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We compute the heavy quark momentum diffusion coefficient κ using QCD kinetic theory for a system
going through bottom-up isotropization in the initial stages of a heavy ion collision. We find that the values
of κ are within 30% from a thermal system at the same energy density. When matching for other quantities
we observe considerably larger deviations. We also observe that the diffusion coefficient in the transverse
direction is larger at high occupation numbers, whereas for an underoccupied system the longitudinal
diffusion coefficient dominates. The behavior of the diffusion coefficient can be understood on a qualitative
level based on the Debye mass mD and the effective temperature of soft modes T�. Our findings for the
kinetic evolution of κ in different directions can be used in phenomenological descriptions of heavy quark
diffusion and quarkonium dynamics to include the impact of preequilibrium stages.
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I. INTRODUCTION

Several interesting signatures of the quark-gluon plasma,
such as quarkonium suppression, are sensitive to the
dynamics of heavy quarks in the plasma. Due to their
large mass mQ ≫ T, heavy quarks are solely produced in
initial hard scattering processes. Furthermore they interact
strongly with the medium during the entire evolution. The
typical momentum exchange of a heavy quark with the
QGP is small [OðgTÞ] and thus a significant change in
momentum requires several scatterings with the medium.
This is characteristic of diffusive motion, and hence
diffusion properties of heavy quarks within the QGP have
been subject to extensive research [1–3]. The interaction of
the heavy quark with the medium is conventionally
quantified by the momentum diffusion coefficient κ.
The diffusion coefficient is not only interesting in its

own right as a property of the medium—it also plays an
instrumental role in understanding and describing the
evolution of quarkonia using various phenomenological
frameworks [2,3], including e.g., the open quantum sys-
tems approach [4–8].

The behavior of κ in equilibrium is relatively well
understood [9–20], but out of equilibrium it remains
elusive. The existing literature on transport coefficients
out of equilibrium [21–30] indicates that the overoccupied
glasma stage can have considerable impact on transport
phenomena, such as momentum broadening, jet quenching,
and heavy quark transport coefficients. The effect of
anisotropic initial stages has been studied using a simplified
description of the underlying anisotropic momentum dis-
tribution [31–33]. However, to our knowledge, the time
evolution of transport coefficients has not yet been
extracted during the kinetic evolution between the glasma
stage and the hydrodynamical phase.
The aim of this paper is to bridge this gap and to study

the heavy quark momentum diffusion coefficient κ during
the bottom-up isotropization process [34]. With this aim in
mind, we use QCD effective kinetic theory with the same
initial conditions and numerical setup as in [35] for the limit
of an infinitely massive stationary quark. Furthermore, our
aim is to understand how κ out of equilibrium compares to
similar computations in thermal equilibrium. To this end,
we compare values of κ to thermal systems with the same
screening mass, energy density, or effective infrared (IR)
temperature. We establish that out of these options κ in the
preequilibrium system is closest to the thermal value at the
same energy density. We will also study the transverse
(to the direction of the expansion) and longitudinal (along
the beam direction) diffusion coefficients separately. We
observe that there is a dynamical hierarchy between the
longitudinal and transverse directions, which has a natural
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explanation in terms of the different stages of the bottom-up
thermalization process. We will also derive a set of para-
metric estimates that explain the evolution of the matched
quantities and κ relative to their equilibrium value in terms
of the dynamical occupation number and anisotropy of the
system.
This paper is structured as follows. In Sec. II we discuss

the kinetic theory framework, how we extract the heavy
quark momentum diffusion coefficient, and introduce our
initial conditions and the relevant physical scales mD
and T�. We continue in Sec. III by presenting our results
for the diffusion coefficient during the initial stages in
heavy-ion collisions and discuss the diffusion coefficient
in the transverse and longitudinal directions separately. In
Sec. IV we compare our results to those obtained in lattice
and glasma simulations. Finally we conclude in Sec. V.

II. THEORETICAL BACKGROUND

Let us start by introducing the effective kinetic theory,
heavy quark diffusion coefficient, and other observables
relevant for this work. Some details of our discretization
procedure and discretization effects are discussed in the
Appendix.

A. Effective kinetic theory

In this paper we use the same numerical setup as in
Ref. [35], with the aim of reproducing the bottom-up
isotropization process [34] using the numerical framework
of QCD effective kinetic theory (EKT) [36]. Kinetic theory
is a quasiparticle description of the quark-gluon plasma
in terms of its individual constituents, quarks, and gluons.
Here we consider only gluons for which the central
dynamical quantity is the quasiparticle distribution function

fðpÞ ¼ 1

νg

dN
d3xd3p

: ð1Þ

This is the phase space density of gluons averaged over
their degrees of freedom νg ¼ 2dA, including dA ¼ N2

c − 1

colors and two spins. We assume that the distributions are
independent of transverse coordinate, boost invariant, and
do not depend on spin. The time-evolution of the distri-
bution is given by the Boltzmann equation

−
∂fðpÞ
∂τ

¼ C1↔2½fðpÞ� þ C2↔2½fðpÞ� þ Cexp½fðpÞ�: ð2Þ

Here the C terms describe the number of scatterings/
splittings per unit time for momentum state p. These
processes involve the possibility to scatter/split into or
out of a state. Effective particle 1 to 2 splittings are encoded
in C1↔2 and 2 to 2 scatterings are described by C2↔2.
The boost invariant expansion is treated as an effective

scattering term, taking the simple form [37]

Cexp½fðpÞ� ¼ −
pz

τ

∂

∂pz
fðpÞ: ð3Þ

These assumptions leave our distributions f dependent
only on the magnitude of the momentum p and on the polar
angle cos θ ¼ ẑ · p̂, i.e. fðpÞ ¼ fðp; cos θpÞ. Our spherical
coordinate system is defined such that

pz ¼ p cos θ; ð4Þ

pT ¼ p sin θ: ð5Þ

Momenta in the x and y directions are given in terms of the
azimuthal angle ϕ

px ¼ pT cosϕ; ð6Þ

py ¼ pT sinϕ: ð7Þ

The 2 to 2 scattering term reads [36]

C2↔2½fð p̃Þ� ¼
ð2πÞ3
4πp̃2

1

8νg

Z
dΓPSjMj22↔2

�
fpfkð1þ fp0 Þ

× ð1þ fk0 Þ − fp0fk0 ð1þ fpÞð1þ fkÞ
�

×
�
δð p̃ − pÞ þ δð p̃ − kÞ − δð p̃ − p0Þ

− δð p̃ − k0Þ�; ð8Þ

where dΓPS is a phase space integration over the incoming
and outgoing momenta p, p0, k, and k0. The matrix element
squared jMj22↔2 at leading order gg → gg is1

jMj22↔2

4λ2dA
¼

�
9þ ðs − tÞ2

u2
þ ðu − sÞ2

t2
þ ðt − uÞ2

s2

�
: ð9Þ

Here λ ¼ g2Nc is the ’t Hooft coupling. In (9) the
division by the Mandelstam variables t and u leads to
infrared divergences. These can be regulated by including
contributions arising from medium modifications. In the
employed numerical framework, these are approximated by
substituting the denominators in (9) with

t → t
q2 þ 2ξ20m

2

q2
; ð10Þ

with q ¼ jqj and q ¼ p0 − p, and symmetrically for u.
Note that the limit t → 0 with s fixed is reached only
when q2 → 0. We follow the prescription of [38] and use
ξ0 ¼ e5=6=

ffiffiffi
8

p
. Here m is the asymptotic mass in the gluon

dispersion relation at high momentum that is perturbatively
related to the Debye mass mD as

