̃Þ ¼

Z
p

μ
dμ̃

1

m2

dm2

dμ̃

¼ ln

�
m2ðpÞ
m2ðμÞ

�
: ð78Þ

In particular, the ghost two-point vertex can be expressed in
terms of the running gluon mass squared m2ðpÞ as

Γð2Þ
c̄c ðp; μÞ ¼ p2

m2ðμÞ
m2ðpÞ : ð79Þ

The above equation tells us that the ghost propagator
diverges like 1=p2 at zero momentum and that the ghost
form factor—as a function of momentum—has the same
behavior as the running gluon mass squared, being essen-
tially equal to it modulo a constant factor of m−2ðμÞ.
In the next section, we will redefine the gap equation in

order to derive suitable initial conditions for the RG flow of
the theory. These will be used to compute the RG-improved
gluon and ghost propagators, which we will then compare
with the lattice data in a later section.

D. Gap equation revisited and the RG flow

The gap equation allows us to fix the initial value of the
gluon mass m2 in the RG flow starting from the initial
renormalization scale μ and coupling λ. Analogously as
for the propagators, we will benefit from the RG invariance
of the effective potential (29) to optimize it. We can first
work in the MS scheme to do so. As per construction
μ̄ d
dμ̄V ¼ 0, or,

�
μ̄
∂

∂μ̄
þ βðg2Þ ∂

∂g2
þ βm2ðg2Þ ∂

∂m2

�
V ¼ 0; ð80Þ

we can use this RG equation to resum all leading logs.
Therefore, we set

VLLðmÞ ¼ 9

13

N2 − 1

N
m4

2g2
X∞
n¼0

vnun; ð81Þ

with v0 ¼ 1 and u ¼ g2 lnðm2=μ̄2Þ. Setting βðg2Þ ¼
−2g2

P∞
n¼0 βnðg2Þnþ1 and βm2ðg2Þ=m2 ¼ g2

P∞
n¼0 γnðg2Þn,

we get from (80) at leading order

ðγ0 þ β0Þ
X∞
n¼0

vnun − ðβ0uþ 1Þ
X∞
n¼0

ðnþ 1Þvnþ1un ¼ 0:

ð82Þ
This can be rephrased as

ðγ0 þ β0ÞFðuÞ − ðβ0uþ 1ÞF0ðuÞ ¼ 0 ð83Þ

with FðuÞ ¼ P∞
n¼0 vnu

n. Using v0 ¼ 1, the solution reads

FðuÞ ¼ ð1þ β0uÞ1þγ0=β0 ; ð84Þ

and the optimized potential becomes

VLLðmÞ¼ 9

13

N2−1

N
m4ðμ̄Þ
2g2ðμ̄Þ

�
1þβ0g2ðμ̄Þ ln

m2ðμ̄Þ
μ̄2

�
1þγ0=β0

:

ð85Þ
The above RG methodology was borrowed from [40]; see
also [41] for further interesting comments about RG log
resummations. In Appendix C, we have taken a closer look
at the effective potential.
It can be easily seen that at this order, the last factor

amounts to replacing m4ðμ̄Þ
2g2ðμ̄Þ →

m4ðmÞ
2g2ðmÞ, clearly showing poten-

tially large logs are resummed, and thereby also establish-
ing the explicit μ̄ independence of the improved effective
potential; see also [41].
Expressing everything in terms of λ, we obtain as

solution of ∂VLL
∂m ¼ 0 in the MS scheme

msol;MSðμ̄Þ ¼ μ̄e
−13
88
− 3
22λ

MS
ðμ̄Þ; ð86Þ

as β0 ¼ 11N
3ð16π2Þ and γ0 ¼ − 3N

2ð16π2Þ; see e.g. [3] and (63). For

later usage in Appendix C, we already mention β1 ¼ 34N2

3ð16π2Þ2

and γ1 ¼ − 95N2

24ð16π2Þ2.
In order to make use of this solution in the DIS scheme,

we first need to perform a scheme conversion from MS to
DIS, using the appropriate renormalization factors. Going
back to (44) and (52) we see that, at a fixed renormalization
scale,

m2
DIS ¼

Z2;DISZ2
c;DIS

Z2;MSZ
2

c;MS

m2

MS
; ð87Þ

λDIS ¼ ZA;DISZ2
c;DIS

ZA;MSZ
2

c;MS

λMS; ð88Þ

or, to one loop, since Z2;MSZc;MS ¼ 1,

m2
DIS ¼

�
1þ 5λ

8
þ ðδZc;DIS − δZc;MSÞ

�
m2

MS
; ð89Þ
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λDIS ¼ ½1þ ðδZA;DIS − δZA;MSÞ
þ 2ðδZc;DIS − δZc;MSÞ�λMS: ð90Þ

Of course, to lowest order, the mass and coupling on which
the renormalization factors depend can be computed in any
of the two schemes.
In what follows, we will fix the renormalization scale to

be equal to μ0 ¼ 1 GeV—i.e., the scale at which we start
the renormalization group flow—and use λDISðμ0Þ as our
independent variable. Then we will compute λMSðμ0Þ as a
function of λDISðμ0Þ using (90), plug the result into (86) to
obtain the solution of the MS resummed gap equation, and
finally convert the solution to the DIS scheme using (89).
Doing so yields the DIS mass m2

