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The exploration of critical phenomena in phase transitions of strongly interacting matter governed by
quantum chromodynamics (QCD) is one of the goals of present ultrarelativistic heavy-ion collision
experiments at BNL and CERN. The key research direction is to locate the putative critical point on the
phase diagram of QCD linked to the chiral symmetry restoration at finite temperature and/or density. One of
the main theoretical tools used for this purpose is the fluctuations of conserved charges, such as the net-
baryon number. However, due to experimental limitations, analyses of heavy-ion collision data suffer from a
very doubtful basing of the net-proton number being a proxy for the total net-baryon number fluctuations.
In this work, we use the parity doublet model to investigate the fluctuations of the net-baryon number density
in hot and dense hadronic matter. The model accounts for chiral criticality within the mean-field
approximation. We focus on the qualitative properties and systematics of the first- and second-order
susceptibility of the net-baryon number density, and their ratios for nucleons of positive and negative parity,
as well as their correlator. We show that the fluctuations of the positive-parity nucleon do not necessarily
reflect the fluctuations of the total net-baryon number density at the phase boundary of the chiral phase
transition.We also investigate the nontrivial structure of the correlator. Furthermore, we discuss and quantify
the differences between the fluctuations of the net-baryon number density in the vicinity of the chiral and
liquid-gas phase transition in nuclear matter. We indicate a possible relevance of our results with the
interpretation of the experimental data on net-proton number fluctuations in heavy-ion collisions.

DOI: 10.1103/PhysRevD.109.014033

I. INTRODUCTION

One of the prominent tasks within high-energy physics
is to unveil the phase diagram of quantum chromody-
namics (QCD), the theory of strong interactions. Because
of great activity in the field, significant progress has been
made from both the theoretical and experimental sides.
From ab initio lattice QCD (LQCD) calculations, it is now
known that, at vanishing baryon density, strongly inter-
acting matter undergoes a smooth chiral symmetry resto-
ration transition from hadronic matter to quark-gluon

plasma at Tc ≈ 155 MeV [1–5]. However, the applicability
of the LQCD methods at high baryon densities ceases, due
to a well-known sign problem. Effective models, such as the
linear sigma [6,7] or Nambu–Jona-Lasinio (NJL) [8,9]
models, predict a first-order phase transition at low temper-
ature. Its existence would imply the presence of a putative
critical end point on the QCD phase diagram. Throughout
recent years experimental attempts were made to locate it on
the phase diagram of QCD. Despite enormous experimental
effort within the beam energy scan (BES) programs at the
Relativistic Heavy Ion Collider (RHIC) at BNL [10] and
the Super Proton Synchrotron (SPS) at CERN [11], this
pressing issue remains unresolved (for a recent review
see [12]).
One of the tools used in the experimental searches of the

critical point are fluctuations and correlations of conserved
charges. They are known to be propitious theoretical
observables in search of critical behavior at the QCD phase
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boundary [13–16] and chemical freeze-out in the heavy-ion
collisions [17–22]. In particular, fluctuations of conserved
charges have been proposed to probe the QCD critical point,
as well as the remnants of the Oð4Þ criticality at vanishing
and finite net-baryon densities [16,22–25].
Nonmonotonic behavior is also expected for various

ratios of the cumulants of the net-baryon number. Recently,
results from BES-I, which covered

ffiffiffiffiffiffiffiffi
sNN

p ¼ 7.7–200 GeV,
have shown indications of a nonmonotonic behavior of the
fourth-to-second cumulant ratio of the net-proton multi-
plicity distributions in central Auþ Au collisions [26].
However, more data and higher statistics at low collision
energies are needed to draw firm conclusions.
However, due to experimental limitations, only charged

particles created in a heavy-ion collision have a fair chance
of being measured by the detector. The net-proton number
fluctuations can be faithfully assumed to be roughly half
of the net-nucleon number fluctuations. This is a fair
assumption since isospin correlations are expected to be
small [27], due to, e.g., isospin randomization. However,
an assumption that the fluctuations of the net-proton (or
net-nucleon) number should reflect the overall fluctuations
of the net-baryon number is very doubtful. The relation
and differences between net-baryon and net-proton num-
ber fluctuations have not yet been explored in theoretical
models that consider dynamical chiral symmetry restora-
tions in a strongly interacting medium.
One of the consequences of the restoration of chiral

symmetry is the emergence of parity doubling around the
chiral crossover. This has been recently observed in LQCD
calculations in the spectrum of low-lying baryons around
the chiral crossover [28–30]. The masses of the positive-
parity baryonic ground states are found to be rather weakly
temperature dependent, while the masses of negative-
parity states drop substantially when approaching the
chiral crossover temperature. The parity doublet states
become almost degenerate with a finite mass in the vicinity
of the chiral crossover. Such properties of the chiral
partners can be described in the framework of the parity
doublet model [31–33]. The model has been applied to the
vacuum phenomenology of QCD, hot and dense hadronic
matter, as well as neutron stars [34–61].
In this paper, we apply the parity doublet model to

calculate the cumulants and susceptibilities of the net-
baryon number distribution. Specifically, we focus on the
fluctuations of individual parity channels and correlations
among them. Their qualitative behavior is examined near
the chiral, as well as the nuclear liquid-gas phase transitions.
The differences in the qualitative critical behavior of

opposite parity states were shown to be nontrivial, e.g., the
difference of the sign of contributing terms to the overall
fluctuations that are linked to the positive- and negative-
parity states [62]. The decomposition performed in this
study, however, cannot be interpreted in terms of cumulants
of the baryon number. In this work, we extend this analysis

by explicitly evaluating the fluctuations in the individual
parity channels, as well as the correlation among them.
This work is organized as follows. In Sec. II, we

introduce the hadronic parity doublet model. In Sec. III,
we introduce the cumulants and susceptibilities of the net-
baryon number. In Sec. IV, we present our results. Finally,
Sec. VI is devoted to the summary of our findings.