1Note that there is a typo in [35] where some factors of 1=4
were missing.
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m2
D ¼ 2m2 ¼ 4λ

Z
d3p
ð2πÞ3

fðpÞ
p

: ð11Þ

The final state Bose enhancement in (8) is governed by the
factors (1þ f). The first term in (8) is a loss term for
particles scattering out of the state and the second term is
the term associated with scattering into the state. The phase
space integration measure is given by

Z
dΓPS ¼

Z
pkp0k0

ð2πÞ4δðPþ K − P0 − K0Þ

¼ 1

211π7

Z
∞

0

dq
Z

q

−q
dω

Z
∞

q−ω
2

dp
Z

∞

qþω
2

dk

×
Z

1

−1
dxq

Z
2π

0

dϕpq

Z
2π

0

dϕkq; ð12Þ

with ω ¼ q0, xq ¼ cos θq,
R
p ¼

R dp3

2p0ð2πÞ3, and p
0 ¼ p. The

simplification above is achieved by changing variables
from p0 to q and using delta functions to eliminate the k0
integral. The residual three-dimensional integrals can be
written as integrals over four-momenta, introducing delta
functions that constrain the energy component. The inte-
gration limits are found by inspecting the energy delta
functions. One also makes use of the fact that the system is
azimuthally symmetric.
The collinear 1 to 2 splitting rate C1↔2 is given by

C1↔2½f�ð p̃Þ ¼
ð2πÞ2
4πp̃2

1

νg

Z
∞

0

dp
Z

p=2

0

dk0ð4πγðp;p0; k0ÞÞ

×
h
fpð1þ fðxp; p0ÞÞð1þ fðxp; k0ÞÞ

− ð1þ fpÞfðxp; p0Þfðxp; k0Þ
i

× ½δðp̃ − pÞ − δðp̃ − p0Þ − δðp̃ − k0Þ�: ð13Þ

Due to collinearity all momenta are pointing in the same
direction. We take the particle with momentum p to be the
particle that splits, and hence p0 ¼ p − k0. Here γ para-
metrizes the differential rate for the splitting processes and
is given by

γgggðp; p0; k0Þ ¼ p4 þ p04 þ k04

p3p03k03
F gðp;p0; k0Þ: ð14Þ

The function F is computed from

F ðp; p0; k0Þ ¼ dACAαs
2ð2πÞ3

Z
d2h
ð2πÞ2 2h ·ReFgðh; p; p0; k0Þ;

ð15Þ

where CA ¼ Nc and αs ¼ g2=4π.

The function Fg is a solution of an integral equation

2h ¼ iδEðh;p; p0; k0ÞFgðh;p; p0; k0Þ

þ g2CA

2
T�

Z
d2q⊥
ð2πÞ2

�
1

q2⊥
−

1

q2⊥ þm2
D

�

×
h
ðFgðh;p; p0; k0Þ − Fgðh − k0q⊥;p; p0; k0ÞÞ

þ ðFgðh;p; p0; k0Þ − Fgðh − p0q⊥;p; p0; k0ÞÞ
þ ðFgðh;p; p0; k0Þ − Fgðhþ pq⊥;p; p0; k0ÞÞ

i
: ð16Þ

Here n̂ is a unit vector in the direction of the splitting or
merging hard particle(s). The vector h is perpendicular to n̂,
and can be related to the transverse momentum [39]. In
deriving (16) the Wightman correlation function is evalu-
ated by making use of the sum rule derived in [40] using an
isotropic screening approximation. The energy difference
in (16) is given by

δEðh;p; p0; k0Þ ¼ m2

2k0
þ m2

2p0 −
m2

2p
þ h2

2pk0p0 : ð17Þ

The integral equation (16) is solved by using the numerical
method described in [41].
For a more comprehensive description of EKT we refer

the reader to [36] and we discuss our discretization
procedure in the Appendix.

B. Numerical implementation and discretization effects

Our numerical framework has several discretization
parameters, such as minimum and maximum momenta
stored for the distribution function or the number of bins in
the angular discretization. In our simulations, it turns out
that the dominant source of discretization effects is the
infrared cutoff of the particle distribution function pmin.
The reason for this is that due to the longitudinal expansion,
the typical momenta become smaller over time. For
instance, the dimensionless ratio of the infrared cutoff
and the temperature pmin=TðτÞ grows with time. In prac-
tice, this means that the thermal equilibrium that the system
approaches will also have discretization effects. We will
take these into account by replacing the continuum thermal
quantities with ones calculated from a thermal distribution
with the same cutoff as the EKT simulation. This correction
enables us to compare our nonequilibrium results to the
thermal state that the system is actually approaching. We
will apply this correction to all observables when compar-
ing with equilibrium quantities unless stated otherwise.
This effect is discussed in more detail in Appendix A 3. Our
discretization framework and parameters are discussed in
more detail in Appendix A 1.
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C. Initial conditions: Bottom-up thermalization

Our initial conditions are chosen to correspond to the
bottom-up isotropization scenario, as implemented in
Ref. [35]. The initial distribution function at the time
Qsτ ¼ 1 is taken to be

fðp⊥; pzÞ ¼
2

λ
A

hpTiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þ ðξpzÞ2

p
× exp

�
−2

3hpTi2
ðp2⊥ þ ðξpzÞ2Þ

�
: ð18Þ

In this paper we consider the same two sets of initial
parameters with different anisotropies ξ as in Ref. [35],
given by

A ¼ 5.24171; hpTi ¼ 1.8Qs; ξ ¼ 10; ð19Þ

A ¼ 2.05335; hpTi ¼ 1.8Qs; ξ ¼ 4: ð20Þ

In the following we will refer to these only by the value
of the anisotropy parameter ξ. In our figures the initial
condition with ξ ¼ 10 is always represented by full lines.
When ξ ¼ 4 results are shown for comparison, we use
dash-dotted transparent lines.