DISðμ0Þ corresponding
to the DIS coupling λDISðμ0Þ by virtue of the MS gap
equation. In Fig. 1 we show the solutions of the gap
equation, both in theMS and in the DIS scheme, at the scale
μ0 ¼ 1 GeV. As we can see, the conversion modifies only
slightly the relation between the mass and coupling, at least
for not so large values of λ.
Dropping the subscript for the DIS quantities, with the

DIS m0 ¼ mðμ0Þ ¼ msol computed at the initial scale μ0 as
a function of the DIS coupling λ0 ¼ λðμ0Þ as detailed
above, in Fig. 2 we display some of the solutions to the
beta-function equations in the DIS scheme. As we can see,
the running coupling has no infrared Landau pole9 and
vanishes like p2 as p → 0, as we anticipated in the last
section. The absence of Landau poles in the running
coupling is a necessary condition for the self-consistency

of any perturbative approach to quantum chromodynamics
and one which is shared by most of the models which treat
the gluons as massive—see e.g. [10,37]. Indeed, it is
precisely the existence of a gluon mass scale that makes
it possible for the running coupling to change its behavior
and decrease as the momentum decreases. At large ener-
gies, since βλ → − 22λ2

3
as μ → ∞ by (74) and (75), the

coupling runs just like in ordinary Yang-Mills theory.
Finally, at zero momentum the running gluon mass

saturates to a constant mð0Þ, again in agreement with
our analysis of Sec. III C. Since βm2 < 0, withm0 ¼ msol an
increasing function of λ0, mð0Þ increases with the initial
value of the coupling. It attains the expected order of
magnitude when λ0 ≳ 0.2–0.3, which corresponds to values
of the coupling λ≳ 0.4–0.5 at the peak (equivalently,
αs ≳ 1.7–2.1). In the UV, we find that

βm2 → −
3λm2

2
ðμ → ∞Þ; ð91Þ

yielding a mass that decreases like λ
9
44ðμÞ ∼ ½lnðμ2Þ�− 9

44 at
large energies, thereby restoring the massless, asymptoti-
cally free, UV limit.

FIG. 1. Solutions of the gap equation in the DIS and MS
schemes at the renormalization scale μ0 ¼ 1 GeV.

FIG. 2. DIS running coupling (top) and mass (bottom) for
different values of the coupling λ0 at the initial scale μ0 ¼ 1 GeV,
with the corresponding mass m0 computed by solving the gap
equation.

9We checked that this behavior persists to very large values of
the coupling λ0 at the initial scale μ0 ¼ 1 GeV. Indeed, we could
not find any value of λ0 for which the running coupling diverges.
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E. Comparison with the lattice data

We are now in a position to compare the predictions of
our model with the lattice data, more precisely the 804,
β ¼ 6.0 gluon and ghost datasets of [38]; see also [42]. In
Fig. 3 we show the RG-improved gluon propagator, gluon
form factor and ghost form factor renormalized at the scale

μ0 ¼ 1 GeV. In order to obtain the two-point functions, we
fitted the initial value of the coupling10 by the least-squares
method using the combined lattice data of [38] for the
gluon and ghost form factors, with the gluon mass m0 ¼
msol computed from the gap equation as a dependent input,
as described in the previous section. The fit yielded a value
of λ0 ¼ 0.473, which corresponds to αsðμ0Þ ¼ 1.981,
m0 ¼ 0.655 GeV, and λMSðμ0Þ ¼ 0.316.
Both the form factors turn out to be in very good

agreement with the lattice data at moderate to high
energies—up to 8 GeV—despite the gluon falling slightly
below the lattice in the UV and slightly above it at
intermediate energies. On the other hand, at momenta
p≲ 0.5 GeV, the RG-improved functions are suppressed
with respect to their lattice analogs. This behavior is not
unseen at one loop in massive expansions of Yang-Mills
theory [43], at least as far as the gluon is concerned. Indeed,
it is shown by the CF model itself, when the latter is fitted to
the lattice data by the same procedure used for our fit.11

Previous studies of the CF model [8] suggest that this
behavior could improve by going to two loops.
The runningcoupling λðpÞ andmassmðpÞgiven the initial

value λ0 ¼ 0.473 and the gap equation are shown in Fig. 4.
The maximum of the coupling occurs at p ≈ 0.64 GeV,
where λ ≈ 0.66 (i.e., αs ≈ 2.77). At zero momentum, the
running mass saturates to mð0Þ ≈ 0.78 GeV.
In Fig. 5 we compare the lattice data for the Taylor

coupling to our running coupling αsðpÞ. Since the fitted λ0
[equivalently, αsðμ0Þ] is a one-loop estimate of the cou-
pling, a rescaling of αsðpÞ is needed in order to match the
lattice. In our case, we had to divide αsðpÞ by 2.2 in order to
align the former both to the lattice UV tail and to the value
of αs at the initial renormalization scale μ0. At μ0 ¼ 1 GeV,
the rescaled value of the coupling αs is found to be 0.90.

