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Light baryon spatial correlators at short distances
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To study the light baryon light cone distribution amplitudes (LCDAs), the spatial correlator of the light
baryon has been calculated up to one-loop order in coordinate space. They reveal certain identities that do
not appear in the study of mesons DAs and parton distribution functions. Subsequently, it was renormalized
using the ratio renormalization scheme involving division by a 0-momentum matrix element. Then through
the matching in the coordinate space, the light baryon light cone correlator can be extracted out from the
spatial correlator. These results provide insights into both the ultraviolet and infrared structures of the light
baryon spatial correlator, which is valuable for further exploration in this field. Furthermore, the employed
ratio scheme is an efficient and lattice-friendly renormalization approach suitable for short-distance
applications. These can be used for studying the light baryon LCDAs using lattice techniques.
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I. INTRODUCTION

Light cone distribution amplitudes (LCDAs) for light
baryons serve as fundamental components in the descrip-
tion of these light baryons. They are defined through the
QCD factorization for the exclusive process with a large
momentum transfer, and encodes the crucial nonperturba-
tive physics within the light baryons [1]. They encapsulate
vital nonperturbative information inherent to light baryons.
These distribution amplitudes hold a key position in
unraveling the inner structures of light baryons. They
essentially outline how longitudinal momentum is distrib-
uted among the partons within a light baryon’s leading
Fock state. Alongside parton distribution functions (PDFs),
which detail the parton distribution within baryons, they
jointly provide a comprehensive description of baryonic
structure. Moreover, light baryon LCDAs also play a
important role in both standard model investigations [2]
and explorations of new physics [3-5].

Despite their significance, light baryon LCDAs have not
gained as much attention as PDFs. The primary challenge
stems from the fact that in an exclusive process, several
LCDAs through the convolution integrals enter the same
physical observable. Additionally, for light baryons, their
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LCDAs are dependent on two variables, setting them apart
from the more straightforward investigations of PDFs and
meson DAs cases.

Historically, researches on light baryon LCDAs have
predominantly relied on QCD sum rules [6-9] and lattice
QCD [10-13]. Given their inherent nonperturbative nature,
the results are model dependent and entail uncontrollable
uncertainties. Consequently, only the lowest moments have
been obtained [11-13].

In recent papers [14,15], large momentum effective theory
(LaMET) [16-19] was adopted to study light baryon LCDA
from the first principle through lattice QCD. LaMET has
been employed to investigate various quantities, including
PDFs [20-46], meson LCDAs [47-56], Transverse momen-
tum dependent parton distributions (TMDs) [57-72],
Generalized parton distributions (GPDs) [73-83], Light
front wave functions (LFWFs) [84], Transverse momentum
dependent wave functions (TMDWFs) [85-88], and Double
parton distributions (DPDs) [89,90], demonstrating its
capability in the study of light cone quantities. For more
papers on the content and applications of LaMET, please
refer to [18,91,92] and the references therein. In paper [14],
the calculation was performed in momentum space, and the
corresponding quasi-DA  was renormalized using the
Regularization-independent momentum subtraction scheme
(RI/MOM) scheme. However, despite it is adoptable theo-
retically, the application of this scheme on the lattice
introduced uncontrollable infrared effects. To address theses
issues, we have developed a hybrid renormalization scheme
specifically designed to handle the spatial correlator’s
divergences in different coordinate regions [15].
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However, throughout the entire process, the spatial
correlator has not been comprehensively introduced with
regard to its structures. To address this gap, this paper
focuses on a detailed one-loop analysis of the spatial
correlators of light baryons. In conjunction with the intro-
duction of the calculation processes, this paper will also
introduce the relevant ultraviolet (UV) and infrared (IR)
structures inherent in the correlators. In this paper, the spatial
correlators will be renormalized using the ratio scheme,
which involves renormalizing spatial correlations by divid-
ing by their own 0-momentum matrix element [93-95].
Besides, by employing the Ioffe-time distribution definition,
the light cone correlator and spatial correlator can be studied
on an equal footing. After that, we will perform the matching
between the spatial correlator and light cone correlator
directly on the coordinate space. Then the LCDAs can be
obtained by performing the Fourier transformation upon the
light cone correlator. The renormalization group equation
(RGE) for the LCDA is also provided, and their connections
with spatial correlator are discussed.

The rest of the paper is arranged as follows. Section 11
covers the essential content related to LCDAs and spatial
correlators. Section III is dedicated to the calculation of
one-loop results, where we present the patterns involved in
spatial correlation calculations and analyze their UV and IR
structures. Section IV focuses on the renormalization
process through the ratio scheme, followed by matching.
Additionally, we provide the scaling behavior of the LCDA
for comparison with previous results as a validation check.
The paper is summarized in the last section.

