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We study the J=ψπ andDD̄� coupled-channel system within a covariant framework. The J=ψπ andDD̄�

invariant-mass distributions measured at 4.23 and 4.26 GeV by BESIII and the finite-volume energy levels
from recent lattice QCD simulations are simultaneously fitted. Phase shifts and inelasticities of the J=ψπ
andDD̄� scattering are predicted using the resulting amplitudes. Poles corresponding to the Zcð3900Þ state
are found in the complex energy plane and their couplings with J=ψπ andDD̄� are determined. Our results
indicate that the current lattice data do not preclude the existence of the Zcð3900Þ state.
DOI: 10.1103/PhysRevD.109.014026

I. INTRODUCTION

The first undoubted tetraquark candidate Zcð3900Þ in the
charm sector, which was observed by BESIII and Belle in
the J=ψπ� distributions from the eþe− → J=ψπþπ− proc-
ess at

ffiffiffi
s

p ¼ 4.26 GeV, has attracted much attention from
the experimental, theoretical, and lattice QCD communities
since its discovery in 2013 [1,2]. This charged charmo-
niumlike state was confirmed in an analysis of the CLEO-c
data of eþe− → J=ψπþπ− at

ffiffiffi
s

p ¼ 4.17 GeV [3] and in the
semi-inclusive decays of b-flavored hadrons with
J=ψπþπ− in the range 4.2–4.7 GeV by the D0 collabora-
tion [4]. The neutral partner of Zcð3900Þ was discovered
later by BESIII in the eþe− → J=ψπ0π0 process, confirm-
ing the Zcð3900Þ as an isovector state [5]. Its spin and
parity were unambiguously determined to be JP ¼ 1þ in
Ref. [6]. Interestingly similar exotic charmoniumlike

Zcð3885Þ states, both charged [7,8] and neutral [9] ones,
were observed in the ðDD̄�Þ�;0 distributions in the eþe− →
π�ðDD̄�Þ∓ and π0ðDD̄�Þ0 processes. Recent years have
witnessed the intensive and interesting studies on the theo-
retical explanations of the intriguing Zc states, including the
compact tetraquark states [10–14], the kinematical singular-
ities as either threshold cusp effects [15–18] or triangle
singularities [19,20], and the hadronic molecules [21–33].
Although it is not definitely clearwhether the two resonant

structures observed in the J=ψπ andDD̄� distributions have
the same origin, it is natural to assume that Zcð3900Þ and
Zcð3885Þ, which will be simply denoted as Zcð3900Þ here-
after, correspond to the same state, due to the close values of
their masses and widths [6–9]. In order to concretely verify
this presumption, it is necessary to perform a coupled-
channel calculation to simultaneously describe the available
experimental data on the J=ψπ and DD̄� distributions. It is
advocated in Refs. [18,34] that the off-diagonal J=ψπ-DD̄�

interaction is mostly responsible for the resonant structure of
the Zcð3900Þ (the ηcρ-DD̄� interaction is also suggested to
be important in Ref. [18]). The importance of triangle
singularities in producing the Zcð3900Þ signal has been
pointed out in Ref. [21] immediately after the discovery,
and confirmed in Refs. [30,33,35]. Nevertheless, it is con-
cluded in Refs. [21,30,33], which consider both triangle
singularities and final state interactions with J=ψπ-DD̄�
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coupled-channel amplitudes, that a Zcð3900Þ pole is still
present in the best fits. It is further shown in Refs. [30,33]
that if only constant contact terms are considered in the
perturbative amplitudes for the J=ψπ-DD̄� coupled chan-
nels, one can only get a virtual-state-like pole for the
Zcð3900Þ, i.e., a pole below the DD̄� threshold on the
unphysical Riemann sheet of the complex energy plane. If a
more general form of the perturbative amplitudes by
including an energy-dependent term is considered, then
the best fit to the BESIII data leads to a resonance pole
above the DD̄� threshold [30,33]. Therefore, it would be
important to include general terms in the J=ψπ and DD̄�

coupled-channel scattering amplitudes to check the
robustness.
Moreover, important progresses on the lattice QCD

simulations of the Zcð3900Þ have been made by several
groups in Refs. [18,36–40]. Weakly repulsive interaction
was revealed for theDD̄� system in a single-channel lattice
simulation [36]. Later on improvement by considering the
coupled-channel J=ψπ and DD̄� scattering has been
achieved by the CLQCD collaboration [40]. Several precise
finite-volume energy levels in the c.m. frame were
obtained. By using the coupled-channel Lüscher formalism
to fit the energy levels, no resonant peaks were found near
theDD̄� threshold in the IGðJPCÞ ¼ 1þð1þ−Þ channel [40].
Similar conclusions were also obtained earlier in Ref. [37]
and later by the Hadron Spectrum Collaboration [39].
The HALQCD collaboration performed a three-channel
(J=ψπ; ρηc, and DD̄�) simulation and found that the
Zcð3900Þ could correspond to a threshold cusp [18,38].1

One of the novelties in the present work is to perform a
joint analysis of the experimental J=ψπ and DD̄� distri-
butions and the lattice finite-volume energy levels resulting
from the coupled-channel simulations with J=ψπ and DD̄�
in Refs. [39,40], within the unitarized partial-wave ampli-
tude approach. In this way we expect to tightly constrain
the unknown parameters in the J=ψπ and DD̄� scattering
amplitudes and draw more definite conclusions on the
properties of the Zcð3900Þ.
In this work we use the effective Lagrangian approach to

calculate the relevant perturbative amplitudes. Different from
the nonrelativistic treatment of the amplitudes [30,33,41], we
utilize the manifestly relativistic formalism to perform the
partial-wave projections of the coupled J=ψπ and DD̄�
scattering amplitudes. By taking into account the unitarity
conditions, the partial-wave amplitudes are employed to
construct the unitarized T matrix, which then provides the
key input to analyze the experimental J=ψπ and DD̄� event
distributions and the lattice finite-volume energy levels.
This article is organized as follows. In Sec. II, we

introduce the theoretical formalism of the covariant partial-
wave amplitude and its unitarization. The inclusion of the

finite-volume effects in the unitarized amplitude is also
elaborated. In Sec. III, we perform the fits to the exper-
imental event distributions and the lattice discrete energies.
The resulting resonance poles, their couplings and the
compositeness are then discussed in detail in Sec. IV.
Finally in Sec. V we give a short summary and conclusions.