F. Testing the stability of the DIS scheme

In order to test the stability of the DIS scheme, it is useful
to extend the results presented in Secs. III C–III E to
different initial renormalization scales μ0 and to alternative
renormalization parameters.
For the purposes of this section, we shall denote with ΔZ

the quantity defined as

FIG. 3. RG-improved gluon propagator (top), gluon form factor
(middle) and ghost form factor (bottom) in the DIS scheme,
renormalized at μ0 ¼ 1 GeV, together with the lattice data of [38]
and analogous CF model results (red curves) for comparison; see
the text for details. The initial value of the coupling λ0 ¼ 0.473
was obtained by fitting the combined lattice data for the gluon
and ghost form factors. The initial value of the gluon mass m0 ¼
0.655 GeV was computed by using the gap equation as described
in Sec. III D.

10In order to simplify the numerical calculations, we used the
MS coupling λMSðμ0Þ at μ0 as the fit parameter and then obtained
the DIS scheme λ0 using Eqs. (86) and (90).

11We should remark that the CF fit shown in Fig. 3 is not part
of the original studies on the subject, but rather it was made anew
starting from the combined gluon and ghost lattice form factors of
[38] for the purpose of comparison. In more detail, the RG-
improved CF functions were computed in the so-called infrared-
safe scheme [5], rescaled so that Γð2Þ⊥

AA ðpÞ=p2 ¼ 1 at p ¼ 1 GeV,
like in our DIS scheme. The rescaling factor could as well be
determined by leaving it as a free parameter of the fit, in which
case the CF propagators would significantly improve—especially
in the UV. However, we chose not to do so, in order to make the
comparison to our results more immediate.
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ΔZ ¼ Z2Zc − 1: ð92Þ

In our previous analysis, we took ΔZ ¼ 5λ
8
, the latter being

equal to the one-loop zero-momentum limit of the finite
part of δZc. While natural in many respects, this choice is
far from unique: in Sec. III C we saw that any nonzero ΔZ
of the form const × λ yields a gluon propagator which

saturates to a finite value as p → 0. It thus makes sense to
ask whether choosing a constant other than 5=8 in ΔZ
would substantially alter our results.
In Figs. 6 and 7 we answer this question by fitting the

lattice data while setting ΔZ ¼ 5λ
8
þ20%
−20%—that is, ΔZ ¼ λ

2
; 3λ
4
.

Additionally, we integrate the RG flow starting from three
different initial renormalization scales—μ0 ¼ 1, 2 and
5 GeV—in order to test the scale dependence of the
scheme. The fit parameters—reported in Table I—were
obtained by adapting the procedure laid out in Secs. III D
and III E to the new renormalization parameters.

FIG. 5. Running coupling corresponding to the fit in Fig. 3,
rescaled by a factor of 1=2.2. Lattice data from [38]. See the text
for details.

FIG. 6. RG-improved gluon form factor in the DIS scheme at
different initial renormalization scales μ0 and for different ΔZ’s.
Top: μ0 ¼ 1 GeV. Middle: μ0 ¼ 2 GeV. Bottom: μ0 ¼ 5 GeV.
See the text for details.

FIG. 4. Running coupling (top) and mass (bottom) correspond-
ing to the fit in Fig. 3.
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It is clear from the fits that increasing or decreasing
the value of the coefficient of λ in ΔZ does not have a
significant impact on the qualitative behavior of the
scheme. Quantitatively, a change in the initial values of
the coupling constant λ0 largely compensates for the
difference in the coefficients, although some deviation
from our previous results can be observed in the inter-
mediate- to high-energy regime of the gluon sector and in
the low-energy regime of the ghost sector at μ0 ¼ 1 GeV
and—less prominently—at μ0 ¼ 2 GeV.
As for the change of the initial renormalization scale,

increasing μ0 yields a worse match with the lattice data,

especially at intermediate energies in the gluon sector and
at low energies in the ghost sector. Nonetheless, we assess
that the agreement between the dynamical model or DIS
scheme and the lattice can be still considered satisfactory,
given that the present results are obtained by a one-loop
calculation and by fitting a single free parameter.

G. SU(2)

To end our overview of the dynamical model, we should
mention that some preliminary tests were performed in
order to evaluate whether the DIS scheme is also capable
of capturing, qualitatively and quantitatively speaking, the
SU(2) pure Yang-Mills dynamics. In general, as displayed
in Figs. 8 and 9, these tests showed a worse agreement with
the lattice data of [34,44–46] in comparison to SU(3). We
believe this could be mostly due to a failure of the simple
one-loop approximation in the ghost sector, exemplified by
the fact that we were not able to obtain a fit of the lattice
data for the ghost form factor alone.
In more detail, we performed simple two-parameter

fits of the SU(2) gluon and ghost form factors, both
separately and simultaneously, at the initial renormalization
scale μ0 ¼ 1 GeV. The simultaneous fit of the two form
factors—shown in Fig. 8—yielded an unsatisfactory agree-
ment with the lattice data of [34,44–46], especially in the
gluon sector. A good match of the gluon form factor or
propagator, on the other hand, was obtained at the expense
of the ghost form factor by fitting the former on its own—
see Fig. 9. Interestingly, in this second case, the fitted value
of the coupling constant λðμ0Þ ¼ 0.35 was found to be
nearly half that obtained by simultaneously fitting the two
form factors—i.e., λðμ0Þ ¼ 0.59. As for the fit of the ghost
form factor alone, our employed algorithm was not able to
reach convergence and provide us with meaningful values
of the parameters.
Some insight into these results can be gained by taking

the Curci-Ferrari model as a reference. A reiteration of the
SU(2) Curci-Ferrari fits [8] using the procedure described
in footnote 11—see Figs. 8 and 9—displays most of the
features we just reported for the DIS scheme: fitting the
gluon form factor alone does not yield a good agreement

FIG. 7. RG-improved ghost form factor in the DIS scheme at
different initial renormalization scales μ0 and for different ΔZ’s.
Plots as in Fig. 6.