II. LIGHT CONE DISTRIBUTION
AMPLITUDES AND SPATIAL CORRELATORS
FOR A LIGHT BARYON

In this section, we introduce the requisite notations and
conventions required for subsequent discussions. In par-
ticular, the definition of LCDAs and loffe-time distribution
(ITD) will be given. We start with the LCDAs, which are
defined as the hadron-to-vacuum matrix elements of non-
local operators consisting of quarks and gluon which live on
the light cone. In the case of a light baryon, the three-quark
matrix element can be constructed as [8]

o

(Ole*u(21)Uri(z1, 20)d} (22) U (220 205} (23)
X Upi(z3,20)[A(P. 2)), (1)

where |A(P,A)) stands for the A baryon state with the
momentum P, P> =0 and the helicity A. a, 3, and y are
Dirac indices. i), j), and k") denote color charges. In this
paper, two light cone unit vectors are defined as n#* =
(1,0,0,-1)/+v/2 and #* = (1,0,0, 1)/+/2. The momentum
of the baryon is along the 7 direction, P¥ = PTi# =
(P%,0,0, P%). The coordinates are set in the n direction,
Z = z;n*. The Wilson lines U(x,y)

1
U(x,y)="Pexp {ig[) dt(x—y) A (tx+(1-1)y) (2)

are inserted to preserve the gauge invariance. For simplicity
and brevity, we will choose z; = 0. Besides, the Wilson
lines, color indexes, and helicity will not be written out
explicitly below.

Based on Lorentz invariance, and the spin and parity
requirement, the matrix element can be decomposed in terms
of three functions, V(z;P - n), A(z;P - n), and T(z;P - n) to
the leading twist

(Olug(z1)dp(22)s,(23)|A(P)) (3)
= fN{(PC)aﬂ(VSMA)yV(ZiP : ”) (4)

+ (f?sc)aﬂ(”A)yA(ZiP - n)
+(i0,, P C) 5 (vuvsun), T (2P - n)}, (5)

where C signifies the charge conjugation. u, stands for the
A baryon spinor. Equivalently, the three leading twist
functions can be projected by inserting a specific gamma
matrix I" into the u and d quark fields. In the following
discussion, we will take A(z;P - n) as an example while
the other matrix elements can be similarly analyzed. Then
we have

L (21, 22,23, P, ) = (Olyr] (21) 0w (22) w3 (23) [A(P) ),
(I)L(xl»xz,/‘)fA(ﬂ)PJruA(P)
/+oo dPtz,dPtz, ix,

— —e

o 2T 2

P+zl+isz+z2j(Z1’ 2, 0, P+,/,t), (6)

where 7 means transpose and I' = Cysyf. R stands for renormalization. x;s label the longitudinal momentum fractions
carried by the three quarks and O < x; < 1. The u denotes the renormalization scale which will be converted to the
factorization scale when the factorization of quasi-DA is established. f,(u) is the A baryon decay constant defined as
follows f(u)P*us(P) = Z(0,0,0, P*, u). Note that f, (1) depends on the renormalization scale y since the local operator
here is not a conserved current. The LCDA ®; (x, x,, ) in Eq. (6) is dimensionless and normalized.
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For the lattice QCD side, in order to extract the LCDA, o M E o
the first step involves selecting an appropriate spatial 0 s 0 s 0
correlator. In this paper, the spatial correlator is chosen - - d = - d »
as [8] @ (b)

—t— U

(E

(©)

M(z1.25. 23, P, p) = (Olu” (21)Td(22)5(23) IN(P)).  (7)

where I" = Cysjt.. And the coordinates are set as 7/ = z;1”,
where n% = (0,0,0,1).

These two kinds of correlators can be treated in a more
unified manner. The light cone correlator can be under-
stood as a function of two Lorentz-invariant arguments,
z;P - n and z2. It has been extended to distributions beyond
those lying on the light cone and is referred to as ITD
[95,96]. The ITD is dependent on two Lorentz scalars,
Toffe time v; (defined as —z; P - n;) and distance z?, where
the specific values of n; rely on our requirements.
Consequently, we can represent the light cone correlator
and spatial correlator as

S(Z],ZQ, Z3,P+1ﬂ) = S(l/lﬂl/zﬂl/37 Zzaﬂ)7
m(ZhZZ’Zfi’PZ’Iu)Em(yl’ybyszz’”)’ (8)

with z?> being an expression compactly representing all
possible contractions of the z; terms. It should be noted
that, for the spatial correlator, only the leading twist
component will be retained, which means that we will
only keep the part that is proportional to P*.