II. PARITY DOUBLET MODEL

The hadronic parity doublet model for the chiral sym-
metry restoration [31–33] is composed of the baryonic
parity doublet and mesons as in the Walecka model [63].
The spontaneous chiral symmetry breaking yields the mass
splitting between the two fermionic parity partners. In this
work, we consider a system with Nf ¼ 2; hence, relevant
for this study are the positive-parity nucleons and their
negative-parity partners. The fermionic degrees of freedom
are coupled to the chiral fields (σ, π) and the isosinglet
vector field (ωμ).
To investigate the properties of strongly interacting

matter, we adopt a mean-field approximation. Rotational
invariance requires that the spatial component of the ωμ

field vanishes, namely, hωi ¼ 0.1 Parity conservation, on
the other hand, dictates hπi ¼ 0. The mean-field thermo-
dynamic potential of the parity doublet model reads [62]2,3

Ω ¼ Ωþ þΩ− þ Vσ þ Vω; ð1Þ

with

Ω� ¼ γ�

Z
d3p
ð2πÞ3 T½ln ð1 − f�Þ þ ln ð1 − f̄�Þ�; ð2Þ

where γ� ¼ 2 × 2 denotes the spin-isospin degeneracy
factor for both parity partners, and f� ðf̄�Þ is the particle
(antiparticle) Fermi-Dirac distribution function,

f� ¼ 1

1þ eðE�−μNÞ=T ;

f̄� ¼ 1

1þ eðE�þμNÞ=T ; ð3Þ

where T is the temperature, the dispersion relation E� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

�
p

, and the effective baryon chemical potential
μN ¼ μB − gωω. The mean-field potentials read

1Since ω0 is the only nonzero component in the mean-field
approximation, we simply denote it by ω0 ≡ ω.

2The model assumes isospin symmetry.
3We present the details of the Lagrange formulation of the

model in Appendix A.
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Vσ ¼ −
λ2
2
Σþ λ4

4
Σ2 −

λ6
6
Σ3 − ϵσ; ð4aÞ

Vω ¼ −
m2

ω

2
ω2; ð4bÞ

where Σ ¼ σ2 þ π2, λ2 ¼ λ4f2π − λ6f4π −m2
π , and ϵ ¼

m2
πfπ . mπ and mω are the π and ω meson masses,

respectively, and fπ is the pion decay constant.
The masses of the positive- and negative-parity baryonic

chiral partners, N�, are given by

m� ¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2σ2 þ 4m2

0

q
∓ bσ

�
; ð5Þ

where a, b are combinations of Yukawa coupling constants
[62], and m0 is the chirally invariant mass parameter. We
note that in the parity doublet model, the chiral symmetry
breaking yields the mass splitting between the chiral
partners. Therefore, the order parameter for the chiral
symmetry breaking is the mass difference, m− −mþ ¼ bσ.
In-medium profiles of the mean fields are obtained by

extremizing the thermodynamic potential, Eq. (1), leading
to the following gap equations:

0 ¼ ∂Ω
∂σ

¼ ∂Vσ

∂σ
þ sþ

∂mþ
∂σ

þ s−
∂m−

∂σ
;

0 ¼ ∂Ω
∂ω

¼ ∂Vω

∂ω
þ gωðnþ þ n−Þ; ð6Þ

where the scalar and vector densities are

s� ¼ γ�

Z
d3p
ð2πÞ3

m�
E�

ðf� þ f̄�Þ ð7Þ

and

n� ¼ γ�

Z
d3p
ð2πÞ3 ðf� − f̄�Þ; ð8Þ

respectively.
In the grand-canonical ensemble, the net-baryon number

density can be calculated as follows:

nB ¼ −
dΩ
dμB

����
T
¼ nþ þ n−; ð9Þ

where n� are the vector densities of the baryonic chiral
partners.

The positive-parity state, Nþ, corresponds to the
nucleon Nð938Þ. Its negative parity partner, N−, is
identified with Nð1535Þ [64]. Their vacuum masses are
shown in Table I. The value of the parameter m0 has to be
chosen so that a chiral crossover is realized at finite
temperature and vanishing chemical potential. The model
predicts the chiral symmetry restoration to be a crossover
for m0 ≳ 700 MeV. Following the previous studies of the
parity-doublet-based models [34–45,48–60,62], as well as
recent lattice QCD results [28–30], we choose a rather
large value, m0 ¼ 750 MeV. We note, however, that the
results presented in this work qualitatively do not depend
on the choice ofm0, as long as the chiral crossover appears
at μB ¼ 0. The parameters a and b are determined by the
aforementioned vacuum nucleon masses and the chirally
invariant mass m0 via Eq. (5). The remaining parameters,
gω, λ4 and λ6, are fixed by the properties of the nuclear
ground state at zero temperature, i.e., the saturation
density, binding energy, and compressibility parameter
at μB ¼ 923 MeV. The constraints are as follows:

nB ¼ 0.16 fm−3; ð10aÞ

E=A −mþ ¼ −16 MeV; ð10bÞ

K ¼ 9n2B
∂
2ðE=AÞ
∂n2B

¼ 240 MeV: ð10cÞ

We note that the six-point scalar interaction term in
Eq. (4a) is essential to reproduce the empirical value of
the compressibility in Eq. (10c) [59].
The compilation of the parameters used in this paper is

found in Table I. For this set of parameters, we obtain the
pseudocritical temperature of the chiral crossover at van-
ishing baryon chemical potential, Tc ¼ 209 MeV. In Fig. 1
we show the temperature dependence of the masses of the
chiral partners. At low temperatures, chiral symmetry is
broken and they have different masses. As chiral symmetry
gets restored, their masses converge towards the chirally
invariant mass m0. The mass of the N− monotonically
decreases towards m0. On the other hand, the mass of Nþ
develops a shallow minimum close to the chiral restoration
and converges tom0 from below. The derivatives ofm� can
be readily calculated from Eq. (5), namely

∂m�
∂σ

¼ 1

2

 
a2σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2σ2 þ 4m2
0

p ∓ b

!
: ð11Þ

TABLE I. Physical inputs in matter-free space and the model parameters used in this work. See Sec. II for details.

m0 [GeV] mþ [GeV] m− [GeV] mπ [GeV] fπ [GeV] mω [GeV] λ4 λ6f2π gω a b

0.750 0.939 1.500 0.140 0.93 0.783 28.43 11.10 6.45 20.68 6.03
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Note that for the positive-parity state, a minimum value of
the mass, mminþ , exists at