TABLE I. Parameters obtained by fitting the lattice data to the
DIS scheme RG-improved gluon and ghost form factors, for
different initial renormalization scales μ0 and renormalization
parameters ΔZ. The cells contain the values ðλ0; m0½GeV�Þ of the
fitted initial DIS coupling constant λ0 ¼ λðμ0Þ and of the initial
DIS gluon mass parameter m0 ¼ m0ðμ0Þ computed by solving
the gap equation.

μ0=ΔZ λ=2 5λ=8 3λ=4

1 GeV (0.516, 0.673) (0.473, 0.655) (0.439, 0.639)
2 GeV (0.179, 0.622) (0.168, 0.587) (0.160, 0.560)
5 GeV (0.085, 0.567) (0.082, 0.533) (0.079, 0.505)
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with the lattice data for the ghost sector, which only
improves when a simultaneous fit of both the form factors
is performed; this in turn requires a more-than-doubled
value of the coupling constant12 and leads to a worse match
in the gluon sector. We should note that, as far as the
dynamical model or DIS scheme is concerned, this kind of

behavior is unseen in SU(3), where fitting the lattice data to
the gluon and/or the ghost form factors, either simulta-
neously or separately, yields essentially the same value of
the coupling constant.13 Despite these similarities, however,
there is one major difference between the two models: just

FIG. 8. RG-improved SU(2) gluon propagator (top), gluon
form factor (middle) and ghost form factor (bottom) in the DIS
scheme, renormalized at μ0 ¼ 1 GeV, together with the lattice
data of [34,44–46] and analogous CF model results (red curves)
for comparison. The gluon and the ghost form factors were fitted
simultaneously; see the text for details.

FIG. 9. RG-improved SU(2) gluon propagator (top), gluon
form factor (middle) and ghost form factor (bottom) in the DIS
scheme, renormalized at μ0 ¼ 1 GeV, together with the lattice
data of [34,44–46] and analogous CF model results (red curves)
for comparison. Fit of the gluon form factor alone; see the text for
details.

12λðμ0Þ ¼ 0.63 and λðμ0Þ ¼ 0.30 for the simultaneous gluon-
ghost and gluon-only CF fits, respectively.

13At μ0 ¼ 1 GeV, λðμ0Þ ¼ 0.47 and λðμ0Þ ¼ 0.48 for the
one-parameter gluon-only and ghost-only DIS SU(3) fits,
respectively.
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like in SU(3), instead of quickly saturating and deviating
from the lattice data as in the DIS scheme, the one-loop
RG-improved Curci-Ferrari ghost form factor manages to
reproduce the data well down into the deep IR. In fact, at
variance with the DIS scheme, fitting the ghost form factor
alone is actually possible within the CF model—at the price
of a further increase in the value of the coupling constant.14

We can then conclude that two main factors are at play in
making the DIS scheme perform worse in SU(2) than in
SU(3): (i) at one loop, a suboptimal agreement within the
ghost sector makes it harder to obtain a good overall fit of
the lattice data; (ii) this mismatch pushes toward larger
values of the coupling constant, where the one-loop
approximation is less trustworthy. Since finding a good
two-parameter fit of the SU(2) data was not possible within
the present approach, we did not try implementing the gap
equation and attempt a one-parameter fit. We leave a more
in-depth analysis of the SU(2) case to a future study.

IV. CONCLUSIONS

We showed that the nonvanishing of a nonlocal BRST-
invariant mass dimension-two condensate in pure Yang-
Mills theory can be probed in any linear covariant gauge
by minimizing an effective potential for the condensate,
leading to a dynamical gluon mass which value is fixed in
terms of a gap equation. For renormalization purposes
of the potential, we had to introduce a novel coupling, but
by resorting to a procedure known as the reduction of
couplings, this parameter could be expressed as a power
series in the usual coupling constant.
The computation of the potential and condensate was

carried out in Landau gauge, in which case the nonlocal
condensate reduces to just hA2i and computations drasti-
cally simplify.
The renormalization group improvement of the gluon

and ghost propagators was performed in a newly intro-
duced renormalization scheme termed the dynamically
infrared-safe scheme. In the infrared, the dynamically
massive model reproduces the expected, nonpertur-
bative behavior of pure Yang-Mills theory not only
qualitatively—by the saturation of the gluon propagator
at zero momentum—but also quantitatively, as demon-
strated by a comparison with the lattice data. In the UV,
where the effects of the gluon condensate are negligible as
shown explicitly by renormalization group arguments, it
reduces to ordinary perturbation theory.
Our results thus indicate that the BRST-invariant gluon

