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We investigate a baryon and its dilatation modes in holographic QCD based on the Sakai-Sugimoto
model, which is expressed as a 1þ 4 dimensional UðNfÞ gauge theory in the flavor space. For spatially
rotational symmetric systems, we apply a generalized version of the Witten Ansatz, and reduce 1þ 4

dimensional holographic QCD into a 1þ 2 dimensional Abelian Higgs theory in a curved space. In the
reduced theory, the holographic baryon is described as a two-dimensional topological object of an
Abrikosov vortex. We numerically calculate the baryon solution of holographic QCD using a fine and large
lattice with spacing of 0.04 fm and size of 10 fm. Using the relation between the baryon size and the zero-
point location of the Higgs field in the description with the Witten Ansatz, we investigate a various-size
baryon through this vortex description. As time-dependent size-oscillation modes (dilatation modes) of a
baryon, we numerically obtain the lowest excitation energy of 577 MeV and deduce the dilatational
excitation of a nucleon to be the Roper resonance N�ð1440Þ.
DOI: 10.1103/PhysRevD.109.014030

I. INTRODUCTION

Quantum chromodynamics (QCD) is established as the
fundamental theory of strong interaction and characterized
by SUðNcÞ gauge symmetry and global SUðNfÞL ×
SUðNfÞR chiral symmetry. Owing to asymptotic freedom
of QCD, high-energy hadron reactions can be analyzed
using perturbative QCD. In low energy regions, however,
the QCD coupling becomes strong, and the perturbative
method is no more applicable. Therefore, for theoretical
analyses of hadrons based on QCD, some nonperturbative
methods are necessary such as lattice QCD. Based on
gauge/gravity duality [1] for D branes [2] in superstring
theory, holographic QCD is an interesting new tool to
analyze the nonperturbative properties of QCD [3–5].
Around 1970, the string theory was originally proposed

by Nambu, Goto, and Polyakov for the description of
hadrons [6–8]. After establishment of QCD, the string
theory was not used for the main research of hadrons.
Instead, this framework was reformulated as the superstring
theory in the 1980s [9] and has been studied as a plausible
candidate of a grand unified theory including quantum

gravity, and many studies have been constantly conducted
to date.
The superstring theory is formulated in 10 dimensional

space-time and includes D branes, on which open string
endpoints exist [2]. As a remarkable discovery by
Polchinski, on the surface of N overlapped D branes,
U(N) gauge symmetry emerges, and theN D-branes system
leads to U(N) gauge theory [2]. In fact, on the N D-branes,
gauge fields Aab appear from the open string linking two
D-branes labeled with a and b (a; b ¼ 1; 2;…; N). On the
other hand, around the D brane, a higher-dimensional
supergravity theory is formed since the brane has mass,
and multiple branes can be gravitational sources. Thus,
there are two different theories relating to the D-brane, and
the gauge theory on the D-brane and the higher-dimen-
sional gravity theory around the D-brane are conjectured to
be equivalent [1], which is called AdS=CFT correspon-
dence or gauge/gravity duality. This remarkable equiva-
lence between gauge and gravity theories was first
proposed by Maldacena from a detailed analysis of four-
dimensionalN ¼ 4 supersymmetric (SUSY) SUðNÞYang-
Mills theory and five-dimensional anti–de Sitter (AdS)
supergravity theory [1], using large N argument. This
equivalence was first called as AdS=CFT correspondence
and is generalized as gauge/gravity duality in more general
concept. In this correspondence, a strong-coupling gauge
theory can be described with a weak-coupling gravity
theory [1,3–5].
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With this correspondence, many researches have been
performed, and one of the main category is to analyze
strong-coupling QCD with a higher-dimensional classical
gravity theory, which is called holographic QCD
[3–5,10,11]. In 1998, Witten formulated a non-SUSY
version of holographic QCD for a four-dimensional
pure-gluon Yang-Mills theory using S1-compactified Nc
D4 branes, where periodic and antiperiodic boundary
conditions are imposed on boson and fermion fields,
respectively [3]. In 2005, Sakai and Sugimoto proposed
holographic QCD for four-dimensional full QCD, includ-
ing massless chiral quarks, by adding theNf pair of D8 and
D8 branes to S1-compactified D4 branes [5]. In fact, the
D4=D8=D8 multi-D-brane system has SUðNcÞ gauge
symmetry and SUðNfÞL × SUðNfÞR chiral symmetry
and leads to massless QCD in infrared scale. Here, quarks
and gluons appear from the massless modes of 4-8 and 4-4
strings, respectively. In the large Nc limit, Nc D4 branes are
dominant as a gravity source and are converted into a
gravitational field via the AdS=CFT correspondence or the
gauge/gravity duality. The ’t Hooft coupling λ≡ Ncg2 is a
control parameter of the gauge side, and strong-coupling
QCD with a large λ corresponds to a weakly interacting
gravitational theory. Then, this system is described by the
D8 brane in the presence of a background gravitational
field originating from the D4 brane. Nonperturbative
properties of QCD can be analyzed with a classical gravity
theory.
In the leading order of 1=Nc expansion, the effective

theory of the D8 brane in the D4-brane-induced back-
ground gravity is expressed with the Dirac-Born-Infeld
(DBI) action and the Chern-Simons (CS) term. The leading
order of 1=λ expansion is the DBI action, and the next
leading of 1=λ is the CS term. Expanding the DBI action
with 1=λ, the leading order becomes a five-dimensional
Yang-Mills theory in flavor space in a curved space, where
a background gravity appears only in the fifth dimension.
The CS term is a topological term responsible for anoma-
lies in QCD. In holographic QCD, the five-dimensional
holographic field is decomposed into four-dimensional
meson fields, and this theory is successful in the mesons
sector, that is, it describes low-lying meson masses,
intermeson couplings, and phenomenological laws in
hadron physics [5]. Regarding baryonic degrees of free-
dom, baryons do not appear explicitly in the holographic
action. In fact, the baryon does not appear as a system
component in holographic QCD.
The absence of baryons in the effective action is a

general result due to the large Nc argument, because QCD
is reduced into a weak-coupling theory of mesons and
glueballs in the large Nc limit [12], where the baryon mass
increases as OðNcÞ and the baryon do not appear in the
effective action. In the large Nc argument, the baryon is
considered to appear as a soliton of mesons such as the
Skyrmion in the Skyrme model [12–14].

Here, we briefly mention a historical overview of the
Skyrme model. The Skyrme model is a low-energy effec-
tive theory in hadron physics, first proposed by Skyrme in
1961 [13]. After the quark model was proposed in 1964
[15], main researches of strong interaction and hadrons
were shifted to the quark theory, which was eventually
developed into QCD. In 1979, Witten revived the Skyrme
soliton picture of baryons from a large Nc viewpoint of
QCD [12], although the direct relation between the Skyrme
model and QCD has not been clear. In 2005, Sakai and
Sugimoto showed a theoretical explicit connection between
massless QCD and the Skyrme Lagrangian, which is
derived as the pion sector in holographic QCD, using
the gauge/gravity duality for a D-brane system [5].
(Actually, the Sakai-Sugimoto model reduces into the
Skyrme model, when massive mesons are dropped off,
leaving only light pions.)
Now, let us concentrate on baryons in holographic QCD.

Also for holographic QCD, which is derived with large Nc
and is described with only meson fields, the baryon is
described as a chiral soliton of mesons, that is, a topological
object like a brane-induces Skyrmion [16,17] or an instan-
tonlike object [18,19]. In fact, the baryon appears as an
spatially extended object in holographic QCD.
To summarizes the above, holographic QCD is an

analytical nonperturbative method for QCD and has direct
connection with QCD, as a clearly strong advanced point.
In holographic QCD, while mesons appear in the action and
can be directly treated, the baryon is described as an
extended soliton of mesons. Therefore, compared with the
meson sector, the baryon sector is more difficult and has not
been well studied in holographic QCD, in spite of several
pioneering studies on the holographic baryon [16,19–24].
In addition, this baryonic soliton allows spatial dilatation
modes as its excitation peculiar to the spatially-extended
object, and thus we focus on this dilatation mode of the
holographic baryon in the latter of our study.
In this study, we investigate a single baryon and its

dilatation modes in holographic QCD, adopting the Sakai-
Sugimoto model formulated as a 1þ 4 dimensional UðNfÞ
gauge theory in the flavor space. For spatially rotational
symmetric systems, we apply a generalized Witten Ansatz
and reduce 1þ 4 dimensional holographic QCD into a
1þ 2 dimensional Abelian Higgs theory, where the holo-
graphic baryon is expressed as an Abrikosov vortex. We
numerically calculate the baryon solution of holographic
QCD using a fine and large lattice, keeping background
gravity from the Nc D4-brane.
In addition, we investigate a various-size baryon and the

dilatation mode (time-dependent size-oscillation) of a
single baryon, using the relation between the baryon size
and the zero-point location of the Higgs field in the reduced
Abelian Higgs theory.
This size oscillation is physically considered as a

collective motion and is difficult to be described in the
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quark model. Instead, the size oscillation mode has been
studied in the Skyrmion research, and its lowest excitation
mode is identified as theRoper resonanceN�ð1440Þ [25–31].
The Roper resonance is the first excited state of the

nucleon N(940) with the positive parity and its energy
being 1440 MeV. In the quark model, based on the single-
particle picture, the first excited-state baryon is to have
negative parity, and it contradicts the experimental data. In
lattice QCD, the numerical results with overlap fermion
well reproduce the Roper resonance in terms of the
excitation energy and the positive parity [32,33]. Here,
lattice QCD is a powerful tool for the quantitative analysis
of hadrons, but it is difficult to get state information of
hadrons like the wave function due to path integral
formalism, where all the states are integrated out. As an
alternative method, the Skyrme model seems to succeed to
reproduce the mass and parity of N�ð1440Þ as the first
excited state of N(940). In this chiral soliton picture, this
first excited state is described as a dilatation or breathing
mode of the ground-state soliton [26–31].
Therefore, we here investigate the dilatation mode of the

baryon in holographic QCD and finally compare it with the
Roper resonance N�ð1440Þ in terms of its mass and parity.
The dilatation mode of baryon can be described also in
holographic QCD. Note again that the Sakai-Sugimoto
model reduces into the Skyrme model, when massive
mesons except for pions are dropped off. In fact, the
holographic baryon appears as a soliton [16,19], i.e., a
spatially extended object, and therefore has dilatation
mode. Note, however, that holographic dilatation is four-
dimensional spatial oscillation including the extra spatial
dimension rather than ordinary three-dimensional one.
The organization of this paper is as follows. In Sec. II, we

briefly review the Sakai-Sugimoto model as typical holo-
graphic QCD. In Sec. III, we apply the Witten Ansatz in
holographic QCD. Owing to the Witten Ansatz, the 1þ 4
dimensional Yang-Mills theory reduces into a 1þ 2 dimen-
sional Abelian Higgs theory. In Sec. IV, using the Witten
Ansatz, we present the vortex description of baryons in
holographic QCD, and we numerically obtain the ground-
state solution of the holographic baryon using a fine and
large-volume lattice. In Sec. V, we numerically analyze size
dependence of the holographic baryon. In Sec. VI, we
investigate time-dependent dilatational modes of a single
baryon in holographic QCD. Section VII is devoted for
summary and conclusion.