σmin ¼
2bm0

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − b2

p ; ð12Þ

while the mass of the negative-parity state monotonically
decreases with σ as the chiral symmetry gets restored. We
also note that σmin > 0; Thus, the positive-parity state
attains a minimum mass for any choice of m0 > 0 [62].
At low temperatures, the model predicts sequential first-

order nuclear liquid-gas and chiral phase transitions with
critical points located at T lg ¼ 16 MeV, μB ¼ 909 MeV,
(nB ¼ 0.053 fm−3 ¼ 0.33n0) and Tch ¼ 7 MeV, μB ¼
1526 MeV (nB ¼ 1.25 fm−3 ¼ 7.82n0), respectively. In
Fig. 2, we show the parity doublet model phase diagram.
At low temperature, the nuclear liquid-gas and chiral phase
transitions are sequential. As temperature increases, they
combine and form a single crossover transition at vanishing
baryon chemical potential. We note that the exact location of
the chiral phase transition at low temperature depends on,
e.g., the mass of the negative-parity state [39]. At zero
temperature it is expected that it occurs roughly at μB ∼m−.
We note that the minimum of mþ is obtained for any

trajectory from chirally broken to chirally symmetric phase.
Remarkably, σmin is reached at T and μB which are close to
the chiral phase boundary (see Fig. 2). We emphasize that
the properties discussed in this work are expected to appear
independently of the position of the chiral critical point on
the phase diagram. Although the dependence of mþ on σ is
not universal and model dependent, we stress that the
calculations with the functional renormalization group
techniques preserve the same in-medium behavior [65].

At present, only the first-principle LQCD calculations can
provide a reliable answer.
We also note that the parity doublet model, considered

here, is only valid in describing chiral symmetry restoration
from the side of the hadronic phase. Thus, it does not
contain any information about the transition to deconfined
quark matter. However, at vanishing and small chemical
potential the smooth deconfinement transition is simulta-
neous with the restoration of chiral symmetry [1–5].
Therefore, the applicability of the parity doublet model
should be adequate up to the chiral crossover temperature
and density, although the interplay between chiral sym-
metry restoration and deconfinement in high-density matter
is still not known.
In the next section, we discuss the general structure of

the second-order susceptibilities of the net-baryon number
density for positive- and negative-parity chiral partners to
quantify their roles near the second-order phase transition
at finite density.

III. CUMULANTS AND SUSCEPTIBILITIES
OF THE NET-BARYON NUMBER

For a system consisting of NB ¼ Nþ þ N− baryons with
N� being the net number of positive/negative-parity
baryons, the mean can be calculated as

hNBi≡ κB1 ¼ κþ1 þ κ−1 ; ð13Þ

and the variance,

hδNBδNBi≡ κB2 ¼ κþþ
2 þ κ−−2 þ 2κþ−

2 ; ð14Þ

FIG. 1. Masses of the baryonic chiral partners at finite temper-
ature and vanishing baryon chemical potential. The temperature
is normalized to the chiral crossover temperature, Tc, at μB ¼ 0.
The dotted, blue line shows the chirally invariant mass, m0. The
vertical line marks the chiral crossover transition.

FIG. 2. Phase diagram obtained in the parity doublet model.
Shown are the liquid-gas (red, solid/dotted line) and chiral (black,
solid/dash-dotted line) phase transition/crossover lines. Circles
indicate critical points below which the transitions are of the first
order. The lines are obtained from the minima of ∂σ=∂μ� (see text
for details). The blue, dashed line shows the line where the mass
of the positive-parity state has a minimum (see text for details).
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where

κα1 ¼ hNαi;
καβ2 ¼ hδNαδNβi: ð15Þ

Notably κ�1 , κ
þþ
2 and κ−−2 are the cumulants of the Nþ and

N− distributions; κþ−
2 is the correlation between Nþ

and N−.
In general, the cumulants of the baryon number are

defined as

κBn ≡ Tn d
n logZ
dμnB

����
T
; ð16Þ

where Z is the partition function. Because the thermody-
namic potentialΩ is related to the grand-canonical partition
function through Ω ¼ −T logZ=V, one may relate the
cumulants with the susceptibilities of the net-baryon
number in the following way:

κBn ¼ VT3χBn ; ð17Þ

where V is the volume of the system and

χBn ≡ −
dnΩ̂
dμ̂nB

����
T
; ð18Þ

with Ω̂ ¼ Ω=T4 and μ̂B ¼ μB=T. For example, κB1 ¼
VχB1 ¼ VnB ¼ hNBi is the mean of the baryon number.
We note that hNBi ¼ hNþi þ hN−i is the sum of the means
of the net number of particles with a given parity; thus
κB1 ¼ κþ1 þ κ−1 , where κα1 ¼ hNαi.
To be able to connect the individual cumulants καβn to

susceptibilities, we need to rewrite the mean-field thermo-
dynamic potential in terms of newly defined chemical
potentials, μ� for positive- and negative-parity states as
follows:

Ω ¼ Ωþðμþ; T; σðμþ; μ−Þ;ωðμþ; μ−ÞÞ
þ Ω−ðμ−; T; σðμþ; μ−Þ;ωðμþ; μ−ÞÞ
þ Vσðσðμþ; μ−ÞÞ þ Vωðωðμþ; μ−ÞÞ: ð19Þ

Such a separation into separate chemical potentials is
possible in the mean field approximation which is a single
particle theory (see detailed discussion in [66]). To be
thermodynamically consistent, one needs to set μ� ¼ μN ¼
μB − gωω at the end of the calculations and before numeri-
cal evaluation. We note that μ� are independent variables.
The net-baryon density is then given as

nB ¼ nþ þ n−; ð20Þ

where n� are the net densities given by

n� ¼ −
dΩ
dμ�

����
T;μ�¼μN

¼ −
∂Ω
∂μ�

−
∂Ω
∂σ

∂σ

∂μ�
−
∂Ω
∂ω

∂ω

∂μ�
¼ −

∂Ω
∂μ�

: ð21Þ

The last equality holds due to the stationary conditions. We
stress that the derivative should be taken not only at constant
temperature but also at μþ ¼ μ− ¼ μN .
Given that μ� are independent, one recognizes that

Eq. (21) agrees with the definition in Eq. (9). Likewise,
the second-order susceptibility can be expressed as follows:

χB2 ¼ χþþ
2 þ χ−−2 þ 2χþ−

2 ; ð22Þ

where χþþðχ−−Þ are the susceptibilities of the positive
(negative) parity and χþ− gives the correlations between
them, i.e., correlations between vector densities. The
individual terms in the above equation are given as follows:

χαβ2 ¼ 1

VT3
καβ2 ¼ −

d2Ω̂
dμ̂αdμ̂β

����
T;μα¼μβ¼μN

; ð23Þ

where μ̂x ¼ μx=T, and x ¼ α, β correspond to the particle
species and μαs correspond to their effective chemical
potentials μ�. Detailed derivation of the cumulants καβ2
is presented in Appendix B. We notice that, under the
mean-field approximation, χαβ2 ¼ χβα2 , thus χþ−

