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We employ a model based on nucleonic and mesonic degrees of freedom to discuss the competition
between isotropic and anisotropic phases in cold and dense matter. Assuming isotropy, the model exhibits
a chiral phase transition which is of second order in the chiral limit and becomes a crossover in the case
of a realistic pion mass. This observation crucially depends on the presence of the nucleonic vacuum
contribution. Allowing for an anisotropic phase in the form of a chiral density wave can disrupt the smooth
crossover. We identify the regions in the parameter space of the model where a chiral density wave is
energetically preferred. A high-density reappearance of the chiral density wave with unphysical behavior,
as seen in previous studies, is avoided by a suitable renormalization scheme. A nonzero pion mass tends to
disfavor the anisotropic phase compared to the chiral limit and we find that, within our model, the chiral
density wave is only realized for baryon densities of at least about 6 times nuclear saturation density.
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I. INTRODUCTION

A. Background and motivation

Thermodynamic phases that break rotational and/or
translational invariance are ubiquitous in condensed-matter
systems and are expected to play an important role in the
phase diagram of quantum chromodynamics (QCD). Cold
and dense matter governed by QCD can be found inside
neutron stars and thus the properties of anisotropic or
crystalline phases are important for the understanding of
astrophysical data. Neutron stars rotate and contain strong
magnetic fields, effects that tend to stabilize anisotropic
structures on a microscopic level. But, even without any
external fields, cold and dense matter is prone to devel-
oping spatial structures, typically because a condensation
mechanism becomes “stressed.” A nonuniform state can
then be stabilized as a result of competing effects, finding a
balance between keeping the kinetic energy cost small
while sustaining a gain from condensation energy. In cold
and dense quark matter, a mismatch in Fermi momenta
due to the nonzero strange quark mass puts a stress on the
uniform quark/quark pairing, resulting in anisotropic or
crystalline Cooper pair condensates [1–3]. Here we will be
concerned with the possibility of an anisotropic chiral

condensate. In this case, the baryon chemical potential
itself imposes a stress on the condensation mechanism
because chiral condensation is based on quark/antiquark
pairing. Throughout the paper we will ignore the possibility
of Cooper pairing for simplicity and consider systems
without magnetic field or rotation.
Since the anisotropic state is an intermediate phase

between chirally broken and (approximately) chirally
restored phases, we expect a spatially varying chiral
condensate in the vicinity of the chiral transition.1 Chiral
(and deconfinement) transitions are strong-coupling phe-
nomena and cannot be described with perturbative meth-
ods. Moreover, in the region of cold and dense matter, even
brute-force methods on the lattice are currently inappli-
cable. Therefore, for now, this regime of QCD is inacces-
sible from first principles. The discussion of the chiral
transition in cold and dense matter is thus mostly limited to
phenomenological models, including the study of inhomo-
geneous phases in its vicinity. The vast majority of these
studies have been performed in models based on quark
degrees of freedom, such as the Nambu–Jona-Lasinio
(NJL) or quark-meson model [6–18]. These models are,
at best, suitable for the high-density side of the chiral
transition. However, the relevant degrees of freedom on the
low-density side, where chiral symmetry is spontaneously
broken, are nucleons. Therefore, these models only yield a
toy version of the chirally broken phase of cold and dense
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1It is conceivable that an anisotropic or inhomogeneous chiral
condensate persists up to asymptotically large densities—then in
the form of quark/quark-hole pairing. However, in QCD this
requires a large number of colors [4,5].
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QCD. Ideally, a model should account for both quark and
nuclear matter. This is a very challenging task, even on the
less rigorous level of phenomenological models. Attempts
include models where quark and nucleon degrees of free-
dom are combined in the Lagrangian [19] and models
based on the gauge-gravity duality, where both confined
and deconfined phases arise naturally but which are differ-
ent from real-world QCD in other aspects [20–22].

B. Model and main idea

Here, we employ a nucleon-meson model [23], which
offers a complementary perspective to NJL and quark-meson
models: In this approach, the low-density side does contain
the correct degrees of freedom (and we can choose the model
parameters to reproduce properties of nuclear matter at
saturation). On the other hand, we have to live with a toy
version of quark matter. One of the main ideas is that, if
combined, the two complementary approaches can give
solid predictions for QCD, at least on a qualitative level.
Importantly, our model does have a chiral limit, and thus
knows about the concept of a chiral phase transition. The
reason is that the nucleon mass is generated fully dynami-
cally, in contrast to widely used models for dense nuclear
matter that contain a mass parameter in the Lagrangian, such
as the Walecka model and its variants [24–27]. The model
we employ was already used in the context of the chiral
transition, for instance to compute the surface tension of the
interface between the two phases [28], and strangeness was
included to account for a somewhat more realistic descrip-
tion of the chirally symmetric phase [29]. It was also used to
construct mixed phases under neutron star conditions [30].
A mixed phase is another example of a spatially inhomo-
geneous structure, with spatial regions, for instance bubbles,
of one phase immersed in the background of another phase.
In the context of the quark-hadron transition, the possibility
of mixed phases is closely related to a first-order transition in
the presence of a local charge neutrality constraint and the
relaxation of this constraint to global neutrality. In this paper,
we restrict ourselves to isospin-symmetric nuclear matter
without any neutrality condition, where these mixed phases
play no role.
Instead, we will allow for an anisotropic chiral con-

densate, which oscillates between scalar and pseudoscalar
components along a certain, spontaneously chosen, direc-
tion in position space—this is commonly referred to as a
chiral density wave (CDW).2 The CDW has been used as an

ansatz for the chiral condensate in numerous studies
because of its simplicity. In particular, it does not break
translational invariance for any observable. More compli-
cated structures have been discussed, for instance spatial
variations in the scalar component only [7,18], variants of
the chiral density wave [32], higher-dimensional lattice
structures [33,34], all reviewed in Ref. [35], and the
possibility of a quantum spin liquid [36]. It is not the
purpose of our study to compare these different inhomo-
geneous phases, hence we need to keep in mind that our
CDW phase may itself be unstable with respect to a phase
that does break translational invariance.

C. Main novelties

The chiral density wave in nuclear matter was already
analyzed in Refs. [37–39], employing a model similar to
ours, and in Refs. [32,40], where an extended linear sigma
model was used, describing nucleons in a parity doublet
and, in Ref. [40], including an additional scalar field.
All these works ignore the vacuum contribution of the
nucleons (the “Dirac sea”), and we will argue that this
contribution makes an important difference. This differ-
ence is important not only if a CDW is included. (In
Ref. [41] it was argued that the Dirac sea is crucial in the
presence of a magnetic field.) Even for the isotropic case,
the location and nature of the chiral phase transition is
corrected significantly by the vacuum contribution, as
already pointed out in the model we use here [42]. In
models with quark degrees of freedom, on the other hand,
the Dirac sea was included together with the CDW, at least
in some of the above mentioned works, see for instance
Refs. [10,14]. Implementing this contribution for the first
time into a study of the CDW in nuclear matter gives us a
more realistic picture. Moreover, we carefully discuss the
renormalization needed for the Dirac sea and point out
that a suitable renormalization procedure avoids artifacts
at high density seen previously in NJL and quark-meson
approaches [9,10]. Additionally, we will show how the
CDW is affected by a quartic self-coupling of the vector
meson [43], which was not taken into account in
Refs. [32,37–40], but which has recently been explored
to account for realistic neutron stars [44,45]. We also ask
whether a CDW is favored in a system which—in the
absence of anisotropic phases—shows a smooth chiral
crossover. As we shall see, the crossover is an unavoid-
able consequence of our model if the Dirac sea is
included, and thus we are “forced” to work in this
scenario, which is a viable possibility in QCD [46].
We shall see that an anisotropic chiral condensate can
indeed introduce phase transitions in an otherwise smooth
crossover. This is not unlike the Bose-Einstein conden-
sation/Bardeen-Cooper-Schrieffer crossover [31], which
can also be disrupted by phase transitions if there is a
mismatch in Fermi momenta for the two fermion species
that form pairs [47,48].

2Other names for the CDW exist in the literature, such as
“axial wave condensation,” “dual chiral density wave,” or “chiral
spiral.” The analog in quark/quark pairing (as opposed to quark/
antiquark pairing in the chiral condensate) is referred to as the
single plane wave Larkin-Ovchinnikov-Fulde-Ferrell (LOFF)
state. The CDW is also conceptually the same as a superfluid
with nonzero superflow in a fixed direction, described by a
complex scalar field whose phase varies along this direction
(which can be visualized as a spiral) [31].
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D. Structure of the paper

Our paper is organized as follows. In Sec. II we introduce
our model of isospin-symmetric nuclear matter and incor-
porate the CDW, see Secs. II A and II B. Then, in Secs. II C
and II D we derive the free energy and set up the
stationarity equations, including the Dirac sea contribution,
which requires renormalization, explained in detail in
Appendix A. We explain our procedure for fitting the
model parameters in Sec. II E. Our main results are
presented in Sec. III, starting from the effect of the vacuum
terms on the isotropic scenario in Sec. III A. The CDW is
studied in Sec. III B for a specific parameter set, before
we present a more global view of the parameter space in
Sec. III C. We compare our results to previous approaches
in the literature regarding the treatment of the Dirac sea in
Sec. III D, before we give a summary and an outlook
in Sec. IV.