II. HOLOGRAPHIC QCD ACTION IN THE
SAKAI-SUGIMOTO MODEL

In this section, as a starting point, we introduce the
Sakai-Sugimoto model, one of the most successful holo-
graphic QCD [5]. In the Sakai-Sugimoto model, four-
dimensional massless QCD is constructed using the
D4=D8=D8 multi-D-brane system, which comprises spa-
tially S1-compactified Nc D4 branes attached with Nf

D8-D8 pairs. Here, Nc means the color number, and Nf the
light flavor number. This compactification breaks SUSY
due to the (anti)periodic conditions for bosons(fermions),
as was demonstrated for a D4 brane system by Witten [3].
The compactification radius is M−1

KK, and this model
parameter physically corresponds to a UV cutoff in holo-
graphic QCD. This system is infrared equivalent to mass-
less QCD, where chiral symmetry exists [5]. Using
AdS=CFT correspondence (gauge/gravity duality), the
Nc D4 branes are transformed into a gravitational source,
and the system becomes Nf D8 branes in the D4 gravity
background, which leads to the DBI and CS action at the
leading order of 1=Nc within the probe approximation. In
terms of 1=λ expansion, the DBI action includes its leading
order, and the CS action is subleading.
From the multi-D-brane system which is infrared equiv-

alent to massless QCD, the DBI action becomes 1þ 4
dimensional Yang-Mills theory on the flavor space of
UðNfÞ ≃ SUðNfÞ × Uð1Þ at the leading order of 1=λ
expansion [5]:

S5YM¼ S
SUðNfÞ
5YM þSUð1Þ5YM

¼−κ
Z

d4xdw tr

�
1

2
hðwÞFμνFμνþkðwÞFμwFμw

�

−
κ

2

Z
d4xdw

�
1

2
hðwÞF̂μνF̂

μνþkðwÞF̂μwF̂
μw

�
: ð1Þ

In this paper, we use w for the extra fifth-coordinate in
holographic QCD. Â denotes U(1) gauge field and F̂ U(1)
field strength [34].
For M;N ¼ t, x, y, z, w, the field strengths are given by

FMN ≡ ∂MAN − ∂NAM þ i½AM; AN �;
F̂MN ≡ ∂MÂN − ∂NÂM; ð2Þ

with the five-dimensional SUðNfÞ gauge field AMðxμ; wÞ
and U(1) gauge field ÂMðxμ; wÞ, respectively. Throughout
this paper, we take the MKK ¼ 1 unit together with the
natural unit, and κ is written as κ ¼ λNc

216π3
in this unit. Note

that, as a relic of Nc D4-branes, there appear background
gravity kðwÞ and hðwÞ depending on the extra fifth-
coordinate w,

kðwÞ≡ 1þ w2; hðwÞ≡ kðwÞ−1=3; ð3Þ

in the MKK ¼ 1 unit. In Eq. (1) at the leading order of 1=λ
expansion, SUðNfÞ variables A and U(1) variables Â are
completely separated, and hence we have divided S5YM into

the SUðNfÞ sector SSUðNfÞ
5YM and the U(1) sector SUð1Þ5YM.

The 1=Nc-leading holographic QCD also has the CS
term [5,19] as the next leading order of 1=λ. The CS term is
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a topological term responsible for anomalies in QCD, and
its explicit form is

SCS ¼
Nc

24π2

Z
ω5ðAÞ

¼ Nc

24π2

Z
tr

�
AF 2 −

i
2
A3F −

1

10
A5

�
; ð4Þ

whereA ¼ Aþ 1ffiffiffiffiffiffi
2Nf

p Â denotes the UðNfÞ gauge field [5].
Note that SUðNfÞ variables A and U(1) variables Â are
dynamically mixed in the CS term SCS in Eq. (4).
In this paper, to analyze baryons in holographic QCD,

we consider both Yang-Mills and CS parts for the case
of Nf ¼ 2.

III. WITTEN ANSATZ IN HOLOGRAPHIC QCD

Holographic QCD is formulated to be a 1þ 4 dimen-
sional UðNfÞ non-Abelian gauge theory with a gravita-
tional background hðwÞ and kðwÞ, which would be fairly
difficult to analyze. To avoid the difficulty and to proceed
analytic calculations, most previous works [19–21] were
forced to take a flat background hðwÞ ¼ kðwÞ ¼ 1 and to
use the simple ’t Hooft instanton solution [35,36] in the flat
space, although hðwÞ and kðwÞ are the trace of D4-branes
and are to be relevant ingredients.
To deal with holographic QCD for Nf ¼ 2 without

reduction the gravitational backgrounds hðwÞ and kðwÞ,
we adopt the Witten Ansatz [37] in this paper. The Witten
Ansatz is generally applicable for spatially-rotational sym-
metric system in the SU(2)Yang-Mills theory. Applying this
to holographic QCD, the 1þ 4 dimensional non-Abelian
theory transforms to a 1þ 2 dimensional Abelian Higgs
theory. Accordingly, relevant topological objects are
changed from instantons to vortices, as will be shown in
Sec. IV. In this section,wegeneralize theWittenAnstaz to be
applicable to holographic QCD.

A. Witten Ansatz for Euclidean Yang-Mills theory

In this subsection, we briefly review the original Witten
Ansatz [37] applied for the Euclidean four-dimensional
SU(2) Yang-Mills theory, which is formulated on three
spatial coordinates ðx; y; zÞ and Euclidean time t. For
spatially rotational symmetric systems, the Witten Ansatz
can be applied as

Aa
i ðx; y; z; tÞ ¼

ϕ2ðr; tÞ þ 1

r
ϵiakx̂k þ

ϕ1ðr; tÞ
r

δ̂ia

þ arðr; tÞx̂ix̂a; ð5Þ

Aa
t ðx; y; z; tÞ ¼ atðr; tÞx̂a ð6Þ

with r≡ ðxixiÞ1=2, x̂i ≡ xi=r and δ̂ij ≡ δij − x̂ix̂j.

Using the Witten Ansatz, the four-dimensional SU(2)
Yang-Mills theory is reduced into a two-dimensional
Abelian Higgs theory as

SSUð2ÞYM ¼
Z

dtd3x
1

2
trFμνFμν

¼ 4π

Z
∞

−∞
dt

Z
∞

0

dr

�
jD0ϕj2 þ jD1ϕj2

þ 1

2r2
ð1 − jϕj2Þ2 þ r2

2
f201

�
; ð7Þ

where the complex Higgs field ϕðt; rÞ, Abelian gauge field
aμðt; rÞ, its covariant derivativeDμ, and field strength fμν in
the Abelian Higgs theory are

ϕ≡ ϕ1 þ iϕ2 ∈C; aμ ≡ ða0; a1Þ;
Dμ ≡ ∂μ − iaμ; f01 ≡ ∂0a1 − ∂1a0: ð8Þ

Here, we have used ð0; 1Þ ¼ ðt; rÞ for the index of two
dimensional coordinates.

B. Generalized Witten Ansatz for SUð2Þf sector
in holographic QCD

In this subsection, we generalize the Witten Ansatz to be
applicable for holographic QCD.
The SUð2Þf sector in holographic QCD is expressed as a

1þ 4 dimensional Yang-Mills theory with gravitational
backgrounds hðwÞ and kðwÞ. Holographic QCD already
includes four-dimensional Euclidean spatial coordinates
(x, y, z, w) including the extra fifth-coordinate w, and
instantons can be naturally introduced in holographic QCD
without necessity of the Euclidean process or the Wick
rotation.
Describing the SUð2Þf gauge field A with the Pauli

matrix τa as A ¼ Aa τa

2
∈ suð2Þf in holographic QCD, we

take a generalized version of the Witten Ansatz for ðx; y; zÞ-
spatially rotational symmetric systems [23,24,34],

Aa
0ðt; x; y; z; wÞ ¼ a0ðt; r; wÞx̂a; ð9Þ

Aa
i ðt; x; y; z; wÞ ¼

ϕ2ðt; r; wÞ þ 1

r
ϵiakx̂k

þ ϕ1ðt; r; wÞ
r

δ̂ia þ arðt; r; wÞx̂ix̂a; ð10Þ

Aa
wðt; x; y; z; wÞ ¼ awðt; r; wÞx̂a; ð11Þ

with r≡ ðxixiÞ1=2, x̂i ≡ xi=r and δ̂ij ≡ δij − x̂ix̂j. For 1þ 4

dimensional holographic QCD, we have extended the
Witten Ansatz for Aa

0 component, considering the
ðx; y; zÞ-rotational symmetry. Note that this Ansatz is a
general form when ðx; y; zÞ-rotational symmetry is imposed
on gauge fields.
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In the Witten Ansatz, the holographic field strength, Fij, F0i, Fwi and F0w are expressed as

1

2
εijkFa

jk ¼ ð∂1ϕ2 − a1ϕ1Þ
δ̂ai
r
þ ð1 − ϕ2

1 − ϕ2
2Þ
x̂ax̂i
r2
þ ð∂1ϕ1 þ a1ϕ2Þ

1

r
εaikx̂k ð12Þ

Fa
0i ¼ ð∂0ϕ1 þ a0ϕ2Þ

δ̂ai
r
þ ð∂0a1 − ∂1a0Þx̂ax̂i − ð∂0ϕ2 − a0ϕ1Þ

1

r
εaikx̂k ð13Þ

Fa
wi ¼ ð∂2ϕ1 þ a2ϕ2Þ

δ̂ai
r
þ ð∂2a1 − ∂1a2Þx̂ax̂i − ð∂2ϕ2 − a2ϕ1Þ

1

r
εaikx̂k ð14Þ

Fa
0w ¼ ð∂0a2 − ∂2a0Þx̂a: ð15Þ

With the Witten Ansatz, 1þ 4 dimensional SUð2Þf
Yang-Mills sector of holographic QCD is reduced into a
1þ 2 dimensional Abelian Higgs theory on a curved space.

In fact, S
SUð2Þf
5YM is rewritten as

S
SUð2Þf
5YM ¼−κ

Z
d4xdwtr

�
1

2
hðwÞFμνFμνþkðwÞFμwFμw

�

¼4πκ

Z
∞

−∞
dt
Z

∞

0

dr
Z

∞

−∞
dw

�
hðwÞðjD0ϕj2− jD1ϕj2Þ

−kðwÞjD2ϕj2−
hðwÞ
2r2
ð1− jϕj2Þ2

þr
2

2
fhðwÞf201þkðwÞf202−kðwÞf212g

�
; ð16Þ

where the complex Higgs field ϕðt; r; wÞ∈C, Abelian
gauge field aμðt; r; wÞ, its covariant derivative Dμ, and
field strength fμν in the Abelian Higgs theory are

ϕ≡ ϕ1 þ iϕ2 ∈C; aμ ≡ ða0; ar; awÞ;
Dμ ≡ ∂μ − iaμ; fμν ≡ ∂μaν − ∂νaμ: ð17Þ

Here, we have used ð0; 1; 2Þ ¼ ðt; r; wÞ for the index of
1þ 2 dimensional coordinates. Note that the factor kðwÞ
appears in D2 and F12 associated with the index 2 (w), and
otherwise the factor hðwÞ appears.
From this action, the static energy of the Yang-Mills part

is obtained as

E
SUð2Þf
5YM ½ϕðr; wÞ; a⃗ðr; wÞ�

¼ 4πκ

Z
∞

0

dr
Z

∞

−∞
dw

�
hðwÞjD1ϕj2 þ kðwÞjD2ϕj2

þ hðwÞ
2r2
f1 − jϕj2g2 þ r2

2
kðwÞf212

�

¼ 4π

Z
∞

0

drr2
Z

∞

−∞
dw ESUð2Þfðr; wÞ; ð18Þ

with a⃗ ¼ ða1; a2Þ ¼ ðar; awÞ. This is similar with the 1þ 2
dimensional Ginzburg-Landau theory. As the different

point, however, there appears a nontrivial metric of r2

[37] in addition to holographic background gravity of hðwÞ
and kðwÞ in the ðr; wÞ half plane. To include all the
gravitational effects exactly, we construct the lattice for-
malism, as shown in Appendix A, and perform the
numerical calculation for holographic QCD.
Finally in the subsection, we investigate the topological

density ρB in the Witten Ansatz. For the SUð2Þf gauge
configuration in the Witten Ansatz, the topological density
ρB in ðx; y; z; wÞ-space is found to be [34]

ρB ≡ 1

16π2
trðFMNF̃MNÞ ¼

1

32π2
ϵMNPQtrðFMNFPQÞ

¼ 1

8π2r2
f−iϵijðDiϕÞ�Djϕþ ϵij∂iajð1 − jϕj2Þg

¼ 1

8π2r2
ϵij∂i

�
1

2i
ðϕ�∂jϕ − ϕ∂jϕ

�Þ þ ajð1 − jϕj2Þ
�

¼ 1

8π2r2
ϵij∂ifajð1 − jϕj2Þ þ ∂jθ · jϕj2g; ð19Þ

where θ≡ argϕ and Roman small letters i, j take
ð1; 2Þ ¼ ðr; wÞ. The topological density ρB is expressed
as a total derivative. Since we consider ðx; y; zÞ-rotationally
symmetric system, ρB is independent of the spatial direc-
tion ðx̂; ŷ; ẑÞ. In fact, ρB takes an SO(3) rotationally
symmetric form of ρBðr; wÞ in the second line of Eq. (19).