To establish a connection between the LCDAs and spatial
correlators, in contrast to previous approaches, we directly
extract the LC correlator by matching it with the spatial
correlator in coordinate space. Subsequently, the light cone
correlator can be Fourier transformed into LCDAs.

III. ONE-LOOP CALCULATION OF THE SPATIAL
CORRELATOR IN COORDINATE SPACE

In this section, the one-loop results for the spatial
correlator and the light cone correlator will be presented.

21 u leu 2 ——— U
0 S ) ——=a—s ) f——e—s

Z1 ¢ u 2 - U Zl ——a——1Uu
29 d 2y b—w—( 2y b—-—
(€3] (h) ()

2 ——u 2 ———u 2 ———u
éiﬂis 0 f——+—s ({gﬂ—a

@ (k) M

FIG. 1. One loop corrections for the equal-time matrix element
of the A baryon.

regularization with MS renormalization. We will stick
to adopt the Feynman gauge throughout, though the
results are gauge invariant. All the calculation will be
performed on the operator level. By following this
approach, the desired matrix elements can be obtained
by incorporating suitable out-states. As shown in Fig. 1,
there are 12 distinct diagrams to calculate, which can be
divided into three categories: quark-quark (q-q), quark-
Wilson line (q-W), and Wilson line-Wilson line (W-W).
We will begin with the q-W pattern, which exhibits the
most complex structures among all three patterns. In the
g-W pattern, there are two different situations to consider:
cases (e), (f), (h), and (i), and cases (d) and (g).

A. q-W pattern

1. Cases (e), (f), (h), and (i)

We take Fig. I(e) as the example to illustrate the
calculation, in which the one-loop corrections are

These results will be presented in dimensional
|
8 _ y (o[l .
0. = (witen)(ia. [ atmmmohowmn) ) ) (<o [ anzi- a0z ) Fusteaws ) ©
The color indexes and the parameter (M%W)e are not written out explicitly. The gluon and quark propagators in the
coordinate space are
r(d/2-1) — _T(d/2) =)

G(x _y) = 472

(~(c=) + i)

O(x-y) = (10)

27% (=(x —y)? + ie)¥?’
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Following the standard routine, substituting them back and rearranging the formula, one arrives at

d/2 1
0, = ¢ sﬂd/z /d kl/ dtl/ dal/ doyo! "' 63> (o) + 6,) 7412

i(4(o +opty)zy (k1 -nz +1\2 —do10o (11—
21 (ki - n,) + (01 + ooty) (=2
X e Torie) 1;/1 Mk, )(( 73) - ! p———

i

)>ﬁp2<mw<o>, (11)

where ¢ and o, are Schwinger parameters, and k; is from the Fourier transformation of w7 (z;). Note that terms like k? or
}ély/(z have been neglected in the calculation due to the equation of motion. By changing (o}, 0, ) to (o, 1) with | = Zand

0y = the above result can be rearranged as
Oe = Oel + OeZ’ (12)
0, ——gs8 d/2 r(d/2 - /ddkl/ dtl/ dn(1 — 1;)34(z2)2~ d/2 (13)
x ekt =D Dy (ky )Ty (2273 (0), (14)
~ i)4/2-1
Oe2 = s d/2 /d kl/ dl’]/ di’]/ dUGZ 1— )Z1<k ) (15)
Xe_izlnz'(kl<_(’7(11_1))_l)+6(tl_l)zzlnz)y/{(kl)f]//z(Zz)l//3(O), (16)

and then one can separate it into two parts and calculate them, respectively.
For O,,, we further define and we can have the simplified form

Ot =~ g T(@/2 = DG [ty [ antao) T (1 =m0y Pz (0) (17)

with 7y = 1 —#;. The 7, — 0 corresponds to a UV divergence since that divergence is regularized by d < 4 and one end
of the Wilson line approaches z; when f; — 0. One can separate this divergence from the rest by using
wl (1 =nty)z;) = (W ((1 = nty)z;) —w'(z1)) + w'(z;). Then it is straightforward to obtain the results for these two parts

. aCr /1 1 _
O,y = =L (—+1log ( —p223e?s ) )yl (z1) Ty (22)w3(0), (18)
4z \eyy 4
~ a,C 1 -9y -
Oz =5 ["an(21) I =z P (e 0 (19)
T Jo n 4

The plus function is defined as [ du[G(u)] F(u) = [} duG(u)[F(u) — F(0)].
For O,,, there is an IR divergence:

ol [ d11<<ln<ﬂzezyE)+i+2>(%>++(21];1'1))1//{(21(1—ﬂ))sz(Zz)w(O)- (20)

Collecting all these pieces and removing the UV divergence in the MS scheme give the final result:

~ a,C 1 a,C ! In -
0, =—="LIn(—udyzies Jyl(z)Ty,(z)ws(0) — =L / dn( =) wT (1 =n)z))Ews (22)w3(0)
4r 4 T Jo mJ+
a,Cp [1 . [1- 1 1 3
T F/ dp(—) (o (= pdez2e?s ) +—+ 1)yl (1 = n)z))Eya(z)w3(0), (21)
2z Jo no). 4 €R
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where a, = % All the other cases will renormalized in this manner below without mention. Then, in the same manner,
results for the quark-Wilson-line diagrams are derived as cases (e), (f), (h), and (i) all can be derived:

a,C
4; LYVyT (z1)Twa(22)w3(0)

_“2(;1”/0 dpyT (1 =)z )I‘Wz(zZ)W3(0){<L11R+1+i> <%>++2<1n7’7>+}’

a,C
= 87[FLUV T(z1)Fwa(22)w3(0)

a,Cr 1! - 1 1—n Iny
~BZE T gy ()T , LR — ) (=1 2 =) L.
e /O myi (21) w(&)w(%){( s +€IR>< p >++ (,7 N

- a C -
Op == L3V w{ (2)lya(22)w3(0)

a<CF

42 Lttt (-1 D) (57 () )

~ a,C
0, = 8; LYVyT (z1)Twa(22)w3(0)

- aj;F A Ly @) (v (fm){ (LIZR +1+ é) <]%> LT 2 (an) +}- (22)

Some abbreviations are used in the above:

0, =

(@)

1 ! 1
LR — 1y <4 pluviie 75> LRV —1n (Zu%R_UVZ%eZVE>, LB —1n <4_L'u12R’UV (z1 = 22)262y5>_ (23)

Since the color parameters for any chosen baryon out-states are fixed, we have preincluded these color parameters in the
operator expressions to simplify the formulas.

2. Cases (d) and (g)

There are more subtleties in cases (d) and (g). We take case (d)

00 = wi(z1) (igﬂ / ddmu-/l<m>A<m>wl<m>)f‘<—igﬁ [ nes ~A<nzZ>)wZ<zZ>m<o>, (24)

as a demonstration to illustrate them. Substituting and arranging as in the previous cases, the case (d) can be separated into
two parts:

04= 04+ Oy, #)

y §)4/2-1

0, = 2 d/2 ut d/ddkl/ dtl/ d/fl/ dooi™? —(z1 = h22)z2) (26)
we~itki(Bi=D)z1=pinz)+o(z1~112)* k1 Cﬂ}’slllz Zz)l//3<0) (27)

} )d/2-1

0d2:g d/z e d/ddk / dtl/ dﬂl/ doot™ (B — 1)(k; - 25) (28)
xe=itk(Bi=Da=pinz)+ol=n2)y T (k) Cysya (22w (0). (29)

Through the calculation in the previous case, we now know that the IR and UV divergence have been separated during this
operation.
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For the O, to make the inside two forms more explicitly, the range of the integral is split further as

Odl = Odll - OdlZs

=g cfl%irzd/z d(/ dry — / dtl) Aldﬂl(—(zl—tIZZ)Z2)<(Zl_tIZZ)z)l_d/z

xyl((1=p1)z1 + pi1122) Cﬁ?’s‘llz (22)w3(0). (30)

Following that, we redefine the integral variables within them, respectively,

X T(d/2-1)((z) — 2,)?)*/? !
O = 2 /d . V& =2 V2 o [ =t~ 071 = )+ mza) Chrswra 2w 0).
84/ d—3 )
3 2-d/27(d/2 - 1 1
Z
Ouip = 92( ! ( a7 )ﬂ4_d dn(*= = Dyl (1= n1)z1) (=Cihys)w(22)w3(0). (31)
d-3 8z 0

Now one can see that the two distinct forms of contributions have be separated.
For the O, it can be divided into two parts:

0d2 = 0d21 - 0d22a

O =T(d/2-2)g _d/2ﬂ4 d/ dﬂ1/ dt125(z1 — 122) ™3yl (1= B1)z1 + 118122) Cohyswa (22w (0).