2 ¼ χ−þ2 .
Furthermore, we assume isospin symmetry, thus χþþ

2 is
the net-nucleon number susceptibility. Consequently,
the susceptibility of the net-proton number density is
χpp2 ≈ 1=2χþþ

2 . This is a fair assumption since isospin
correlations are expected to be small [27].
Event-by-event cumulants and correlations are extensive

quantities. They depend on the volume of the system and its
fluctuations, which are unknown in heavy-ion collisions.
The volume dependence, however, can be canceled out by
taking the ratio of cumulants. Therefore, it is useful to
define ratios of the cumulants of the baryon number, which
may also be expressed through susceptibilities,

RB
n;m ≡ κBn

κBm
¼ χBn

χBm
: ð24Þ

In the following, we focus on the ratios of the second
and first-order cumulants of different parity distributions.
Therefore, it is useful to define

Rαβ
2;1 ≡ καβ2ffiffiffiffiffiffiffiffiffi

κα1κ
β
1

q ¼ χαβ2ffiffiffiffiffiffiffiffiffi
χα1χ

β
1

q : ð25Þ

We note that in general the ratios, Rαβ
n;m, are not additive,

e.g., Rþþ
2;1 þ R−−

2;1 þ 2Rþ−
2;1 ≠ RB

2;1.
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In the following, we will also compare our results with the
truncated hadron resonance gas (tHRG) model, which in the
relevant baryonic sector contains contributions only from
nucleons Nþ and their parity partners N−. The HRG model
is widely used for the description of matter under extreme
conditions, e.g., in the context of heavy-ion collision
phenomenology [67–72]. Commonly used implementations
of the HRG employ vacuum hadron masses in the hadronic
phase and hence do not include possible in-medium effects.
Several extensions of the HRGmodel have been proposed to
quantify the LQCD equation of state and various fluctuation
observables. They account for consistent implementation of
hadronic interactions within the S-matrix approach [73], a
more complete implementation of a continuously growing
exponential mass spectrum and/or possible repulsive inter-
actions among constituents [70,71,74–78]. Nevertheless, it is
challenging to identify the role of different in-medium
effects and hadronic interactions on the properties of
higher-order fluctuations of conserved charges.
The thermodynamic potential of the tHRG model is a

mixture of uncorrelated ideal gases of stable N� particles:

ΩtHRG ¼
X
x¼�

Ωx; ð26Þ

with Ωx given by Eq. (2). The masses of N� are taken to be
the vacuum masses (see Table I) and μN ¼ μB. The net-
baryon density and its susceptibility are obtained through
Eqs. (9) and (18), respectively. Thus, in the tHRG model,
one has

χB;tHRG2 ¼ χþþ
2 þ χ−−2 : ð27Þ

The susceptibilities introduced in Eq. (23), can be
evaluated analytically by differentiating Eq. (19). Explicit
calculations yield

χαβ2 ¼ −
∂σ

∂μ̂β

�
∂
2Ω̂
∂σ2

∂σ

∂μ̂α
þ ∂

2Ω̂
∂σ∂ω

∂ω

∂μ̂α
−
∂n̂α
∂σ

�

−
∂ω

∂μ̂β

�
∂
2Ω̂
∂ω2

∂ω

∂μ̂α
þ ∂

2Ω
∂σ∂ω

∂σ

∂μ̂α
−
∂n̂α
∂ω

�

þ ∂σ

∂μ̂α

∂n̂β
∂σ

þ ∂ω

∂μ̂α

∂n̂β
∂ω

þ ∂n̂α
∂μ̂β

; ð28Þ

where n̂α=β ¼ nα=β=T3, and nα=β are the net densities defined
in Eq. (21). We note that the last term, ∂n̂α=∂μ̂β ¼ 0

for α ≠ β.
To evaluate Eq. (28), one needs to extract the derivatives

of the mean fields with respect to chemical potentials
μ�. They can be carried out by differentiating the gap
equations, namely

d
dμ̂α

�
∂Ω̂
∂σ

�����
T;μ̂α¼μ̂N

¼ 0;

d
dμ̂α

�
∂Ω̂
∂ω

�����
T;μ̂α¼μ̂N

¼ 0: ð29Þ

Writing them explicitly and isolating ∂σ=μ̂α, ∂ω=∂μ̂α yields

∂σ

∂μ̂α
¼
 

∂
2Ω̂

∂σ∂ω
∂
2Ω̂
∂ω2

∂n̂α
∂ω

−
∂n̂α
∂σ

!
=
 
∂
2Ω̂
∂σ2

−
ð ∂

2Ω̂
∂σ∂ωÞ2
∂
2Ω̂
∂ω2

!
;

∂ω

∂μ̂α
¼ −

�
∂n̂α
∂ω

þ ∂
2Ω̂

∂σ∂ω

∂σ

∂μ̂α

�
= ∂

2Ω̂
∂ω2

: ð30Þ

We note that corresponding derivatives of the mean fields
with respect to μ̂β can be found similarly upon replacing
α → β. The above derivatives can be plugged into Eq. (28).
Now, calculating Eq. (28) amounts to providing the values
of the mean fields and evaluating them numerically.
Detailed evaluation of ∂σ=μ̂α and ∂ω=μ̂α is presented in
Appendix C.

IV. RESULTS

Using Eq. (28), we evaluate the susceptibilities of the net
number densities for the positive- and negative-parity chiral
partners, as well as the correlations among them within the
parity doublet model. The results for vanishing baryon
chemical potential are shown in Fig. 3. The net-baryon
susceptibility obtained in the tHRG gas model increases
monotonically and does not resemble any critical behavior.
This is expected because the partition function of the tHRG
gas model is just a sum of ideal, uncorrelated particles

FIG. 3. Susceptibilities, χαβ2 , at vanishing baryon chemical
potential. Shown are also the net-baryon number susceptibility
χB2 and the corresponding result, χB;tHRG2 obtained in the tHRG
model. We note that the correlator, χþ−

2 , is shown with the
negative sign. The vertical, dotted line marks the chiral phase
transition.
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[cf. Eq. (26)] with vacuum hadron masses. The net-baryon
susceptibility obtained in the parity doublet model deviates
from the tHRG gas result. The increase around Tc and
saturation above it is a bulk consequence of the interplay
between critical chiral dynamics with in-medium hadron
masses and repulsive interactions [79]. Around Tc, the
susceptibilities χþþ

2 and χ−−2 develop a swift increase due to
chiral symmetry restoration, and therefore the change of
their effective masses. They continue to grow at higher
temperatures. Up to Tc, the correlation χþ−

2 is almost
negligible. The reason is that the N− resonance is thermally
suppressed at low temperatures due to its high mass. The
correlation only becomes relevant in the vicinity of the
chiral crossover, where the negative-parity state becomes
swiftly populated. The full net-baryon number susceptibility
saturates and gradually decreases to zero at high temper-
atures due to the nonvanishing correlation between the
baryonic chiral partners. We note that χþ−

2 is negative at
vanishing μB.