D. Heavy quark diffusion coefficient

The expression for the heavy quark momentum diffusion
coefficient κ for pure glue QCD has been originally derived
in [9]. Keeping only the leading order contributions in
1=M, where M is the mass of the heavy quark, we obtain
the diffusion coefficient as

3κ ¼ 1

2M

Z
kk0p0

ð2πÞ3δ3ðpþ k − p0 − k0Þ

× 2πδðk0 − kÞq2
h
jMκj2fðkÞð1þ fðk0ÞÞ

i
: ð21Þ

The heavy quark mass is taken to be larger than any other
scale in the system (e.g. M ≫ T;Qs;mD). The in- and
outgoing heavy quark momenta are given by p; p0, the
momenta of gluons in the plasma are labeled by k; k0, and
q ¼ p − p0 is the momentum transfer to the heavy quark.
The gluon distribution function f is obtained from solving
the Boltzmann equation (2). A final state Bose-enhance-
ment factor appears in (21) similarly as in the Boltzmann
equation. We set p0 ¼ p00 ¼ M for the heavy quark. For
the gluons and k0 ¼ jkj, k00 ¼ jk0j.
To leading order in the coupling, the dominant contri-

bution to κ is given by t-channel gluon exchange [9], while
other diagrams are suppressed by inverse powers of the
heavy quark mass. The corresponding matrix element is
then given by

jMκj2 ¼ NcCHg4
16M2k20ð1þ cos2θkk0 Þ

ðq2 þm2
DÞ2

; ð22Þ

where CH ¼ ðN2
c − 1Þ=2Nc. Note that due to the heavy

quark mass, the HTL propagator reduces in this case to
just Debye screening [9], unlike for massless particles
in Eq. (10).
The resulting expression jMκj2=M2 entering the

Boltzmann equation is independent of the heavy quark
mass. In our simulations, κ is computed using Eq. (21).
The discretization of (21), and a detailed description of
how transverse and longitudinal diffusion coefficients are
extracted, are explained in more detail in Appendix A 2.
For more details on the diffusion coefficient we refer the
reader to [9] and to our previous work [30].
Perturbatively, in thermal equilibrium the screening

mass (11) becomes

m2
D ¼ T2λ

3
: ð23Þ

In our kinetic simulations, we compute mD according to
Eq. (11) using the nonequilibrium distribution fðpÞ. The
screening mass is also affected by the IR regulator pmin.
Thus, when comparing mD to its thermal value, we will
apply a discretization correction to it. This is discussed in
more detail in Appendix A 3 a.
For an isotropic distribution in the continuum, the

diffusion coefficient (21) becomes

κ ¼ λ2CH

12Ncπ
3

Z
∞

0

dk k2fðkÞð1þ fðkÞÞ

×
Z

2k

0

dq
q3

ðq2 þm2
DÞ2

�
2 −

q2

k2
þ q4

4k4

�
: ð24Þ

This expression is very easy to evaluate in thermal
equilibrium using a Bose-Einstein distribution for fðpÞ
and the thermal result (23) formD. We take into account the
impact of a finite pmin on the value of κ in a thermal system
by calculating it using (24), where the screening mass now
depends on the infrared cutoff pmin according to Eq. (A12).
We will not regulate the momentum transfers by this
parameter, since the main pmin dependence seems to enter
κ throughmD. This procedure is described in more detail in
Appendix A 3 c, and our final expression for thermal κ in
the presence of the IR regulator pmin is given by Eq. (A17).

E. Other observables

Here we describe the observables that we are extracting
during the nonequilibrium evolution in addition to the
heavy quark diffusion coefficient.
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1. Expectation values

In general, we use the following definition for the
expectation value of observable X:

hXi ¼
R d3p

ð2πÞ3 XfðpÞR d3p
ð2πÞ3 fðpÞ

: ð25Þ

2. Energy density

The energy density corresponds to the first moment of
the distribution

ε ¼ νg

Z
d3p
ð2πÞ3 pfðpÞ; ð26Þ

where νg ¼ 2ðN2
c − 1Þ for pure glue QCD.

3. Temperature

There is no unambiguous way to define a temperature
out of equilibrium. One option is to formulate it effectively
in terms of the (time-dependent) energy density

Tε ¼
�
30ε

π2νg

�
1=4

; ð27Þ

which agrees with the temperature in thermal equilibrium.
For ideal Bjorken hydrodynamics, the temperature scales as

Tid ∼ ðQsτÞ−1=3: ð28Þ

This scaling is also expected to hold for Tε at sufficiently
late times due to the approximate τ−4=3 scaling of the
energy density in the expanding system.
The effective infrared temperature T� is given by

T� ¼
I
J
; ð29Þ

where

I ¼ 1

2

Z
d3p
ð2πÞ3 fðpÞð1þ fðpÞÞ; ð30Þ

J ¼
Z

d3p
ð2πÞ3

fðpÞ
p

¼ m2
D

4λ
: ð31Þ

Similarly to κ and mD, T� is also affected by the IR
regulator pmin. Thus we compute the corresponding equi-
librium value by taking into account these effects both
in mD and in the momentum integral. This is discussed in
more detail in Appendix A 3 b. In thermal equilibrium in
the presence of the IR regulator, T� is given by Eq. (A15).

Slightly different definitions of T�, based on other
integral moments, have been also introduced in the liter-
ature [42], but we do not consider them here.

4. Energy-momentum tensor

The components of the energy-momentum tensor are
obtained as moments of the distribution function by

Tμν ¼ νg

Z
d3p
ð2πÞ3

pμpν

p
fðpÞ: ð32Þ

The components relevant for this paper are

Txx ¼ νg

Z
d3p
ð2πÞ3 fðpÞ

p2
T

p
cos2ϕ; ð33Þ

Tyy ¼ νg

Z
d3p
ð2πÞ3 fðpÞ

p2
T

p
sin2ϕ; ð34Þ

Tzz ¼ νg

Z
d3p
ð2πÞ3 fðpÞ

p2
z

p
: ð35Þ

They are connected to the longitudinal and transverse
pressure by

PT ¼ Txx þ Tyy

2
; ð36Þ

Pz ¼ Tzz: ð37Þ

The temporal component of the energy-momentum tensor
corresponds to the energy density T00 ≡ ε.

III. RESULTS

We start by discussing the bottom-up isotropization
process and how it is reproduced in our simulations in
Sec. III A. We will also discuss how we highlight different
stages of the isotropization process. In Sec. III B we will
explain how we compare our κ results out of equilibrium to
thermal values, and especially how we choose the corre-
sponding matching scales. The comparison is then carried
out in Sec. III C, first without distinguishing between
directions. Then in Sec. III D we discuss the transverse
and longitudinal diffusion coefficients separately. In order to
better understand the observed time evolution of κ, we will
consider how the matching scales evolve during the bottom-
up isotropization compared to equilibrium in Sec. III E.
Finally, we will derive simple parametric estimates that can
be used to explain our results in Sec. III F.