II. COVARIANT PARTIAL-WAVE AMPLITUDE
AND ITS UNITARIZATION

The effective Lagrangian that includes the contact
DD̄� → DD̄� vertex reads [42]

LDD̄�DD̄� ¼−C0aðD†DþD�†
μ D�μÞðD̄D̄†þ D̄�

μD̄�μ†Þ
þC0bðD†D�

μþD�†
μ DÞðD̄�μD̄†þ D̄D̄�μ†Þ; ð1Þ

with

D¼
�
Dþ

D0

�
; D†¼ðDþ;†;D0;†Þ; D̄¼ðD̄0;D−Þ;

D̄†¼
�
D̄0;†

D−;†

�
: ð2Þ

The flavor contents for the vector charmed mesons D�

and D̄� are the same as those of the D and D̄, respectively.
Since we only focus on the Zcð3900Þ channel with
definite quantum numbers IGðJPCÞ ¼ 1þð1þ−Þ, only
one linear combination of C0a and C0b in Eq. (1) will
be relevant [22,42,43], which will be simply denoted
as λ̂1.
We include the following effective operators to describe

the interactions between the J=ψπ and DD̄� states [31]

LDD̄�J=ψπ ¼ λ̂2ψμð∇μD†uνD̄�ν† þ D̄�νuν∇μDÞ
þ λ̂3ψμð∇νD†uμD̄�†

ν þ D̄�
νuμ∇νDÞ

þ λ̂4ψμð∇νD†uνD̄�μ† þ D̄�μuν∇νDÞ
þ λ̂5ψμðD†∇μuνD̄�†

ν þ D̄�
ν∇μuνDÞ; ð3Þ

with

∇νD† ¼ D†ð∂⃖ν þ ΓνÞ; ∇νD̄† ¼ ð∂ν þ Γ†
νÞD̄†;

Γν ¼
1

2
ðu†∂νuþ u∂νu†Þ;

u ¼ ei
Φffiffi
2

p
F; uν ¼ iðu†∂νu − u∂νu†Þ;

Φ ¼
 1ffiffi

2
p π0 πþ

π− − 1ffiffi
2

p π0

!
: ð4Þ

Next it is straightforward to calculate the scattering
amplitudes in the physical bases using the Lagrangians
(1) and (3) and then transform them into the amplitudes1A pole was found far away from the DD̄� threshold [38].
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with the proper isospin and JPC quantum numbers that are
consistent with the Zcð3900Þ state. In practice, since only
the Zcð3900Þ channel with isospin one and JPC ¼ 1þ− is
focused in the present work, we will simply write the
amplitudes with definite isospin and JPC in terms of
λi¼1;…;5, which are proportional to the parameters λ̂1
introduced above and λ̂i¼2;…;5 in Eq. (3) in order.
The D̄�ðaÞDðbÞ → D̄�ðcÞDðdÞ amplitude is given by

VD̄�D→D̄�D ¼ λ1ε
†
c · εa: ð5Þ

The J=ψðaÞπðbÞ → D̄�ðcÞDðdÞ transition amplitude takes
the form

VJ=ψπ→D̄�D ¼
ffiffiffi
2

p

Fπ

�
λ2εa · pdε

†
c · pb þ λ3εa · pbε

†
c · pd

þ λ4ε
†
c · εapb · pd þ λ5εa · pbε

†
c · pb

�
: ð6Þ

In order to implement the unitarity conditions, it is
convenient to work with the partial-wave amplitudes. For
the scattering processes involving particles with spins, both
the lS and helicity bases can be used to perform the partial-
wave projections. Although in general cases the two
approaches are equivalent, the lS basis is more suitable
for the present study. This is because the S-wave interaction
of the DD̄� should be the dominant one in the molecular
description of the Zcð3900Þ, while the D-wave part should
be much suppressed, at least in the focused energy region
around the DD̄� threshold. We follow Ref. [44] to perform
the partial-wave projections in a covariant manner, which
improves the nonrelativistic descriptions adopted in
Refs. [30,33,41]. The covariant approach of the partial-
wave projections will automatically introduce certain
energy dependent terms to the scattering amplitudes from
the polarization vectors, which are of higher orders in the
nonrelativistic expansion, without including additional free
parameters. It is pointed out in Ref. [30] that the energy
dependence in the interacting kernel is crucial for generat-
ing resonance poles of the Zcð3900Þ on the Riemann sheet
of the complex energy plane close to the physical region.
Therefore, we consider that the covariant improvement of
the scattering amplitudes should play relevant roles to get
further insights into the properties of the Zcð3900Þ despite
that the energy dependence is not complete at a given order
in the nonrelativistic expansion. We give details of the
partial-wave projections in the Appendix. We will focus on
the S-wave D̄�D scattering and the superscript J ¼ 1 will
be omitted throughout for simplicity.
The expressions of the S-wave J=ψπ (labeled as channel

1) and D̄�D (labeled as channel 2) scattering amplitudes
from Eqs. (5) and (6) take the form

V11ðsÞ ¼ 0;

V12ðsÞ ¼
ffiffiffi
2

p

9FπMD�MJ=ψ

n
λ2½q22ð2MJ=ψ þ EJ=ψ ÞEπ

þ q21ð2MD� þ ED� ÞED� − λ4½q21q22
þ ð2MJ=ψ þ EJ=ψÞð2MD� þ ED�ÞEπED�
þ λ5½q21

ffiffiffi
s

p ð2MD� þ ED� Þ�
o
;