C. U(1) sector in holographic QCD

In this subsection, we consider the U(1) sector in
holographic QCD. Hereafter, the capital-letter index
denotes the Euclidean spatial index as M ¼ x, y, z, w.
Also for the U(1) gauge field Â, we respect the spatial
SO(3) rotational symmetry [23,24] as in the Witten Ansatz,
and impose

Âiðt; x; y; z; wÞ ¼ ârðt; r; wÞx̂i; ð20Þ

while Â0 and Âw are treated to be arbitrary. In this case,
one finds F̂ij ¼ 0 and can take the âr ¼ 0 gauge, which
simplifies Âi ¼ 0.
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Then, the 1=λ-leading term SUð1Þ5YM for the U(1) gauge field
is written as [34]

SUð1Þ ¼ κ

2

Z
d4xdwfhðwÞF̂2

0i þ kðwÞF̂2
0w − kðwÞF̂2

iwg

¼
Z

d4xdw

�
1

2
Â0KÂ0 −

κ

2
kðwÞð∂iÂwÞ2

þ ðtime-derivative termsÞ
�
; ð21Þ

using the SO(3)-symmetric non-negative Hermite kernel

K ≡ −κfhðwÞ∂2i þ ∂wkðwÞ∂wg

¼ −κ
�
hðwÞ 1

r2
∂rr2∂r þ ∂wkðwÞ∂w

�
: ð22Þ

In this calculation, we take Âi ¼ 0 using the gauge and
rotational symmetry.
We consider the CS term SCS as the next leading order of

the 1=λ expansion. For the static SO(3)-rotationally sym-
metric configuration in the A0 ¼ 0 gauge, the CS term SCS
in Eq. (4) is transformed as [19,23,24,34]

SCS ¼
Nc

24π2
ϵMNPQ

Z
d4xdw

�
3

8
Â0trðFMNFPQÞ

−
3

2
ÂMtrð∂0ANFPQÞ þ

3

4
F̂MN trðA0FPQÞ

þ 1

16
Â0F̂MNF̂PQ −

1

4
ÂMF̂0NF̂PQ

�

¼ Nc

2

Z
d4xdwρBÂ0; ð23Þ

up to total derivative. This is Coulomb-type interaction
between the U(1) gauge potential Â0 and the topological
density ρB ≡ 1

16π2
trðFMNF̃MNÞ.

Then, the total U(1) action depending on the U(1) gauge
field Â is written as

SUð1Þ ≡ SUð1Þ þ SCS

¼
Z

d4xdw

�
1

2
Â0KÂ0 þ

Nc

2
ρBÂ0 −

κ

2
kðwÞð∂iÂwÞ2

�
;

ð24Þ
which leads to the field equations,

KÂ0 þ
Nc

2
ρB ¼ 0; ∂

2
i Âw ¼ 0: ð25Þ

For the static configuration, the additional energy EUð1Þ

from U(1) sector SUð1Þ is simply given by

EUð1Þ ¼−SUð1Þ=
Z

dt

¼
Z

d3xdw

�
−
1

2
Â0KÂ0−

Nc

2
ρBÂ0þ

κ

2
kðwÞð∂iÂwÞ2

�
:

ð26Þ

For the static case, Âw is dynamically isolated in the field
equation (25) and the last term is non-negative in the energy
(26), and therefore we set Âw ¼ 0, which satisfies the local
energy-minimum condition. Then, one finds

EUð1Þ ¼ −
Z

d3xdw

�
1

2
Â0KÂ0 þ

Nc

2
ρBÂ0

�
: ð27Þ

For the SO(3) rotationally symmetric solution, we even-
tually obtain the static energy of the U(1) part:

EUð1Þ½ρBðr; wÞ; Â0ðr; wÞ� ¼ −4π
Z

∞

0

drr2
Z

∞

−∞
dw

�
1

2
Â0ðr; wÞKÂ0ðr; wÞ þ

Nc

2
ρBðr; wÞÂ0ðr; wÞ

�

¼ −
Z

∞

0

dr
Z

∞

−∞
dw

�
1

2
Â0ðr; wÞK̃Â0ðr; wÞ þ 2πNcρ̃Bðr; wÞÂ0ðr; wÞ

�

¼ 4π

Z
∞

0

drr2
Z

∞

−∞
dwEUð1Þðr; wÞ; ð28Þ

using ρ̃Bðr; wÞ≡ r2ρBðr; wÞ and the Hermite kernel K̃ in
ðr; wÞ-space,
K̃ ≡ 4πr2K ¼ −4πκfhðwÞ∂rr2∂r þ r2∂wkðwÞ∂wg: ð29Þ
For the numerical calculation of the U(1) sector, we mainly
use this energy functional. (For another expression of EUð1Þ

after Â0 path-integration, see Appendix B.)
Note again that, at the leading order of 1=λ, the

U(1) sector (Â) completely decouples with the SUð2Þf

sector (a⃗, ϕ) because the leading term is only the Yang-
Mills action (1). However, at the next leading order of 1=λ,
the U(1) term affects the SUð2Þf part through the CS term
as Eq. (23).
To summarize, the total energy E comprises two parts,

E½ϕðr; wÞ; a⃗ðr; wÞ; Â0ðr; wÞ�
¼ E

SUð2Þf
5YM ½ϕ; a⃗� þ EUð1Þ½ρB; Â0�; ð30Þ
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and the total energy density Eðr; wÞ is written as

Eðr; wÞ ¼ ESUð2Þfðr; wÞ þ EUð1Þðr; wÞ; ð31Þ

and we have to deal with coupled field equations of the
SUð2Þf and U(1) sectors and will perform the numerical
calculation in a consistent manner.

IV. VORTEX DESCRIPTION OF BARYONS

In this section, we introduce vortex description of
baryons in holographic QCD with applying the generalized
Witten Ansatz. For a single baryon which is ðx; y; zÞ-
spatially rotational symmetric, applying the Witten Ansatz,
we reduce the theory into a 1þ 2 dimensional Abelian
Higgs theory in a curved space. In the reduced theory, the
holographic baryon is expressed as a two-dimensional
topological object of an Abrikosov vortex. We perform
the numerical calculation of a B ¼ 1 solution of holo-
graphic QCD as the single ground-state baryon, using a fine
and large lattice with spacing of 0.04 fm and size of 10 fm.

A. Holographic baryons in Witten Ansatz

Large Nc analyses of QCD indicate that explicit degree
of freedoms are only mesons and glueballs, and baryons
appear as solitons (topological objects) constructed with
meson fields [12]. Also, holographic QCD based on large
Nc becomes an effective theory of mesons, and baryons
appear as chiral solitons composed of meson fields in this
framework [5,16]. Holographic QCD has four dimensional
space ðx; y; z; wÞ, and instantons naturally appear as rel-
evant topological objects in the four-dimensional space.
The topological objects are physically identified as baryons
in holographic QCD [19] and called holographic baryons.
Remarkably, the Witten Ansatz generally converts the

topological description from a four-dimensional instanton
into a two-dimensional vortex [37]. Accordingly, the vortex
number is interpreted as the baryon number in holographic
QCD with the Witten Ansatz [34].
In fact, the baryon number B or the Pontryagin index is

written by a contour integral in the ðr; wÞ-plane

B ¼
Z

d3xdwρB

¼ 1

2π

Z
∞

0

dr
Z

∞

−∞
dwϵij∂ifajð1 − jϕj2Þ þ ∂jθ · jϕj2g

¼
I
r≥0

ds · fað1 − jϕj2Þ þ∇θ · jϕj2g

¼
I
r≥0

ds ·∇θ; ð32Þ

where
H
r≥0 denotes the contour integral around the whole

half-plane of ðr; wÞ with r ≥ 0. To keep the energy (18)
finite, we have imposed the following boundary conditions:

jϕðr ¼ 0; ∀wÞj ¼ 1; ð33Þ

jϕð∀r; w ¼ �∞Þj ¼ jϕðr ¼∞; ∀wÞj ¼ 1; ð34Þ

at the edge of the ðr; wÞ half-plane. Thus, the baryon
number B is converted into the vortex number in this
formalism [34].

B. Abrikosov vortex solution for a baryon
in holographic QCD

In this subsection, we numerically calculate a ground-
state baryon of holographic QCD through the Abrikosov
vortex description in the 1þ 2 dimensional U(1) Abelian
Higgs theory [34].
With imposing the global condition ofB ¼ 1, we numeri-

callyminimize the total energyE½ϕ; a⃗; Â0� in Eq. (30),which
is equivalent to solving the equation of motion (EOM) of
holographic QCD for the single ground-state baryon.
Regarding the two parametersMKK and κ in holographic

QCD, we take MKK ≃ 948 MeV, and κ ¼ 7.46 × 10−3 to
reproduce fπ ≃ 92.4 MeV and mρ ≃ 776 MeV [5,16]. In
this study, we have used the Kaluza-Klein unit ofMKK ¼ 1.
For the numerical calculation on the ðr; wÞ plane, we

adopt a fine and large-size lattice with spacing of
0.2 M−1

KK ≃ 0.04 fm and the extension of 0 ≤ r ≤ 250

and −125 ≤ w ≤ 125, that is, the system size is 250 ×
250 grid corresponding to ð50 M−1

KKÞ2 ≃ ð10 fmÞ2 in the
physical unit. (In this numerical calculation, there appears
subtle cancellation, and use of a coarse lattice might lead to
an inaccurate result. Also, the lattice size should be
increased until the volume dependence of physical quan-
tities disappears.)
On this lattice, starting from the ’t Hooft solution [35,36]

as a B ¼ 1 topological configuration, we numerically
perform minimization of the total energy E½ϕ; a⃗; Â0� keep-
ing the topological charge by an iterative improvement, that
is, many-time iterative local replacements of the field
variable of ϕ, a⃗ and Â0. (See Appendix A for the detail.)
During the update, the Higgs field ϕðxÞ always has a zero
point to ensure B ¼ 1, and the Higgs zero-point generally
moves so as to realize the ground state. In this way, we
eventually obtain the holographic fields ϕðr; wÞ, a⃗ðr; wÞ
and Â0ðr; wÞ for the ground-state baryon as the true
solution of EOM in holographic QCD.
For the confirmation of numerical calculations, we also

consider another different method, as shown in Appendix B.
In this alternative method, we integrate out the U(1) gauge
field Â0 and update only ϕðr; wÞ and a⃗ðr; wÞ on the lattice
based on Eq. (B2). We have confirmed that both methods
give the same numerical results for holographic baryons.
To visualize gauge and Higgs fields composing the