A. Different stages of the bottom-up
thermalization scenario

Our kinetic theory simulations follow the different phases
of the bottom-up thermalization scenario [34]. It consists of
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the following stages: during the first stage the overoccupied
gluons become more dilute as the system expands,
and consequently the occupation number of the hard
gluons becomes of the order of unity fh ∼ 1 at timescale
Qsτ ∼ α−3=2s . At this point the system is no longer describ-
able with classical fields. In the second stage hard gluons
radiate softer gluons, creating a soft thermal bath.
Remarkably, at the end of this process the hard gluons
become underoccupied fh ∼ αs. This occurs at the time-
scalesQsτ ∼ α−5=2s . In the final stage, the hard particles lose
their energy to the soft thermal bath. For a review on the
thermalization processes see e.g. [43,44].
In this scenario, the system is expected to thermalize

parametrically on a timescale of the order of [34]

τBMSS ¼ α−13=5s =Qs; ð38Þ

where αs ¼ λ
4πNc

. We will therefore use this quantity to
rescale the time in our figures. Note that an alternative

timescale, the hydrodynamical relaxation time τR ¼ 4πη=sðλÞ
T

with shear viscosity η and entropy density s, is also often
used to rescale the time variable. We will investigate the
universality of these timescales for different observables
and couplings in a separate paper, while employing only
τBMSS in the present work.
The bottom-up thermalization process is shown in Fig. 1

in terms of the anisotropy PT=PL and the mean occupation
number hpλfi=hpi for different couplings as in Ref. [35].
In order to illustrate how observables behave during
different stages of the thermalization process, we have
placed three time markers on the curves in Fig. 1. The first

marker (star) is placed during the highly occupied regime,
when f ∼ 1=λ. For smaller values of the coupling this
corresponds to maximal anisotropy. However, for large
couplings the first stage of the evolution proceeds differ-
ently, and the anisotropy does not increase initially. Hence,
we have chosen the occupancy as the criterion for the time
marker instead of maximum anisotropy. The second marker
(circle) is inserted at the minimum occupancy, which in the
bottom-up thermalization scenario is expected to be f ∼ αs.
The third marker (triangle) is placed at PT=PL ¼ 2. The
purpose of this is to illustrate when the system is approx-
imately close to equilibrium. We will use the same markers
in other figures throughout this paper to allow the reader to
connect the time evolution of observables to the stages of
the bottom-up scenario.
The curves for different values of the coupling λ also use

the same color coding in all figures throughout this paper.
The initial conditions with ξ ¼ 10 from (19) are shown as
full lines. For comparison, we will often add curves for the
initial conditions with ξ ¼ 4 in (20) as more transparent
dash-dotted lines.
We see from Fig. 1 that for the extremely anisotropic

initial condition (ξ ¼ 10) the bottom-up picture is better
realized at smaller values of the coupling. For intermediate
couplings λ ¼ 2, 5, 10 the system does not experience an
initial growth in anisotropy. Instead, the system takes a
more straightforward path to thermal equilibrium, without
resolving the different stages of the bottom-up picture in
detail. However, the third stage of the scenario is still
visible and emerges after the circle marker.

B. Comparing nonequilibrium to equilibrium

Our aim in this paper is to calculate the heavy quark
momentum diffusion coefficient κ during the hydrodynam-
ization process in order to eventually assess the importance
and impact of the initial nonequilibrium evolution on heavy
quark observables. To facilitate the quantitative interpreta-
tion wewill mostly present our results as ratios to the thermal
equilibrium values. There is no unique method to compare
equilibrium and nonequilibrium systems. A reasonable way
to construct such a comparison is to match a dimensionful
observable to its thermal counterpart. We will consider three
different quantities—the energy density ε [which leads to the
temperature defined in (27)], the temperature of infrared
modes T�, and the screening mass mD. We have chosen
these observables because they are straightforward to com-
pute both in equilibrium and out of equilibrium and are
physical scales that play an important role in transport
phenomena, as discussed in Sec. III E. However, we would
like to emphasize that the matching could be done with
respect to any dimensionful observable that can be defined in
and out of equilibrium. The matching is performed by
choosing the temperature of the thermal distribution to
reproduce either the energy density ε, the Debye mass
mD, or the effective temperature of the soft modes T�

FIG. 1. Occupation number as a function of anisotropy as
in [35]. The markers indicate different stages of the bottom up
thermalization as described in the text. The color coding of the
lines indicates the coupling used in the simulation, and all figures
use the same color coding. Full lines correspond to the ξ ¼ 10
initial condition (19), dash-dotted lines to the ξ ¼ 4 initial
condition (20).
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calculated from the EKT simulation, and then calculating the
diffusion coefficient κ with this thermal distribution.

C. Diffusion coefficient in and out of equilibrium

Figure 2 shows our result for the heavy quark diffusion
coefficient during bottom-up thermalization. We observe an

agreement between the equilibrium and thermal dynamics
within 30% even at early times, while at late times the
system thermalizes and the ratio thus approaches unity.
This is one of the main results in this paper. Matching the
screening mass mD (2 middle) or the effective infrared
temperature T� (2 bottom), κ is much further away from the
thermal system. The main observation is that at early times
the nonequilibrium diffusion coefficient is considerably
larger than the equilibrium coefficient for the samemD, and
considerably smaller than that for the same T�.

D. Transverse and longitudinal diffusion coefficient

During most of the bottom-up thermalization process the
system is highly anisotropic. This could have a significant
effect on experimental observables sensitive to the initial
stage of the evolution. It is therefore interesting to study
also the anisotropy of the diffusion coefficient, which we
parametrize in terms of the ratio of the transverse diffusion
coefficient κT to the longitudinal one κz. Our results for this
quantity are shown in Fig. 3. In the initial overoccupied
phase the transverse diffusion coefficient dominates. This
can naturally be explained by the Bose enhancement, which
at the early overoccupied and highly anisotropic stage
benefits scatterings where only transverse momentum is
exchanged. As the system becomes underoccupied, the
longitudinal diffusion coefficient becomes dominant. When
the system approaches equilibrium the two become equal
again, as expected due to the emerging isotropization. Thus
the hierarchy of the diffusion coefficients has a natural
explanation in terms of the stages of the bottom-up
thermalization scenario. The ordering of the coefficients
κT < κz after the star marker, i.e., after the initially large
occupancies, is also in line with what is observed using

FIG. 2. Ratio of κ to the thermal value at the same energy
density ε (top), the same screening mass mD (middle), and
effective soft mode temperature T� (bottom). We have applied the
Savitzky-Golay filter to smoothen the data. The filter is also
applied to all of the following figures involving κ.

FIG. 3. Ratio of the transverse and longitudinal diffusion
coefficients during the bottom-up thermalization scenario. We
observe that the transverse coefficient is enhanced compared to
the longitudinal one during the initial evolution. When the
system becomes underoccupied, this ordering reverses. Finally
when the system reaches approximate equilibrium the ratio
approaches unity.
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squeezed thermal distributions [31] and results from the
momentum anisotropy of the system.
We can compare the preequilibrium system to the

thermal one using the same three matching procedures
as in Fig. 2 to the transverse and longitudinal diffusion
coefficients separately. The results are shown in Fig. 4,
and show qualitatively similar results as for the full
coefficient κ. Similarly as in Fig. 2 we find that the best
way to compare our nonequilibrium results to a thermal
system is by matching for the same energy density ε. This
way the deviations from equilibrium turn out to be not
larger than approximately 40%. For the same screening

massmD we observe very large deviations after the initially
highly occupied regime, i.e., after the star time marker. In
particular, we observe deviations up to a factor of 4 for the
transverse and 6 for the longitudinal coefficient, respec-
tively, for the smallest coupling.