V22ðsÞ ¼ −
λ1

9M2
D�

ð2MD� þ ED� Þ2; ð7Þ

where the explicit forms of the three-momenta qi and the
energies Ei in the c.m. frame are

q1ðsÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s− ðMJ=ψ þMπÞ2�½s− ðMJ=ψ −MπÞ2�

q
2
ffiffiffi
s

p ;

q2ðsÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s− ðMD� þMDÞ2�½s− ðMD� −MDÞ2�

p
2
ffiffiffi
s

p ;

EJ=ψðsÞ¼
sþM2

J=ψ −M2
π

2
ffiffiffi
s

p ; EπðsÞ¼
sþM2

π −M2
J=ψ

2
ffiffiffi
s

p ;

ED�ðsÞ¼ sþM2
D� −M2

D

2
ffiffiffi
s

p ; EDðsÞ¼
sþM2

D−M2
D�

2
ffiffiffi
s

p : ð8Þ

Our choice to set V11 ¼ 0, i.e., assuming that the pertur-
bative J=ψπ → J=ψπ transition amplitude is negligibly
small, reconciles with the tiny scattering length of the J=ψπ
interaction found in Refs. [45–47]. It is noted that the λ̂3
term in Eq. (3) does not contribute to the S-wave amplitude.
The on-shell unitary partial-wave two-body scattering

amplitudes can be written as

TðsÞ ¼ ½1 − NðsÞ ·GðsÞ�−1 · NðsÞ; ð9Þ

where in the coupled-channel scattering case TðsÞ, NðsÞ,
and GðsÞ should be understood as matrices spanned in the
scattering-channel space. The matrix NðsÞ here takes the
form

NðsÞ ¼
 
V11ðsÞ V12ðsÞ
V12ðsÞ V22ðsÞ

!
; ð10Þ

where the matrix elements are given in Eq. (7). The GðsÞ
matrix responsible for the right-hand cut is diagonal,
GðsÞ ¼ diagfG1ðsÞ; G2ðsÞg. The s-channel unitarity deter-
mines the imaginary part of GiðsÞ as

ImGiðsÞ ¼
qiðsÞ
8π

ffiffiffi
s

p ; ðs > sth;iÞ; ð11Þ

where sth;i denotes the threshold of the ith channel.
Evaluating the GiðsÞ function by using the once-subtracted
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dispersion relation or dimensional regularization, one
obtains [48]

GiðsÞ ¼ −
1

16π2

�
aSC;iðμÞ þ log

m2
2

μ2
− xþ log

xþ − 1

xþ

− x− log
x− − 1

x−

�
;

x� ¼ sþm2
1 −m2

2

2s
� qðsÞffiffiffi

s
p ; ð12Þ

where m1 and m2 are the masses of the two particles in the
considered channel, μ is an energy scale and aSCðμÞ is the
subtraction constant. The GiðsÞ function has only one free
parameter—a change of μ can be absorbed by a corre-
sponding change of aSC;iðμÞ. To be specific, we shall
take μ ¼ 770 MeV throughout. The S matrix is related
to the scattering amplitude T in Eq. (9) via S ¼ 1þ
2i

ffiffiffiffiffiffiffiffiffi
ρðsÞp

· T ·
ffiffiffiffiffiffiffiffiffi
ρðsÞp

, with ρðsÞ ¼ Diagfq1ðsÞ=ð8π
ffiffiffi
s

p Þ;
q2ðsÞ=ð8π

ffiffiffi
s

p Þg. The phase shifts (δ) and inelasticities
(ε) are defined as Sjj ¼ εjje2iδjj and Sjk ¼ iεjkeiδjk (j ≠ k).
To describe the experimental event distributions, one

needs to further consider the production amplitudes, which
should incorporate the final-state interactions. Consistent
with the recipe of the construction of the unitarized
scattering amplitude in Eq. (9), a similar two-body pro-
duction formula

PðsÞ ¼
 
P1ðsÞ
P2ðsÞ

!
¼ ½1 − NðsÞ ·GðsÞ�−1 · α; ð13Þ

with constant production vertices

α ¼
�
α1

α2

�
; ð14Þ

has been demonstrated to be able to successfully describe
various event distributions [49–54]. To be more specific,
the functions P1ðsÞ and P2ðsÞ describe the J=ψπ and DD̄�
production amplitudes, respectively. In this way, once the
unknown parameters in the production amplitudes (13) are
determined through fitting to data, the unitarized scattering
amplitudes of Eq. (9) will be totally fixed. The resonance
information of the Zcð3900Þ, including its pole positions
and coupling strengths to the considered channels, can then
be extracted from the unitarized scattering amplitudes. In
fact, all the unknown parameters describing the discrete
lattice energy levels that will be discussed later also appear
in the production amplitudes in Eq. (13). Therefore, this
enables us to perform a joint fit to both the experimental
and lattice data.
The experimental event distributions of the J=ψπ and

DD̄� channels are projected from the three-body decays
Y → J=ψππ and DD̄�π, respectively. To account for the

strong coupled-channel final-state interactions, we use the
production amplitudes in Eq. (13) to construct the full
decay amplitude for the Y → J=ψππ process

M1ðs; tÞ ¼ ϵ†Y · ϵJ=ψ ½P1ðsÞ þ P1ðtÞ�; ð15Þ

where ϵ†Y and ϵJ=ψ stand for the polarization vectors, s and t
correspond to the invariant energy squared of the J=ψπ
systems. To reasonably reproduce the experimental J=ψπ
line shapes, it is necessary to include the background
contributions, such as the effects from the crossed ππ
channels [31,35,55]. Following the recipes from
Refs. [1,30], we parametrize the background effects in
the J=ψπ event distribution as

B1 ¼ b1½ð
ffiffiffi
s

p
−MJ=ψ −MπÞðMY −Mπ −

ffiffiffi
s

p Þ�c1 ; ð16Þ

where the unknown parameters b1 and c1 will be deter-
mined by data. For the Y → DD̄�π process, the exper-
imental double-D tag data indicate that the background
contributions to the DD̄� invariant-mass distributions
are tiny [8]. We will simply subtract the background
events from the BESIII analysis out from the DD̄� event
distribution. Then we fit to the resulting DD̄� event
distribution with a vanishing background term B2ðsÞ ¼ 0.
The Y → DD̄�π decay amplitude reads