Abrikosov vortex, we take the Landau gauge for the U(1)
gauge degrees of freedom, ∂iaiðr; wÞ ¼ 0. Of course, main
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results including the total energy are gauge invariant and
never depend on any gauge choices.
For the single ground-state baryon, we show field

configurations ϕðr; wÞ and a⃗ðr; wÞ in Fig. 1, and also
the U(1) gauge field Â0ðr; wÞ in Fig. 2. The Higgs field
ϕðr; wÞ indicates a clear topological structure characteriz-
ing the Abrikosov vortex, which is mapped into an
instanton [37] via the Witten Ansatz and physically means
a baryon in holographic QCD [23,34]. In accordance with
the field equation (25), Â0 is localized around the non-
vanishing topological density ρB, which will be shown
in Fig. 3.
Quantitatively, unlike the initial ’t Hooft solution, Fig. 1

no longer indicates the symmetry between r and w for the
ground-state baryon solution in holographic QCD. For the
ground-state baryon, both profiles of ϕ and a⃗ are found to

be a little shrink in the w direction, compared with four-
dimensional spherical ’t Hooft solutions, which was also
found in the previous numerical studies [23,24,34].

C. Properties of the ground-state baryon
in holographic QCD

Now, we show the properties of the ground-state baryon
in holographic QCD, which is numerically calculated by

FIG. 1. Vortex description for the single ground-state baryon:
the Higgs field ϕðr; wÞ ¼ ðRe½ϕ�; Im½ϕ�Þ (upper) and the Abelian
gauge field aðr; wÞ ¼ ða1; a2Þ (lower) in the Landau gauge. The
Kaluza-Klein unit ofMKK ¼ 1 is used. The Higgs field has a zero
point at ðr; wÞ ≃ ð2.4; 0Þ, and its winding number around the zero
point is equal to the baryon number, that is, B ¼ 1.

FIG. 2. Temporal component of the U(1) gauge field Â0ðr; wÞ
in the ground-state holographic baryon in theMKK ¼ 1 unit. This
U(1) gauge field Â0 directly interacts with the topological density
ρB and leads to a repulsive force between topological densities,
like the Coulomb interaction in QED.

FIG. 3. Topological density ρBðr; wÞ (upper) and total energy
density Eðr; wÞ (lower) for the ground-state solution of a single
holographic baryon in the MKK ¼ 1 unit. Both densities have a
peak around ðr; wÞ ¼ ð0; 0Þ.
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minimizing the total energy E½ϕ; a⃗; Â0� in Eq. (30). In
Fig. 3, we show the topological density ρBðr; wÞ and total
energy density Eðr; wÞ in the ðr; wÞ-plane for the Abrikosov
vortex solution in the 1þ 2 dimensional Abelian Higgs
theory. Both densities have a peak around ðr; wÞ ¼ ð0; 0Þ
and are extended in both the r and w directions. We show in
Fig. 4 the densities multiplied by the integral measure
factor r2, i.e., 4πr2ρBðr; wÞ and 4πr2Eðr; wÞ, for the
ground-state baryon, since ρ̃Bðr; wÞ≡ r2ρBðr; wÞ is a
primary variable in this numerical calculation, as shown
in Eq. (29). The nonzero size of the baryon is due to the
repulsive force from the CS term [19].
In general, the integrated topological density is the

baryon number B, and the baryon mass MB is given by
integration of the total energy density Eðr; wÞ:

B ¼
Z

d3xdwρBðr; wÞ

¼ 4π

Z
∞

0

drr2
Z

∞

−∞
dw ρBðr; wÞ; ð35Þ

MB ¼
Z

d3xdwEðr; wÞ

¼ 4π

Z
∞

0

drr2
Z

∞

−∞
dw Eðr; wÞ: ð36Þ

By integration over the extra coordinate w, we obtain the
ordinary densities in a three-dimensional space,

ρBðrÞ≡
Z

∞

−∞
dwρBðr; wÞ; ð37Þ

EðrÞ≡
Z

∞

−∞
dwEðr; wÞ: ð38Þ

The mass MB and size for the ground-state baryon are
estimated as

MB ¼ E
SUð2Þf
5YM þ EUð1Þ ¼

Z
d3xEðrÞ

≃ 1.25MKK ≃ 1.19 GeV; ð39Þ

ffiffiffiffiffiffiffiffi
hr2i

q
ρB
≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
d3xρBðrÞr2R
d3xρBðrÞ

s

≃ 2.58 MKK
−1 ≃ 0.54 fm; ð40Þ

ffiffiffiffiffiffiffiffi
hr2i

q
E
≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
d3xEðrÞr2R
d3xEðrÞ

s

≃ 2.93 MKK
−1 ≃ 0.61 fm: ð41Þ

Here, some cautions are commented. When the self-dual
BPS-saturated ’t Hooft solution [35,36] is simply used, as
was done in Ref. [19], the holographic baryon has an
overestimated mass MBPS

B ≃ 1.35 MKK ≃ 1.28 GeV and a

smaller radius
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2iBPSρB

q
≃ 2.2 M−1

KK ≃ 0.46 fm, as shown

in Appendix C. (Because of such an overestimation, a small
value of MKK ¼ 500 MeV was adopted to adjust baryon
masses in Ref. [19], which significantly differs from
MKK ≃ 1 GeV for the meson sector.) Another caution is
the numerical accuracy, and fine and large lattices are to be
used for the numerical calculation. Owing to a relatively
coarse and small-size lattice, the numerical results in the
previous paper [34] include about 20% error for the baryon
mass and size.
Now, we investigate spatial distribution of the baryon-

number and energy densities for the ground-state baryon in
holographic QCD. Figure 5 shows the baryon-number
density ρBðrÞ (i.e., topological density) and total energy
density EðrÞ, and their r2-multiplied values, 4πr2ρBðrÞ and
4πr2EðrÞ. One finds significant difference between the
shapes of ρBðrÞ and EðrÞ for the small r region.
Next, we investigate the energy contribution from the

SUð2Þf and U(1) parts, respectively. For the mass (total

static energy) MB ¼ E
SUð2Þf
5YM þ EUð1Þ of the ground-state

holographic baryon, we obtain

E
SUð2Þf
5YM ≃ 1.00 MKK ≃ 0.95 GeV; ð42Þ

EUð1Þ ≃ 0.25 MKK ≃ 0.24 GeV; ð43Þ

FIG. 4. r2-multiplied topological and energy densities:
4πr2ρBðr; wÞ (upper) and 4πr2Eðr; wÞ (lower) for the ground-
state solution of a single holographic baryon in theMKK ¼ 1 unit.
Both figures have a peak around ðr; wÞ ≃ ð2; 0Þ near the vortex
center, which roughly controls the baryon size.
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and hence the SUð2Þf contribution (leading order of 1=λ
expansion) is found to be quantitatively dominant.
As spatial distribution, the SUð2Þf and U(1) energy

densities are expressed as

r2ESUð2ÞfðrÞ ¼ κ

Z
∞

−∞
dw

�
hðwÞjD1ϕj2 þ kðwÞjD2ϕj2

þ hðwÞ
2r2
f1 − jϕj2g2 þ r2

2
kðwÞf212

�
; ð44Þ

EUð1ÞðrÞ ¼ −
Z

∞

−∞
dw

�
1

2
Â0ðr; wÞKÂ0ðr; wÞ

þ Nc

2
ρBðr; wÞÂ0ðr; wÞ

�
: ð45Þ

Figure 6 shows SUð2Þf energy density ESUð2ÞfðrÞ and U(1)

energy density EUð1ÞðrÞ of the ground-state baryon,
together with the total energy density EðrÞ and baryon
density ρBðrÞ.
The dominant contribution is the SUð2Þf part, and the

total value EðrÞ is approximated by the SUð2Þf energy

density ESUð2ÞfðrÞ, which seems to be consistent with 1=λ
expansion. In particular, ESUð2ÞfðrÞ and EðrÞ has the same
slope at the origin r ¼ 0 and show enhancement for small r
region, although it is masked by the integral measure r2.
The shape of EUð1ÞðrÞ seems to follow ρBðrÞ, reflecting the
direct coupling between Â0 and ρB in the CS term (23).
Finally, we investigate self-duality breaking of the holo-

graphic baryon. The different shape between the topological
and energy densities originates from the background gravity,

FIG. 5. Baryon density ρBðrÞ and total energy density EðrÞ for
the ground-state baryon. The lower panel shows 4πr2ρBðrÞ and
4πr2EðrÞ, including the integral measure factor r2. Despite a
significant difference between ρBðrÞ and EðrÞ around the origin,
this difference is reduced by the r2 multiplication. Here, the
MKK ¼ 1 unit is taken.

FIG. 6. SUð2Þf energy density ESUð2Þf ðrÞ and U(1) energy
density EUð1ÞðrÞ of the ground-state baryon, together with the
total energy density EðrÞ and baryon density ρBðrÞ, denoted by
the solid lines. The lower panel shows r2-multiplied values,
4πr2EðrÞ, 4πr2ESUð2Þf ðrÞ, 4πr2EUð1ÞðrÞ and 4πr2ρBðrÞ. Here, the
MKK ¼ 1 unit is taken.
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hðwÞ and kðwÞ, and presence of the CS term. In the case of
hðwÞ ¼ kðwÞ ¼ 1 without the CS term, the instanton sol-
ution has exact self-duality of FMN ¼ F̃MN , leading to
ρBðr; wÞ ∝ Eðr; wÞ. Hence, the functional forms of ρBðrÞ
and EðrÞ are forced to be the same. In fact, between the
shapes of ρBðrÞ and EðrÞ, the similarity indicates the self-
dual tendency, and the different point indicates self-duality
breaking.
For the single baryon case B ¼ 1, we introduce the self-

duality breaking parameter defined by

ΔDB ≡
R
d3xdw trðFMNFMN − FMNF̃MNÞR

d3xdw trðFMNF̃MNÞ
¼ 1

32π2

Z
d3xdw trðFMN − F̃MNÞ2; ð46Þ

which is normalized by the topological quantity. This is
non-negative and becomes zero only in the exact self-dual
case. The self-duality breaking of the ground-state baryon
is found to be ΔDB ≃ 0.17, which is non-zero but seems
small. The small value might indicate that the true holo-
graphic configuration is close to be self-dual. Then, the
ground-state baryon might be approximated by the self-
dual ’t Hooft instanton in holographic QCD.