II. MODEL AND ANSATZ

A. Lagrangian

Our model is based on a Lagrangian containing bar-
yonic, mesonic, and interaction terms [23,28–30,42],

L ¼ Lbar þ Lmes þ Lint: ð1Þ

The baryonic part is

Lbar ¼ ψ̄ðiγμ∂μ þ γ0μÞψ ; ð2Þ

where the nucleon spinor contains neutrons and protons,
ψ ¼ ðψn;ψpÞ, and μ is the baryon chemical potential.
Throughout the paper, we will restrict ourselves to isospin-
symmetric nuclear matter, where neutrons and protons are
degenerate and in particular have the same chemical
potential, μn ¼ μp ≡ μ. The Lagrangian does not include
a nucleonic mass parameter, the nucleon mass will be
generated dynamically by spontaneous chiral symmetry
breaking. The mesonic part is

Lmes ¼
1

2
∂μσ∂

μσ þ 1

4
Tr½∂μπ∂μπ� −

1

4
ωμνω

μν þm2
ω

2
ωμω

μ

þ d
4
ðωμω

μÞ2 − Uðσ; πÞ; ð3Þ

where π ¼ πaτa with the Pauli matrices τa is the pion field,
where ωμν ≡ ∂μων − ∂νωμ, where mω ¼ 782 MeV is the
vector meson mass, and where d > 0 is the (dimensionless)
self-coupling constant of the vector meson. The potential
for the sigma and pion fields takes the form

Uðσ; πÞ ¼
X4
n¼1

an
n!

ðσ2 þ πaπa − f2πÞn
2n

− ϵðσ − fπÞ; ð4Þ

with parameters a1; a2; a3; a4; ϵ, and the pion decay con-
stant fπ ¼ 93 MeV. The potential incorporates a (small)
explicit chiral symmetry breaking through the parameter ϵ,
which is proportional to the pion mass. For ϵ ¼ 0 the
Lagrangian is invariant under chiral transformations.
Finally, baryons and mesons are assumed to interact via
the Yukawa interaction

Lint ¼ −ψ̄ ½gσðσ þ iγ5πÞ þ gωγμωμ�ψ ; ð5Þ

with coupling constants gσ and gω.

B. Ansatz and mean-field approximation

In the simplest situation, only the fields σ and ω0 develop
expectation values. We separate them from the fluctuations,
σ → ϕþ σ, ω0 → ωþ ω0, where ϕ≡ hσi, ω≡ hω0i are
density-dependent (and in general also temperature-
dependent) condensates. If we assume isotropy, ϕ and ω
are constant in space. In our more general—anisotropic—
ansatz we keep the vector meson condensate ω spatially
constant and introduce a spatial modulation in the sector of
scalar and pseudoscalar condensates in the form of a CDW,

σ ¼ ϕ cosð2q⃗ · x⃗Þ; π3 ¼ ϕ sinð2q⃗ · x⃗Þ: ð6Þ

Here, the wave vector q⃗ breaks rotational invariance
spontaneously, and its modulus q as well as the condensate
ϕ have to be determined dynamically. We have set any
charged pion condensate to zero; its competition and
possible coexistence with the CDW is worth exploring
in systems with isospin asymmetry [14,37]. It is useful to
work with transformed fermionic fields according to

ψ → e−iγ
5τ3q⃗·x⃗ψ : ð7Þ

Using this transformation and neglecting the mesonic
fluctuations, we can write the “mean-field Lagrangian” as

Lmf ¼ ψ̄ðiγμ∂μ þ γ0μ� −M þ γ5q⃗ · γ⃗τ3Þψ

þm2
ω

2
ω2 þ d

4
ω4 − U − ΔU; ð8Þ

where we have introduced the effective nucleon mass,

M ¼ gσϕ; ð9Þ

and the effective chemical potential,

μ� ¼ μ − gωω: ð10Þ

The mesonic vacuum potential is written as a sum of
isotropic and q-dependent contributions,
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U ≡UðϕÞ≡X4
n¼1

an
n!

ðϕ2 − f2πÞn
2n

− ϵðϕ − fπÞ;

ΔU ≡ ΔUðϕ; qÞ≡ 2ϕ2q2 þ ð1 − δ0qÞϵϕ: ð11Þ

The form of the q-dependent part deserves a comment. First
of all, the term 2ϕ2q2 originates from the kinetic term in
Eq. (3) and corresponds to a kinetic energy cost of creating
an axial current from the mesonic sector. Next, we notice
that the explicit symmetry breaking term in the potential (4)
retains a spatial dependence that cannot be transformed
away by the fermionic transformation (7). This spatial
dependence is easy to understand: Even without the
presence of nucleons the CDWansatz (6) is only a solution
to the Euler-Lagrange equations for σ and π3 in the chiral
limit ϵ ¼ 0; in that case, the solution traces a circle in the
σ-π3 plane. An explicit symmetry breaking term ϵ > 0
“tilts” the vacuum potential and the solution will no longer
be circular; the condensate will “wobble” along the
spatial direction parallel to q⃗ rather than smoothly follow
a regular spiral.3 This effect is ignored by working with the
simple CDW ansatz, and we will minimize the spatially
averaged free energy with respect to ϕ and q⃗ rather
than attempting to work with the spatially nontrivial
solution of the Euler-Lagrange equation (let alone
attempting to find a self-consistent solution in the
presence of the nucleons). For convenience, we already
introduce the spatial averaging on the level of the mean-
field Lagrangian. After separating the q⃗ ¼ 0 contribution,
this amounts to replacing

ϵϕ½1 − cosð2q⃗ · x⃗Þ� → ϵϕ

V

Z
d3x⃗½1 − cosð2q⃗ · x⃗Þ�

¼ ϵϕ

�
1 −

sinðqLqÞ
qLq

�
→ ϵϕ; ð12Þ

where V is the volume of the system and Lq its length in
the direction of q⃗. In the last step, we have taken Lq → ∞
at fixed nonzero wave number q to obtain the contribution
to ΔU given in Eq. (11). We see that the result does not
depend on q; in particular, taking the limit q → 0 now
does not change the contribution. If, on the other hand,
we are interested in the isotropic case, we first let q → 0
and then take the thermodynamic limit Lq → ∞, in which
case the contribution (12) vanishes. This q → 0 disconti-
nuity results in the prefactor 1 − δ0q in Eq. (11). It implies
that it is energetically more costly by a finite amount to
have an infinitesimally small winding per unit length (i.e.,
wavelength going to infinity) compared to the constant

zero-winding solution. Again, this is a consequence of
the explicit symmetry breaking and our use of the
CDW ansatz; the discontinuity is absent in the chiral
limit ϵ ¼ 0.

C. Free energy

The (yet to be renormalized) free energy from the
Lagrangian (8) is

Ω ¼ Ωbar −
m2

ω

2
ω2 −

d
4
ω4 þ U þ ΔU; ð13Þ

with the baryonic contribution Ωbar, which is derived as
follows.
We first observe that the nucleonic sector of the mean-

field Lagrangian (8) is formally equivalent to a Lagrangian
of free fermions. The thermodynamics can thus be straight-
forwardly computed without further approximations. To
this end, we need to compute the fermionic spectrum in the
presence of the CDW. We first identify the inverse nucleon
propagator in momentum space,

S−1ðKÞ ¼ −γμKμ þM − μ�γ0 þ q⃗ · γ⃗γ5τ3; ð14Þ

where K ¼ ðk0; k⃗Þ, and k0 ¼ −iωn with the fermionic
Matsubara frequencies ωn ¼ ð2nþ 1ÞπT, where T is the
temperature and n∈Z. The poles of the propagator SðKÞ
are given by the zeros of the determinant of S−1ðKÞ, which
can be factorized as follows:

det S−1 ¼ ½ðk0 þ μ�Þ2 − ðEþ
k Þ2�2½ðk0 þ μ�Þ2 − ðE−

k Þ2�2;
ð15Þ

with the single-nucleon energies

E�
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2l þM2

q
� q
�2 þ k2⊥

r
: ð16Þ

Here we have introduced longitudinal and transverse
components of the single-particle momentum k⃗ with
respect to the direction of the CDW, k⃗l ¼ ˆq⃗ ˆq⃗ ·k⃗,
k⃗⊥ ¼ k⃗ − ˆq⃗ ˆq⃗ ·k⃗. We see from Eq. (16) that the wave vector
q⃗ introduces two different dispersion relations which would
otherwise be degenerate. In our model, the dispersions have
a very simple analytical form despite the presence of the
CDW. This will be particularly useful for the regularization
of the vacuum contribution, which can be done analytically.
This is in contrast to the extended linear sigma model of
Ref. [40], where the dispersions are complicated solutions
of a quartic polynomial.
Now, following the standard procedure of thermal field

theory, we can compute the free energy density from the

3We have solved the Euler-Lagrange equations for σ and π3
numerically in the absence of nucleons—but with tilt—and
found that for small ϵ the solution resembles the “shifted CDW”
of Ref. [32], but assumes more irregular shapes as ϵ is
increased.
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logarithm of the partition function. After performing the
sum over Matsubara frequencies, we obtain the baryonic
contribution