M2ðs; tÞ ¼ ϵ†Y · ϵD�P2ðsÞ; ð17Þ

with s and t the energy squared of the DD̄� and Dπ
systems, respectively. The experimental event distributions
are fitted using

dNi

d
ffiffiffi
s

p ¼ AiðsÞ þ BiðsÞ; ð18Þ

with

AiðsÞ ¼
Z

ti;þ

ti;−

1

ð2πÞ3
1

32M3
Y

1

3

X
spins

jMiðs; tÞj2dt; ð19Þ

where ti;− and ti;þ stand for the kinematic boundaries of
the ith process, being i ¼ 1 for Y → J=ψππ and i ¼ 2

for Y → DD̄�π.
In order to describe the lattice energy levels, we need to

put the unitarized amplitudes into a finite volume. We will
utilize the method proposed in Refs. [56,57], which has
been successfully applied to fit the lattice energy levels in
many processes, such as the πη − KK̄ − πη0 coupled-
channel scattering process [52] and the Dπ −Dη −DsK̄
coupled-channel scattering [58]. In this formalism, the
finite-volume effects are introduced via the GðsÞ function,
while finite-volume corrections to the tree-level partial-
wave amplitudes in Eq. (7), happening at shorter distances,
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are exponentially suppressed and thus neglected. For a
cubic box of length L with periodical boundary conditions,
the finite-volume correction of theGðsÞ function in the c.m.
frame is given by [52,56–58]

ΔGðsÞ ¼ 1

L3

Xjq⃗j<qmax

n⃗

Iðjq⃗jÞ −
Z jq⃗j<qmax d3q⃗

ð2πÞ3 Iðjq⃗jÞ; ð20Þ

with

q⃗¼ 2π

L
n⃗; ðn⃗∈Z3Þ; Iðjq⃗jÞ ¼ ω1 þω2

2ω1ω2½s− ðω1 þω2Þ2�
;

ωi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jq⃗j2 þm2

i

q
: ð21Þ

We introduce the three-momentum cutoff qmax to make the
discrete sum and the continuous integral convergent in
Eq. (20). Since the finite-volume corrections are of long
distance nature, ΔGðsÞ depends little on the ultraviolet
regulator, which is the hard cutoff qmax, as has been
explicitly demonstrated in, e.g., Ref. [52]. Then in the
finite-volume study the function GðsÞ in Eq. (9) should be
replaced by

G̃ðsÞ ¼ GðsÞ þ ΔGðsÞ; ð22Þ

where GðsÞ and ΔGðsÞ are given in Eqs. (12) and (20),
respectively. The finite-volume spectra can be obtained by
solving

det ½1 − NðsÞ · G̃ðsÞ� ¼ 0: ð23Þ

In this work we only analyze the discrete finite-volume data
obtained in the c.m. frame [39,40]. In this case it is enough
for us to rely on Eq. (23) to fit the lattice data. For the general
case in amoving frame, one should accordingly use different
formulas by properly including the possiblemixing between
different partial waves [57–59]. The dispersion relation
between the energy and mass of the charm meson adopted
in the lattice QCD simulation of Ref. [37] is different from
the relativistic one, ωi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jq⃗j2 þm2

i

p
, used in Eqs. (20)

and (21). It has been demonstrated inRef. [60] that the lattice
results in Ref. [37] are consistent with the amplitude
determined in Ref. [30], which allows for either a virtual
state or a resonanceZcð3900Þ pole. To be consistent with the
relativistic kinematical relations used in our finite-volume
setups (21), we will include the lattice results only from
Refs. [39,40] in later fits.

III. GLOBAL FITS TO THE EXPERIMENTAL
AND LATTICE DATA

We determine the unknown parameters through simulta-
neous fits to experimental and lattice data. The relevant
experimental data include the J=ψπ� event distributions

from the eþe− → J=ψπþπ− process at the eþe− c.m.
energies 4.23 and 4.26 GeV [6], and the D0D�− and
D−D�0 event distributions from the eþe− → π�ðDD̄�Þ∓
processes at the same eþe− c.m. energies [8]. For the lattice
data, the finite-volume spectra given in Refs. [39,40],
whose simulations are done with unphysically large
pion masses but with the charm quark mass close to its
physical value, will be analyzed. The masses used in the
lattice simulations are mπ ¼ 391 MeV, MD ¼ 1885 MeV,
MD� ¼ 2009 MeV, MJ=ψ ¼ 3045 MeV in Ref. [39], and
mπ ¼ 324 MeV, MD ¼ 1822 MeV, MD� ¼ 2029 MeV,
MJ=ψ ¼ 2969 MeV in Ref. [40], which will be directly
taken in our fits to the lattice finite-volume energy levels.
The couplings of λi¼1;2;3;4;5 in Eq. (7), being low-energy
constants of a chiral Lagrangian, are independent of mπ .
And for the pion decay constant Fπ , we follow
Refs. [52,58] to set its values at 103.0 and 105.9 MeV
for mπ ¼ 324 and 391 MeV, respectively; in the physical
case we take Fπ ¼ 92.1 MeV [61].
The roles of the triangle diagrams, with D1; D�, and D

running in the loops, are currently under vivid discussions
for the production of the Zcð3900Þ peaks in the eþe− →
J=ψππ and πDD̄� [21,30,33,35,62,63]. It is noticed that the
triangle singularities are rather sensitive to the specific
eþe− energies [64]. In order to further check the possible
energy sensitivity, we first take the strategy to separately fit
the J=ψπ and DD̄� event distributions obtained from the
two different eþe− energies, namely 4.23 and 4.26 GeV.
In this way we do not explicitly introduce the triangle
diagrams in the production mechanisms, but rather we use
the same theoretical formalism to individually fit the data
at 4.23 and 4.26 GeV. If the resulting parameters from the
two fits resemble each other, it indicates that the triangle
diagrams are not necessarily the exclusive source for the
Zcð3900Þ. Otherwise, if the resulting parameters from
the two different fits are rather distinct, it is quite plausible
that the triangle singularities indeed can be decisive in
the description of the experimental data for the
Zcð3900Þ peaks.
Regarding the background terms (16) in the J=ψπ event