Next, we turn to finite baryon chemical potential. In
Fig. 4, we show the susceptibilities χαβ2 for different
temperatures. At T ¼ 30 MeV, the net-baryon number
susceptibility develops a peak at μB < 1 GeV, which is a
remnant of the liquid-gas phase transition. At higher
chemical potentials, it develops a plateau with a small
peak around μB ¼ 1.4 GeV, which is a remnant of the
chiral phase transition. The net-nucleon susceptibility,
χþþ
2 , overlaps with χB2 at small μB, which is expected
due to thermal suppression of the negative-parity state.
On the other hand, both χþþ

2 and χ−−2 develop strong
peaks around μB ∼ 1.4 GeV. Interestingly, the correlator
becomes negative, and χþ−

2 features a minimum, which is
of similar magnitude as the peaks in χþþ

2 and χ−−2 .
Therefore, the negative correlation between the baryonic
chiral partners causes the suppression of the net-baryon
susceptibility around the chiral crossover [cf. Eq. (22)].
The structure is similar at T ¼ 50 MeV.

FIG. 4. Susceptibilities, χαβ2 , at different temperatures. Also shown is the net-baryon number susceptibility, χB2 . We note that the
correlator, χþ−

2 , is shown with the negative sign. The dashed and dotted vertical lines mark baryon chemical potentials for the liquid-gas
and chiral crossover transitions, respectively. The insets in the top panels show χB2 in the vicinity of the chiral crossover transition.
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At low temperature, the liquid-gas and chiral phase
transitions are well separated. Higher temperature gives
rise to a more complicated structure; the two crossover lines
become closer and finally merge (see Fig. 2). This is seen in
the bottom panels of Fig. 4. The χB2 features a peak around
the chemical potential where the transitions happen. This is
not reflected in the individual parity fluctuations; χ−−2
swiftly increase at the chiral crossover, while the correlator
χþ−
2 starts to decrease.
In Fig. 5, we plot the ratios Rαβ

2;1 for different temper-
atures. At low temperatures, the ratio Rþþ

2;1 is sensitive to
both liquid-gas and chiral crossovers, while R−−

2;1 is sensitive
only to the latter transition. Notably, at the chiral crossover,
the peak R−−

2;1 is much stronger than in Rþþ
2;1 . On the other

hand, similarly to χB2 , the ratio R
B
2;1 is sensitive to the liquid-

gas phase transition; however, it becomes suppressed as
compared to Rþþ

2;1 and R−−
2;1 , and the enhancement due to

criticality is essentially invisible at the chiral phase

boundary. We note that in the close vicinity of the chiral
critical end point, the RB

2;1 ratio indeed shows critical
behavior. However, this happens at much lower temper-
atures. At small μB, the ratio R

þ−
2;1 is negligibly close to zero

and deviates from it only when the negative-parity chiral
partner becomes populated, i.e., R−−

2;1 deviates from unity.
Its minimum value is obtained in the vicinity of the chiral
crossover. This signals the sensitivity of the correlation
between the baryonic chiral partners to the onset of chiral
symmetry restoration. Interestingly, R−−

2;1 features a well-
pronounced peak at high temperatures in the vicinity of the
chiral transition, while other quantities do not.
To quantify the differences of fluctuations in the vicinity

of the liquid-gas and chiral phase transitions, we calculate
the fluctuations as functions of temperature along the
trajectories obtained by tracing the remnants of these
two transitions, i.e., the corresponding minima of
∂σ=∂μþ and ∂σ=∂μ− (see the phase diagram in Fig. 2).

FIG. 5. Scaled variances, Rαβ
2;1 for different temperatures. Also shown is the ratio RB

2;1, for the net-baryon number susceptibility.
We note that the ratio, Rþ−

2;1 , is shown with the negative sign. The dashed and dotted vertical lines mark baryon chemical potentials
for the liquid-gas and chiral crossover transitions, respectively. In the top panels, the insets show RB

2;1 in the vicinity of the chiral
crossover transition.
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The temperature dependence of Rαβ
2;1 along the remnant of

the liquid-gas phase transition is shown in the left panel
of Fig. 6. The ratio Rþþ

2;1 increases toward the critical point
of the liquid-gas phase transition, located at T ≃ 16 MeV.
On the other hand, R−−

2;1 stays close to unity, due to thermal
suppression of the negative-parity nucleon. As a result the
Rþ−
2;1 vanishes. Therefore, as the critical point of the liquid-

gas phase transition is approached, the system is dominated
by the positive-parity state and the fluctuations are entirely
due to its contribution. In the right panel of Fig. 6, we show
the same quantities along the chiral crossover line. All
quantities diverge at the chiral critical point, which is
located at T ≃ 7 MeV. In this case, the contribution from
the negative-parity state is not negligible close to the critical
point. Their appearance increases the strength of the
correlation between the chiral partners, which becomes
large and negatively divergent. In turn, the ratio RB

2;1

decreases and starts diverging only in the close vicinity
of the chiral critical point. Our results indicate that the net-
proton fluctuations do not necessarily reflect the net-baryon
fluctuations at the chiral phase boundary.
As we have observed, the susceptibility of the negative-

parity state becomes dominant in the vicinity of the chiral
critical region. This is even more readily seen in the ratio of
the second to first-order susceptibility. Our finding suggests
the fluctuations of the negative-parity state provide a good
signal to identify the chiral critical point. We remark,
however, on the simplified nature of this model calcula-
tions. In the current model, the negative-parity state,
N−ð1535Þ, is treated as a stable particle rather than
resonance with a finite width. However, including finite-
width effects in a self-consistent way within the relativistic
mean-field approach is not a well-laid procedure. To
stipulate more precise expectations of the role of decays
in fluctuation observable would require, e.g., to account for

the imaginary part of the self-energy of N−ð1535Þ, as done,
e.g., in [80] in the context of dense nuclear matter. This is
one of the issues of our forthcoming studies.