V. SIZE-DEPENDENCE OF A HOLOGRAPHIC
BARYON

As mentioned above, by using the Witten Ansatz, 1þ 4
dimensional holographic QCD is reduced into a 1þ 2
dimensional Abelian Higgs theory. Accordingly, the topo-
logical description of a baryon is changed from an instanton
to a vortex. In the previous section, we have numerically
obtained the ground-state solution in holographic QCD,
where the baryon size is automatically determined by
minimizing the total energy.
Now, let us consider a holographic baryon with various

size. Note that the size is originally one of the moduli of
an instanton in a flat space, and different size baryons are
to be degenerate in holographic QCD, if one sets hðwÞ ¼
kðwÞ ¼ 1 and neglects the CS term. In the real holographic
QCD, the size parameter is no more modulus, according to
the background gravity and CS term. Nevertheless, the size
might behave as a quasimodulus in the holographic baryon,
resulting in physical appearance of a soft vibrational mode
as a low-lying excitation. Then, we investigate a baryon
with various size and size dependence of the energy in
holographic QCD in this section.
First, we consider the ordinary Yang-Mills theory and

examine the moduli relation between an instanton and a
vortex in the Witten Ansatz, as was originally shown by
Witten [37].
Next, we proceed to the holographic baryon, and

consider how to obtain an arbitrary-size baryon as a

solution of holographic QCD, and investigate the size
dependence of the baryon mass.

A. Instanton-vortex correspondence
in Yang-Mills theory

In the four-dimensional Euclidean Yang-Mills theory,
there exist topological solutions, instantons, where
Euclidean time is necessary. A single instanton solution
(BPST-’t Hooft solution [35,36]) is written as

AμðxÞ ¼ −ηaμντa
xν

ðx − XÞ2 þ R2
; ð47Þ

where the instanton center locates at xμ ¼ Xμ, andR denotes
the instanton size. Together with color rotation, the location
Xμ and the size R are known as moduli, and they represent
degrees of freedom for this topological solution, that is, their
values do not affect the Yang-Mills action. Here, ηaμν denotes
the ’t Hooft symbol [36] defined by

ηaμν ¼ −ηaνμ ¼
8<
:

ϵaμν for μ; ν ¼ 1; 2; 3

−δaν for μ ¼ 4

δaμ for ν ¼ 4:

ð48Þ

Taking its center Xμ ¼ ð0⃗; TÞ, there is SO(3) rotational
symmetry in ðx; y; zÞ-space, and the Witten Ansatz is
applicable. With the Witten Ansatz, the four-dimensional
Yang-Mills theory is reduced into a two-dimensional
Abelian Higgs theory, and this instanton can be described
by a single vortex.
To understand the relation between an instanton and a

vortex, let us consider the ’t Hooft solution in the form of
the Witten Ansatz. This represents a single instanton
solution and is rewritten as

Aa
i ¼

2r
r2 þ ðt − TÞ2 þ R2

ϵiajx̂j

−
2ðt − TÞ

r2 þ ðt − TÞ2 þ R2
ðδ̂ia þ x̂ix̂aÞ; ð49Þ

Aa
t ¼

2r
r2 þ ðt − TÞ2 þ R2

x̂a: ð50Þ

By comparing the functional form with Eqs. (5) and (6),
SU(2) gauge fields can be converted into the fields of
the reduced Abelian Higgs theory, and their forms are
obtained as

ðϕ1;ϕ2 þ 1Þ ¼ 2r
r2 þ ðt − TÞ2 þ R2

ð−ðt − TÞ; rÞ; ð51Þ

a1¼
−2ðt−TÞ

r2þðt−TÞ2þR2
; a2¼

2r
r2þðt−TÞ2þR2

: ð52Þ
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The complex Higgs field ϕ ¼ ðReϕ; ImϕÞ ¼ ðϕ1;ϕ2Þ takes
zero at ðr; tÞ ¼ ðR; TÞ≡ ζ. The vortex number is counted
as the zero-point number in the Higgs field ϕ in the
ðr; tÞ-plane. Now, there is one zero point at ζ, and this
configuration represents a single vortex.
Thus, in the Witten Ansatz, the vortex corresponding to a

single instanton has a zero point ζ of the Higgs field ϕ.
Remarkably, this Higgs-field zero point ζ relates to
instanton parameters [37],

ζ ¼ ðζr; ζtÞ ¼ ðR; TÞ: ð53Þ

In fact, the instanton size R and Euclidean fourth-
coordinate T of the instanton center correspond to this
zero point ζ in the Higgs field ϕ. In this configuration, the
topological density is written by

ρB ¼
6

π2
R4

½r2 þ ðt − TÞ2 þ R2�4 : ð54Þ

The topological density localizes around ðr; tÞ ¼ ð0; TÞ,
and its extension is about the size parameter R, which
reflects the instanton size.

B. Various-size baryon mass in holographic QCD

In this subsection, using the above correspondence (53)
between the Higgs zero-point ζ and the instanton size R in
the Witten Ansatz, we try to control the baryon size by
changing the location of the zero point ζ in the Higgs field
ϕ in holographic QCD. Using this new viewpoint, we
obtain various sizes of holographic baryons and investigate
size dependence of the single baryon energy.
To begin with, we reformulate the above argument for

1þ 4 dimensional holographic QCD. We recall different
points from the ordinary Yang-Mills theory. First, holo-
graphic QCD already has four-dimensional Euclidean
space of ðx; y; z; wÞ, and the instanton can be naturally
defined on this space including the fourth spatial coordinate
w, without use of Euclidean process. Second, there appear
the gravitational factor, hðwÞ and kðwÞ, and the CS term,
which results in a repulsive interaction among the baryon
density ρB in holographic QCD. Owing to these effects, the
’t Hooft solution is no longer the exact solution but an
approximate one in holographic QCD.
Therefore, we use the ’t Hooft solution as a starting point

for the B ¼ 1 configuration, and search for the true solution
of holographic QCD by a numerical iterative method
with keeping the topological property unchanged, similarly
in Sec. IV.
In 1þ 4 dimensional holographic QCD, taking the

A0 ¼ 0 gauge, we use a holographic version of the
’t Hooft solution (47), as a starting point of the topological
configuration. Here, we locate the instanton center at the
four-dimensional spatial origin ðx; y; z; wÞ ¼ ð0; 0; 0; 0Þ for

symmetry of ðx; y; zÞ-spatial rotation and w-reflection, and
then the initial configuration is set to be

A0 ¼ 0; ð55Þ

AM ¼ −ηMN
xN

x2 þ R2
; ð56Þ

which can be rewritten as

Aa
i ¼

2r
r2 þ w2 þ R2

ϵiajx̂j

−
2w

r2 þ w2 þ R2
ðδ̂ia þ x̂ix̂aÞ; ð57Þ

Aa
w ¼

2r
r2 þ w2 þ R2

x̂a: ð58Þ

For the ðx; y; zÞ-rotational symmetric system, through the
Witten Ansatz, the non-Abelian gauge fields are converted
into the Higgs field ϕ and Abelian gauge field a⃗, and they
are expressed as

ðϕ1;ϕ2 þ 1Þ ¼ 2r
r2 þ w2 þ R2

ð−w; rÞ; ð59Þ

a1 ¼
−2w

r2 þ w2 þ R2
; a2 ¼

2r
r2 þ w2 þ R2

: ð60Þ

In Eq. (59), the zero point ζ of the Higgs field ϕ is found to
locate at ζ ¼ ðζr; ζwÞ ¼ ðR; 0Þ, and this ζr determines the
initial size of the holographic baryon.
From this initial configuration, similarly in Sec. IV, we

numerically search for the single baryon solution in holo-
graphic QCD by minimizing the total energy E½ϕ; a⃗; Â0�,
with fixing the Higgs-zero location

ζ ¼ ðζr; ζwÞ ¼ ðR; 0Þ; ð61Þ

where the former R corresponds to the instanton/baryon
size. In fact, to consider various size baryons, we here use
the correspondence between the instanton/baryon size and
zero point ζ in the Higgs field ϕ composing the Abrikosov
vortex [37]. Note that the Higgs field must be zero at the
center of the Abrikosov vortex to realize the finite energy,
and therefore the Higgs field ϕ inevitably has a zero-point ζ
in the presence of the vortex corresponding to B ¼ 1 in
holographic QCD. Here, to change the zero-point location
ζr ¼ R corresponds to a baryon-size change, and its various
changes lead to different-size baryons.
In summary, to obtain various-size baryon solutions, we

fix this zero-point location ζ ¼ ðζr; ζwÞ ¼ ðR; 0Þ of the
Higgs field ϕ as a boundary condition and minimize
the total energy E numerically. When the total energy
E½ϕ; a⃗; Â0� is minimized against arbitrary local variation of
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ϕ, a⃗ and Â0, these fields satisfies the EOM of holo-
graphic QCD.
For the numerical calculation on the ðr; wÞ plane, we use

the same lattice used in Sec. IV, that is, a fine and large-size
lattice with spacing of 0.2 M−1

KK ≃ 0.04 fm and the
extension of 0 ≤ r ≤ 250 and −125 ≤ w ≤ 125, of which
physical size is ð50 M−1

KKÞ2 ≃ ð10 fmÞ2.
After an iterative improvement of holographic fields with

the constraint of the Higgs zero-point location, we even-
tually obtain the Higgs and Abelian gauge fields,

ϕðr; w;RÞ; a⃗ðr; w;RÞ; Â0ðr; w;RÞ ð62Þ

for the holographic baryon corresponding to the instanton
size R. Note again that the presence of a zero point of the
Higgs field indicates a B ¼ 1 configuration, and the holo-
graphic fields obeying the local energy minimum condition
also satisfy the EOM of holographic QCD.
Figure 7 shows the static energy VðRÞ of the baryon with

various size R. The potential minimum corresponds to the
ground-state baryon. The numerical data are well fitted by a
quadratic function, as shown in Fig. 7. Note that all the
symbols represent the solution of holographic QCD under
the constraint of size fixing, which can be regarded as a
boundary condition.
We obtain the fitting quadratic function,

VðRÞ ≃ AðR − R0Þ2 þM0;

A ≃ 0.063; R0 ≃ 2.4; M0 ≃ 1.25; ð63Þ

in the MKk ¼ 1 unit. The value M0 of potential minimum
coincides with the previous calculation of the ground-state
baryon mass MB ≃ 1.25 MKK in Eq. (39).
The size parameter R ¼ R0 which minimizes the static

energy VðRÞ of the baryon is found to be R0 ≃ 2.4 in the
MKK ¼ 1 unit. This result coincides with the ground-state
result shown in Fig. 1, where the Higgs zero-point ζr
locates at about R ¼ R0. If there were no nontrivial gravity
[hðwÞ, kðwÞ] and no CS term, this size dependence would
disappear and the potential VðRÞ would become flat
because the instanton size is originally a modulus, reflect-
ing classical scale invariance of the Yang-Mills theory. In
fact, this size dependence of holographic baryon mass
originates from those gravitational effects and CS term.