distributions, it is found that good reproduction of the
experimental data can be achieved by releasing b1 and
fixing c1 ¼ 1 in our fits, while in addition to b1 the
parameter c1 is also set to free in Refs. [1,30]. Due to
the obvious differences of the experimental J=ψπ event
distributions at 4.23 and 4.26 GeV, two different values of
b1 will be separately fitted to the data at the two different
eþe− energy points.
The coupling λ1 in Eq. (5) is dimensionless. For the

couplings λi¼2;3;4;5 in Eq. (6), they have the mass dimen-
sion, and it is convenient to define dimensionless ones as

λ̃i¼2;3;4;5 ¼
λi¼2;3;4;5

MD
: ð24Þ
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The λ3 term in Eq. (6) will not contribute after the partial-
wave projection. The remaining λ̃2; λ̃4, and λ̃5 will be fitted.
The subtraction constants aJ=ψπSC and aDD̄�

SC introduced
through the unitarization procedure are allowed to float
in our fits. Since the production of open-charm DD̄�
channel is much easier than that of the J=ψπ—the charm
and anticharm quark pair produced in eþe− collisions need
to fly with similar momenta to form J=ψ and thus have a
very limited phase space, it is reasonable to set α1 ¼ 0 for
the production vertices (14).2 In fact we have tried addi-
tional fits by releasing α1 as an additional free parameter for
each dataset at 4.23 and 4.26 GeV, and the values of the
ratios of α1=α2 turn out to be tiny. For α2, one needs to
separately fit its values in the J=ψπ and DD̄� event
distributions at 4.23 and 4.26 GeV, in order to account
for the various experimental factors for the two different
channels at different eþe− energy points.
The resulting parameters from the two separate fits, both

of which also include the lattice energy levels in addition to
the relevant experimental data, are summarized in the
columns labeled as Fit 4230 and Fit 4260 in Table I. It
is clear that the parameters that determine the J=ψπ and
DD̄� amplitudes from the two fits are perfectly consistent
with each other. We verify that the qualities of the
reproduction of the experimental and lattice data from
the two types of fits are also quite similar, which can be
inferred from the close values of χ2 given in Table I. This
important finding indicates that the finite-state interactions
between the J=ψπ andDD̄� are able to reasonably describe
the Zcð3900Þ peaks observed at different eþe− energies. It
also supports that triangle singularities in the Zcð3900Þ

production does not seem to play the exclusively decisive
role [21,30,33,63,67].
Because of the similarities of the resulting parameters in

the scattering amplitudes from the separate fits, it is
meaningful to further perform a joint fit to simultaneously
include the two sets of experimental data obtained at 4.23
and 4.26 GeV, together with the lattice discrete spectra. It is
expected that the joint fit can provide more reliable and
tighter constraints on the coupled-channel scattering ampli-
tudes of J=ψπ and DD̄�. Reasonably good reproductions
of the experimental and lattice data from the joint fit are
shown in Figs. 1 and 2. The values of the parameters from
the joint fit are given in the last column in Table I. The two
subtraction constants, λ1 and λ̃2;4;5, describing the non-
perturbative interactions of the J=ψπ and DD̄�, enter their
coupled-channel scattering amplitudes, which in turn affect
the event distributions at all the energy points and also the
lattice finite-volume spectra. In other words these six
parameters simultaneously influence all the considered
experimental and lattice data. In contrast, the parameters
b1 in the background and the production vertex α2, which
acts as a normalization constant, are expected to vary with
different datasets. It turns out that the parameters from the
joint fit are compatible with the separate fits within
uncertainties. This fact shows a clear sign of the stability
of the fits shown in Table I.
Based on the unitarized decay amplitudes in Eqs. (15),

(17), we estimate the branching ratios of the Zcð3900Þ
decaying into DD̄� and J=ψπ channels, by performing the
phase space integrals of Eq. (19) in the energy range offfiffiffi
s

p ¼ ð3900� 35Þ MeV, as proposed in Ref. [30]. When
evaluating the ratio of the partial decay widths of
Zcð3900Þ using Eq. (19), the background contributions
are excluded and the αJ=ψπ2 , αDD̄�

2 factors accounting
for the normalizations of experimental event distri-
butions are set to unity. The resulting branching ratios

TABLE I. Resulting parameters from the fits. For the notations of different fits and parameters, see the text for
details. For the joint fit, the left/right numbers for the entries b1 and α2 correspond to the results from the datasets at
4.23 and 4.26 GeV, respectively.

Fit 4230 Fit 4260 Joint Fit

aSC;1 −3.76þ0.38
−0.47 −4.13þ0.51

−0.71 −4.02þ0.32
−0.49

aSC;2 −2.82þ0.04
−0.03 −2.82þ0.03

−0.04 −2.80þ0.02
−0.02

λ1 −88þ18
−14 −63þ28

−21 −86þ12
−11

λ̃2 1064þ103
−127 1056þ112

−139 1082þ93
−116

λ̃4 −39þ15
−11 −40þ16

−12 −41þ14
−11

λ̃5 −725þ149
−114 −725þ164

−121 −751þ137
−111

b1 ðMeV−3Þ ð8.6þ0.2
−0.2Þ × 10−4 ð4.7þ0.2

−0.1Þ × 10−4 ð8.7þ0.2
−0.2Þ=ð4.8þ0.1

−0.2 Þ × 10−4

jαJ=ψπ2 j2 17.5þ1.8
−1.1 9.1þ2.3

−1.5 19.4þ3.4
−2.1=9.0

þ1.6
−1.1

jαDD̄�
2 j2 2.9þ0.7

−0.5 1.5þ0.6
−0.4 2.7þ0.6

−0.6=1.3
þ0.3
−0.3

χ2=d:o:f 1.31 1.16 1.18

2The cross section of eþe− → πþD0D�− between 4.2 and
4.3 GeV is about 200–300 pb [65], while that of eþe− →
πþπ−J=ψ is several times smaller, about 50–80 pb [66].
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of R ¼ ΓZcð3900Þ→DD̄�=ΓZcð3900Þ→J=ψπ from the various
fits are