Ωbar ¼ 2
X
e¼�

X
s¼�

Z
d3k⃗
ð2πÞ3

�
Es
k

2
þ T ln ½1þ e−ðE

s
k−eμ�Þ=T �

�
;

ð17Þ

where the prefactor 2 indicates the degeneracy of neutrons
and protons. The free energy density Ω does not depend
on space and thus all thermodynamic quantities will be
homogeneous as well. This reflects the fact that translation
symmetry is unbroken by the CDW—at least in the chiral
limit and within our approximation also in the presence
of a nonzero pion mass. Of course, Ω does depend on the
vector q⃗ and thus the anisotropy does show up in physical
observables.
In all our results we restrict ourselves to zero temper-

ature. In this case, with μ� > 0, there is no antiparticle
matter, i.e., the logarithm is only nonzero for e ¼ þ1.
We obtain

Ωbar ¼ −2ðPvac þ PmatÞ; ð18Þ

with the (divergent) vacuum pressure of a single fermionic
degree of freedom,

Pvac ≡ 1

2π2
X
s¼�

Z
∞

0

dkl

Z
∞

0

dk⊥k⊥Es
k; ð19Þ

and the corresponding (finite) matter part,

Pmat ≡ 1

2π2
X
s¼�

Z
∞

0

dkl

Z
∞

0

dk⊥k⊥ðμ� − Es
kÞΘðμ� − Es

kÞ:

ð20Þ

We have written the momentum integral in cylindrical
coordinates and employed invariance of the integrand
under kl → −kl.
The double integral in the matter part can be evaluated

analytically. After some tedious algebra due to the step
function, one can write the result as

Pmat ¼
Θðμ� − q −MÞ

16π2

�
M2½M2 þ 4qðq − μ�Þ� ln

μ� − qþ k−
M

þ k−
3
½2ðμ2� − q2Þðμ� − qÞ −M2ð5μ� − 13qÞ�

�

þ Θðμ� þ q −MÞ
16π2

�
M2½M2 þ 4qðqþ μ�Þ� ln

μ� þ qþ kþ
M

þ kþ
3
½2ðμ2� − q2Þðμ� þ qÞ −M2ð5μ� þ 13qÞ�

�

þ Θðq − μ� −MÞ
16π2

�
M2½M2 þ 4qðq − μ�Þ� ln

q − μ� þ k−
M

−
k−
3
½2ðμ2� − q2Þðμ� − qÞ −M2ð5μ� − 13qÞ�

�

−
Θðq −MÞ

8π2

�
M2ðM2 þ 4q2Þ ln qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 −M2

p
M

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 −M2

p
3

qð2q2 þ 13M2Þ
�
; ð21Þ

where we have abbreviated

k� ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ� � qÞ2 −M2

q
: ð22Þ

As a check, one finds for q ¼ 0,

Pmat ¼
Θðμ� −MÞ

8π2

�
μ�kF

	
2

3
k2F −M2



þM4 ln

μ� þ kF
M

�
;

ð23Þ

where kF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2� −M2

p
is the Fermi momentum. This is the

zero-temperature pressure of a noninteracting fermion gas
with chemical potential μ� and fermion massM. Moreover,
for M ¼ 0 we find

Pmat ¼
μ4�

12π2
; ð24Þ

which is the pressure of massless fermions. In particular,
the wave number q has dropped out. This is expected since
any modulation is irrelevant if the amplitude, here M,
is zero.
The Dirac sea contribution Pvac has to be treated more

carefully. We explain all details in Appendix A and proceed
here with a short summary and the final result for the
renormalized free energy. We first employ proper time
regularization to identify the divergent contributions, which
we can express in terms of a proper time cutoff Λ and a
renormalization scale l. Then, we renormalize our model
by introducing the renormalized field ϕr and renormalized
parameters fπ;r; gσ;r; an;r; ϵr. They are related to the bare
quantities of the original Lagrangian by counterterms δan
and a field rescaling factor Z for the sigma and pion fields.
The divergent parts of δan and Z are fixed to cancel the
divergences of Pvac. The q ¼ 0 part of the Dirac sea is
uniquely determined by our fit of the model parameters to
properties of nuclear matter, and no dependence on the
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choice of the finite parts of δan, Z, and on the scale l is left.
The q-dependent part, however, is less straightforward, and
we keep the scale l in the following results to discuss our
choice for it carefully. Dropping for notational convenience
the subscript r from the renormalized quantities, the
calculation in Appendix A yields

Ω ¼ −2Pmat −
m2

ω

2
ω2 −

d
4
ω4 þ Ũ þ ΔŨ: ð25Þ

The renormalized Dirac sea contribution is absorbed in the
modified contributions to the meson potential,

Ũ ≡ ŨðϕÞ

≡UðϕÞ þ m4
N

96π2
ð1 − 8φ2 − 12φ4 lnφ2 þ 8φ6 − φ8Þ;

ð26aÞ

ΔŨ ≡ ΔŨðϕ; qÞ≡ ΔUðϕ; qÞ − q2M2

2π2
ln
M2

l2
−

q4

2π2
FðyÞ;
ð26bÞ

where

φ≡ ϕ

fπ
¼ M

mN
; ð27Þ

with the nucleon mass in the vacuum mN ¼ 939 MeV, and

FðyÞ≡ 1

3
þ Θð1 − yÞ

"
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

q
2þ 13y2

6

þ 2y2
	
1þ y2

4



ln
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p
y

#
; ð28Þ

with

y≡M
q
: ð29Þ

The terms in Ũ generated by the nucleonic Dirac sea are of
order ðϕ2 − f2πÞ5 ∼ ðφ2 − 1Þ5 and higher. The reason is that
we fit all coefficients in front of ðφ2 − 1Þn with n ≤ 4 to
reproduce physical quantities, and thus the corrections by
the Dirac sea to the terms up to order ðφ2 − 1Þ4 are
absorbed by the fit.
The q-dependent contribution of the Dirac sea in ΔŨ

contains the renormalization scale l. Let us discuss two
limits that will serve us to choose l. First, in the vacuum,
where ω ¼ Pmat ¼ 0, ϕ ¼ fπ (i.e., M ¼ mN), we find in
the chiral limit, where ϵ ¼ 0,

vacuum∶ Ω ¼ 2f2πq2
	
1 −

g2σ
4π2

ln
m2

N

l2



−

q4

6π2
; ð30Þ

where we have assumed q < mN , such that the step
function in Eq. (28) vanishes. Second, in the limit of large
q, with all other quantities kept finite, we have

largeq∶ Ω ¼ q2M2

2π2

	
2þ 4π2

g2σ
− ln

4q2

l2



þOðq0Þ: ð31Þ

[FðyÞ contributes to the logarithm and the matter
part reduces to the limit (24) and thus is subleading.]
We now require that for small q in the vacuum Ω ¼
2f2πq2 þOðq4Þ [10,49] and that the free energy be bounded
from below as q → ∞. Consequently, a natural, albeit not
unique, choice is

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ ð2qÞ2
q

: ð32Þ

The q dependence is crucial to avoid the unboundedness of
the free energy, which was identified as a problem in
previous works in similar models [10,49]. Since q will be
determined dynamically as we vary the chemical potential,
the scale l depends on the medium. This is typical for
perturbative calculations in renormalizable theories such
as QCD, if applied to nonzero temperatures and/or
densities [50–52]. At the end of Sec. III C, we shall further
discuss the choice (32) by comparing our results to the ones
obtained with l ¼ mN , where Ω is unbounded from below.

D. Stationarity equations

The thermodynamically stable phases are determined by
minimizing the renormalized free energy with respect to the
condensates ϕ, ω, and the wave number q,

∂Ω
∂ϕ

¼ ∂Ω
∂ω

¼ ∂Ω
∂q

¼ 0: ð33Þ

All derivatives are taken with the two other dynamical
quantities, the chemical potential, and the scale l kept fixed.
The minimization with respect to q is equivalent to requiring
the total axial current to vanish; for a nonzero q this means
that there will be counterpropagating currents from the
mesonic and the baryonic sectors which cancel each other.
More explicitly, the stationarity equations (33) read

gσns ¼ −Ũ0ðϕÞ − 4q2ϕ

�
1 −

g2σ
4π2

ð1þ lnφ2Þ
�

− ð1 − δ0qÞϵþ
gσq3

2π2
F0ðyÞ; ð34aÞ

gωnB ¼ m2
ωωþ dω3; ð34bÞ

j¼−4qϕ2

	
1−

g2σ
4π2

ln
M2

l2



þ q3

2π2
½4FðyÞ−yF0ðyÞ�; ð34cÞ
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where we have introduced the scalar density ns, the baryon
density nB, and the contribution to the axial current from the
baryons j,

ns ¼ −2
∂Pmat

∂M
; nB ¼ 2

∂Pmat

∂μ
; j ¼ −2

∂Pmat

∂q
: ð35Þ

These quantities are computed straightforwardly from the
expression (21). For completeness, and for a brief discussion
of their limits, we present their explicit expressions in
Appendix B.