E. Time-evolution of the relevant scales

To better understand the time dependence of κ, let us now
discuss the evolution of relevant scales that it depends on.
The different time dependences that are relevant for this
discussion are summarized in Figs. 5–7. As a first step, we

FIG. 4. Transverse (left panel) and longitudinal (right panel) diffusion coefficients compared to thermal values for the same ε (top
row), mD (middle), and T� (bottom row).
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start with the time dependence of the occupation number
of the hard modes, shown in Fig. 5. It starts in an
overoccupied state, then becomes underoccupied before
reaching a thermal value.

Figure 6 shows the time dependence of the energy
density. In the upper panel, the initial value ε ∼ 1=λ is
scaled out by multiplying with the coupling λ so that all the
curves start at the same value by construction. The time
dependence is additionally divided by the ideal hydrody-
namical behavior τ−4=3. We see that during most of the
bottom-up thermalization, the energy density decreases as
ε ∼ 1=τ until it approaches the hydrodynamical behavior at
the triangle marker near the end of the evolution. The
bottom panel shows the temperature Tε extracted from the
energy density and the temperature in ideal hydrodynamics
Tid, extrapolated backwards from the final state. The latter
is computed by first matching it with Tε at the triangle time
marker of near isotropy when the system exhibits an almost
hydrodynamical behavior, and propagating backwards in
time as in Tid ∼ τ−1=3, as discussed in [42]. We find that the
temperature deviates from the ideal hydrodynamics temper-
ature at most by a factor of 2 at early times for the couplings
we have considered. However, when the system is under-
occupied at the circle time marker, the ideal temperature is

FIG. 5. Time evolution of the occupation number of the hard
modes.

FIG. 7. Time evolution of the Debye mass mD (top) and the
effective temperature of the soft scales T� (bottom), divided by
the thermal value at the same energy density. The dotted curves
correspond to the parametric estimates derived in Sec. III F
corresponding to λ ¼ 1, ξ ¼ 10.

FIG. 6. Top: time evolution of the energy density ε scaled by
the coupling constant and the time dependence in ideal hydro-
dynamics εid ∼ τ−4=3. Bottom: time evolution of the temperature
corresponding to the energy density, scaled by the time depend-
ence of the temperature in ideal hydrodynamics T id ∼ τ−1=3.
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in reasonably good agreement (within 20%) with the
temperature extracted from the energy density.
Let us now return to the heavy-quark diffusion coef-

ficient. Parametrically, it is given by [30]

κ ∼m2
Dg

2T� log
�

Λ
mD

�
; ð39Þ

where Λ is the largest momentum scale of the particles in
the plasma; for a thermal system we have Λ ≈ T. Ignoring
the logarithmic contribution, we estimate

κ

κeq
≈

m2
D

ðmeq
D Þ2

T�
Teq
�
: ð40Þ

To understand the behavior of the heavy quark diffusion
coefficient, we must thus look at the time dependence
of mD and T� which are shown on the top and bottom,
respectively, in Fig. 7. We observe that initially mD is
enhanced compared to the thermal system at the same
energy density. When the system becomes underoccupied,
especially for weak couplings, mD gets relatively sup-
pressed. The suppression is mainly driven by a decreasing
occupation number, which is discussed in more detail in
Sec. III F. For the effective temperature T� we observe a
strong enhancement at the early stage, which is understood
from the large occupancies encountered initially as also
discussed in Sec. III F. When the system becomes under-
occupied, i.e., in the vicinity of the circle time marker, T� is
already very close to its equilibrium value for the same
energy density. The combination of the curves in Fig. 7
explains qualitatively the behavior seen in Fig. 2; at first an
enhancement compared to the equilibrium value due to
large T� and mD in the overoccupied phase, followed by a
suppression mostly resulting from lower values of mD. Let
us now construct a parametric estimate that makes this
behavior explicit.

F. Understanding the evolution of scales and κ

Let us try to qualitatively understand the time evolution
of the matching scales and of the heavy-quark diffusion
coefficient in terms of the occupation number and
anisotropy. For the purposes of our parametric estimate,
we use the following squeezed and scaled distribution

fðpT; pzÞ ¼ f0θ
	
Q2

s − ðp2
T þ ðpz=δÞ2



; ð41Þ

where θ is the step function. We determine the typical
occupation number f0 during bottom-up thermalization
by taking its value to be the typical occupation number of
the hard modes, calculated as f0 ¼ hpfi=hpi. The values
of this parameter can be read off Fig. 5. The squeezing
parameter δ describes the momentum anisotropy, δ ∼ hpzi

hpTi.
We estimate its value during the bottom-up evolution as

δ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PL=PT

p
, where the values of the pressure ratio are

visible in Fig. 1.
For the purposes of this parametric estimate, we approxi-

mate the thermal distribution with the same simplified
form (41). For this, we obtain the value f0 by calculating
the expectation values for a thermal (Bose-Einstein) dis-
tribution (corresponding to the crosses in Fig. 1). The value
is independent of λ and reads

fBE0 ¼ hpfi
hpi ¼ 0.1106: ð42Þ

For a thermal system, we naturally have δ ¼ 1, and we take
the scale Qs in (41) to be Qs ¼ T.
The screening mass mD is given by (11). Performing the

integral for the distribution (41), we get

m2
D ∼ δf0λQ2

s : ð43Þ

Thus, the ratio to the thermal case becomes

mD

meq
D
¼

ffiffiffiffiffiffiffiffiffiffiffi
δ
f0
fBE0

s
: ð44Þ

This parametric estimate is shown as a gray dotted line in
Fig. 7 (top) for λ ¼ 1 (as indicated by the color coding)
and ξ ¼ 10. We will use these parameters throughout this
section for other quantities as well. The time evolution in
Fig. 7 can now be understood using Fig. 1. The decrease in
the value of mD when the system evolves from over-
occupation to underoccupation is mainly driven by the
falling occupation number f0. As the system evolves
toward thermal equilibrium from the underoccupation
regime (circle marker), the value of mD starts to increase.
This process is driven by both the growing occupation
number and decreasing anisotropy. As can be seen in Fig. 7,
this estimate does not describe the evolution quantitatively,
but offers a simple qualitative description of the evolution.
Possibly our parametric estimate undershoots the actual
value of mD in the underoccupied phase (the circle marker)
because the modes contributing to the Debye mass are
softer and not quite as anisotropic and underoccupied as the
modes contributing to the pressure, leading to the factorffiffiffiffiffiffiffi
δf0

p
in (44) to overestimate the effect.