C. Analysis of holographic baryon size

In this subsection, we investigate actual size of holo-
graphic baryons obtained in the previous subsection in
terms of the size parameter R, which corresponds to the
instanton size.
In our calculation, for each constraint of fixing the size

R, we already obtain the topological density ρB as

ρB ¼ ρBðr; w;RÞ: ð64Þ

Using this gauge-invariant local quantity, we investigate the
size of the holographic baryon for each direction of r andw.
Here, we define ρB-weighted average of arbitrary ðx; y; zÞ-
rotational symmetric variable Oðr; wÞ as

hOiρBðRÞ ≡
R∞
0 drr2

R∞
−∞ dwρBðr; w;RÞOðr; wÞR∞

0 drr2
R∞
−∞ dwρBðr; w;RÞ

: ð65Þ

In the ordinary four-dimensional Euclidean Yang-Mills
theory, the Pontryagin density ρ of a single instanton with
the size parameter R and its center at the origin is given by

ρ ¼ 1

16π2
trðFμνF̃μνÞ ¼

6

π2
R4

ðx2μ þ R2Þ4 ; ð66Þ

and the mean square radius weighted with ρ is evaluated as

hr2iρ ¼
3

2
R2; ht2iρ ¼

1

2
R2 ðYM instantonÞ; ð67Þ

or equivalently

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
hr2iρ

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2ht2iρ

q
¼ R ðYM instantonÞ; ð68Þ

for r≡ ðx2 þ y2 þ z2Þ1=2 and the Euclidean time t.
The holographic baryon is able to be dilatated simulta-

neously in both r and w direction, imposing the Higgs field
zero-point constraints, and we obtain various size baryons.
Based on the above relation, we consider size parameters of

FIG. 7. Static energy VðRÞ of the baryon with various size R in
the MKK ¼ 1 unit. The symbol denotes numerical data of the
baryon energy with different sizes. The line denotes a fit curve of
the potential by a quadratic function. This potential has a
minimum corresponding to the ground-state, and its value is
consistent with the previous ground-state calculation.
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the holographic baryon in r and w directions, respectively.
In a similar manner to Eq. (40) in Sec. IV, we define the
radius weighted with the topological density ρB as

drðRÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
hr2iρBðRÞ

r
; dwðRÞ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hw2iρBðRÞ

q
; ð69Þ

in the direction r and w, respectively. To compare with the
instanton size parameterR, the factors, 2=3 and 2, have been
introduced, considering Eq. (68). In fact, the ordinary self-
dual Yang-Mills instanton satisfies drðRÞ ¼ dwðRÞ ¼ R.
Figure 8 shows the ρB-weighted radius drðRÞ and dwðRÞ

as a function of R, weighted with the topological density.
The solid line denotes d ¼ R and is realized in the case

of the ordinary four-dimensional YM theory (hðwÞ ¼
kðwÞ ¼ 1) without the CS term. In other words, if the
holographic baryon were described with the ’t Hooft
solution, one would find drðRÞ ¼ dwðRÞ ¼ R.
From Fig. 8, dr and dw are found to be monotonically

increasing along with R. This monotonical increase reflects
that the change of Higgs zero-point gives the change of
holographic baryon (instanton) size. Later, we investigate
the dilatation mode by regarding the size R as dynamical
degree of freedom.
Around theground state (R ¼ R0 ≃ 2.4), thevalueofdrðRÞ

is larger than dwðRÞ, i.e., drðRÞ > dwðRÞ, and this means
an oblate-shaped instanton for the holographic baryon [24].
The slope of drðRÞ is larger than dwðRÞ, and dwðRÞ is

almost flat against R. Therefore, the size change of holo-
graphic baryons is approximately regarded as three-
dimensional in r-direction rather than four-dimensional.
(See Appendix C and D for four-dimensional size change
using the BPS instanton.)

These differences of the behavior for each direction
would come from the nontrivial gravity fields, hðwÞ and
kðwÞ, because the CS term (23) equally acts in r and w-
direction and does not break ðx; y; z; wÞ Oð4Þ symmetry. In
fact, if hðwÞ ¼ kðwÞ ¼ 1, Oð4Þ symmetry is exact and no
ðr; wÞ-asymmetry appears. Therefore, hðwÞ and kðwÞ are
the very origin of ðr; wÞ-asymmetry.
The flatness of dwðRÞ against R indicates that gravity

fields hðwÞ and kðwÞ suppress the w-direction swelling.
Approximately, one finds drðRÞ ∼ dwðRÞ, and then drðRÞ
seems to follow dwðRÞ and its soft R-dependence, which
might imply that large deviation from the spherical shape is
not favored energetically. As the result, the slope of both
parameters become small.
In the original Yang-Mills theory, the (anti)instanton

appears as the (anti)self-dual solution. In holographic
QCD, owing to the presence of gravity [hðwÞ and kðwÞ]
and the CS term, the self-duality of the solution is explicitly
broken.
Similarly for the ground-state baryon in Sec. IV, we

investigate self-duality breaking for various size holo-
graphic baryons. Figure 9 shows the self-duality breaking
parameter ΔDB in Eq. (46) as a function of the size
parameter R. This quantity ΔDB is non-negative and
becomes zero only in the exact self-dual case.
One finds that the duality breaking parameter is mini-

mized as ΔDB ≃ 0.17 at R ≃ 2.2, which is close to the size
R0 ≃ 2.4 of the ground-state baryon. This valueΔDB ≃ 0.17
seems to be small, and one might expect that the approxi-
mation of using the self-dual solution is not so bad.
However, the duality breaking parameter ΔDB never

becomes zero in holographic QCD, and this fact might
have an important physical meaning for the baryon-baryon
interaction as follows.
In the original four-dimensional Yang-Mills theory, the

energy is classically bounded by BPS bound, and its

FIG. 8. ρB-weighted radius drðRÞ and dwðRÞ of the holographic
baryon in the direction r and w, respectively, as the function of the
size parameter R in the MKK ¼ 1 unit. The solid line denotes
d ¼ R, which is to be realized in the case of the ordinary four-
dimensional YM theory (hðwÞ ¼ kðwÞ ¼ 1) without the CS term.
If the holographic baryon were described with the ’t Hooft
solution, drðRÞ ¼ dwðRÞ ¼ R would be satisfied.

FIG. 9. Duality breaking parameter ΔDB for various baryon size
R in the MKK ¼ 1 unit. The functional form of ΔDBðRÞ seems to
be quadratic and it takes minimum at R ≃ 2.2.
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minimum is achieved only if the configuration has self-
duality. However, holographic QCD has a nontrivial gravity
and the CS term, and thus they distort the self-duality. If
there were multi instantons satisfying BPS saturation, its
action would be determined only by the topological charge,
indicating the “no interaction” between instantons. Then, as
an interesting possibility, the self-duality breaking in holo-
graphic QCD might be related to the baryon-baryon
interaction or the nuclear force [38].

VI. DILATATION MODE OF A SINGLE BARYON

In theprevious section,we investigated size dependenceof
the static energy VðRÞ of a holographic baryon and showed
that it seemed to be quadratic against the size R. Using this
result, we numerically investigate time-dependent size oscil-
lation modes, i.e., dilatation modes, of a single baryon in
holographic QCD in this section.
Since the instanton size R is a key parameter to

determine the baryon size in holographic QCD, we describe
the size oscillation of the holographic baryon by introduc-
ing time-dependence of size R,

R → RðtÞ ¼ R0 þ δRðtÞ; ð70Þ

where R0 denotes the size of the ground-state baryon and
the size RðtÞ is expected to oscillate around this R0.
Note again that the size of an instanton is originally a

moduli, and, if there were only the Yang-Mills term in flat
space hðwÞ ¼ kðwÞ ¼ 1, its value would not affect the
energy of holographic QCD and the dilatation mode would
appear as an exact zero mode. In reality, the gravity effect
[hðwÞ, kðwÞ] and CS term break this moduli property of the
size; however, we expect that the dilatation mode is
inherited to be a soft mode of the ground-state baryon
and appears as a low-lying excitation in the single baryon
spectrum in holographic QCD. As a characteristic property,
the dilatation never changes the flavor and rotational
properties and hence the dilatation excitation has the same
quantum number as the ground state.
This dilatation differs from an ordinary ðx; y; zÞ-spatial

size oscillation, because holographic QCD has an extra
dimension w and the holographic baryon extends also its
direction. In fact, this extra-dimensional dilatation is
peculiar to holographic QCD.
We consider time-dependent variation of RðtÞ around the

ground-state size R0, which physically means a dilataion of
the holographic baryon. The Lagrangian of the size variable
RðtÞ is written as

L½R� ¼ 1

2
mRṘ2 − VðRÞ

≃
1

2
mRṘ2 −

1

2
mRω

2ðR − R0Þ2 ð71Þ

up to OððR − R0Þ2Þ. We have already calculated the
potential term VðRÞ and have shown it to be almost
quadratic in the previous section.
We calculate the dilatation mode of the holographic

baryon as a collective coordinate motion of the size RðtÞ.
Note here that, to estimate the frequencyω of the dilatational
mode, one only has to calculate the mass parameter mR.
(Of course,mR is not equal to the baryonmassMB.) Here, we
use adiabatic approximation that time-dependence of the
holographic fields is only through the size RðtÞ.

A. Numerical calculation

In this subsection, we consider the baryon dilatation
mode and investigate the excitation energy with keeping
the gravity background, hðwÞ and kðwÞ. We treat the size
oscillation to be adiabatic and field motions are relatively
faster than the size motion. Within this adiabatic treatment,
the time dependence of holographic fields ϕ and ai is
decided through only the baryon size RðtÞ. Therefore, it is
possible to write down field arguments symbolically as

ϕ ¼ ϕðr; w;RðtÞÞ; ai ¼ aiðr; w;RðtÞÞ: ð72Þ

Note that there is no contribution from Â0 in calculating the
kinetic term of size variable RðtÞ, because Â0 has no time-
derivative and never accompanies ṘðtÞ.
Based on this adiabatic treatment, time-derivative is

converted to R-derivative as

d
dt

O½RðtÞ� ¼ Ṙ
d
dR

O½R�: ð73Þ

In our framework, O½R� is (numerically) calculable for
arbitraryR, and theR-derivative is easily obtainednumerically,

d
dR

O½R� ≃O½Rþ δR� −O½R�
δR

: ð74Þ

We have already obtained holographic configurations
ϕðRðtÞÞ with various size R, and the kinetic term of RðtÞ
is expressed as

Skin ¼ 4πκ

Z
dt

Z
∞

0

dr
Z

∞

−∞
dw

×

�
hj∂0ϕj2 þ h

r2

2
ð∂0a1Þ2 þ k

r2

2
ð∂0a2Þ2

�

¼ 4πκ

Z
dt

Z
∞

0

dr
Z

∞

−∞
dw

×

�
hṘ2j∂Rϕj2 þ h

r2

2
Ṙ2ð∂Ra1Þ2 þ k

r2

2
Ṙ2ð∂Ra2Þ2

�

¼
Z

dt
1

2
mRṘ2; ð75Þ
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and mass parameter mR on the size variation is given by

mR ≡ 8πκ

Z
∞

0

dr
Z

∞

−∞
dw

×

�
hj∂Rϕj2 þ h

r2

2
ð∂Ra1Þ2 þ k

r2

2
ð∂Ra2Þ2

�
: ð76Þ

Note that CS term also contains time derivative, but it is
first order and no effect from the CS term for the kinetic
term of dilatation mode. The numerical result is found to be

mR ≃ 0.34 MKK ≃ 322 MeV: ð77Þ

The important point of this numerical calculation is that
gravitational factors, hðwÞ and kðwÞ, are exactly included.
With this value of the mass parameter mR and the

quadratic fitting of Eq. (63) for the potential VðRÞ, we
obtain the dilatational excitation energy

ω ¼
ffiffiffiffiffiffiffi
2A
mR

s
≃ 0.61 MKK ≃ 577 MeV ð78Þ

for the holographic baryon.
In terms of 1=Nc expansion, the mass parameter mR ∝ κ

in Eq. (78) is OðNcÞ, and the potential VðRÞ of the
holographic baryon is OðNcÞ, leading to A ¼ OðNcÞ.
Then, the dilatation excitation energy ω ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2A=mR

p
is

OðN0
cÞ ¼ Oð1Þ quantity.

In Appendix D, we also consider a rough analytical
estimation for the dilatation mode, when using ’t Hooft
instanton, i.e., the solution in the case of hðwÞ ¼ kðwÞ ¼ 1
without the CS term. This rough estimate gives a larger
value of 771 MeV for the dilatation excitation energy,
which seems consistent with 0.816 MKK ≃ 774 MeV of the
excitation energy on instanton-size fluctuation in the
previous research [19] using ’t Hooft instanton.