condensate is a good candidate for explaining by which
mechanism dynamical mass generation occurs in the
gluon sector of pure Yang-Mills theory.15 Albeit that the

eventually dynamically massive model shares many simi-
larities with the Curci-Ferrari model, it is different as
highlighted in the text.
A logical next step would be to extend the propagator

and renormalization group analysis to other linear covariant
gauges, in which case the Nielsen identities [53–56] might
prove valuable to get a grip on the gauge (in)dependent
contributions. Going beyond the Landau gauge will also
require to take into proper account the then explicit non-
local nature of the condensate, based on [57].
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APPENDIX A: PERTURBATIVE DECOUPLING
OF THE DETERMINANT det ðΛðξÞÞ IN
DIMENSIONAL REGULARIZATION

In order to localize the BRST-invariant gluon field Ah
μ, in

Sec. II Awe introduced a unity into the partition function in
the form

1 ¼ N
Z

DξDτDη̄Dηe−S1 detðΛðξÞÞ: ðA1Þ

The latter is obtained by a change of variables F → ξ in the
functional integral

1 ¼
Z

DFδðFÞ ¼ ðF ¼ ∂ · AhÞ

¼
Z

Dξ det

�
δð∂ · AhÞ

δξ

�
δð∂ · AhÞ

¼
Z

Dξ det ð−∂ ·DðAhÞΛðξÞÞδð∂ · AhÞ; ðA2Þ

followed by the factorization of the functional determinant
and the rewriting of detð−∂ ·DðAhÞÞ in terms of a functional
integral over a pair of ghost fields ðη; η̄Þ and of δð∂ · AhÞ in
terms of its τ-Fourier transform. This is analogous to the
Faddeev-Popov procedure which is routinely carried out to

14λðμ0Þ ¼ 0.92 for the ghost-only CF fit.
15Needless to say, other approaches to dynamical gluon mass

generation exist than those mentioned already; see for example
[47–52].
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derive the partition function of pure Yang-Mills theory in the
Landau gauge,with the ghosts η and η̄ in place of the standard
ghost fields c and c̄ and the Fourier field τ in place of the
Nakanishi-Lautrup field b.
In the context of gauge fixing, thanks to the gauge

invariance of the partition function, one usually exchanges
Ah
μ for Aμ in (A1) and (A2) by a change of the gluon field

integration variables, after which the only ξ-dependent
term left in the unity is the determinant detðΛðξÞÞ. It is easy
to see, then, that the ξ-integral decouples from the rest of
the partition function, so that the former can be absorbed
into the normalization factor N . On the other hand, our
introduction of the unity in Sec. II A is carried out at a stage
in which the partition function is already gauge fixed.
Therefore, no change of variableAh

μ → Aμ can be performed,
and, in a generic linear covariant gauge, the nondecoupled
field ξ must be treated on the same footing as the other
dynamical fields of the theory.
Nevertheless, it can still be shown that the deter-

minant detðΛðξÞÞ does not perturbatively contribute to the
n-point functions of the theory, as long as it is defined in
dimensional regularization. As a consequence, when doing
calculations in perturbation theory using dimensional
regularization, the determinant can be suppressed by setting
detðΛðξÞÞ ¼ 1.
In order to prove our statement, we first rewrite the

determinant in terms of a functional integral over a new pair
of ghost fields ðλ; λ̄Þ:

detðΛðξÞÞ ¼
Z

Dλ̄Dλ exp

�
−
Z

ddxλ̄aΛabðξÞλb
�
: ðA3Þ

Since perturbatively

ΛabðξÞ ¼ δab −
g
2
fabcξc þ

g2

3!
facefedbξcξd þ � � � ; ðA4Þ

we may reexpress (A3) as

detðΛðξÞÞ ¼
Z

Dλ̄Dλe−ðI0þI1Þ; ðA5Þ

where

I0 ¼
Z

ddxη̄aηa; ðA6Þ

I1 ¼
Z

ddxη̄aΩabðξÞηb; ðA7Þ

having defined

ΩabðξÞ ¼ ΛabðξÞ − δab: ðA8Þ

The action term I1 contains the interaction between ðλ; λ̄Þ
and ξ. The latter is quadratic in the ghost fields, with its ξ

dependence encoded in the function ΩabðξÞ. I0, on the
other hand, contains the zero-order ghost propagator, which
is easily seen to be QabðpÞ ¼ δab in momentum space or
QabðxÞ ¼ δabδðxÞ in coordinate space.
Now, consider the vacuum expectation value hOi of an

operatorO which does not depend on the newly introduced
fields ðλ; λ̄Þ. This can be computed as

hOi ¼ hOe−I1i0
he−I1i0

¼ hOe−I1i0;conn

¼
Xþ∞

n¼0

ð−1Þn
n!