O =-T(d/2-2)¢" 8;01/2 /‘4_d/ddk1£ dﬂIA di 25(z1 — t120) e ey T (k) Chly sy (22)w3(0). (32)

For O, it can be further divided into two parts by splitting the range of the integral as before:

Od2l = Od211 - Od212v

- 21— 2
Opn =T(d/2=2)gp* d8 d/z/ d’?/ Ldhn(z —nhz)” d+31_4tzl//1((1 —n)z1 +m2z2) Cllyswa(22)ws (0),
Opir =T(d/2-2)g _d/2ﬂ4 d/ dﬂ/ di 25(z1 = 1122) Py (1= n)zy + 11122) Chhy sy (22w (0). (33)

After redefining the integral variables, above results can be computed as follows:

~ -1, wa [V, 1=pPd

Opi =T(d/2 - 2)92W,“4 (21 = 22)2)42iA dn d—3 i ((1=n)z + ’Izz)cﬁi/sllfz(zz)%(()),

A 0 =l gy [P (L=

Opin = -T'(d/2-2)g mﬂ (z1) o dn d—3 wi((1- ’I)ﬁ)(‘cﬁl’s)%(zz)%(o)- (34)

Next, we turn back to consider Oy, which can be given directly

- 1 (24 = 2,)2)2-4/2 — (52)2=d/2
On = —w-ir(a/2~2)  C B 2 BT o 0), (35)
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By summing all these pieces, one can obtain the O,. Then, for the two cases in this pattern, we have the following:

- aYC -
0,= A8 £ (L%V - LFV)W{(ZOF%(Q)%(O)

- [Naw 10—z et (814 ) (51) +2(22) |
Lt ol () )] oo

- a,C [
0y = =g " (LR = L @) Twa(ea)ys (0)

e /0 dny? (z) Py (2, + (1 —n>z2>w2<zZ>w3<0>{<L“§+ o )(ﬂ>+ +2<m_”>+}

€IR n

+ %/01 dnyr{ (2)Tya (1= 1)z2)yr3 (0){ <L12R +1+ i) <%> 2 <1r:7'7> +}. (37)

There are no analogous terms in meson cases for these two cases. In fact, both of them are combinations of two forms.
Specifically, there are certain terms in cases (d) and (g) that have the same form as cases (e) and (f), respectively. It is
important to note that there are both IR and UV singularities in all these cases. The cases (e) and (f) differ from cases (d), (g),
(h), and (i) in terms of their color coefficients, as detailed in [14]. More precisely, for cases (e), (f), (k), and (1), the color

algebra yields the same results as in the meson case, represented by Cr. For cases (d) and (g), the color parameter is — %

B. q-q pattern

The quark-quark cases are presented in Figs. 1(a)—1(c). Since there are some differences between case (a) and cases (b)
and (c), them deserve separate consideration.

1. Case (a)
In case (a), after performing the standard procedure, we have
O = Oal =+ OaZ’

d/21d/21d/22 YRR
0, = = (d - 2)Pu* al /ddkl/ddkg/dd(fz ) 016,05(—(z1 — 22)*)
162 (o1 + o)™ (020 +o1(03 % 03

(’< oy 40 (4o (k12 +ha2p) +k2 )03 (kg ) (ky ey +40) 7))+ (k) +hp)zp =01 (21 =2)%) 6103
X e Fo303 401 (02+03) i(o24 6|+53) kl Cy{]/ W) kz)ll/3(0)
d/2 I d/2 1 5d/2-1
00 = =T [atk, [ ans [ e, [ ao, [ o / doy +263))d/2+1
i(k0y oy (4o (k121 +hy ) +H43) o3 (kg +h) (ky +hy +40y 2+ (k) +hp)zp =01 (21—
X e Jor03+40 (02+03) l(O'z fcl+a3)§” Cy"fzﬁy gz?’;ﬂl/z kZ)WS(O)- (38)

The O, and O, can be simplified into

1
Oal = (d 2)g2 16ﬂd/2 d/Z / dﬂ]/ dl’]2 _ZZ )2 d/2

<yl ((L=nm)zy +mz) (=Chy>wa (1 = 1) za + mz1)w3(0),

2
O = gzﬂ““’%mim (-2 +d/2) Al dn; Al dny((21 — 22)?)> 4
<yl ((1=n1)z1 +mz2) (=Citr> )wa (1 = 12)z2 + mzi w3 (0). (39)
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Getting them together:

~ _a C 1-m 1
0,= F/ dn, / dn, (LIS 3+ )Wl (z1(1 = m) + zam)Twa (22 (1 = 2) + zym2)w3(0). (40)

It is worth noting that when different projectors are chosen for the spatial correlator, only the results of the O, term will be
impacted. For example, if we switch the vector in " from n = (0,0,0,1) to nf = (1,0,0,0), the 0, term will acquire an
additional negative sign.