E. Fitting parameters

Since we fit our parameters to vacuum properties and the
properties of nuclear matter in the absence of the CDW,
the matching procedure is very similar to our previous
works within the same model [28–30]. Because of empiri-
cal uncertainties and in order to explore all qualitatively
different scenarios of the model, we shall not simply work
with a single parameter set but explore the parameter space
of the model within and somewhat beyond these uncer-
tainties. It is therefore useful to explain the details of our
parameter fitting.
We first fit gσ from the vacuum mass of the nucleon,

mN ¼ gσfπ , where we have used that in the vacuum
ϕ ¼ fπ . Next, we compute the pion and sigma masses
by temporarily reinstating mesonic fluctuations about the
q ¼ 0 vacuum. This can be done for instance by replacing
ϕ2 → ðfπ þ σÞ2 þ π2 in the potential Ũ from Eq. (26a) and
expanding in the fluctuations σ and π. The coefficients in
front of the quadratic terms π2=2, σ2=2 yield the masses
squared,

m2
π ¼

Ũ0ðfπÞþϵ

fπ
¼a1; m2

σ ¼ Ũ00ðfπÞ¼m2
πþf2πa2: ð36Þ

The first relation is used to fix a1 from the pion massmπ. In
our results, we shall consider both the chiral limit mπ ¼ 0
and the physical case mπ ¼ 139 MeV. Requiring that
ϕ ¼ fπ satisfy (34a) in the vacuum then gives
ϵ ¼ fπm2

π . Because of the very uncertain (and not uniquely
defined) physical value of mσ we shall not use the second
relation to fix a2, but use this relation to compute mσ once
a2 is fixed from other constraints, which is useful for a
comparison to other models.
The remaining parameters are gω, a2, a3, a4, and d.

We relate them to the following properties of isospin-
symmetric nuclear matter at saturation: the binding energy
EB ¼ −16.3 MeV, leading to a chemical potential for the
baryon onset μ0 ≡mN þ EB ¼ 922.7 MeV, the baryon
density n0 ¼ 0.153 fm−3, the effective Dirac mass M0 ≃
ð0.7 − 0.8ÞmN , and the incompressibility K ≃ ð200 –
300Þ MeV. Following Ref. [29], we denote the solution
of Eq. (34b) at nB ¼ n0 by

ω0 ¼
gωn0
m2

ω
fðx0Þ; ð37Þ

with

fðxÞ≡ 3

2x
1−ð

ffiffiffiffiffiffiffiffiffiffiffiffi
1þx2

p
−xÞ2=3

ð
ffiffiffiffiffiffiffiffiffiffiffiffi
1þx2

p
−xÞ1=3 ; x0≡3

ffiffiffiffiffiffi
3d

p
gωn0

2m3
ω

: ð38Þ

The effective chemical potential at saturation is
μ�0 ¼ μ0 − gωω0. Inserting this into Eq. (34b) gives a
quadratic equation for g2ω with the relevant solution

g2ω ¼ m2
ω

2n0
ðμ0 − μ�0Þ

"
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4dn0ðμ0 − μ�0Þ

m4
ω

s #
: ð39Þ

Since the effective chemical potential can also be written as
μ�0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F þM2

0

p
with the Fermi momentum at saturation

kF ¼ ð3π2n0=2Þ1=3, Eq. (39) is a relation between the
model parameters gω and d, all other quantities being
physical parameters whose values can be inserted later. We
see that at μ0 ¼ μ�0 the coupling gω vanishes, which
translates into an upper bound for M0,

M0 <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ20 − k2F

q
≃ 0.943mN: ð40Þ

For the remaining parameters a2, a3, a4 we set up the
following three coupled equations: the definition of the
incompressibility K (see for instance Ref. [30] for bringing
the definition into the form used here), the free energy of
saturated nuclear matter being equal to that of the vacuum
(here 0), and the stationarity equation for ϕ (34a),

0 ¼ Ũ00ðϕÞ þ g2σ
π2

	
k3F þ 3kFM2

0

μ�0
− 3M2

0 ln
μ�0 þ kF
M0




þ
6g2σk3F
π2

�
M0

μ�
0

�
2

K − 6k3F
π2

g2ω
m2

ω
½fðx0Þ þ x0f0ðx0Þ� − 3k2F

μ�
0

; ð41aÞ

0 ¼ m2
ω

2
ω2
0 þ

d
4
ω4
0 − ŨðϕÞ

þ 1

4π2

�	
2

3
k3F −M2

0kF



μ�0 þM4

0 ln
kF þ μ�0
M0

�
; ð41bÞ

0 ¼ Ũ0ðϕÞ þ gσM0

π2

	
kFμ�0 −M2

0 ln
kF þ μ�0
M0



; ð41cÞ

where the potential Ũ and its derivatives are evaluated at
saturation, ϕ ¼ M0=gσ . The parameters a2, a3, a4 only
appear in Ũ and its derivatives. Hence, despite their tedious
look, the equations of (41) form a simple system of linear
equations for these parameters. As a consequence, we can
derive elementary (but very lengthy) analytical expressions
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for a2, a3, a4 purely in terms of physical quantities and the
model parameter d.
In our results we shall consider different values of

the quartic vector meson coupling d while keeping the
aforementioned properties of symmetric nuclear matter at
saturation fixed. In order to translate this coupling constant
into a more physical quantity, we temporarily consider
isospin-asymmetric matter with a Yukawa coupling gρ
between the nucleons and the rho meson. This allows us
to relate our parameters to the symmetry energy S ≃
ð30–34Þ MeV and the “slope parameter” L, which char-
acterizes the change of the symmetry energy under varia-
tion of the baryon number. For the exact definitions of
S and L see for instance Ref. [29], from which we also
quote the relevant relations

g2ρ ¼
3π2m2

ω

k3F

	
S −

k2F
6μ�0


	
1þ dω2

0

m2
ω



; ð42aÞ

L¼ 3g2ρn0
2ðm2

ρþdω2
0Þ
�
1−

2dn0gωω0

ðm2
ρþdω2

0Þðm2
ωþ3dω2

0Þ
�

þ k2F
3μ�0

	
1−

K
6μ�0



þ g2ωn0k2F
2m2

ωμ
�2
0

½fðx0Þþx0f0ðx0Þ�; ð42bÞ

with the rho meson mass mρ ≃ 776 MeV. We shall work
with S ¼ 32 MeV, such that these equations give us a map
between d and L if all other model parameters are fixed.
The value of L is poorly known, with experimental data
indicating a range L ≃ ð40–140Þ MeV [53–58], which is
not violated for any d considered in this paper.

We summarize our fitting procedure as follows: mω and
gσ are fixed in all cases we consider, and the value of mπ

fixes a1 and ϵ; then, the parameters gω; a2; a3; a4; d are
determined from μ0; n0;M0; K; L, where μ0, n0 are always
taken to assume their well-known values, while we will
explore the dependence on the less well-known M0; K; L.

III. RESULTS

A. Isotropic matter: Absence of first-order
transition due to Dirac sea

To lay the ground for the discussion of the CDW we first
focus on the isotropic case q ¼ 0. For given M0, K, and d
we can solve the stationarity equations (34a) and (34b) for
ϕ, ω as functions of μ and insert the result back into
Eq. (25) to compute the corresponding free energy. [The
stationarity equation (34c) is trivially solved by q ¼ 0.]
Here, in the isotropic case, the results do not depend on the
renormalization scale l. The result for the effective baryon
massM is shown in the left panel of Fig. 1, where we have
included four cases: with/without Dirac sea and zero/
physical pion mass. The specific values for the model
parameters needed to compute these results are given in
Table I in Appendix C. We see that in the no-sea
approximation the chiral transition is of first order, for
either value of the pion mass. The critical chemical
potential of the first-order chiral transition is determined
by finding the point where the free energies of chirally
broken and chirally restored matter are equal. Including the
Dirac sea renders the transition second order (chiral limit)
or turns it into a crossover (physical pion mass), and moves

FIG. 1. Effect of the nucleonic vacuum contribution (“Dirac sea”) on the chiral phase transition. Left panel: effective nucleon massM
as a function of the baryon chemical potential μ with (black) and without (red) Dirac sea. Solid lines represent stable phases, while
dashed lines indicate metastable or unstable solutions. For each color we display the chiral limit (curve connects to theM ¼ 0 solution)
and the physical case (curve asymptotes to M ¼ 0). First-order transitions are marked by solid vertical lines. The baryon onset (small
vertical lines at μ ¼ μ0) is the same in all cases by construction. The parameters for this panel areM0 ¼ 0.82mN , K ¼ 250 MeV, d ¼ 0.
Right panel: phase transitions in the chiral limit upon variation of M0, keeping K ¼ 250 MeV, for d ¼ 0 (with and without Dirac sea)
and d ¼ 104 (for the case with Dirac sea). Colors as in the left panel; solid (dashed) lines are first-(second-) order transitions between
vacuum, nuclear matter (NM) and the chirally restored phase (χS). In the case with Dirac sea, the baryon onset occurs at μ ¼ μ0 for all
M0 and d (solid black line, partly covered by the red line).
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it to significantly larger values of μ, in accordance
with Ref. [42].
Does this observation depend on the specific parameter