V. EFFECT OF REPULSION

The repulsive interactions have little to no effect on the
chiral crossover transition at small baryon chemical poten-
tials. This is expected due to the vanishing of the ω mean
field at μB ¼ 0. In Fig. 7, we show the susceptibilities for
different values of the repulsive coupling gω and other
parameters kept fixed at μB ¼ 0. As expected, for vanishing
coupling, fluctuations are the largest, and the correlator χþ−

2

vanishes. As the value of gω increases, the fluctuations of
the positive- and negative-parity state become suppressed.
At the same time, finite gω implies finite correlations,

FIG. 6. Ratios Rαβ
2;1 along the crossover liquid-gas (left panel) and chiral (right panel) transition lines defined as the minima of ∂σ=∂μ�

(see text for details). Note that in the right panel Rþ−
2;1 is shown with a negative sign.

FIG. 7. Susceptibilities, χαβ2 at vanishing baryon chemical
potential for different values of the repulsive coupling gω. The
solid, dashed and dotted lines show χþþ

2 , χ−−2 , and −χþ−
2 ,

respectively.
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which otherwise vanish at μB ¼ 0. With increasing the
coupling, the correlations become more negative, further
suppressing the total net-baryon number fluctuations. Thus,
it is the correlation between the baryonic chiral partners that
nontrivially modifies the net-baryon number fluctuations.
While in-medium effects due to chiral symmetry resto-

ration may spoil agreement between the HRG model and
LQCD results on the second-order susceptibilities, it can be
potentially restored by tuning the strength of repulsive
interactions. This can be deduced from Fig. 8, where we
compare susceptibilities of the net-baryon number density
χB2 for different values of the repulsive coupling constant.
For vanishing repulsive coupling, the susceptibility swiftly
increases and overestimates the tHRG gas result in the
vicinity of the chiral crossover. In general, as the repulsive
coupling increases, the fluctuations tend to decrease [81].
For twice the value of the original coupling, the suscep-
tibility already underestimates the tHRG gas result.
Therefore, by choosing a value somewhere in between,
the in-medium effects would cancel out and the agreement
with tHRG gas fluctuations would be restored.
To see the effect of the repulsion on the phase structure,

in Fig. 9, we plot the phase diagram of the model in the
T − μB plane for different values of the repulsive coupling
gω. In general, smaller repulsive coupling yields the region
where χþ−

2 > 0 more tilted to the left. Nevertheless, the
qualitative structure remains the same, regardless of the
presence of the repulsive forces. We note that in Fig. 9 we
do not show results for T < 20, where the liquid-gas and
chiral transitions become of first order and additional
effects, such as nonequilibrium spinodal decomposition
have to be addressed. These interesting effects have been
already explored in the context of the Nambu–Jona-Lasinio
model [82,83]. This is, however, beyond the scope of the
current work and we plan to elaborate on this elsewhere.

Now, we focus on the properties of the correlator, in
particular on the change of its sign at finite chemical
potential. Because the qualitative behavior of the correlator
does not depend on the repulsive interactions, we consider
gω ¼ 0 and neglect the vector channel. Then, the correlator
in Eq. (23) simplifies to the following:

χαβ2 ¼ 1

∂
2Ω̂
∂σ2

∂n̂α
∂σ

∂n̂β
∂σ

¼ 1

∂
2Ω̂
∂σ2

∂n̂α
∂mα

∂n̂β
∂mβ

∂mα

∂σ

∂mβ

∂σ
: ð31Þ

Since the curvature ∂
2Ω̂
∂σ2

> 0 is positive, the sign change in
the correlator at finite baryon chemical potential is related to
the change of the sign of ∂m�=∂σ. From Eq. (11), one sees
that at σmin, the correlator χ

þ−
2 changes sign, while χþþ

2 and
χ−−2 stay positive. Indeed, we have confirmed this numeri-
cally for vanishing repulsive interactions. Nevertheless, in a
more realistic scenario with repulsive interactions, they
provide additional sources of negative correlations. This
is seen in Fig. 9, where the vanishing χþ−

2 lines lie at
μB < 1 GeV, where σ > σmin (compare with Fig. 2).
Therefore, the overall behavior of the correlator is given
by a nontrivial interplay between chiral symmetry restora-
tion and repulsive interactions.

VI. CONCLUSIONS

We have investigated the net-baryon number density
fluctuations and discussed the qualitative role of chiral
criticality of hadronic matter at finite temperature and
baryon chemical potential. In particular, we have studied
for the first time the susceptibilities of the positive- and
negative-parity chiral partners, as well as their correla-
tions. To this end, we have used the parity doublet model
in the mean-field approximation. We have analyzed the

FIG. 8. Susceptibility of the net-baryon number density at μB ¼
0 as a function of temperature for different values of the repulsive
coupling constant gω.

FIG. 9. Normalized phase diagram for different values
of repulsive coupling gω. The lines correspond to vanishing
correlator χþ−

2 and the areas enclosed by them show regions
where χþ−

2 > 0.
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thermodynamic properties and the susceptibility of the
net-baryon number.
We have confirmed that, in the vicinity of the liquid-gas

phase transition, the net baryon number density is domi-
nated by the contribution of the positive-parity state. In
contrast, this does not need to be the case at the boundary of
the chiral crossover. We find that there, the fluctuations
of the net-baryon number density are suppressed, compared
to the positive-parity state fluctuations (i.e. net nucleon).
This qualitative difference is not only due to the presence of
the negative-parity state but largely due to the nontrivial
correlation between the chiral partners.
The qualitative differences in the net-nucleon and net-

baryon fluctuations can also be useful in searching for
possible critical points in the QCD phase diagram. In
particular, our results bring significant and nontrivial
differences in the critical behavior of the net-nucleon
fluctuations in the vicinity of the liquid-gas and chiral
phase transitions. This strongly suggests that in order to
fully interpret the critical properties of the matter created in
heavy-ion collisions, especially in the forthcoming large-
scale nuclear experiments FAIR at GSI and NICA in Dubna,
it is essential to consistently incorporate and understand the
chiral in-medium effects carried by the baryonic parity
partners and their correlations.
To reach further theoretical insights and understanding

of the QCD phase diagram, it is important to determine
correlations between baryonic chiral partners of opposite
parity in lattice QCD calculations. Furthermore, to elabo-
rate on the relationship between net-nucleon and net-
baryon fluctuations, it is desirable to perform more refined
calculations of the higher-order susceptibilities and their
ratios. It is also useful to understand the role of finite width
and decay properties of the negative parity states on the
fluctuation observables. Work in these directions is in
progress and will be reported elsewhere.
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APPENDIX A: PARITY DOUBLET MODEL
LAGRANGIAN