B. Discussion

In the previous subsection, we numerically calculate the
dilatation excitation energy, keeping the gravitational effect
of hðwÞ and kðwÞ. Note again that this background gravity
is physically important because it is inherited from the Nc
D4 branes to express the original Yang-Mills theory. We
have consistently performed a numerical calculation for
both kinetic and potential terms to include the gravitational
effect. We have eventually obtained the dilatation excitation
energy of 577 MeV for the holographic baryon.
This dilatation mode appears as an excited baryon with

the same quantum number as the ground state since this
rotationally symmetric dilatation never changes the quan-
tum numbers on the flavor and rotation.
Similar to the Skyrme soliton, for the description of

definite spin/isospin states like N and Δ, semi-classical
quantization by adiabatic rotation [19] is used for the

holographic baryon. In this quantization process on the
spin/isosipn, an Oð1=NcÞ mass correction is added to the
OðNcÞ baryon mass [19].
In terms of 1=Nc expansion, the dilatation excitation

energy is OðN0
cÞ as mentioned before, and thus the

dilatation mode is more significant than the Oð1=NcÞ
rotational energy, which leads to N-Δ mass splitting.
Furthermore, the correction from this rotational effect to
the dilatation mode is higher order of 1=Nc expansion and
then becomes negligible.
Figure 10 shows schematic figure for the baryon mass

splitting order by order in the 1=Nc expansion. At the
leading order of OðNcÞ, all the holographic baryons
degenerate. Up tp OðN0

cÞ, there appears the mass splitting
of dilatation mode. Up to OðN−1

c Þ, the mass splitting from
rotational effect is added and leads to N-Δ mass splitting.
As the result, the order of low-lying baryon mass is to be
N < Δ < N� < Δ� in term of the 1=Nc expansion.
In holographic QCD, the dilatation excitation seems to

appear as the first excitation of the ground-state baryon and
has the same quantum number, e.g., positive parity. In
addition to the qualitative properties, the dilatation excita-
tion energy is estimated as 577 MeV in holographic QCD.
From these results on the same quantum number and the
magnitude of the excitation energy, this dilatation mode of
the nucleon N(940) would be identified as the Roper
resonance N�ð1440Þ, which is positive parity and the first
excitation of N(940). For the Δð1232Þ, Δð1600Þ might be
identified to be the dilatational excitation mode.
As an interesting possibility, the similar dilatation mode

exists for every baryon as a universal phenomenon for a
single baryon, because any extended stable soliton gen-
erally has such a dilatational mode.
The strange baryon mass is slightly larger, reflecting the

non-zero strange quark mass; however, the SUð3Þf flavor
symmetry approximately holds. Here, we suppose that the
mass excess of the strange quark is simply added to the
holographic baryon, like the treatment of SUð3Þf symmetry
and its breaking in ordinary hadron physics [39]. Then, also
for strange baryons, the dilatation mode would appear, and

FIG. 10. Schematic figure for mass splitting of the holographic
baryon in terms of the 1=Nc expansion. (The symbol * denotes
the excitation mode.) The holographic baryon has OðN0

cÞ and
OðN−1

c Þ splitting, corresponding to dilatation and rotational
effect, respectively. Therefore, the order of low-lying baryon
mass is to be N < Δ < N� < Δ� in term of the 1=Nc expansion.
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its excitation energy is expected to take a similar value as
the above result of 577 MeV.
Table I presents the candidates of the dilational excitation

in various channel of baryons, i.e., N, Δ and Λ, Σ, Σ�
channel.
For each channel with the same quantum number, we

find that the first excitation energy seems to be a consistent
similar value to the dilatational one, ω ≃ 577 MeV, theo-
retically obtained above.
Also for multi-strange baryons in Ξ, Ξ� and Ω channel,

we theoretically predict the dilatation modes with the
excitation energy of about 577 MeV. However, the dilata-
tional excited baryons for Ξð1320Þ, Ξ�ð1530Þ, and
Ωð1673Þ are not yet observed experimentally because
spin-parity information is not yet confirmed for their
excited baryons. In this respect, further experimental
analyses are much desired for excited baryons in terms
of the dilatational mode in each baryon channel.

VII. SUMMARY AND CONCLUDING REMARKS

We have investigated a baryon and its dilatation modes in
holographic QCD based on the Sakai-Sugimoto model,
which is constructed with Nc D4 branes and Nf D8/D8
branes in the superstring theory. This theory is expressed
as a 1þ 4 dimensional UðNfÞ gauge theory in the flavor
space.
We have adopted a generalized version of the Witten

Ansatz for spatially rotational symmetric systems and have
reduced 1þ 4 dimensional holographic QCD into a 1þ 2
dimensional Abelian Higgs theory in a curved space. In this
formulation, a four-dimensional instanton corresponding to
a baryon is converted to a two-dimensional Abrikosov
vortex. We have numerically calculated the baryon solution
of holographic QCD using a fine and large-size lattice with
spacing of 0.04 fm and size of 10 fm.
Using the relation between the baryon size and the zero-

point location of the Higgs field in the Witten Ansatz, we

have theoretically changed the size of holographic baryons
and have investigated its properties, such as the energy
and self-duality breaking, as function of the size parameter.
Here, each configuration is a solution ofEOMof holographic
QCD under the constraint of fixing Higgs zero-point.
As time-dependent size-oscillation modes, we have

investigated the dilatation modes of a baryon and have
found that such a dilatational mode takes the excitation
energy of 577 MeV. Since the dilatation does not change
the quantum number including the parity, we have iden-
tified this dilatation mode for the nucleon N(940) as the
Roper resonance N�ð1440Þ. We have conjectured that any
baryons are expected to have such a dilatational excitation
universally, and their excitation energy would be similar.
In this respect, further experimental analyses are much

desired for excited baryons in terms of the dilatational
mode in each baryon channel. In particular, the dilatational
excited baryons for Ξð1320Þ, Ξ�ð1530Þ, and Ωð1673Þ have
not yet been observed experimentally because spin-parity
information is not yet confirmed for their excited baryons.
As a caution, the calculated values presented in this

paper are to be regarded as semiquantitative estimates in an
idealized case of large Nc in the chiral limit, and they have
some deviation from experimental values in the real world.
In the following, we mention some quantitative limitations
and cautions on the approach used in this study.
This framework of holographic QCD has infrared

equivalence with massless QCD and gives a useful ana-
lytical nonperturbative method to analyze QCD, which is a
main reason to adopt holographic QCD in this study for
baryons. On the quantitative accuracy, however, this
framework includes some limitations. As an important
caution, the present calculation is based on the 1=Nc
and 1=λ expansion, and the starting holographic action is
up to the 1=Nc-leading and 1=λ sub-leading order.
Therefore, for more accurate estimation, it is desirable to
check the contribution from 1=Nc or 1=λ higher order
terms. However, it is extremely difficult to extract the next
order of 1=Nc and 1=λ expansions in holographic QCD.
As a higher-order correction, there is an Oð1=NcÞ

rotational effect of the hedgehog configuration, which is
used for semi-classical analysis of the Skyrmion inves-
tigation [41]. It is relatively 1=N2

c smaller, compared with
leading order OðNcÞ of the baryon mass, although it is
necessary for the N-Δ splitting. Similarly, for the dilata-
tional excitation, this correction appears as relatively 1=N2

c-
smaller order, and therefore we have ignored this higher
order in this paper. However, this higher-order correction
might be desired to reproduce real experimental data.
In addition, we have assumed spatially spherical shape of

a baryon to apply the Witten Ansatz and adiabatic treatment
for the dilatation dynamics. For more precise analysis of
baryons, more sophisticated treatments might be desired.
However, to go beyond the spherical symmetric solution,
the Witten Ansatz is no more applicable, and then one has

TABLE I. Experimental candidates of the dilatational excitation
mode in various baryon channel [40]. Each ground-state baryon
has the excitation with the same quantum number. Here, first-
excited baryons are mainly listed, such as N�ð1440Þ and
Δð1600Þ. For each channel, the excitation energy seems to take
a consistent value with the theoretical one, ω ≃ 577 MeV. Here,
N�ð1710Þ and Δð1920Þ are identified to the second excitation
mode.

Baryon Excited baryon Excitation energy Theory

N(940) N�ð1440Þ 500 MeV ω
N�ð1710Þ 770 MeV 2ω

Δð1232Þ Δð1600Þ 368 MeV ω
Δð1920Þ 688 MeV 2ω

Λð1116Þ Λð1600Þ 484 MeV ω
Σð1193Þ Σð1660Þ 467 MeV ω
Σ�ð1385Þ Σ�ð1780Þ 395 MeV ω
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to deal with the four-dimensional analysis even for static
baryons. To go beyond adiabatic approach is also a difficult
problem widely appeared in theoretical physics, and one
has to handle complicated local oscillation of all the
holographic fields in the present case.
We have used holographic QCD based on Nf ¼ 2 in the

chiral limit. Further extension including strangeness is an
interesting subject in hadron physics, which can be done
with Nf ¼ 3 holographic QCD [42]. In the real world, u
and d-quarks have small finite current mass of 2–5 MeV
and s-quarks have current mass of about 93 MeV [40], and
the non-zero quark mass explicitly breaks the chiral
symmetry. In holographic QCD, however, it is difficult
to introduce the finite quark mass or explicit chiral-
symmetry breaking, and further theoretical development
is required for quantitative argument of hyperons.
We have mainly presented the excitation energy for the

dilatational mode of baryons, which appears in the same
quantum numbers. It is desired for theoretical progress to
show how to distinguish the dilatational mode from other
excitation experimentally. To this end, we have to find out
unique behavior for the dilatational mode, which is a future
subject. The finding of such a peculiar quantity will lead to
a better understanding of baryon spectra.
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APPENDIX A: LATTICE FORMALISM
OF HOLOGRAPHIC QCD

In Appendix A, we show our lattice formalism for
holographic QCD in the Witten Ansatz, by introducing a
sizable finite lattice with a small spacing a.
Let us begin with the static energy E5YM of the Yang-

Mills term in the Witten Ansatz. For the explanation, we
here repeat Eq. (18),

E5YM ¼ 4πκ

Z
∞

0

dr
Z

∞

−∞
dw

�
hðwÞjD1ϕj2 þ kðwÞjD2ϕj2

þ hðwÞ
2r2
f1 − jϕj2g2 þ r2

2
kðwÞf212

�
; ðA1Þ

of which the field variables ϕ and aμ depend on the two-
dimensional spatial coordinate ðr; wÞ.
For the U(1) gauge variable aμ with μ ¼ r, w, we define

the link variable

UμðsÞ≡ exp

�
iaaμ

�
sþ μ̂

2

��
∈Uð1Þ ðA2Þ

at the site s ¼ ðsr; swÞ on the two-dimensional lattice. Here,
μ̂ denotes the μ-directed vector with the length of a.
On the lattice with a small spacing a, one finds for the