Similar estimates can be applied to T� given by (29).
Using the result for mD, we obtain

T� ∼Qsðf0 þ 1Þ: ð45Þ

Thus T� is less sensitive to the anisotropy. Comparing with
the thermal estimate, we get

T�
Teq
�
¼ ðf0 þ 1Þ

ðfBE0 þ 1Þ : ð46Þ
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This result naturally explains the behavior of T� observed
in Fig. 7 (bottom). The initial enhancement of T� is driven
by the large occupation number, and the observed enhance-
ment is larger than for mD since T� has a stronger
dependence on the occupation number. Due to the constant
term, there is no suppression from underoccupation, and T�
is less sensitive to δ than mD. Hence, our parametric
estimate is better than for mD, and T� does not go below
the thermal value in the underoccupied regime, but is
already close to unity.
Using the estimates for mD and T�, we obtain for the

heavy-quark diffusion coefficient

κ

κϵeq
¼ δf0

fBE0

ðf0 þ 1Þ
ðfBE0 þ 1Þ : ð47Þ

Plugging in the values for f0 and δ during the evolution
(calculated from f0 and δ in Figs. 1 and 5) leads to the gray
dotted curve in Fig. 8. We observe that the general trend of
enhancement followed by suppression and equilibration is
somewhat exaggerated by this parametric estimate. The
transparent curves in Fig. 8 show the estimate obtained
using Eq. (40) with the actual calculated values of mD and
T� from Fig. 7. They exhibit the same behavior in a less
exaggerated way.

IV. COMPARISONS WITH GLASMA AND
LATTICE CALCULATIONS

A. Comparing with glasma

For a sensible comparison between our kinetic results
and κ from the glasma stage, we first reproduce the energy
density of the glasma by choosing Qs ¼ 1.4 GeV as in
Ref. [21] at the initial timeQsτ ¼ 1. The same value is also

obtained in [45] in order to achieve consistency with the
later hydrodynamic evolution.
Figure 9 shows the transverse and longitudinal diffusion

coefficients κGlasma
T and κGlasma

z , which correspond to the
situation of static quarks in the glasma [46], together
with our results denoted by κT and κz. The main observa-
tion is that during the quasiparticle phase, κ is consider-
ably smaller than during the glasma stage at very early
times [note that the glasma results peak at Oð10Þ GeV2

fm ].
Transverse and longitudinal diffusion coefficients behave
differently—our result for κT agrees with the glasma
around the star marker signaling large occupation numbers,
which is within the overlapping validity range of glasma
and EKT. In contrast, the longitudinal coefficients intersect
close to the circle marker, and the transition is not smooth.
The circle marker indicates that the system is under-
occupied, and hence the matching time falls outside of
the validity range of classical-statistical simulations under-
lying the glasma description.
The main reason for this discrepancy is the qualitatively

different behavior of κ in the glasma framework. We can
always define the derivative of momentum broadening and
call it “diffusion coefficient” κ. This, however, does not
imply that the underlying behavior is that of diffusion,
corresponding to Langevin-type behavior for hp2i. In the
glasma, this manifests itself in the longitudinal direction,
where for large τ momentum broadening turns into
momentum narrowing (κGlasma

z becomes negative). Thus,
more research is needed to understand how the transition
from nondiffusive to diffusive behavior takes place between
the glasma and quasiparticle pictures.

FIG. 8. Ratio of the diffusion coefficient to the equilibrium
value for the same energy density. The wide transparent lines
show the parametric estimate given by (40) using the extracted
values for mD and T� depicted in Fig. 7. The gray dotted line
corresponds to the parametric estimate (47).

FIG. 9. Comparison of our results with the glasma results
from [46]. Blue curves correspond to the longitudinal diffusion
coefficient and red curves to the transverse diffusion coefficient.
Dashed curves correspond to glasma results and solid curves to
our results. The brown data point with error bars corresponds to
the result of [47] at T ¼ 1.5Tc. The point is placed at such a value
of τ that the nonequilibrium system has the same temperature Tε

defined through energy density as the lattice system.

HEAVY QUARK DIFFUSION COEFFICIENT IN HEAVY-ION … PHYS. REV. D 109, 014025 (2024)

014025-11



Based on the data presented in Fig. 9, we can also
estimate the total effect of momentum broadening during
the nonequilibrium evolution. It is given by the integrated
diffusion coefficient

hp2i ¼
Z

dτ 3κðτÞ: ð48Þ

In the Bjorken hydro limit, we have ε ∼ τ−4=3 and
Tε ∼ τ−1=3. In a rough parametric estimate κ ∼ T3, this
leads to κ ∼ 1=τ and hp2i ∼ logðτÞ, everything in units of
Qs. Thus, we expect the preequilibrium kinetic phase of
the evolution, roughly 0.1–1 fm, to have an equal con-
tribution to heavy quark diffusion as the equilibrium
phase, roughly 1–10 fm. Integrating over the entire EKT
evolution, from τ ¼ 0.14 fm to τ ¼ 1 fm yields an esti-
mate hp2i ¼ 0.9 GeV2.
Figure 9 also features a data point for the lattice result,

which we will discuss in the following Sec. IV B.

B. Comparing with lattice

For comparisons with lattice results, our main reference
will be [47], where low-temperature (T ¼ 1.5Tc) and high-
temperature (T ¼ 104Tc) estimates for κ=T3 are available.
Other studies have also obtained comparable results at
similar temperatures [12,17,48].
The obvious approach is to compare systems with the

same temperature (defined by the energy density). This,
however, neglects the different treatment of the QCD
coupling. Since the lattice calculation is nonperturbative,
it will also include effects arising from the running coup-
ling, whereas our EKT calculation uses a fixed coupling.
The second approach is to compare the systems with the
same (or similar) coupling constant, which can be esti-
mated using

λðQÞ ¼ 4πNc
33−3Nf

12π ln Q2

Λ2
QCD

ð49Þ

at the scale Q ¼ 4πT, Nf ¼ 0, and ΛQCD=Tc ≈ 2.
Figure 10 shows our EKT results for λ ¼ 2, 5, 10 as well

as lattice results at T ¼ 1.5Tc and T ¼ 104Tc in terms of the
ratio κ=T3. For the higher temperature, the above expression
gives λ ≈ 2, whereas the lower temperature—while being
outside of the scope of the one-loop expression—indicates
values roughly around λ ∼ 10. The EKT values are extracted
at different stages of the nonequilibrium evolution, marked
by the respective markers. We observe that our results for
λ ¼ 2, κ=T3 ¼ 0.024� 0.002 are in rough agreement with
the lattice estimate 0.02 ≤ κ=T3 ≤ 0.16 at the larger temper-
ature (T ¼ 104Tc). However, at the lower temperature
corresponding to larger couplings, the lattice calculation
yields a larger value of κ=T3. This larger value is also visible

in Fig. 9 where κ is shown at the time of the evolution
corresponding to the same energy density.