To explore the criticality linked to the chiral symmetry
restoration and its consequences in baryonic matter at
finite temperature and density we adopt the parity doublet
model [31–33]. In the conventional Gell-Mann–Levy
model of mesons and nucleons [84], the nucleon mass
is entirely generated by the nonvanishing expectation value
of the sigma field. Thus, the nucleon inevitably becomes
massless when the chiral symmetry is restored. This is led
by the particular chirality assignment to the nucleon parity
doublers, where the nucleons are assumed to be trans-
formed in the same way as the quarks are under chiral
rotations.
More general allocation of the left- and right-handed

chiralities to the nucleons, the mirror assignment, was
proposed in [31]. This allows an explicit mass term for
the nucleons, and consequently, the nucleons stay massive
at the chiral restoration point. For more details, see
Refs. [31–33].
In the mirror assignment, under SUð2ÞL × SUð2ÞR

rotation, two chiral fields ψ1 and ψ2 are transformed as
follows:

ψ1L → Lψ1L; ψ1R → Rψ1R;

ψ2L → Rψ2L; ψ2R → Lψ2R; ðA1Þ

where ψ i ¼ ψ iL þ ψ iR, L∈ SUð2ÞL and R∈ SUð2ÞR. In
this work, we consider a system with Nf ¼ 2, hence,
relevant for this study are the lowest nucleons and their
chiral partners. The hadronic degrees of freedom are
coupled to the chiral fields ðσ; πÞ, and the isosinglet vector
field ωμ. The nucleon part of the Lagrangian in the mirror
model reads

LN ¼ iψ̄1=∂ψ1 þ iψ̄2=∂ψ2 þm0ðψ̄1γ5ψ2 − ψ̄2γ5ψ1Þ
þ g1ψ̄1ðσ þ iγ5τ · πÞψ1 þ g2ψ̄2ðσ − iγ5τ · πÞψ2

− gωψ̄1=ωψ1 − gωψ̄2=ωψ2; ðA2Þ

where g1, g2, and gω are the baryon-to-meson coupling
constants and m0 is a mass parameter. Note that we assume
the same vector coupling strength for both parity partners.
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The mesonic part of the Lagrangian reads

LM ¼ 1

2
ð∂μσÞ2 þ

1

2
ð∂μπÞ2 −

1

4
ðωμνÞ2 − Vσ − Vω; ðA3Þ

where ωμν ¼ ∂μων − ∂νωμ is the field-strength tensor of the
vector field, and the potentials are defined in Eq. (4).
The full Lagrangian of the parity doublet model is

given by

L ¼ LN þ LM: ðA4Þ

The mass eigenstates of the parity partners, N� are
obtained by diagonalizing the mass matrix for ψ1 and ψ2:

�
Nþ
N−

�
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 cosh δ
p

 
eδ=2 γ5e−δ=2

γ5e−δ=2 −eδ=2

!�
ψ1

ψ2

�
; ðA5Þ

where sinh δ ¼ −aσ=2m0, and a ¼ g1 þ g2. In the diagonal
basis, the masses of the positive- and negative-parity
baryonic chiral partners, N�, are given by

m� ¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2σ2 þ 4m2

0

q
∓ bσ

�
; ðA6Þ

where b ¼ g1 − g2. From Eq. (A6), it is clear that, in
contrast to the naive assignment under chiral symmetry, the
chiral symmetry breaking generates only the splitting
between the two masses. When the symmetry is restored,
the masses become degenerate, m�ðσ → 0Þ → m0.

APPENDIX B: CUMULANTS
OF THE NET-BARYON NUMBER

In the following, we present a derivation of the second-
order cumulants of the positive/negative parity baryons and
their correlator.
We start by recalling that δNB ¼ NB − hNBi. From this,

it follows that the variance can be written as

hδNBδNBi ¼ hδN2
Bi ¼ hðNB − hNBiÞ2i

¼ hN2
Bi þ hhNBi2i − 2hNBhNBii

¼ hN2
Bi þ hNBi2 − 2hNBi2

¼ hN2
Bi − hNBi2; ðB1Þ

which is a standard form of the variance of the distribution
of variable NB.
For a system consisting of NB ¼ Nþ þ N− baryons,

Eq. (B1) can be rewritten as

hδNBδNBi ¼ hðNþ þ N−Þ2i − hNþ þ N−i2
¼ hN2þi þ hN2

−i þ 2hNþN−i
− hNþi2 − hN−i2 − 2hNþihN−i

≡ κþþ
2 þ κ−−2 þ 2κþ−

2 ; ðB2Þ

where

καβ2 ¼ hNαNβi − hNαihNβi ¼ hδNαδNβi; ðB3Þ

for α; β ¼ � referring to baryons with positive/negative
parity. κþþ

2 , κ−−2 are the cumulants in the individual parity
channels and κþ−

2 is their correlator.
In the grand-canonical ensemble the partition function

Z ¼ ZðT; V; μBÞ is given as

Z ¼
X
NB

eμBNB=TZC ¼
X
NB

eμ̂BNBZC; ðB4Þ

where ZC ¼ ZCðT; V; NBÞ is the canonical partition
function and μ̂x ¼ μx=T.
The cumulants are defined as derivatives of the partition

function with respect to a chemical potential. For a system
composed of NB ¼ Nþ þ N−, we may rewrite the expo-
nent as ðμ̂BNþ þ μ̂BN−Þ. Finally, one may relabel the
chemical potentials as ðμ̂þNþ þ μ̂−N−Þ, keeping in mind
that μ̂þ ¼ μ̂− ¼ μ̂B. This trick allows us to take derivatives
directly with respect to individual chemical potentials, μ̂�.
The first derivative with respect to chemical potential, μ̂α,

d log Z
dμ̂α

����
T
¼ 1

Z

X
Nþ;N−

Nαeμ̂BNBZC ¼ hNαi≡ κα1; ðB5Þ

gives the first-order cumulant, i.e., the net number of
baryons of N�. Consequently, taking the second derivative
with respect to μ̂β,

d2 log Z
dμ̂αdμ̂β

����
T
¼ −

1

Z2

X
Nþ;N−

Nαeμ̂BNBZC

X
Nþ;N−

Nβeμ̂BNBZC

þ 1

Z

X
Nþ;N−

NαNβeμ̂BNBZC

¼ hNαNβi − hNαihNβi≡ καβ2 ; ðB6Þ

which gives the second-order cumulants of N� and their
correlator.