choice? This question is addressed in the right panel of
Fig. 1, where we explore the behavior of the chiral phase
transition as a function of the parameterM0. In this plot we
restrict ourselves to the chiral limit to avoid any crossovers,
which are difficult to display due to the absence of a well-
defined critical chemical potential. For any M0 we adjust
the model parameters such that K ¼ 250 MeV is held fixed
(as well as all other properties of symmetric nuclear matter
discussed in Sec. II E). We see that in the no-sea approxi-
mation there is a region of small M0—in fact covering a
large part of the physically most likely values of M0—
where there is a direct transition from the vacuum to
chirally symmetric matter. This means chirally symmetric
matter is stable at zero pressure, which is reminiscent of the
strange quark matter hypothesis [59,60]. This interpretation
is somewhat far fetched in the current approach but
becomes more sensible if strangeness is included, where
indeed this behavior persists [29]. In an intermediate range
of M0 we observe a baryon onset from the vacuum to
nuclear matter, followed by a first-order chiral transition.
This is the scenario of the left panel. Then, for even larger
values of M0 the chiral transition becomes second order
(and moves to extremely large μ) even in the no-sea
approximation. In the presence of the Dirac sea, the
behavior is qualitatively the same for all values of M0:
The first-order baryon onset at μ ¼ μ0 is followed by a
second-order chiral transition, shown by the black dashed
curves. Even a large mesonic self-coupling d ¼ 104 does
not change this conclusion. We have also varied the
incompressibilityK within the empirically preferred regime
(not shown in the plot) and never found a first-order
transition when the Dirac sea is included.
What does this imply for the case of a physical pion

mass? The left panel of Fig. 1 shows how the second-
order transition becomes a crossover if the pion mass is
switched on. Therefore, the result of the right panel
indicates that in the presence of a physical pion mass the
chiral transition is always a crossover (assuming isot-
ropy). This is the basis on which we now investigate
the CDW.

B. CDW solution

We will now stick to the full calculation that takes into
account the Dirac sea and only comment on the differences
to the no-sea approximation in Sec. III D. To find q > 0
solutions to the stationarity equations (34) it is useful to
start with the chiral limit. In this case, the CDW branch
can connect continuously to the isotropic solution. The first
possibility to connect is with the q ¼ 0 nuclear matter
branch. The chemical potential where the CDW attaches
to this branch can be computed from the q → 0 limit of
Eq. (34c),

l exp
	
2π2

g2σ



¼ M þ Θðμ� −MÞ

�
μ� −M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2� −M2

q �
;

ð43Þ

where M and ω (hidden in μ�) are computed from
Eqs. (34a) and (34b) with q ¼ 0. This equation describes
the appearance of the CDW via the infinite-wavelength
limit at finite amplitude of the chiral condensate. Second,
the CDW can connect continuously to the chiral solution
M ¼ 0. The corresponding q and μ can be computed
from the M → 0 limit of Eqs. (34a) and (34c), see also
Appendix B,

π2

g2σ
Ũ00ð0Þ þ μ2� − μ�q ln

���� μ� þ q
μ� − q

����
¼ q2

	
ln
4jμ2� − q2j

l2
− 2 −

4π2

g2σ



; ð44aÞ

−
μ�q
2

ln

���� μ� þ q
μ� − q

���� ¼ q2
	
ln
4jμ2� − q2j

l2
− 1 −

4π2

g2σ



; ð44bÞ

where ω (hidden in μ�) is computed from Eq. (34b) at
M ¼ 0. These equations describe the appearance of the
chiral condensate from the zero-amplitude limit with a
finite CDW wavelength. Both Eqs. (43) and (44) connect
the CDW to phases of nonzero baryon density. There is a
third option for the CDW branch to end, namely in a q ≠ 0
vacuum. These exotic vacua, in which the chiral condensate
is anisotropic and the nucleons only contribute through the
Dirac sea, but not via a nonzero density, play no role for
the actual phase structure, as they are thermodynamically
disfavored.
We start by discussing the CDW for a specific parameter

set with fixed values of M0, K, d, and the scale l given by
Eq. (32). Again, for the precise model parameters used
here, see Table I in Appendix C. The numerical solutions
are shown in Figs. 2 and 3. The main observations are as
follows.

(i) Chiral limit. The black curves in Fig. 2 show that the
second-order isotropic chiral phase transition is
replaced by two transitions at μ ≃ 0.96 GeV and
μ ≃ 1.43 GeV between which the CDW is energeti-
cally favored. The lower end of this region is a
nonzero-amplitude, infinite-wavelength transition as
described by Eq. (43), while the upper end of this
region is a zero-amplitude, finite-wavelength tran-
sition as described by Eq. (44). The values of the
effective mass M (left panel of Fig. 2) show that a
CDW develops in nuclear matter, and as we
move towards larger μ the effective mass decreases
such that we observe a CDW in almost chirally
symmetric matter.

(ii) Effect of explicit chiral symmetry breaking. The left
panel (see close-up) and the right panel of Fig. 2
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show that in the case of a physical pion mass the
CDW solution does not connect continuously to
the isotropic branch. This is due to the term ϵϕ in
ΔU (11), whose origin is explained below that
equation. In particular, the CDW solution admits
M → 0 even if mπ is nonzero, although it becomes
energetically disfavored at a nonzero M. As a
consequence, the CDW region is now bounded by
two first-order transitions and has shrunk, but not
disappeared completely. The CDW exists although,
in the absence of anisotropic phases, the chiral
transition is a crossover, i.e., the crossover is dis-
rupted by two phase transitions that break (entrance
to the CDW) and restore (exit from the CDW)
rotational symmetry.

(iii) Fermi surfaces. In Fig. 3 we show the Fermi
surfaces of the two fermion states s ¼ � given by
the dispersion relations (16). For each dispersion, all
states in momentum space ðkl; k⃗⊥Þ are filled up to
the Fermi surface defined by μ� ¼ Es

k, as indicated
by the step function in Eq. (20). For given q,M these

Fermi surfaces can easily be computed, and Fig. 3
shows them for three different chemical potentials,
using the physical pion mass. The chemical poten-
tials in the middle and right panels correspond to the
two ends of the CDW region. More exotic topol-
ogies are possible—disappearance of one of the
Fermi surfaces (red) and split of the (black) Fermi
surface into two disconnected regions—but not
realized here. Even though the Fermi surfaces are
symmetric under kl → −kl, there is a nonzero axial
current in the vertical direction, to counterbalance
that of the mesonic sector. The reason is that the two
s ¼ � states contribute with opposite sign to that
current, at least for q < M, as the integral in the first
line of Eq. (B6) shows. Therefore, for q ¼ 0, where
red and black lines would be exactly on top of each
other, no net fermionic current exists, while a net
current starts to form for q > 0 when the two Fermi
surfaces no longer coincide. The case q > M (real-
ized in the right panel) is more complicated, because
in this case the s ¼ − state has different regions in

FIG. 3. Fermi surfaces μ� ¼ Eþ
k (red) and μ� ¼ E−

k (black) in the plane of longitudinal and transverse momentum components with
respect to q⃗, such that the actual two-dimensional Fermi surfaces are obtained by rotation around the k⊥ ¼ 0 axis. The three plots
correspond to three different chemical potentials, as indicated in the middle panel of Fig. 2, and are calculated with the physical pion
mass (and M0, K, d as in Fig. 2).

FIG. 2. Effective nucleon mass M (left), wave number q (middle), and free energy of the CDW phase minus that of the
thermodynamically stable isotropic phase ΔΩ (right), for the chiral limit (black) and the physical pion mass (blue), as functions of the
baryon chemical potential μ. The parameters used are M0 ¼ 0.81mN , K ¼ 250 MeV, d ¼ 104. The arrow indicates the chiral phase
transition in the chiral limit (in the chiral limit,ΔΩ is measured relative to the chirally broken phase to the left of the arrow and relative to
the chirally restored phase to the right of the arrow). The dashed lines in the left panel are the q ¼ 0 curves, including the baryon onset
shown as a vertical solid line, while the three markers in the middle panel indicate the points for which we show the nucleonic Fermi
surfaces in Fig. 3.
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momentum space which contribute to the axial
current with different sign, which again can be seen
from the integrand in Eq. (B6).

C. Locating the CDW in the parameter space

Having discussed the details of a specific parameter
choice, we now turn to a more systematic exploration of the
parameter space of the model. This is necessary due to the
large empirical uncertainties in particular of the quantities
M0, K, and L. Moreover, we have to keep in mind that our
model is of phenomenological nature and we can, at best,
make qualitative predictions and suggestions for QCD.
Therefore, even regions at the edges or beyond the
empirically allowed regions, which appear unlikely to be
realized from the point of view of our model, may contain
interesting features that are possibly relevant for QCD.
The zero-temperature phase structure in the plane

spanned by μ and the model parameter M0 is shown in
Fig. 4. Let us first discuss the chiral limit (left panel) and
focus on the parameters K ¼ 250 MeV, d ¼ 50 (black
curves). There are three qualitatively different scenarios.

(i) For sufficiently small effective masses at saturation,
M0 ≲ 0.71mN , the chiral transition is unaffected by
the CDW, there is a second-order transition between
isotropic nuclear matter and the isotropic chirally
restored phase.

(ii) For 0.71≲M0=mN ≲ 0.90 we find the scenario
from Fig. 2: There is a finite CDW region covering
the would-be isotropic chiral transition.

(iii) As we approach the point B in the figure, the
transition from isotropic nuclear matter to the
CDW approaches the nuclear matter onset at μ0.