R¼ 1.6þ0.4
−0.4 ðFit-4230Þ; R¼ 1.5þ1.2

−0.8 ðFit-4260Þ;
R¼ 1.9þ0.9

−0.6 ðJoint FitÞ: ð25Þ

The central values are smaller than that from the exper-
imental determination RExp ¼ 6.2� 2.9 [7]. Taking into
account the large uncertainties, the difference between the

one from our joint fit from the BESIII determination is
merely slightly larger than 1σ. Notice that we do not
consider the ηcρ channel since the statistics of the data in
this channel is not high [the statistical significance of
Zcð3900Þ in ηcρ is 3.9σ [68] ], and R may be under-
estimated in our calculation.
The theoretical uncertainties, shown as shaded areas in

Figs. 1 and 2, are calculated through the bootstrap method.
In this procedure, we implement the normal distributions
by taking the central values and uncertainties of the
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FIG. 1. Joint fit to the J=ψπ (upper) and DD̄� (lower) event distributions from BESIII. The data are taken from Refs. [6] and [8],
respectively. For theDD̄� event distributions, the background events from the experimental analysis [8] are subtracted. The shaded areas
correspond to the uncertainties propagated from fitting using the bootstrap method.
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experimental and lattice data as the means and variances,
respectively, to randomly generate large amounts of pseu-
dodatasets. The pseudodatasets are then used to repeat the
fits. The large samples of the parameter configurations from
the repeated fits using the random pseudodatasets are
further exploited to obtain the uncertainties of the theo-
retical quantities. When performing the fits to the DD̄�
event distributions from Ref. [8], the experimental back-
ground effects are subtracted. In Fig. 2, we also give the
predictions to the lattice discrete spectra in a wide range of
the volume sizes, which hopefully can provide useful
guidelines for future lattice simulations.

IV. INSIGHTS INTO THE Zcð3900Þ
RESONANCE POLES

Kinematical singularities, such as the two-body cusps and
triangle or box singularities, provide one possible source to
explain some structures observed in experiments [64]. Such
kind of singularities is highly sensitive to the kinematics
of the processes. On the contrary, resonance poles in the
complex energy plane are universal in all production
amplitudes involving the same set of particles. They are
expected to showup in all relevant coupled channels, though
not necessarily as peaks [69]. In this case details of the
kinematics do not play a crucial role, although they may
affect the resonant line shapes. Therefore it is of utmost
importance to discernwhether there exist relevant resonance
poles in the system under study.
The physical scattering amplitudes in Eq. (9) can

be extrapolated to the complex energy plane via the
unitarity GðsÞ functions. The expression in Eq. (12)
stands for the GðsÞ on the physical/first Riemann sheet
(RS) and its corresponding result on the second RS takes
the form [48]

GðsÞII ¼ GðsÞ − i
qðsÞ
4π

ffiffiffi
s

p ; ð26Þ

being qðsÞ the magnitude of the c.m. three-momentum. In
our convention, the imaginary part of GðsÞ on the first RS
is positive in the energy region above the threshold, and
the imaginary part of GðsÞII is negative. The scattering
amplitudes can be analytically continued to different RSs
by taking the proper combinations of the GðsÞ and GðsÞII
for different channels. For instance, the amplitudes on the
second RS can be labeled as ð−;þÞ, where the minus/plus
sign at each entry corresponds to taking GðsÞII=GðsÞ for
that channel. In such convention, the amplitudes on the
first, third, and fourth RSs are given by ðþ;þÞ, ð−;−Þ,
and ðþ;−Þ, respectively.
Next we search for resonance poles of the scattering

amplitudes in the complex plane. At each pole, the singular
term of the Laurent expansion of the scattering amplitude
takes the form

TijðsÞ ¼ −
γiγj
s − sR

; ð27Þ

where the indexes i, j stand for the coupled channels of the
considered system, and the resonance pole is given byffiffiffiffiffi
sR

p ¼ ðMR − iΓR=2Þ, being MR and ΓR the mass and
width, respectively. The relevant resonance pole positions,
together with their residues γi, are summarized in Table II.
Around the Zcð3900Þ region, three types of resonance poles
are found by taking into account the uncertainties of the
parameters in Table I. We stress that in fact for each
parameter configuration it gives two types of poles: one in
the third RS and the other one located on either the second
RS or the fourth RS, depending on the specific parameter
set taken from the large bootstrap samples in the
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FIG. 2. Finite volume energy levels from the joint fit. For the CLQCD data from Ref. [40] we have taken the six energy levels below
4.0 GeV in the fit. The Hadron Spectrum Collaboration (HSC) data are taken from Ref. [39]. The blue solid lines correspond to our
theoretical predictions by continuously varying the box length L, and the gray bands correspond to the uncertainties propagated from the
fit. The brown dashed lines stand for the free energy levels. The theoretical results shown as blue circles with error bars are slightly
shifted to the right in order to be distinguished from the lattice data shown as red squares.
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uncertainty analysis. The central values of the parameters in
Table I lead to the fourth sheet pole shown in Table II. In
fact the upper half plane of the second RS is continuously
connected to the lower half plane of the fourth RS in the
energy region above the DD̄� threshold. Therefore, when
the pole positions on the second and fourth sheets are
similar, the amplitude with a pole with a small imaginary
part near threshold on the second RS is expected to
resemble the one with a fourth-sheet nearby pole.
Besides, other distant poles, including the spurious ones
in the first sheet, can be also found in the complex plane on
different RSs. For instance, a fourth-sheet pole around
ð3800 − 6iÞ MeV is found in the amplitude. These remote
poles are far away from the interested energy region and do
not seem to visibly affect the physical amplitudes, we do
not discuss them any further.
In addition to the preferred fit presented in Table I, we