2. Cases (b) and (c)

For case (b), after direct calculation, one reaches

N l( 3d/2 1 4 d 2 d/2 1 d/2 1 d/2 2
Ob = /ddk /ddkz/ddfz/ dﬁ]/ dﬁz/ d0'3 2_|_ ))d/Z
01 O3

i+ (4ky 0271 +k3)+03 (K| +ho) (k) +hy +4o)2))~doy 0y23

—i(o ,,71:23)5

X e 45203+4rxl(52+a3)
—k -2 <63 <¥2 + /‘éiﬁﬁi?{iﬁ;’;@) + 0151)
x y!(k)Cy, +41 | horsw(z)

2(0y + 03)

5 (52 N oo, + o5(F1 + fo +201) V”W(kz)),

41
20503 +201(0y + 03) 4D

note that the bilinear part in it is proportional to p# in leading twist, then the spinor terms can be simplified vastly

d4d2 d/21d/21d/21
0, = d%k, | d%% / d? / d / d / d %
b 167[ / / 2 & o] o) 03 (o, +03))d/2+1

—i(or 0103 \ g2 ; io)zy (kjop+o3(kj+ky—0r21))
x ¢ T e e CJ/ugz% vsw(22) (far'y (ky)). (42)
Then it can be simplified to
3 =4 Pr(d)2 -2 B I 1
0, = (1-2/d) 32”(d/2 Ly "/2/0 dmA ™ (1= nm)z)(=Choys)y(z2)y(mz).  (43)

Following the same routine, all results within this pattern can be written down directly

~ _ay C 1= 1

0, = F/ ’11/ dn, (LIR -1+ IR)Wl (1 =m)z)Twa(z)ws(mzy), (44)

- a\*C 1 1= 1 -

O, =—— F/ dm, / dny | L — 14— |y (z0) Ty (1 = m)22)w3(m222)- (45)
87 Jo 0 €R

It should be noted that case (a) possesses an additional finite component in comparison to cases (b) and (c). From the
calculations presented above, it becomes evident that this difference arises from an extra component in case (a). Notably,
there are no terms analogous to those in case (a) in the meson LCDAs calculation. Additionally, there is no UV divergence
in all these operators.

C. W-W pattern

Last but not least, the W-W pattern, corresponding to Figs. 1(j)—1(I) will be considered. After the aforementioned
preparation, the corresponding one-loop results can be easily obtained:
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O = EZE (LYY + 2] ()T (22w 0) (46)
01 =""E (LYY + 2u] (2T () (0), @)
0y ==BCE WYY 4 LYY ~ L + 2] (2o 0). (48)

Note that in these cases, only UV divergences arise when the two ends of the gluons coincide with each other.

D. One-loop results for spatial correlator

The final results for the spatial correlator to one-loop order are given as

a,C 1 1 3
M(vl,vg,O,zz,u)={1+ F<2LUV+2LUV+2L +2)}Mo(ul,v2,0,zz,ﬂ)

aCF

1= 1
/ 711/ dﬂ2{2<L112—3+ >Mo((1—m)vl +muva. (1 =m)vs +mo11,0. 2%, 1)
€IR

1
+<LIR—1+
€1

R>M0((1 —’71)1/1,1/27'72’/1712’#) + <L12R -1+

1
_)MO(Uh (1 - ’71)1/2,’121/2,22,/4)}

€IR
o CF

Cr [ 1\ /1=
- / dﬂ{(Mo((l—’7)21,22,0’1’1,#)+Mo(z],zz,;1z1,Pz,/4)){<L11R+1+> <’7>
4w Jo €IR n /4
In 1 1
+2< 11’7> } + (Mo(zy. (1 =1)22.0. P, p) +M0(Z1,Z2,ﬂZz,PZ,ﬂ)){ (LIZR 1 +_> (_’7>
" +

€IR n

Iny .
+2<—,7 ) }+ (Mo((1 = n)vy + v, 15,0, 2%, 1) + Mo (21, (1 — 1)z 4+ 121, 0, P*, )
+

Al ) G200 ) »

where M, stands for tree-level matrix element. We have checked that these results are consistent with the calculation in the
momentum space [14]. Moreover, one can see the UV and IR behaviors clearly in the coordinate space, which is convenient
for the renormalization scheme to be established below.

E. Light cone correlator

To obtain the light cone results, one just needs to perform a similar calculation as the equal-time correlator case, up to
choose 72 =0 and I' = Cysy{. The light cone results can be written down straightforwardly as a byproduct. Besides, they
will be used for matching later. Hence these light cone results will be outlined. It is important to note that three cases
corresponding to the self-energy of Wilson lines do not contribute to the light cone case. For the g-q pattern:

a,Cp 1 (1 L
0, = R dn, dnyry (21 (1 =my) + zom)Twa(z2(1 = 12) + 211m2)w2(0),
T €R .Jo 0
a,Cr 1 ! 1-m
0, = —S—F—/ d’h/ dnoyr{ (1 = m1)z0)Twa(22) w3 (1221),
7T €R.Jo 0
(XYC 1 1 1-n,
O, = —8—F—/ dn, / d’72W1T<ZI)FW2((1 - ’11)22)1//3(772Z2)- (50)
T €R.Jo 0
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For the q-W pattern:

a;,Cr 1 1 1—7
0, = _2_F_/ d,,(—> wi ((1=n)z1)Tys(22)w3(0),
T €RrR.Jo nm /4
a,Cr 1 [1 l—n
0, = —4F/ dﬂ( > wi (z20)Twa(22)ws(nz:),
T €R Jo n +
a CF 1 1 —n
0 = S R d - r F 1 - O ’
f 2 €1RA ]1( n >+Wl <Z1) WZ(( W)Z2)W3( )
a,CF 1 1 1_’7
0,= -2 L [T g (L21) yrr 2),
! 4 €IRA ”( n >+Wl atvaleys )
asCF 1 1 1_’7 T T
Oa=———— | dn|—) (1 =nz +n2)Ty2(22)y3(0) =y (1 = m)z1)lwa(z2)w3(0)),
T €R Jo n +
aSCF 1 1 -n T T
0, === F— [ dn(— =) WlG)Tyaia + (1 =m)2)ys(0) —w] @)Nwa((1 = n)2)ys(0).  (51)
T €R.Jo nm /4
Collecting them together, we have
aSCFL

1 1=n,
T(v1,v2,0,p) = Zo(v1, 15,0, ) — {QA d’h% d’?z[Io((l —m)vi +mua, (1 =n2)vs + 101, 0, 1)

8 €1R

+Io((1 - ’71)1/1, Vz,’121/1,/4>+1—0(217 (1 - ’11)1/2,’721/27@]

1 1-p
+ 2A d’7<T) {(Zo((1 =mvy + 2,12, 0.1) + Zo(wy. (1 = n)va + 5ry, 0, p))
+
+(Zo((1 =n)v1, v, 0,p) + Zo(vr, v, v, 1) + (Zo(vr, (1 = 1)v2. 0, 1) +Io(7/1,1/2,’71/2’ﬂ))}}- (52)
The light cone correlator can be normalized by dividing it by its 0-momentum matrix element

I(”] » U, V3,/4)
7(0,0,0,u)

Il
—~

9,1

98]
=~

5(1/1,1/2,1/3,/4)

IV. RATIO SCHEME IN SMALL SPATIAL SEPARATION

A. Renormalization and reduced ITD

In the subsequent sections, all UV divergences will be addressed using the widely adopted ratio scheme. Fundamentally,
the validity of the ratio scheme relies on the principle of multiplicative renormalization for composite operators. When UV
renormalization parameters can be factorized out, it becomes feasible to provide a ratio-form definition of the distribution

M(yl,yz,y3,z2,y)
M(vy,vs,13,7%) = 5
M(wvy, wv,, wvs, 2%, 1)

(54)

w=0

to cancel UV divergence out. Based on the one-loop results, it is evident that the ratio scheme will not affect the existing IR
physics. Additionally, this scheme efficiently eliminates the lattice discreteness effect over short distances. Under this
scheme, the results of the spatial correlator can be readily converted to
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C 1 1—m
2m(vl,vz,O,zz)=9)20(V1,1/2,0,z2)—u/ d’h/ "d
87 Jo 0
1
X { (L%R -1 +—) (Mo ((1 —’71)1/171/2,7721/1&2) —fmo(l/l»vz,(),zz))
€IR
+(LIR—1+ IR)(mo(Vl,(l—ﬂl)l/z, Mva,2%) = My (v1,1,,0,22))

1
e—) (Mo (1 =n1)vy +mva, (1 =ny)va +1201,0,2%) —9)20(1/1,1/2,0,22))}
R

aﬁ/ dn{(zmo(ul,(l— >v2,o,z2>+9J?o<”1’”2”7”2’z2)){(LM”;R) (1_ )++2<m7’7>+}
+(2mo((1—n)ul,uz,O,zz)+9320(V1’”2”7’“1’12)){<LIR+1+61R> <ﬂ> <lm7> }

+2(Lgf;—3+

n
+ (Mo (1 =n)vy +nv2.02,0,2%) + Mo (v, (1 =)y +11,0,2%))

Al (5. 2000} 9

It should be mentioned that the validity of multiplicative renormalization has not been proved. General proof to all orders is
still required. Furthermore, it can be verified through lattice computations, which will help clarify the range of its validity.