hOIn1i0;conn; ðA9Þ

where the subscript 0 denotes that the average is to be taken
with respect to the action I0 plus any other ðλ; λ̄Þ-indepen-
dent term originally present in the full action of the theory.
hOIn1i0;conn explicitly reads

hOIn1i0;conn ¼
Z Yn

i¼1

ddxi

	
O
Yn
j¼1

ΩajbjðξðxjÞÞ



00;conn

× hλ̄a1ðx1Þλb1ðx1Þ…λ̄anðxnÞλbnðxnÞigh;conn;
ðA10Þ

where the subscript 00 denotes that the first average is to be
taken with respect to the full, ðλ; λ̄Þ-independent action,
whereas the subscript “gh” denotes that the second average
is to be taken with respect to the zero-order ghost action
I0. Diagrammatically, for each n ≥ 1, the ghost average
receives contributions from a single ghost loop, depicted in
Fig. 10. In coordinate space, suppressing the color struc-
ture, the diagram reads

ð−1Þðn − 1Þ!δðx1 − x2Þ…δðxn−1 − xnÞδðxn − x1Þ ðA11Þ

or, equivalently,

FIG. 10. Loop contributing to the ghost average in (A10)
(example for the case n ¼ 6). The dashed line is the ðλ; λ̄Þ
zero-order propagator.
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ð−1Þðn − 1Þ!δð0Þ
Z

ddx
Yn
i¼1

δðxi − xÞ; ðA12Þ

where δð0Þ is a Dirac delta in coordinate space:

δð0Þ ¼
Z

ddq
ð2πÞd 1: ðA13Þ

Therefore, for n ≥ 1,

hOIn1i0;conn ¼ ð−1Þðn − 1Þ!δð0Þ

×
Z

ddxhOTrfΩnðξðxÞÞgi00;conn; ðA14Þ

where ΩnðξÞ is the matrix product of n factors of ΩðξÞ and
the trace is taken over the color indices.
In dimensional regularization, the integral in (A13)

vanishes [58]. It follows that hOIn1i0;conn ¼ 0 for every
n ≥ 1, so that, going back to (A9),

hOi ¼ hOi0 ¼ hOi00; ðA15Þ

where to obtain hOi00 we have integrated out the free
ghost action I0 from hOi0. What (A15) means is that the
perturbative corrections to the vacuum expectation value
hOi due to the determinant detðΛðξÞÞ vanish in dimen-
sional regularization. Therefore, the vacuum expectation
value of any operator O in the full theory can be computed
by setting detðΛðξÞÞ ¼ 1 in its dimensionally regularized
partition function.
One may have noticed that our proof—aside from

dimensional regularization—relies exclusively on the fact
that ΛðξÞ is equal to the unit matrix to lowest order in
perturbation theory. The question arises, then, whether the
proof is general enough to apply to the determinant of any
such matrix. The answer is that, in general, it does not.
Indeed, setting δð0Þ ¼ 0 in dimensional regularization is
allowed if and only if the calculations can be carried out
without spoiling the symmetries of the theory.
While Lorentz invariance is clearly preserved by the

action in (A3), showing that the latter does not violate the
BRST invariance of the full action of the theory requires us
to extend the symmetry to the ghost fields λ and λ̄. Indeed,
a straightforward calculation starting from (11) and the
definition of ΛabðξÞ in (3) yields

sΛabðξÞ ¼ ΛacðξÞΨc
bðc; ξÞ; ðA16Þ

with

Ψa
bðc; ξÞ ¼ −

∂ðsξaÞ
∂ξb

; ðA17Þ

so that the ghosts must have nonvanishing BRST trans-
formations if (A3) is to be invariant. Since the BRST

transformation does not act on the antighost index of
ΛabðξÞ, it is reasonable to define

sλa ¼ −Ψa
bðc; ξÞλb; sλ̄a ¼ 0; ðA18Þ

where sλa is chosen so that sðΛλÞ ¼ 0. (A3)—and the full
action of the theory togetherwith it—is invariantwith respect
to these extended BRST transformations. The nilpotency
of the extended BRST operator is then easily proved by
observing that s2ΛabðξÞ ¼ 0—which holds thanks to the
nilpotency of s on the fields ξ and c—implies that

0 ¼ s2Λab ¼ ΛacðΨc
dΨd

b þ sΨc
bÞ; ðA19Þ

that is, sΨ ¼ −Ψ2. When plugged into (A18), the latter
ensures that s2λa ¼ s2λ̄a ¼ 0.

APPENDIX B: UNITY AT WORK

As shown in the main text, a one-loop computation
shows that the σ action with σ → σ0 þ δσ leads to

Π1‐loop ¼ p2 þm2 þ Π1‐loop
CF ðp2; m2Þ þ Π1‐loop

extra ðB1Þ

where the mass term will be canceled by the self-energy
contributions originating from the extra terms in the action,
when using the gap equation ∂V

∂σ ¼ 0 [cf. (43)]. With the
“extra” part, we mean the diagrams that are generated by
the extra vertices arising from the δσ part of the σ
Lagrangian, meaning the δσA2 and A4 vertices; see
Eqs. (31) and (32).
This will actually be a more generic feature of the

dynamical model. More precisely, the tree-level mass will
always cancel against certain contributions coming from
the extra diagrams.
Let us now try to show this by making use of the “power

of unity.”We will work with a simplified notation, to make
things clear. But the general argument readily applies to the
case under study.
Let us consider a theory, Theory 1, with a partition

function
R ½dA�e−SðAÞ, but we could also add a unity to get

Theory 2 with a partition function

Z
DAe−

1
ℏSðAÞ ×

Z
Dσe−

1
2ℏ

R
dx4
�
σ−gA2

2

�
2

: ðB2Þ

We understand that this is still the same theory as the
(exact) Gaussian integral over σ yields a unity.16 This
means that (connected) correlation functions remain
unchanged: hA…Ai1 ¼ hA…Ai2.17 We have temporarily
introduced the (loop counting) factor ℏ. Clearly, by
identifying order per order in ℏ, the equivalence between