ForM0 beyond that point, M0 ≳ 0.90mN , the model
predicts a direct transition from the vacuum to the
CDW. This transition occurs at an M0-dependent
critical chemical potential μ < μ0, although on the
scale of the plot the corresponding curve is indis-
tinguishable from a horizontal line. Since we know
that symmetric nuclear matter at saturation is iso-
tropic, this appears to be an unphysical regime of our
model. However, we need to keep in mind that the
chiral limit of the left panel is unphysical anyway;
and indeed, the right panel shows that this unphys-
ical behavior is gone for the case of a physical
pion mass.

How does the CDW region change as we vary the
incompressibility K and the meson coupling d? As a
measure for the importance of the CDW we consider the
range in M0 between the points A and B, read off of the
magenta grid (the point B is essentially constant under
the variations considered here). We vary K within its
empirically most likely range K ≃ ð200–300Þ MeV and
the quartic meson coupling d ¼ 0–106. For a connection to
real-world quantities it is useful to translate the value of d
into the resulting slope parameter of the symmetry energy L
and also consider the corresponding sigma mass mσ .
This translation is shown in Fig. 6 in Appendix C. We
read off for instance that for K ¼ 250 MeV and tracking
the location of point A as d ¼ 0–106, we obtain a range
of L ≃ ð87–52Þ MeV and mσ ≃ ð720–830Þ MeV. The
magenta grid thus illustrates for instance that the CDW
becomes more important for increasing K or increasing d
(decreasing L). Figure 6 also relates the model parameters
to the leading-order behavior of the potential ŨðϕÞ for

FIG. 4. Left panel: zero-temperature phases in the chiral limit as the model parameterM0 is varied, with fixedK ¼ 250 MeV, d ¼ 104

(NM—isotropic nuclear matter, χS—isotropic chirally restored phase, CDW—chiral density wave). Black solid (dashed) lines are first
(second) order phase transitions. The magenta grid indicates the variation of the triple point A for K ¼ 200; 250; 300 MeV (right to left)
and d ¼ 0; 101;2;3;4;5;6 (top to bottom). The triple point B is always at the same μ and varies inM0 by less than 0.5% asK and d are varied
within the range given by the magenta grid. Right panel: same as left panel, but now for the physical pion mass. The pale black lines are
copied from the left panel for reference. Three additional curves (red, blue, green) are shown for three different values of d. The markers
on the curves indicate the baryon densities nB ¼ ð6; 8;…; 20Þn0 (from low to high μ) on the isotropic side of the first-order phase
transition.
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large ϕ. This is interesting because it checks the bounded-
ness of the potential. Although there is no obvious
artifact in our results if the potential is unbounded it is
useful to point out that this does occur for small values
of d and not too large values of M0, see left panel of
Fig. 6. Unboundedness of the scalar potential after
including the Dirac sea was also observed in quark-
meson models [10,61]; there, however, affecting the
entire parameter space due to the different form of the
tree-level potential.
The right panel of Fig. 4 shows the case of a physical

pion mass. Let us first compare the pale black curves (chiral
limit, taken from the left panel) with the bold black curve
(physical pion mass). First of all, we see that the second-
order chiral phase transition line between the isotropic NM
and χS phases disappears as the pion mass is switched on.
This indicates that there is no strict distinction between
nuclear matter and the chirally restored phase and a
crossover is realized, as already discussed in Sec. III A.
The CDW region is bounded by a first-order transition and
it has retreated significantly compared to the second-order
lines. This is in accordance with the observation of Fig. 2,
where we have seen that the explicit chiral symmetry
breaking tends to disfavor the CDW. With the most likely
empirical range M0 ¼ ð0.7–0.8ÞmN in mind, we see from
the black curve that the CDW may just about be realized, if
M0 is on the upper end of this range. Again, it is useful to
consult Fig. 6 to get an idea of the corresponding values of
L andmσ. For instance, forM0 ¼ 0.81mN (the case used in
Sec. III B), we have L ≃ 54 MeV and mσ ≃ 1.1 GeV,
which is in tension with the empirically expected value
of the sigma mass if the sigma is identified with the
f0ð500Þ. The curves for different vector meson couplings
(red, green blue) show that the CDW becomes more
relevant for larger d, as already anticipated from the chiral
limit in the left panel. Larger values of d correspond to
smaller L, well within experimental boundaries (perhaps
even closer to the real-world value, judging from the
distribution of experimental results), but also to larger
values of the sigma mass.
Additionally, the plot indicates that the CDW can only

appear at large baryon densities (markers on the CDW
transition curves). The lowest possible densities are about
nB ∼ 6n0, and these are only realized for large, perhaps
unrealistically large, M0. [Recall that M0 has an upper
bound (40), slightly above the scale shown here; as this
bound is approached, gω goes to zero, which decreases the
sensitivity of the results on ω and thus on d.] More realistic
values of M0 require increased values of d, leading to even
higher baryon densities for the CDW onset. We have
checked that large d generally induce high densities at
moderate values of the chemical potential. These large
number susceptibilities suggest that the parameter regions
where our model predicts a CDW produce soft equations
of state. Therefore, it is possible that in these parameter

regions the model predicts maximum masses of neutron
stars incompatible with astrophysical observations. This
remains to be verified by computing the mass-radius curve
under neutron star conditions, going beyond the isospin-
symmetric scenario considered here.

D. Comparison with different approaches
to the Dirac sea

Finally, let us compare our findings with two different
treatments of the Dirac sea: first, in the left panel of Fig. 5,
the use of a different renormalization scale and, second, in
the right panel, neglecting the Dirac sea partially or
altogether. Both comparisons are useful to relate our work
to previous studies and are relevant to future improvements
in different models.
In Refs. [9,10] it was pointed out that in the NJL model,

and in particular the renormalizable quark-meson model,
there is a curious behavior at large chemical potentials if the
Dirac sea is taken into account: Depending on the param-
eters of the model, a reentrance to the CDW phase can
occur and this CDW “island” ends at an unphysical
boundary. Here, “unphysical” means that the CDW sol-
ution turns around and continues back to smaller chemical
potentials at a point where it is the favored phase. This
predicts an unphysical jump in the free energy from the
CDW to the chirally restored phase, see inset in the left
panel of Fig. 5. This panel demonstrates that we find
exactly the same behavior if the renormalization scale is
chosen to be l ¼ mN rather than choosing the q-dependent
scale (32): For l ¼ mN (green curves) there are various
different scenarios, depending on the value of the model
parameter M0, but in each case the CDW phase has an
upper unphysical boundary (dotted line) as just described.
(At very large M0 there is no CDW region at all for a
physical pion mass and l ¼ mN .)
It is not surprising that the renormalization scale

plays a crucial role here: Our choice, as argued at the
end of Sec. II C, was motivated by avoiding unboundedness
of the free energy in the q direction. This unboundedness,
in turn, was identified as a problem in Refs. [10,49] (but not
fixed by a suitable renormalization scheme), and it was
realized in Ref. [10] that the unboundedness contributes to
the unphysical behavior, here shown by the green curves.
Because of the close similarity between the quark-meson
model and our nucleon-meson model, our results suggest
that the same renormalization procedure can remove the
artifact in the quark-meson model.
As mentioned already in Sec. II C, the scale l can

be chosen differently while still maintaining a bounded
free energy. For instance, we can generalize l ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ ð2cqÞ2
p

, with a numerical factor c, which has a
lower limit c ¼ 1=expð1þ 2π2=g2σÞ ≃ 0.30 if boundedness
is required and, as c → 0, connects our results continuously
to the case l ¼ mN . In this paper, we do, for definiteness,
not further explore the dependence of our results with

SAVVAS PITSINIGKOS and ANDREAS SCHMITT PHYS. REV. D 109, 014024 (2024)

014024-12



respect to such variations. It should therefore be kept in
mind that the phase boundaries of the CDW phase acquire
some uncertainty in our scheme, which becomes larger for
larger values of q (corresponding to large μ), and which
may be alleviated by more elaborate approximations
beyond the mean-field approach.
Turning to the second aspect of this section, we now

compare our results to the no-sea approximation, which
was used in all previous works on the CDW in nucleonic
models. This comparison is done in the right panel of
Fig. 5. For convenience, we perform this comparison in
the chiral limit because in this case all transitions are
clearly visible as phase transition lines, crossovers being
excluded. We distinguish two different approximations.
The red curves are obtained by dropping only the q ¼ 0

sea contribution. This amounts to setting Ũ ¼ U, i.e.,
dropping the difference between Ũ and U in Eq. (26a),
but keeping all terms in ΔŨ (26b). This approximation,
labeled by “q sea” in Fig. 5, is reminiscent of the one used
in Ref. [41], where rotational symmetry is broken by an
external magnetic field B instead of the CDW and it
was argued that the B-dependent vacuum contribution
contains all important physics, while the B ¼ 0 vacuum
contribution can be ignored without changing the results
qualitatively. We have already seen that if we are inter-
ested in the chiral phase transition (which was not relevant
in Ref. [41]), already the isotropic calculation is affected
by the Dirac sea, turning the first-order chiral transition
into a crossover.