U(1) covariant derivative Dμϕ as

− fϕ†ðsÞUμðsÞϕðsþ μ̂Þ þ ϕ†ðsþ μ̂ÞUμðsÞ†ϕðsÞg þ jϕðsÞj2 þ jϕðsþ μ̂Þj2

¼ −
�
ϕ −

a
2
∂μϕ

�†�
1þ iaaμ −

1

2
a2a2μ

��
ϕþ a

2
∂μϕ

�
−
�
ϕþ a

2
∂μϕ

�†�
1 − iaaμ −

1

2
l2a2μ

��
ϕ −

a
2
∂μϕ

�

þ 2jϕj2 þ a2

2
j∂μϕj2 þOða3Þ

¼ a2ϕ†ð∂μ − iaμÞð∂μ þ iaμÞϕþOða3Þ
¼ a2jDμϕj2 þOða3Þ; ðA3Þ

where all omitted arguments are sþ μ̂=2. The field strength
f12 is expressed with the U(1) plaquette variable,

□12ðsÞ≡ U1ðsÞU2ðsþ 1̂ÞU�1ðsþ 2̂ÞU�2ðsÞ∈Uð1Þ ðA4Þ

f212ðsÞ ¼
1

a2
½1 − Ref□12ðsÞg�: ðA5Þ

The additional U(1) energy EUð1Þ in Eq. (28) is expressed
by the coupling of the original U(1) gauge field Â0 and the
topological density ρB. Here, the temporal component

Â0ðr; wÞ is treated as a (spatially) site-variable on the ðr; wÞ
lattice. On the lattice, the baryon density is expressed as

ρB ¼
1

8π2r2
½−iϵijðDiϕÞ�Djϕþ ϵij∂iajð1 − jϕj2Þ�

¼ 1

8π2r2
½2ImfðD1ϕÞ�D2ϕg þ f12ð1 − jϕj2Þ� ðA6Þ

with

f12ð1 − jϕj2Þ ¼
1

a2
Im□12 × ð1 − jϕj2Þ ðA7Þ

and
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ðD1ϕÞ�D2ϕ ¼
1

4a2
fU�1ðsÞϕ�ðsþ 1̂Þ −U1ðs − 1̂Þϕ�ðs − 1̂ÞgfU2ðsÞϕðsþ 2̂Þ −U�2ðs − 2̂Þϕðs − 2̂Þg

¼ 1

4a2
fϕ�ðsþ 1̂ÞU�1ðsÞU2ðsÞϕðsþ 2̂Þ − ϕ�ðs − 1̂ÞU1ðs − 1̂ÞU2ðsÞϕðsþ 2̂Þ

− ϕ�ðsþ 1̂ÞU�1ðsÞU�2ðs − 2̂Þϕðs − 2̂Þ þ ϕ�ðs − 1̂ÞU1ðs − 1̂ÞU�2ðs − 2̂Þϕðs − 2̂Þg: ðA8Þ

To reduce the discretization error, we have used the above
form for ðD1ϕÞ�D2ϕ, and its lattice formalism is symboli-
cally written as

ðA9Þ

where the horizontal an vertical arrows represent U1 and
U2, respectively, and the dots represent ϕ. Thus, we define
the topological density ρBðr; wÞ and formulate the U(1)
energy EUð1Þ½ρBðr; wÞ; Â0ðr; wÞ� in Eq. (28) on the ðr; wÞ
lattice.
In this way, the total energy E in holographic QCD is

expressed as E½ϕðsÞ; U⃗ðsÞ; Â0ðsÞ�, i.e., a function of
ϕðsÞ ¼ ϕ1ðsÞ þ iϕ2ðsÞ∈C, U⃗ðsÞ≡ ðU1ðsÞ; U2ðsÞÞ and
Â0ðsÞ at the spatial site s ¼ ðsr; swÞ. To find the solution
of holographic QCD, we minimize the total energy E by
iterative improvement on ϕðsÞ, U⃗ðsÞ, and Â0ðsÞ. Looking at
a specific site s0, we consider only one variable ϕðs0Þ, with
fixing all other variables. By taking variation of ϕðs0Þ, we
minimize the total energy E. Next, we consider only one
link-variable U⃗ðs0Þ, with fixing all other variables, and take
its variation to minimize E. Similarly, considering only one
site-variable Â0ðs0Þ, with fixing all other variables, we take
its variation to minimize E. On each site on the lattice, we
repeat the above process and update ϕðsÞ, U⃗ðsÞ and Â0ðsÞ.
We iterate this sweep procedure many times so as to
minimize the total energy E in holographic QCD, and the
solution is eventually obtained.

APPENDIX B: OTHER EXPRESSION
OF U(1)-PART ENERGY

For the U(1) sector, we have mainly used Eq. (28) for the
numerical calculation of EUð1Þ. However, there is another
useful expression for the energy EUð1Þ of the U(1) sector
without Â0, and we introduce this form in Appendix B.
By solving Â0 using Eq. (25), the energy (27) becomes

EUð1Þ ¼ N2
c

8

Z
d3xdwρBK−1ρB

¼ N2
c

8

Z
d3xdw

Z
d3x0dw0

× ρBðx⃗; wÞK−1ðx⃗; w; x⃗0; w0ÞρBðx⃗0; w0Þ: ðB1Þ

Since the kernel K and topological density ρB are SO(3)
rotationally symmetric, the additional energy can be
expressed only with the ðr; wÞ-coordinates:

EUð1Þ ¼ 2π2N2
c

Z
∞

0

dr
Z

∞

−∞
dw

Z
∞

0

dr0
Z

∞

−∞
dw0

ρ̃Bðr; wÞK̃−1ðr; w; r0; w0Þρ̃Bðr0; w0Þ; ðB2Þ

using ρ̃Bðr; wÞ≡ r2ρBðr; wÞ and the hermite kernel K̃ ≡
4πr2K in ðr; wÞ-space.
On the lattice, the kernel K̃ in Eq. (29) is transformed

into a differential form and is expressed as a matrix
K̃Lðr; w; r0; w0Þ. Then, the kernel inverse K̃−1

L ðr; w; r0; w0Þ
is numerically obtained by taking the inverse matrix of the
kernel K̃Lðr; w; r0; w0Þ. As a technical caution, the kernel
K̃Lðr; w; r0; w0Þ has a translational zero mode, reflecting the
derivative form of K̃. Since this translational zero mode
does not affect the total energy, the inverse of K̃ has to be
taken in the space except the spurious zero mode. In fact,
using an orthogonal matrix O, the kernel K̃L is diagonal-
ized as

K̃L ¼ O diagð0; λ1; λ2; � � �ÞOT ðB3Þ

with nonzero eigenvalues λn. Then, we define its inverse
K̃−1

L to be

K̃−1
L ¼ O diagð0; λ−11 ; λ−12 ; � � �ÞOT; ðB4Þ

which is equivalent to the appropriate removal of the
spurious translational zero mode. Using this kernel inverse
K̃−1

L and the baryon density ρB, the energy EUð1Þ of the CS
term is calculated as ρBK̃−1

L ρB on the lattice.
Thus, for the numerical calculation of EUð1Þ, there are

two different methods: one is to update the holographic
fields ϕðr; wÞ, a⃗ðr; wÞ and Â0ðr; wÞ on the lattice based on
Eq. (28); the other is to update only ϕðr; wÞ and a⃗ðr; wÞ
using Eq. (B2). We have confirmed that both methods give
the same numerical results for holographic baryons.

APPENDIX C: HOLOGRAPHIC BARYON USING
SELF-DUAL BPS INSTANTON

In Appendix C, we investigate the holographic baryon
when the self-dual BPS instanton in Eq. (56) is used. The
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self-dualBPS instanton is the ’t Hooft solution of the ordinary
Yang-Mills theory, and hence, to be strict, this usage is
justified in the case of flat space hðwÞ ¼ kðwÞ ¼ 1 and
ignoring theCS term. Substituting theBPS instantonwith the
sizeR into the total energyE inEq. (30) including theCS term
and the background gravity, kðwÞ ¼ 1þ w2 and hðwÞ ¼
kðwÞ−1=3, one obtains the static baryon energy EðRÞ ¼
VBPSðRÞ as the function of the instanton size R, and its
minimum gives an approximate ground-state holographic
baryon, which satisfies MBPS

B ≃ 1.35 MKK ≃ 1.28 GeV andffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2iBPSρB

q
¼

ffiffi
3
2

q
RBPS
0 ≃ 2.2 M−1

KK ≃ 0.46 fm, as shown in

Fig. 14. Thus, when the self-dual BPS instanton is used,
the holographic ground-state baryon has larger mass and
smaller size [19] than the true solution numerically obtained
in Sec. IV.
For the approximate ground-state holographic baryon,

the corresponding Higgs field ϕ and gauge field a⃗ are

shown in Fig. 11. These fields give a topological density ρB,
and Â0 is obtained by solving EOM (25), as shown in
Fig. 12. Figure 13 shows the r2-multiplied topological and
the energy densities.
The static baryon energy VBPSðRÞ for the BPS configu-

ration is shown in Fig. 14, and it is approximately fit with a
quadratic function,

VBPSðRÞ ≃ ABPSðR − RBPS
0 Þ2 þMBPS;

ABPS ≃ 0.39; RBPS
0 ≃ 1.8; MBPS

0 ≃ 1.4; ðC1Þ

in the MKK ¼ 1 unit.
Thus, when the self-dual BPS instanton is used, the

holographic baryon has larger mass and smaller size [19]
than the true solution numerically obtained in Sec. IV.

FIG. 11. The Higgs field ϕðr; wÞ (upper) and the Abelian gauge
field aðr; wÞ ¼ ða1; a2Þ (lower) for the BPS instanton in the
Landau gauge in the MKK ¼ 1 unit. For iterative improvement in
the main sections, this configuration is used as the starting point,
i.e., the initial configuration of the iteration.

FIG. 12. The U(1) gauge field Â0 in the case of BPS instanton
in the MKK ¼ 1 unit. This is obtained by solving Eq. (25) for the
self-dual ’t Hooft instanton.

FIG. 13. r2-multiplied topological and energy densities,
4πr2ρBðrÞ and 4πr2EðrÞ, in the case of the BPS instanton
configuration in the MKK ¼ 1 unit.
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APPENDIX D: ROUGH ANALYTICAL
ESTIMATION FOR DILATION MODES
USING SELF-DUAL BPS INSTANTON

In Appendix D, we consider a rough analytical estima-
tion of the dilation mode using the self-dual ’t Hooft BPS
instanton, which is justified in the flat space hðwÞ ¼
kðwÞ ¼ 1 and without the CS term.
In this case, when the flat space approximation hðwÞ ¼

kðwÞ ¼ 1 is used, the kinetic term T of the size variable
RðtÞ is analytically expressed as

T ≃ κ

Z
d3x dw tr½F2

0M�

≃ κ

Z
d3x dw

24x2

ðx2 þ R2
0Þ4

R2
0Ṙ

2

¼ 48π2κ

Z
dr

r5

ðr2 þ R2
0Þ4

R2
0Ṙ

2

¼ 8π2κṘ2 ¼ 1

2
mRṘ2; ðD1Þ

where Ṙ means ∂tR. Here, hðwÞ ¼ kðwÞ ¼ 1 is used in the
first line, and the instanton size R0 appearing in the middle
does not affect the result. In this way, the mass parameter
mR on the size variation is estimated as

mR ¼ 16π2κ ≃ 1.18: ðD2Þ
Form this mass parameter mR and the potential VBPSðRÞ

in Eq. (C1), one obtains a rough estimation of the excitation
energy of the dilatation mode,

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2ABPS

mR

s
¼ 0.81 MKK ≃ 771 MeV; ðD3Þ

which seems a larger value than the numerical result in
Sec. VI. This estimation can be analytically done but has no
gravitational effect of hðwÞ and kðwÞ for both kinetic and
potential terms, in addition to use of the self-dual BPS
instanton. On these points, the numerical calculation
presented in Sec. VI has been developed.
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