APPENDIX C: DETAILED EVALUATION
OF THE SUSCEPTIBILITIES χ αβ2

In this appendix, we show in detail the evaluation of the
susceptibilities χαβ2 given in Eq. (23),
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χαβ2 ¼ −
d2Ω̂

dμ̂αdμ̂β

����
T
; ðC1Þ

where Ω̂ ¼ Ω=T4 and μ̂x ¼ μx=T. We start by taking the
derivatives explicitly and remembering that Ω̂ is a function
of the mean fields. One gets the following:

χαβ2 ¼ −
∂σ

∂μ̂β

�
∂
2Ω̂
∂σ2

∂σ

∂μ̂α
þ ∂

2Ω̂
∂σ∂ω

∂ω

∂μ̂α
þ ∂

2Ω̂
∂μ̂α∂σ

�

−
∂ω

∂μ̂β

�
∂
2Ω̂
∂ω2

∂ω

∂μ̂α
þ ∂

2Ω
∂σ∂ω

∂σ

∂μ̂α
þ ∂

2Ω̂
∂μ̂α∂ω

�

−
∂σ

∂μ̂α

∂
2Ω̂

∂μ̂β∂σ
−

∂ω

∂μ̂α

∂
2Ω̂

∂μ̂β∂ω
−

∂
2Ω̂

∂μ̂α∂μ̂β
: ðC2Þ

To evaluate this expression, we need to calculate the
derivatives of the mean fields, ∂σ=μ̂α and ∂ω=μ̂α.

4 This
can be done by taking advantage of the stationary con-
ditions and differentiating the gap equations:

d
dμ̂α

�
∂Ω̂
∂σ

�����
T
¼ ∂

2Ω̂
∂σ2

∂σ

∂μ̂α
þ ∂

2Ω̂
∂ω∂σ

∂ω

∂μ̂α
þ ∂

2Ω̂
∂μ̂α∂σ

¼ 0;

d
dμ̂α

�
∂Ω̂
∂ω

�����
T
¼ ∂

2Ω̂
∂σ∂ω

∂σ

∂μ̂α
þ ∂

2Ω̂
∂ω2

∂ω

∂μ̂α
þ ∂

2Ω̂
∂μ̂α∂ω

¼ 0: ðC3Þ

Before proceeding, we introduce the following shorthand
notation:

Ω̂ϕη ¼
∂
2Ω̂

∂ϕ∂η
; ðC4Þ

and

Ω̂αϕ ¼ ∂
2Ω̂

∂μ̂α∂ϕ
; ϕα ¼

∂ϕ

∂μ̂α
; ðC5Þ

where ϕ and η denote the mean fields σ and ω, and α ¼ �
denotes the parity partners.
Applying the simplified notation to Eqs. (C2) and (C3)

gives

χαβ2 ¼ −σβðΩ̂σσσα þ Ω̂σωωα þ Ω̂ασÞ
− ωβðΩ̂ωωωα þ Ω̂σωσα þ Ω̂αωÞ
− σαΩ̂βσ − ωαΩ̂βω − Ω̂αβ; ðC6Þ

and

Ω̂σσσα þ Ω̂σωωα þ Ω̂ασ ¼ 0; ðC7Þ

Ω̂σωσα þ Ω̂ωωωα þ Ω̂αω ¼ 0; ðC8Þ

respectively.
Isolating ωα in Eq. (C8) gives

ωα ¼ −ðΩ̂αω þ Ω̂σωσαÞ=Ω̂ωω: ðC9Þ

Next, substituting Eq. (C9) into Eq. (C7), we get

Ω̂σσσα þ Ω̂ασ −
Ω̂σω

Ω̂ωω

ðΩ̂αω þ Ω̂σωσαÞ ¼ 0: ðC10Þ

Isolating σα in the above expression yields

σα ¼
�
Ω̂αω

Ω̂σω

Ω̂ωω

− Ω̂ασ

��
Ω̂σσ −

Ω̂2
σω

Ω̂ωω

�−1
; ðC11Þ

which can be plugged into Eq. (C9) to get

ωα ¼
�
Ω̂σω

Ω̂ασΩ̂ωω − Ω̂αωΩ̂σω

Ω̂σσΩ̂ωω − Ω̂2
σω

− Ω̂αω

�
=Ω̂ωω: ðC12Þ

Once the gap equations are solved for σ and ω at given T
and μB, Eqs. (C11) and (C12) can be evaluated numerically.
To further simplify the above expressions, let us recall

the definition of the net density,

n̂α ¼ −
∂Ω̂
∂μ̂α

¼ −Ω̂α; ðC13Þ

which allows us to write the mixed derivative of the
thermodynamic potential

Ω̂αϕ ¼ −n̂αϕ: ðC14Þ

Now, Eqs. (C11) and (C12) can be written as

σα ¼
n̂ασΩ̂ωω − n̂αωΩ̂σω

Ω̂σσΩ̂ωω − Ω̂2
σω

; ðC15Þ

ωα ¼
n̂αω
Ω̂ωω

þ Ω̂σω

Ω̂ωω

n̂ασΩ̂ωω − n̂αωΩ̂σω

Ω̂σσΩ̂ωω − Ω̂2
σω

: ðC16Þ

Finally, the expression for the susceptibilities can be
rewritten as follows:

4We note that corresponding derivatives of the mean fields
with respect to μ̂β can be found similarly upon replacing α → β.
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χαβ2 ¼ −σβðΩ̂σσσα þ Ω̂σωωα − n̂ασÞ
− ωβðΩ̂ωωωα þ Ω̂σωσα − n̂αωÞ
þ σαn̂βσ þ ωαn̂βω þ n̂αβ: ðC17Þ

Equations (C15) and (C16) can be inserted into Eq. (C17)
to obtain the susceptibilities in the individual parity
channels and the correlator. We note that at the end of
the analytical evaluation, the chemical potentials
μ̂α ¼ μ̂β ¼ μ̂N .
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