V. CONCLUSIONS

In this paper, we have extracted the heavy quark
momentum diffusion coefficient using effective kinetic
theory simulations during the bottom-up isotropization
process. In order to better quantify the importance of the
preequilibrium evolution in relation to thermal equilibrium,
we have displayed our result as the ratio κ=κeq to a thermal
distribution with the same energy density ε, Debye mass
mD, or effective infrared temperature T�. Our main con-
clusion is that during the kinetic stages of the preequili-
brium evolution that can be described using effective
kinetic theory, i.e., after the initial glasma evolution, the
diffusion coefficient is within 30% of the equilibrium value
in a thermal system with the same energy density. Thus our
results suggest that modeling the preequilibrium diffusion
coefficient with the equilibrium coefficient computed for a
thermal system with the same energy density (Landau
matching) is a reasonably good first approximation during
the hydrodynamization process. In a more detailed com-
parison, we find that in the early overoccupied stage, κ is
larger than the equilibrium value and driven by the
enhancement of bothmD and T�. In the later underoccupied
phase, κ is below the thermal comparison value due to the
suppression of mD. We have tested initial conditions with
two different anisotropies, and we have found that our
conclusions are not strongly affected by the value of the
initial anisotropy parameter.
We have also studied the diffusion coefficient separately

for the transverse and longitudinal (beam) directions.
The transverse diffusion coefficient is larger than the

FIG. 10. Our results for λ ¼ 2, 5, 10 together with the lattice
results from [47]. The star, circle, and triangle markers corre-
spond to the values of κ=T3

ε at the time when the corresponding
phase of the bottom-up evolution is reached. We only consider
the static correlator without higher order (magnetic) corrections
here.
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longitudinal one at the very early stages when the occu-
pation numbers are large, due to the Bose enhancement
available for scatterings with a momentum exchange in the
transverse direction. When the system becomes under-
occupied, the longitudinal diffusion coefficient dominates.
When the system approaches thermal equilibrium, the
transverse and longitudinal diffusion coefficients become
equal as expected. In a similar manner, we have qualita-
tively explained the evolution of mD, T�, and κ using the
behavior of typical hard occupation numbers and momen-
tum anisotropy. Moreover, we have compared our results
with those obtained in the glasma and lattice frameworks.
On the phenomenological side, our results give a rough

estimate for the heavy quark momentum broadening during
the kinetic stage of hp2i ≈ 1 GeV2 and display interesting
angular dependence. It would be interesting to study the
implications of these results in more detail. One exciting
perspective is to include them into the quantum trajectories
framework [6,49] to study the impact of initial stages on
quarkonium dynamics. It is also possible to address the
evolution of other transport coefficients during the initial
nonequilibrium dynamics: in a separate paper [50] we use
the EKT setup to calculate the evolution of the jet
quenching parameter q̂. These studies open the possibility
of assessing the impact of initial stages on other phenom-
enological observables.
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APPENDIX: NUMERICAL FRAMEWORK

1. Details of the discretization procedure

Our numerical framework is the same as in [35]. Instead
of the distribution function, we use the quantity

n̄ij ¼
Z

d3p
ð2πÞ3 λfðpÞwijðpÞ; ðA1Þ

which represents the particle number per degree of freedom
and unit (spatial) volume, as our dynamical degree of
freedom. Here the wij involve the discretization in momen-
tum p≡ jpj and polar angle cos θ as

wijðpÞ ¼ wjðpÞwiðcos θÞ; ðA2Þ

with the wedge functions defined as

wiðzÞ ¼
ziþ1 − z
ziþ1 − zi

θðz − ziÞθðziþ1 − jzjÞ

þ z − zi−1
zi − zi−1

θðzi − zÞθðz − ziÞ: ðA3Þ

This discretization conserves particle number, energy
density, and hpzi exactly.
Our numerical framework has in total seven discretiza-

tion parameters. Two of them correspond to the number of
bins used in the momentum ∈ ½pmin; pmax� and polar angle.
There are two parameters associated to the Monte Carlo
sampling procedure, one of which determines the number
of samples that is needed for the time evolution, the other
one being associated to the sampling of the diffusion
coefficient. For the momentum discretization we have
parameters which are associated to the minimum and
maximum momentum in our momentum grid pmin and
pmax. Finally for the time evolution we use an adaptive
step-size algorithm, which needs an initial value.
We have verified that our numerical results are indepen-

dent of the discretization parameter set by reproducing the
results of [35]. The most important dependencies on the
discretization parameters are the following: Reproducing
the correct behavior during the underoccupied region is
very sensitive to the length of the time step. It turns out that
the minimum momentum on the grid is important to
understand the approach to equilibrium—as the system
becomes thermal, it will approach a thermal distribution
with an infrared cutoff pmin. When we compare our
simulations to thermal equilibrium, this has to be taken
into account. This effect is described in detail in
Appendix A 3. In principle we receive corrections also
from the maximum momentum parameter pmax (and other
discretization parameters). However, in practice the
dependence on pmin appears to be by far the most important
effect. We have also checked that our results do not depend
on the accuracy of the discretization of the θ angle.
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2. Discretization of κ

Due to azimuthal symmetry around the beam direction,
the distribution function fðpÞ out of equilibrium is assumed
to only depend on the magnitude of the momentum and the
polar angle θ, and not on the azimuthal angle ϕ. We start by
evaluating the p0 integral in (21) by making use of the
momentum conserving delta function. Furthermore we
integrate over the radial component of k0 using the energy
conserving delta function. This leads to

3κ ¼ λ2CH

Nc

Z
∞

0

dk
ð2πÞ3 k

2

Z
1

−1
dxk

Z
2π

0

dϕk

×
Z

1

−1

dx0k
ð2πÞ2

Z
2π

0

dϕ0
kk

2q2
1þ cos2θkk0

ðq2 þm2
DÞ2

× fðk; xkÞð1þ fðk; x0kÞÞ; ðA4Þ

where we use the notation xk ¼ cos θk, x0k ¼ cos θk0 for the
polar angles. The azimuthal angles are denoted by ϕk
and ϕ0

k. The cosine of the angle between k and k0 can be
written as

cos θkk0 ¼ 1 −
q2

2k2
ðA5Þ

¼ sin θk sin θ0k cosðϕk − ϕ0
kÞ þ xkx0k: ðA6Þ

As can be seen from (A5), the expression depends only on
the difference of the azimuthal angles. Thus we can change
the variables by

R
2π
0 dϕk

R
2π
0 dϕ0

k ¼
R
2π
0 dϕ0

k

R
2π
0 dϕkk0 ¼

2π
R
2π
0 dϕkk0 and trivially carry out one of the integrals

over the azimuthal angles. Further evaluating the integral
and using the results above yields

3κ ¼ λ2

ð2πÞ4
CH

Nc

Z
pmax

pmin

dk k4
Z

1

−1
dxk

Z
1

−1
dx0kfðk; xkÞ

× ð1þ fðk; x0kÞÞ
Z

2π

0

dϕkk0q2
1þ ð1 − q2=ð2k2ÞÞ2

ðq2 þm2
DÞ2

:

ðA7Þ

The momentum transfer q2 can be written in terms of the
integration variables as

q2 ¼ 2k2
	
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2k

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðx0kÞ2

q
cosðϕkk0 Þ − xkx0k



:

ðA8Þ

We also want to study the transverse and longitudinal
diffusion coefficients separately. These are given by

κi ¼
λ2

ð2πÞ4
CH

Nc

Z
pmax

pmin

dk k4
Z

1

−1
dxk

Z
1

−1
dx0kfðk; xkÞ

× ð1þ fðk; x0kÞÞ
Z

2π

0

dϕkk0q2i
1þ ð1 − q2=ð2k2ÞÞ2

ðq2 þm2
DÞ2

:

ðA9Þ

Here qi ¼ qT; qz is the momentum transfer in different
directions, given by

q2z
k2

¼ ðxk − xk0 Þ2; ðA10Þ

q2T
k2

¼
�
1−

x2k
2
−
x2k0
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− x2kÞð1− x2k0 Þ

q
cosϕkk0

�
: ðA11Þ

The normalization is such that q2 ¼ 2q2T þ q2z , and con-
sequently 3κ ¼ 2κT þ κz. For a thermalized system this
corresponds to κT=κz → 1 and κT;z=κ → 1. In our numerical
framework the integrals are computed using Monte Carlo
techniques. In (A7) and (A9) we have also discretized the
momentum interval with IR and UV cutoffs ½pmin; pmax�.
The dominating discretization effects are discussed in more
detail in Appendix A 3.

3. Observables and pmin dependence

Due to the discretization effects, our system does not
reach the continuum thermal equilibrium. Instead, it
approaches a discretized version of thermal equilibrium.
This affects our observables, as illustrated in Fig. 11. We
observe that the numerically obtained value for mD divided

FIG. 11. Debye mass extracted during the bottom-up evolution,
divided by the value in a continuum thermal system with the same
energy density. The dashed curve has been obtained by comput-
ing the screening mass in a thermal system with the IR regulator
pmin given by (A12). The temperature Tε is extracted from the
energy density using Eq. (27). The main observation is that the IR
cutoff pmin decreases mD by roughly 20% from the continuum
value, depending on T=pmin.
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by its thermal expectation (obtained for a gluonic system
with a Bose-Einstein distribution) deviates from unity at
late times. However, when we take into account the dis-
cretization effects in terms of the momentum cutoff pmin,
we see a nice agreement for λ ¼ 10. A similar agreement is
observed for other curves as well, but here we show only
one for clarity. In principle we could take into account also
other discretization parameters such as pmax and the
angular discretization, but we find that the dominant
discretization contribution arises from pmin.
We will now discuss the pmin dependence inmD, T�, and

κ in more detail.

a. Debye mass mD

The pmin dependence in mD given by (11) is obtained by
inserting an IR cutoff into the integral as follows:

m2
DðpminÞ ¼

8λ

ð2πÞ2
Z

∞

pmin

dppfðpÞ

¼ 2λT
�
TLi2

�
e−

pmin
T
�
− pmin log

�
1 − e−

pmin
T
��

π2
;

ðA12Þ

where the distribution is given by the Bose-Einstein
distribution. The dilogarithm is defined as

Li2ðzÞ ¼
X∞
k¼1

zk

k2
¼ −

Z
z

0

lnð1 − uÞ
u

du: ðA13Þ

The curve labeled as thermal in Fig. 11 is obtained
using (A12).

b. Effective IR temperature T�
The same procedure can be carried out for T�:

λT�ðt; pminÞ ¼
λ2

π2m2
DðpminÞ

Z
∞

pmin

dpp2fðt; pÞð1þ fðt; pÞÞ:

ðA14Þ

For the thermal distribution the result becomes

λT�ðpminÞ ¼
λ

6

�
6T2Li2

�
e−

pmin
T
�

þ 3pmin

�
pmin

�
1

epmin=T − 1
þ 2

�

− 2T log
�
epmin=T − 1

���

×
h	

TLi2
�
e−

pmin
T
�
− pmin log

�
1 − e−

pmin
T
�
i−1

:

ðA15Þ

Expanding this for small x ¼ pmin
T yields

λT�ðpminÞ¼ λT
12π−36xþx3

12π−72xþ18x2−2x3
þOðx5Þ: ðA16Þ

Thus in the limit x → 0 we recover the equilibrium
relation λT� ¼ λT.
In the comparisons to equilibrium distributions in the

main text (e.g. in Fig. 7) these corrections are applied tomD
and T�. Consequently, the ratios approach unity when the
system thermalizes, contrary to the behavior observed in
Fig. 11 without the corrections.

c. Diffusion coefficient κ

For κ the corrections arising from the infrared regulator
pmin are taken into account as follows. We start with the
expression (24) and perform the q integral analytically
without an infrared regulator as before. Then we replace
mD with the infrared regulated expression mDðpminÞ given
by (A12). The resulting expression is

κthermLO ¼
Z

∞

0

dk

48π3Nck2ðek=T − 1Þ2 CHλ
2ek=T

�
−
�
4k2

�
λTðTLi2

�
e−

pmin
T
�
− pmin log

�
1 − e−

pmin
T
��

π2
þ k2

�

×

�
6λT

�
TLi2

�
e−

pmin
T
�
− pmin log

�
1 − e−

pmin
T
��

π2
þ 8k2

��
×

�
2λT

�
TLi2

�
e−

pmin
T
�
− pmin log

�
1 − e−

pmin
T
��

π2
þ 4k2

�
−1

−
1

2
log

�
λT

�
TLi2

�
e−

pmin
T
�
− pmin log

�
1 − e−

pmin
T
��

λT2Li2
�
e−

pmin
T
�
− λpminT log

�
1 − e−

pmin
T
�þ 2π2k2

�
×

�
16λk2T

�
TLi2

�
e−

pmin
T
�
− pmin log

�
1 − e−

pmin
T
��

π2

þ 12λ2T2
�
pmin log

�
1 − e−

pmin
T
�
− TLi2

�
e−

pmin
T
��

2

π4
þ 8k4

��
: ðA17Þ
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The remaining k integral in (A17) is evaluated numeri-
cally for different values of λ and T using a small
independent IR regulator for numerical stability. The results
are interpolated in order to find a κ corresponding to an
arbitrary temperature within the tabulated range. We have
applied these corrections to the results shown in Fig. 2. We
observe that the ratio to equilibrium is very close to unity
when the system is approximately thermal.
We would like to emphasize that this treatment takes

only into account the discretization effects arising frommD.
We do not regulate the k and q integrals with the regulator

pmin. Thus this treatment takes only a subset of the
corrections into account. Hence this treatment is not
expected to maintain the ratio at unity for infinitely large
times. This can be seen for instance in Figs. 2 and even
more prominently 8, where the ratio starts to slightly
deviate from unity at very late times.
The ratios κ=κmD;T�

eq comparing to the thermal system at
the same mD and T� are obtained using the same data. The
temperature T and pmin uniquely determine mD given
by (A12) and T� given by (A15).
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