16We did not write global normalization factors.
17With “A” a shorthand for all original fields.
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hA…Ai1 and hA…Ai2 will also hold order per order in
perturbation theory, seen as formal power series in ℏ.
Let us illustrate it explicitly: the extra vertices introduced

by the unity, (31) and (32), are visually represented by

We get at one-loop a contribution proportional to

ðB3Þ

Using the trivial (constant) propagator hσσi ¼ 1 and the
correct symmetry factors, we end up with

hAAi1PIextra ¼ g2
Z

hAAiþ 1

2
g2
Z

hAAi− 3

2
g2
Z

hAAi; ðB4Þ

which is indeed equal to zero.
Next, we consider the possibility that σ develops a

vacuum expectation value, namely

σ → hσi þ δσ ≡ σ þ δσ ðB5Þ

with per definition hδσi ¼ 0. In this case, the partition
function will read

Z
DAe−S½A�−

R
d4xgσA2

Z
Dδσe−

1
2

R
d4x
�
δσ−gA2

2

�
2

e−
R

d4x
�
σ2

2

�
:

ðB6Þ

The first exponential will still yield a unity; the second
consists of a constant and will play no role in correlation
functions (but it does in the quantum effective action). The
term linear in δσ we dropped, as this will cancel order per
order by removing all δσ-tadpole graphs, which is equiv-
alent to hδσi≡ 0, or, extremization of the effective action
with respect to σ, that is, the gap equation; see e.g. [28].
Finally, there is also an effective mass term for the A field
that we included in the original action, that is, with a
“dynamically massive” A field.

At one loop, we would now get

ðB7Þ

These two diagrams are completely similar to those in the
last line of (40); when resummed into the inverse propa-
gator they will annihilate the tree-level mass term upon
using the gap equation ∂V

∂σ ¼ 0, as it follows from direct
computation also here. The first diagram in the first line is
nonzero, but it will cancel against other (nonwritten)
tadpole contributions. Notice that we did not explicitly
use the underlying unity at this point.
We can reconsider the three diagrams in the first line of

(B7) also from the unity viewpoint though. In that case, the
three diagrams cancel against each other, just as before.
However, this means we have removed one, but not all,
tadpole contributions, meaning that there will be a net
tadpole correction to hAAi1PIextra, which actually corresponds
to minus the first diagram, upon amputating the external A
legs of course. But due to the gap equation, this is nothing
else than the tree-level mass, up to the sign.
It is clear this observation will continue to hold through

at any order n: we can always keep the necessary tadpole
(sub)graphs to get all diagrams that make up the unity order
per order (the sum of which diagrams will then lead to a
zero), and the remaining contribution will be the (usually
never written) “counterterm” that eliminates the tadpoles,
up to the sign. As at one loop, this will exactly kill the tree-
level mass due to the gap equation. Overall, we will thus be
left by the same diagrams of the Curci-Ferrari model, up to
the tree-level mass. Notice though that the mass running
in the loops will still need an appropriate reexpansion up to
the considered order, as the actual mass is defined from
m2 ≡ −μεσ=ζðg2Þ; see Eq. (25). This will lead to further
differences with the Curci-Ferrari case.

APPENDIX C: A FEW MORE WORDS ABOUT
THE EFFECTIVE POTENTIAL

In (81), we constructed an RG improved potential up to
leading log (LL) order. The solution (86) corresponds to a
genuine stationary point as ∂VLL

∂m ¼ 0. Upon closer inspec-
tion we notice it actually corresponds to a minimum of
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ReðVÞ and a maximum of ImðVÞ. We kept however using
(86) as a solution to the gap equation in the remainder of
the paper.18 Before discussing the validity of this approxi-
mation, we note that we chose to minimize VLLðmðμ̄ÞÞwith
respect to the variable mðμ̄Þ. Up to the considered order,
as noted below (85), one can reinterpret it in terms of
Vðmðμ̄ ¼ mÞÞ and thence minimize with respect to mðmÞ
rather than mðμ̄Þ. We did not do so, as our eventual interest
lies in the RG flow of the propagators in the DIS scheme,
with initial conditions set at μ̄0. This would require, after
having minimized with respect to mðmÞ, to flow this MS
solution from μ̄ ¼ m to μ̄ ¼ μ̄0 using the MS anomalous
dimensions, followed by converting it to the desired initial
value in the DIS scheme via the conversion (87). As we do
not expect the MS scheme to be trustworthy at lower scales,
we intentionally first set μ̄ ¼ μ̄0 and then directly extract an
estimate for the MS initial conditions at the chosen, high
enough, scale μ̄0, followed by the conversion to DIS.
In passing, we notice here that for the LL minimum

solution (86), μ̄ d
dμ̄msol;MS ¼ 0 up to the considered order.