B. Matching and RGE

Although the light cone correlator and spatial correlator are both ITD with different coordinate choices. But one cannot
simply turn the spatial correlator to the light cone correlator by approaching the z> to zero due to the divergences.
The connection between equal-time and light cone physics can be established through a matching process:

1 1=n,
My, 12,0, 22) / an, / an, (56)
0 0

Xc(ﬂly77271/171/2»#)1(’71”72»1/1’ Uy, ,Lt) + O(Z2)7 (57)

where C (11,12, v1,V», i) stands for the matching kernel. It should be mentioned that due to the complex nature of the
dependence on #;s and v;s, we present the arguments in a nonstandard form within Z.
Combining Egs. (52) and (55), we have

a,C ! I-n
M(v1.22.0.27) = F(1.22.0,4) — F/ dm/ “dn,

x {(LYY = D)S((1 = ny)vy, vasmavys ) + (LY = 1)S(vy, (1 =y )va, mavy, )
+2(LYY = 3)S((1 = n1)vy +mva, (1 = na)vy 4 1201, 0, )
= (LYY = )G (w12, 0,p) = (LFY = 1)S (11, 15,0, p) = 2(LYY = 3)S (1,12, 0, 1)}

a,Cr [T [ - - In
-2 [ anf (0= 0 + S { e+ 0 (21 a(B0) 4
T Jo n T n )+

Iny

+ (S (1 =n)vy,0,4) + 3(v1,v2,nv2,ﬂ)){(LgV +1) (17];’7>+ i 2<_)+

n

(S (1= s + 101, 0.p) + S(v1, (1= ) +ny1,o,ﬂ)){<wy + 1)(1’7;’7>+ +2<1“7’7)+}}.
(58)

As expect, the IR structures within the light cone operator and spatial correlator are identical and cancel each other
out in the calculation. Once have extracted the light cone correlator from the spatial correlator using Eq. (58),
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one can immediately obtain the LCDAs through
performing Fourier transformation. However, given
that the ratio scheme is merely valid in the pertur-
bative region, other methods need to be invoked in other
regions. In regions beyond the perturbative region, it is
possible to utilize various models or engage in direct

d o

Mas(ylvy%ovﬂ): 4

global fitting procedures. For example, in paper [15],
the long-distance physics are addressed by the self-
renormalization.

Moreover, the evolution equation can be derived. By
following the standard procedure for constructing RGEs,
one can deduce

1 L=my
”FA dm/) dm {23 ((1 —ny)vy +muva, (1 =m)vy + o0y, 0, 1) = 23 (v, 12,0, 1)

+ 5((1 - '11)1/1,1/2,'721/17#) - 5(1/1,1/2,0’/4) + S(u,, (1 - '71)1/277721/2’/4) - 5(1/111/2,0,/4)}

A CF

+27z

1 1_7]
Ad’?(_n ) {S((1 =n)vy + 12, v, 0,0)+ (v, (1 = )y +1v1.0, )
+

+S((1=n)vy,vp.0,p) + S(vy, (1 =n)vp, 0, 1) + Sy, va, vy ) + (v, va. vy 1) 1, (59)

which is consistent with the discussions made in paper [8].
It is worth noting that unlike the cases of meson DAs or
PDFs, where the RGE can be obtained by taking derivatives
with respect to Inz?. This can be substantiated by the
following considerations. For meson DAs or PDFs, there
are only one variables need to be consider, the In z> used for
taking derivative is clear. While in the baryon case, there
are three distinct In z* dependencies, namely In z3, In z3, and
In(z; — z,)?, need to be considered, which makes it hard to
perform the derivative. Even if we were to focus on
derivatives involving just one of the Inz?, it remains
difficult to obtain a kernel-like result in a concise form.
In meson cases, the use of translation invariance allows for
a shift in the dependence on integral variables, resulting in a
more compact expression. In the baryon case, the trans-
lation invariance extends to three fields. When trying to
perform a shift operation similar to what is done in meson
cases, it always includes an additional quark. This makes it
challenging to express the results in a more concise manner.
Therefore, the equivalence between the RGE and deriva-
tives with respect to In z> of the spatial correlator are not
explicit in this context.

V. SUMMARY

To obtain the light baryon LCDAs through lattice QCD
using spatial correlation, we have calculated the spatial

correlator to one-loop order. And we have conducted a
comprehensive analysis of their UV and IR properties.
Subsequently, we applied renormalization via the ratio
scheme. The renormalized spatial correlator has been
related to the light baryon correlator through matching.
This allows for the direct extraction of the light-baryon
light cone correlator. These results provide a fundamental
methodology for extracting the baryon LCDA from first
principles. The validation of the ratio renormalization
scheme for the light baryons is based on the multiplicative
renormalization, which still need a robust proof in the
future studies. The efficiency and utility of the adopted ratio
scheme have been demonstrated, offering a practical
approach to investigate the light baryon LCDA on the
lattice. This procedure can also be extended for the
examination of other light cone physical quantities of light
baryons in collaboration with lattice QCD in future
research endeavors.
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