also find another type of joint fit, which can reasonably
reproduce the experimental and lattice data to some extent
with somewhat larger χ2=d:o:f: ≃ 1.45 and has only a
virtual state pole around 3.8 GeV in the amplitude. It is
interesting to point out that our finding here is similar to
that in a recent study of Ref. [33]: the solutions with
resonance poles around the DD̄� threshold can better
reproduce the experimental data than the ones with only
virtual state poles around 3.8 GeV.
According to Morgan’s pole counting criteria [70], an

elementary resonance state would correspond to two
similar poles near the threshold on different RSs. For the
molecular type of resonance state, there would be just one
pole near the threshold. The situation for the Zcð3900Þ
poles in Table II is very subtle. Indeed two poles near the
DD̄� threshold are found for each parameter configuration.
However, a closer look at their positions on different RSs
reveals that the two poles are not really so close. The
imaginary part of the third-sheet pole is one order larger in
magnitude than the one on the second or fourth sheet.
Besides, the real part of the pole on the third RS is below
the DD̄� threshold, while the pole on the second or fourth
RS lies above that threshold. A qualitative conclusion
would be that the Zcð3900Þ corresponds to a state lying
between the elementary and molecular types, or in another

word both types of components are likely to be of similar
importance in the Zcð3900Þ compositions. This conclusion
can be further quantitatively verified by using the recipe
proposed in Ref. [71] to calculate the compositeness
coefficients for the resonances, which has been applied
in the study of various exotic hadronic states [54,72–74].
The partial compositeness coefficient Xk, i.e., the proba-
bility to find the two-body component from the kth channel
in the considered resonance state, is given by [71]

Xk ¼ jγkj2
				 dG

ðIIÞ
k ðsRÞ
ds

				; ð28Þ

where γk is the residue defined in Eq. (27) at the pole sR.
Depending on the RS of the location of the pole, one should
take the derivation of the properGðsÞ orGIIðsÞ with respect
to the s in Eq. (28). There is a caveat when applying
Eq. (28) to calculate the compositeness X: this recipe
cannot be generally used for any resonance pole. The
working condition for Eq. (28) is that the resonance pole
should lie above the nearby threshold [71]. However, since
the resonance pole on the third RS in Table II is rather close
to the DD̄� threshold, it is expected that Eq. (28) could be
also applied to estimate the compositeness of the third-
sheet pole. The compositeness coefficients contributed
from the DD̄� channel to the three kinds of resonance
poles in Table II are found to be3

X2 ¼ 0.38þ0.03
−0.03 ðRS IIÞ; X2 ¼ 0.43þ0.09

−0.06 ðRS IIIÞ;
X2 ¼ 0.42þ0.05

−0.02 ðRS IVÞ; ð29Þ

which perfectly agreewith the determinations fromRef. [73].
Other ways to calculate the compositeness coefficients

for resonances have also been proposed based on the
scattering length (a) and effective range (r) in
Refs. [75,76]. The proposal from Ref. [75] is

X̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi				 1

1þ 2r=a

				
s

; ð30Þ

and the expression from Ref. [76] reads

X̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1þ j2r=aj

s
: ð31Þ

By taking the joint fit in Table I, our predictions to the
values of the scattering length and effective range for the
D̄D� channel read

TABLE II. Resonance pole positions and their residues. γ1 and
γ2 correspond to the residues of J=ψπ and DD̄�, respectively.
Large amount of bootstrap samples of parameters are generated in
our uncertainty analyses. For each parameter sample, it can give a
couple of poles, one on the RS III and the other one either on RS
II or RS IV.

RS MR ðMeVÞ ΓR=2 ðMeVÞ jγ1j ðGeVÞ jγ2j ðGeVÞ
III 3874.8þ3.7

−4.0 32.7þ1.6
−1.9 4.3þ0.3

−0.3 8.7þ0.8
−0.7

II 3902.7þ1.3
−1.3 3.0þ2.4

−2.4 4.9þ0.2
−0.2 8.3þ0.3

−0.3
IV 3902.4þ1.1

−2.3 3.3þ6.3
−1.8 4.6þ0.2

−0.4 8.6þ0.6
−0.2

3Since the J=ψπ channel is rather distant from the Zcð3900Þ
pole position, X1 computed using Eq. (28) is one order of
magnitude smaller than X2.
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aD̄D� ¼ ð−0.56þ0.11
−0.13 − i0.28þ0.04

−0.04Þ fm;

rD̄D� ¼ ð−2.03þ0.51
−0.68 − i0.77þ0.24

−0.13Þ fm: ð32Þ

The two proposals in Eqs. (30) and (31) lead to almost
identical results X̄2 ¼ X̂2 ¼ 0.36þ0.06

−0.06 , which are compat-
ible with the values in Eq. (29) within uncertainties.
The above results of the Zc compositeness indicate that

the energy dependence in the contact amplitudes (7) (and
thus interaction of finite range) plays an important role in
forming the Zc pole of this analysis. To probe the origin of
the energy dependence, from either other degrees of free-
dom with higher masses or compact quark state cores, one
needs to rely on the specific theoretical models, which is
beyond the scope of our present study.
The pole singularities on the unphysical RSs in the

complex energy plane also manifest themselves in the
physical amplitudes, which can be characterized by
the phase shifts and inelasticities in the coupled-channel
scattering processes. In Figs. 3 and 4, we give our
predictions of the phase shifts and inelasticities, together
with the theoretical uncertainties, for the J=ψπ → J=ψπ
and J=ψπ → DD̄� processes, respectively. Within the
uncertainties there are two branches of phase shifts for
the J=ψπ → J=ψπ above the DD̄� threshold, and we
confirm that the lower branch corresponds to the parameter
samples with a pole on the fourth RS and the upper one

corresponds to the parameter samples with a pole on the
second RS. This also tells us that the narrow poles on the
second and fourth sheets in Table II are the most respon-
sible ones for the Zcð3900Þ signals in our amplitudes.
The two phase-shift branches in Fig. 3 differ by about
180 degrees above the DD̄� threshold. As a result they
actually lead to rather similar S matrix elements.