Nevertheless, in Fig. 5 we see that the q-sea approxi-
mation reproduces many of the features of the full result. In
contrast, if the entire sea contribution is omitted, Ũ ¼ U
and ΔŨ ¼ ΔU, the result changes dramatically (blue
curve). In that case, the behavior is qualitatively the same
for all values ofM0: there is a first-order transition from the
vacuum to the CDW, and the CDW persists for all values of
the chemical potential, i.e., all isotropic phases with non-
zero baryon number are gone. If we repeat the calculation
for a physical pion mass (not shown in the plot) we find a
parameter region, 0.87≲M0=mN ≲ 0.93, where the blue
line moves above the baryon onset at μ ¼ μ0, opening up a
pocket of isotropic nuclear matter. This is the scenario
(vacuum → nuclear matter → CDW) found in Ref. [40] in
a similar model within the no-sea approximation, inves-
tigating only one specific parameter set. With our more
global view of the parameter space we conclude that the no-
sea approximation vastly overestimates the importance of
the CDW, while the q-sea approximation is much closer to
the full result, which takes into account the entire nucleonic
vacuum contribution.

IV. SUMMARY AND OUTLOOK

We have employed a nucleon-meson model to improve
earlier studies on the possibility of an anisotropic chiral
condensate in dense, isospin-symmetric nuclear matter. The
model is based on nucleonic degrees of freedom which
interact via meson exchange. Importantly, the fermion
masses are generated dynamically such that the model

FIG. 5. Comparison of our results to other approaches regarding the nucleonic vacuum contribution, in the plane of the model
parameterM0 and the chemical potential μ. In both panels K ¼ 250 MeV, while d ¼ 104 (left) d ¼ 50 (right). Left panel: results for the
choice of the scale l ¼ mN , leading to an unbounded free energy (green), compared to our choice in Eq. (32) (black, copied from the
right panel of Fig. 4). Pale lines in both colors correspond to the chiral limit, bold lines to the physical pion mass. The inset shows
the unphysical behavior in the free energy difference to the isotropic phase ΔΩ for the unbounded case. The dotted lines (pale and bold
lines essentially on top of each other) correspond to the point where ΔΩ is minimal. Right panel: effect of the Dirac sea in the chiral
limit. The full calculation (“all sea”) is shown in black. The red curves are obtained by dropping the q ¼ 0 contributions to the Dirac sea
(“q sea”). If the entire Dirac sea contribution is dropped (“no sea”) the only transition is from the vacuum directly to the CDW phase
(blue line), and the CDW persists for arbitrarily large μ. In this panel, the two cases that include the Dirac sea are computed with the
renormalization scale from Eq. (32) (this choice is only relevant for the CDW-χS transitions, where q > 0). In both panels, solid
(dashed) lines are first (second) order phase transitions.

CHIRAL CROSSOVER VERSUS CHIRAL DENSITY WAVE IN … PHYS. REV. D 109, 014024 (2024)

014024-13



can be used to study the chiral phase transition. In our
ansatz for the anisotropic chiral condensate we have
restricted ourselves to the CDW, which does not break
translational invariance. We have worked at zero temper-
ature and in the mean-field approximation.
An important part of our study has been the nucleonic

vacuum contribution. We have argued that this contribution
is already crucial in the isotropic scenario: it turns the first-
order chiral transition into a crossover. As a consequence,
our main results concern the question whether the CDW
disrupts the smooth transition from nuclear matter to
approximately chirally restored matter. We have found
that this is indeed possible and have discussed the depend-
ence of the CDW region on the model parameters.
By studying the chiral limit as well as the case of a
physical pion mass, we have shown that the CDW tends
to be disfavored by explicit chiral symmetry breaking.
Independent of the choice of the parameters, we have found
that within our model the CDW can only appear at large
baryon densities, nB ≳ 6n0. It is realized somewhere at the
edges of and beyond the parameter regime empirically
allowed by nuclear saturation properties.
On a more theoretical note, we have discussed a

renormalization scheme, and in particular a certain choice
of the renormalization scale, which fixes a problem pointed
out in similar models based on quark degrees of freedom.
Within our scheme, there is no reentrance and/or unphys-
ical behavior of the CDWat ultrahigh densities and it would
be interesting to apply our scheme—possibly in modified
or further improved form—also to different phenomeno-
logical or effective models that describe the CDWor related
nonuniform phases.
Our work also opens up other directions for future work.

Most straightforwardly, one can think of improvements and
extensions of our calculation, for instance including non-
zero-temperature effects and/or mesonic vacuum fluctua-
tions. Somewhat more substantial extensions would be an
improved ansatz for the anisotropic chiral condensate,
possibly a comparison of different inhomogeneous struc-
tures, or taking into account Cooper pairing. One could also
repeat our calculation in the extended linear sigma model
of Ref. [40]—where the CDW was studied previously, but
without the effect of the Dirac sea—or with the inclusion
of strangeness along the lines of Refs. [29] or [62].
Applications of our results to real-world systems concern
the interior of neutron stars. It would therefore be interest-
ing to generalize our calculation to isospin-asymmetric
matter and to impose the conditions of electric neutrality
and equilibrium with respect to the electroweak inter-
action. In this context one may study the competition
or possible coexistence of the CDW with quark-hadron
mixed phases, which become conceivable due to the
presence of a second chemical potential associated with
electric charge. One can then proceed by predicting the
size of the layer inside the star where a CDW or a more

complicated spatial structure can be expected and relate
this finding to astrophysical data, perhaps via transport
properties such as the neutrino emissivity.
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APPENDIX A: COMPUTING THE DIRAC
SEA CONTRIBUTION

1. Regularization

In order to regularize the divergent part of the baryonic
pressure Pvac (19) we employ proper time regularization.
First, we use

1

xa
¼ 1

ΓðaÞ
Z

∞

0

dττa−1e−τx ðA1Þ

to rewrite Es
k from Eq. (16), setting a ¼ −1=2, x ¼

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2l þM2

q
þ sqÞ2 þ k2⊥. We can then perform the k⊥

integration to obtain

Pvac ¼ −
1

4π5=2

Z
∞

0

dτ

τ5=2

Z
∞

0

dkle
−τðk2lþM2þq2Þ

× cosh 2qτ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2l þM2

q
: ðA2Þ

Next, after inserting the series expansion

cosh x ¼
X∞
n¼0

x2n

ð2nÞ! ; ðA3Þ

we can perform the kl integral to obtain

Pvac ¼
X∞
n¼0

Z
∞

0

τ2ndτ

τ5=2
Pn; ðA4Þ

where

Pn ≡ −
M
8π2

ð2qMÞ2n
ð2nÞ! e−τðM2þq2ÞΨ

	
1

2
;
3

2
þ n; τM2



; ðA5Þ

with the confluent hypergeometric function of the second
kind Ψða; b; zÞ.
For small τ we have

τ2n

τ5=2
Ψ
	
1

2
;
3

2
þ n; τM2



∝ τn−3: ðA6Þ

Therefore, the τ integral is finite for n ≥ 3. For n ¼ 0; 1; 2
we replace the lower boundary by a cutoff 1=Λ2 to compute
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X2
n¼0

Z
∞

1=Λ2

τ2ndτ

τ5=2
Pn ¼ −

Λ4

16π2
þ Λ2M2

8π2
þ M4

16π2

	
γ −

3

2
þ ln

M2 þ q2

Λ2



þ q2M2

4π2

	
γ þ ln

M2 þ q2

Λ2




þ q4

96π2
3 − 8y2 − 25y4 − 6y6

ð1þ y2Þ2 þO
	

1

Λ2



; ðA7Þ

where γ ≃ 0.577 is the Euler-Mascheroni constant and we have used the abbreviation y as defined in Eq. (29).
For the terms n ≥ 3 it is easier to go back to the original expression (A2), insert the series (A3), and then first perform

the τ integral. With the new integration variables k0l ¼ kl=q, τ0 ¼ q2τ, abbreviating

κ2 ≡ k2l0 þ y2; ðA8Þ

and dropping the primes again for convenience, we compute

−
q4

4π5=2

Z
∞

0

dkl
X∞
n¼3

ð2κÞ2n
ð2nÞ!

Z
∞

0

τ2ndτ

τ5=2
e−τðκ2þ1Þ ¼ −

q4

4π5=2

Z
∞

0

dkl
X∞
n¼3

Γð2n− 3=2Þ
ð2nÞ! ffiffiffi

π
p ð2κÞ2n

ðκ2 þ 1Þ2n−3=2

¼ −
q4

6π2

Z
∞

0

dkl

�
ð1þ κÞ3 þ j1− κj3 − 3κ4 þ 12κ2ð1þ κ2Þ2 þ 8ð1þ κ2Þ4

4ð1þ κ2Þ5=2
�

¼ −
	

M4

16π2
þ q2M2

4π2



ln
M2 þ q2

M2
þ q4

96π2
5þ 24y2 þ 33y4 þ 6y6

ð1þ y2Þ2

þ q4Θð1− yÞ
4π2

"
−

ffiffiffiffiffiffiffiffiffiffiffiffi
1− y2

q
2þ 13y2

6
þ 2y2

	
1þ y2

4



ln
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1− y2

p
y

#
:

ðA9Þ

Adding the results (A7) and (A9), we obtain the compact expression

Pvac ¼ −
Λ4

16π2
þ Λ2M2

8π2
þ M4

16π2

	
γ −

3

2
þ ln

M2

Λ2



þ q2M2

4π2

	
γ þ ln

M2

Λ2



þ q4

4π2
FðyÞ þO

	
1

Λ2



; ðA10Þ

with FðyÞ defined in Eq. (28).