Although it might look strange to find a RG-invariant
solution of the LL gap equation, this will be always the case
in the LL case, which after all is based on the zeroth-order
(“classical”) potential, dressed with logs. This common
feature can be easily checked using the related formalisms
of [40,41] as for single scale theory, the LL potential will
always have the structure of (85) with a solution similar to
(86). This no running of the solution is thus an artifact of
the LL approximation.
This being said, we can now have a look at what happens

when we include the next-to-leading-log (NLL) correc-
tions. As we know the first term of the NLL series, we can
use this to our advantage. Indeed, generalizing (81), we
may write

VNLLðmÞ ¼ 9

13

N2 − 1

N
m4

2g2

�X∞
n¼0

vnun þ g2
X∞
n¼0

wnun
�

¼ 9

13

N2 − 1

N
m4

2g2
ðFðuÞ þ g2GðuÞÞ; ðC1Þ

where w0 ¼ − 113N
288π2

, as it follows from (29). The function
FðuÞ was already determined in (84), and upon imposing
(80) to next-to-leading order, we get

ðβ1 þ γ1ÞFðuÞ þ γ0GðuÞ

− ð1þ β0uÞG0ðuÞ þ
�
γ0
2
− β1u

�
F0ðuÞ ¼ 0; ðC2Þ

which solves uniquely to

GðuÞ ¼ 1

288β20π
2
ð1þ β0uÞγ0=β0ð−113Nβ20− 288β0β1γ0π

2u

þ 288β0γ1π
2uþ lnð1þ β0uÞπ2ð288β0β1

þ 144β20γ0þ 288β1γ0þ 288β1γ
2
0þ 144β0γ

2
0ÞÞ:

ðC3Þ
As a check on this result, reexpanding (C1) up to order g2

gives the correct terms upon comparison with the two-loop
MS effective potential as it was computed first in [18], later
on verified in [59], up to the constant term of the two-loop
piece of course, which is the first of the next-to-next-to-
leading log order terms.
Focusing on the SU(3) case and setting as before

λMSðμ0Þ ¼ 0.316 at μ̄ ¼ μ0 ¼ 1 GeV, we come to Fig. 11,
where both the LL and NLL potential are shown. We see
that going to next-to-leading log order in the RG improved
expansion does shift the location of the minimum to around
0.8 GeV, but it does land in the region where the improved
NLL potential is real valued. For the record, we refrain
from using this minimum in Sec. III V, as we only solved
the two-point functions RG flow at leading order. Actually,
the potential is rather flat in the region of interest, so let us
see what happens in terms of a variable μ̄, which will also
allow to verify if the expected UV RG asymptotics is
reached. We first convert the fit value λMSðμ0Þ ¼ 0.316 into
the corresponding ΛMS value through inversion of the two-
loop expression

g2ðμ̄Þ ¼ 1

β0 ln
μ̄2

Λ2

MS

0
B@1 −

β1
β0

ln ln μ̄2

Λ2

MS

β0 ln
μ̄2

Λ2

MS

1
CA ðC4Þ

at μ̄ ¼ μ0, yielding ΛMS ¼ 0.630 GeV. Feeding this and
(C4) back into VNLLðmÞ allows one to show the potential

FIG. 11. Leading VLLðmÞ and next-to-leading log VNLLðmÞ
renormalization group improved effective potential at μ̄0 ¼ 1 GeV
with choice of parameter λMSðμ0Þ ¼ 0.316 (see Sec. III E).

18There is actually also the solution atm2 ¼ 0. However, this is
not to be trusted. To keep the expansion under control, we should
then assume μ ∼ 0, implying g2 ∼∞ in the MS scheme, thence
invalidating the expansion. The relevant expansion parameter at
μ̄0 ¼ 1 GeV, λMSðμ0Þ ¼ 0.316, is sufficiently small to trust the
used expansion more or less, with moreover msol=μ̄0 close to 1.
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for various values of μ̄, as shown in Fig. 12. We observe a
clear, real-valued minimum which lowers for growing μ̄. At
last, solving for the minimum leads to Fig. 13, shown
together with a fitted (over the interval μ ¼ ½5; 10� GeV)

Mðμ̄Þ ¼ 0.571

�
ln

μ̄

ΛMS

�
−9=88

; ðC5Þ

consistent with the expected UV RG behavior in terms of
∂ lnm=∂ ln μ̄ ¼ ðγ0=2Þg2 þ � � �. For too low values of μ̄,
i.e., too close to the MS Landau pole at μ̄ ¼ ΛMS, we
should not trust the results anymore. The Landau pole is
eventually also what pushes the potentials in Fig. 12 to −∞

and eventually into the complex region for too small m,
making the quantity β0g2ðμ̄Þ ln m2

μ̄2
too large. In any case,

log RG resummations capture information from all orders,
while the gap equation imposes a further constraint
between terms of different orders. It would be interesting
to investigate more sophisticated RG improvements of the
effective potential, so that for example the RG flow of the
solution is strictly consistent with the anomalous dimension
of the mass at the chosen order, for any value of the RG
scale, but this falls beyond the scope of the current paper.
This might also further complicate the numerics (stability)
of the fitting procedure. We plan to come back to this in
future work.
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