V. SUMMARY AND CONCLUSIONS

In this work we calculate the covariant partial-wave
amplitudes of the coupled-channel J=ψπ and DD̄� scatter-
ing with energy-dependent interaction kernels. The pertur-
bative covariant expressions are then unitarized to include
the strong final-state interactions. The experimental event
distributions of J=ψπ and DD̄� measured at 4.23 and
4.26 GeV by the BESIII collaboration are first separately
fitted, and it turns out that the resulting parameters of the
scattering amplitudes are quite similar from the two types
of fits. This implies that the nonperturbative strong inter-
actions of the J=ψπ and DD̄� are the responsible mecha-
nism to explain the Zcð3900Þ peaks in our study and the
triangle singularities are not necessarily the decisive
sources for the observed Zcð3900Þ peaks. Based on this
observation, we then use the same interaction amplitudes to
perform global fits to both the event distributions at 4.23
and 4.26 GeV from BESIII and the lattice finite-volume

FIG. 4. Phase shifts and inelasticities of the J=ψπ → DD̄� scattering.

FIG. 3. Phase shifts and inelasticities of the J=ψπ → J=ψπ scattering.

YAN, GUO, GUO, YAO, and ZHOU PHYS. REV. D 109, 014026 (2024)

014026-10



energy levels. Reasonably good reproduction of the exper-
imental and lattice data is achieved.
Relevant resonance poles on different Riemann sheets

are found for the Zcð3900Þ in our scattering amplitudes.
The couplings of the resonance poles with the DD̄� and
J=ψπ channels are calculated, and the magnitudes of the
former channel are found to be around two times larger than
those with the latter one. The compositeness coefficient of
theDD̄�, i.e., the probabilities of theDD̄� component in the
Zcð3900Þ state, is calculated to be less than 0.5, indicating
that other higher-mass hadronic components or compact
quark state cores could be also important in the formation
of the Zcð3900Þ. It is worthwhile to notice that the D�D̄�

channel is only 140 MeV higher than the DD̄� and it can
couple to the same quantum numbers as the Zcð3900Þ. It
would be interesting to simultaneously analyze all the data
of the Zcð3900Þ and Zcð4020Þ in order to understand these
charged charmoniumlike structures.
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APPENDIX: COVARIANT
PARTIAL-WAVE PROJECTION

One way to describe the angular momenta of a general
process 1þ 2 → 1̄þ 2̄ is to include the total angular
momentum J and its third component MJ, and the orbital
angular momentum l and the total spin S, where only J
and MJ are the good quantum numbers for relativistic
reactions. The general partial-wave projection for the
process 1þ 2 → 1̄þ 2̄ in the lS basis is given by [44]

VJ
lS;l S̄

ðsÞ ¼
Y0

l
ðp̂zÞ

2ð2J þ 1Þ
X

σ1;σ2;σ̄1;σ̄2;m

Z
d ˆ̄pYm

l ð ˆ̄pÞ�ðσ1σ2Mjs1s2SÞðmMM̄jlSJÞðσ̄1σ̄2M̄js̄1s̄2S̄Þ

× ð0M̄ M̄ jl S̄ JÞVðp1; p2; p̄1; p̄2; σ1; σ2; σ̄1; σ̄2Þ; ðA1Þ

where the direction of the initial three-momentum p⃗1 in the c.m. frame is defined as the z axis, i.e., p⃗1 ¼ −p⃗2 ¼ jp⃗jêz, and the
three-momenta of the final-state particles are denoted by ⃗p̄1 ¼ − ⃗p̄2 ¼ j ⃗p̄j ˆ̄p. The energy squared s is given by s ¼ ðp1 þ p2Þ2.
σi and σ̄i correspond to the third components of the spins of the ith particle in the initial and final states, respectively, with
M¼σ1þσ2 and M̄¼ σ̄1þ σ̄2. The Clebsch-Gordan coefficient ðm1m2m3jj1j2j3Þ refers to the composition of j⃗1 þ j⃗2 ¼ j⃗3,
with mi the third component of j⃗i.
For the S-wave scattering of the 1 ðvectorÞ þ 2 ðpseudoscalarÞ → 1̄ ðvectorÞ þ 2̄ ðpseudoscalarÞ process, the partial-wave

projection in Eq. (A1) can be simplified as

VJ¼1
01;01ðsÞ ¼

1

2ð2J þ 1Þ
X

σ1¼σ̄1¼0;�1

Z
d cos θVðs; tðs; cos θÞ; σ1; σ̄1Þ; ðA2Þ

where θ denotes the scattering angle defined in the c.m. frame and the Mandelstam variable t is given by

t ¼ M2
1 þM2

1̄
−

1

2s
ðsþM2

1 −M2
2ÞðsþM2

1̄
−M2

2̄
Þ − cos θ

2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;M2

1;M
2
2Þλðs;M2

1̄
;M2

2̄
Þ

q
; ðA3Þ

with λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ab − 2bc − 2ac the Källén kinematical function. The polarization vectors of the vector
meson with mass mV should be accordingly taken as [44]
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in order to be consistent with the partial-wave projection formula in Eq. (A1). The magnitude of the three-momentum k and
the corresponding energy Ek in Eq. (A4) are defined as k ¼ jk⃗j and Ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

V

p
, respectively. We explicitly verify that

the partial-wave amplitudes obtained from the lS basis using Eqs. (A1) and (A4) are consistent with the results from the
helicity basis [77] by using suitable polarization vectors, such as those provided in Refs. [78,79]. Since we only focus on
the S-wave scattering in this work, the superscript and subscript partial-wave indices J and lS always take J ¼ 1 and
ðl ¼ 0; S ¼ 1Þ and are omitted in the main text for simplicity. The explicit expressions after performing the partial-wave
projection of the amplitudes in Eqs. (5) and (6) can be found in Eq. (7).
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