2. Renormalization

Removing the divergences in Eq. (A10) requires renormalization. To this end, we first introduce a renormalization scale l
and drop the terms of order 1=Λ2 and higher to rewrite Eq. (A10) as

−2Pvac ¼
Λ4

8π2
−
Λ2M2

4π2
−
	
M4

8π2
þ q2M2

2π2


	
γ −

3

2
þ ln

l2

Λ2



−
M4

8π2
ln
M2

l2
−
q2M2

2π2

	
ln
M2

l2
þ 3

2



−

q4

2π2
FðyÞ: ðA11Þ

We have also reinstated the isospin degeneracy factor 2 and a minus sign to obtain the total vacuum contribution from
neutrons and protons to the free energy, cf. Eq. (18).
Next, we interpret the following fields and parameters in the Lagrangian as bare quantities, related to the corresponding

renormalized quantities via

ϕ ¼ Z1=2ϕr; fπ ¼ Z1=2fπ;r; gσ ¼
gσ;r
Z1=2 ; an ¼

an;r þ f4−2nπ;r δan
Zn ; ϵ ¼ ϵr

Z1=2 ; ðA12Þ

where we have introduced the dimensionless field rescaling factor Z and the dimensionless counterterms δan. The rescaling
of ϕ follows from rescaling σ ¼ Z1=2σr, πa ¼ Z1=2πa;r in the original Lagrangian. The remaining fields and parameters of
the Lagrangian are assumed to be already in their renormalized form. Therefore, the only terms in the mean-field
Lagrangian (8) affected by the renormalization (A12) are
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U þ ΔU ¼
X4
n¼1

an;r þ f4−2nπ;r δan
n!

ðϕ2
r − f2π;rÞn
2n

− ϵrðϕr − fπ;rÞ þ 2Zϕ2
rq2 þ ð1 − δ0qÞϵrϕr

¼ ðU þ ΔUÞr þ f4π;r

�	
−
δa1
2

þ δa2
8

−
δa3
48

þ δa4
384



þ
	
δa1
2

−
δa2
4

þ δa3
16

−
δa4
96



φ2

þ
	
δa2
8

−
δa3
16

þ δa4
64



φ4 þ

	
δa3
48

−
δa4
96



φ6 þ δa4

348
φ8

�
þ 2ðZ − 1Þϕ2

rq2; ðA13Þ

where ðU þ ΔUÞr is given by U and ΔU from Eq. (11)
with ϕ; fπ; an; ϵ replaced by their renormalized versions,
and where φ is defined in Eq. (27).
We observe from Eq. (A11) that we need to cancel

divergent terms in Pvac proportional to M2, M4, and q2M2.
Since M and q are dynamical quantities that depend on the
medium, this cancellation has to be done order by order
with the help of the counterterms in Eq. (A13). To make the
cancellation explicit we divide the counterterms and the
field rescaling into divergent and finite parts,

δan ¼ δaΛn þ δafn; Z ¼ ZΛ þ Zf : ðA14Þ
The divergent terms proportional to M2 and M4 are then
canceled (and no new divergences introduced) by the choice

δaΛ1 ¼ g4σ;r
2π2

	
Λ2

m2
N
þ ln

l2

Λ2
þ γ −

3

2



;

δaΛ2 ¼ g4σ;r
π2

	
ln
l2

Λ2
þ γ −

3

2



;

δaΛ3 ¼ δaΛ4 ¼ 0; ðA15Þ
while the divergent term proportional to q2M2 is
canceled by

ZΛ ¼ g2σ;r
4π2

	
ln
l2

Λ2
þ γ −

3

2



: ðA16Þ

Besides the divergent terms, the vacuum contribution (A11)
also contains finite logarithmic terms, with prefactors M4

and q2M2. Let us start with the logarithmic term with
prefactor M4. We combine this contribution with the finite
part of the counterterms δafn. While for the identification of
the divergent parts of the counterterms we applied an
expansion in φ (A13), we now expand about the vacuum,
i.e., in φ2 − 1, to write

X4
n¼1

an;r þ f4−2nπ;r δafn
n!

ðϕ2
r − f2π;rÞn
2n

−
M4

8π2
ln
M2

l2

¼ −
m4

N

8π2
ln
m2

N

l2
þ
X4
n¼1

An

n!
ðφ2 − 1Þn

2n

þ m4
N

4π2
X∞
n¼5

ð−1Þnðφ2 − 1Þn
nðn − 1Þðn − 2Þ ; ðA17Þ

where

A1 ≡ f2π;ra1;r þ f4π;r

�
δaf1 −

g4σ;r
4π2

	
1þ 2 ln

m2
N

l2


�
;

A2 ≡ f4π;ra2;r þ f4π;r

�
δaf2 −

g4σ;r
2π2

	
3þ 2 ln

m2
N

l2


�
;

A3 ≡ f6π;ra3;r þ f4π;r

	
δaf3 −

2g4σ;r
π2



;

A4 ≡ f8π;ra4;r þ f4π;r

	
δaf4 þ

4g4σ;r
π2



: ðA18Þ

The new coefficients An entirely encode the form of the
scalar potential and they will be fixed to physical properties
of the vacuum and saturated nuclear matter. As a conse-
quence, the choice of the renormalization scale and the finite
counterterms is irrelevant here; for any particular choice of l
and δafn the coefficients an;r can be readjusted to reproduce
the desired values for An. This implies that the form of the
original mesonic potential, which contains terms ðφ2 − 1Þn
for n ¼ 1; 2; 3; 4, is not altered by the renormalization
scheme, although the coefficients of these terms will assume
different values due to the Dirac sea. The reason is the
presence of the higher-order terms ðφ2 − 1Þn for n ≥ 5,
given by the last term in Eq. (A17). They do not depend on
any free parameters and cannot be eliminated by any choice
of the renormalization scale or the counterterms. We can
rewrite this infinite sum in the closed form

m4
N

4π2
X∞
n¼5

ð−1Þnðφ2 − 1Þn
nðn − 1Þðn − 2Þ

¼ m4
N

96π2
ð1 − 8φ2 − 12φ4 lnφ2 þ 8φ6 − φ8Þ: ðA19Þ

Next, we consider the logarithmic term with a q-dependent
prefactor in Eq. (A11). Combining this term with the finite
part of the field rescaling from Eq. (A13), we write

2ðZf − 1Þϕ2
rq2 −

q2M2

2π2

	
ln
M2

l2
þ 3

2



¼ −

q2M2

2π2
ln
M2

l2
;

ðA20Þ
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where we have set

Zf ¼ 1þ 3g2σ;r
8π2

: ðA21Þ

This choice leaves a renormalization scale dependence, in
contrast to the case of the q-independent contribution. As we
discuss in the main part of the paper, this renormalization
scale dependence gives us an important freedom to eliminate
unphysical properties of our effective potential.
Putting everything together, we can write

−2Pvac þ U þ ΔU ¼ Λ4

8π2
−
Λ2m2

N

4π2
−
m4

N

8π2

	
ln
m2

N

Λ2
−
3

2
þ γ



þ Ũ þ ΔŨ; ðA22Þ

where we have absorbed the effects from the nucleonic
Dirac sea into a new effective potential, given by

Ũ ¼
X4
n¼1

An

n!
ðφ2 − 1Þn

2n
− ϵrðϕr − fπ;rÞ

þ m2
N

96π2
ð1 − 8φ2 − 12φ4 lnφ2 þ 8φ6 − φ8Þ; ðA23aÞ

ΔŨ ¼ 2ϕ2
rq2
	
1−

g2σ;r
4π2

ln
M2

l2



−

q4

2π2
FðyÞ þ ð1− δ0qÞϵrϕr:

ðA23bÞ

As for the original potential, we have separated the
q-dependent part ΔŨ such that the potential reduces to
Ũ for q ¼ 0. Dropping the irrelevant (divergent, but
constant) terms in Eq. (A22), denoting the renormalized
quantities for simplicity without the subscript r and
renaming An=f2nπ → an, we arrive at the result (25) given
in the main text.

APPENDIX B: MATTER CONTRIBUTIONS TO DENSITIES AND AXIAL CURRENT

In this appendix we present the explicit expressions for the matter contributions to the stationarity equations (34).
The baryon density from a single nucleonic degree of freedom is

∂Pmat

∂μ
¼ 1

2π2
X
s¼�

Z
∞

0

dkl

Z
∞

0

dk⊥k⊥Θðμ� − Es
kÞ

¼ −
Θðμ� − q −MÞ

4π2

�
M2q ln

μ� − qþ k−
M

þ k−
3
½2ðM2 − μ2�Þ þ qðqþ μ�Þ�

�

þ Θðμ� þ q −MÞ
4π2

�
M2q ln

μ� þ qþ kþ
M

−
kþ
3
½2ðM2 − μ2�Þ þ qðq − μ�Þ�

�

−
Θðq − μ� −MÞ

4π2

�
M2q ln

q − μ� þ k−
M

−
k−
3
½2ðM2 − μ2�Þ þ qðqþ μ�Þ�

�
; ðB1Þ

with k� from Eq. (22). To obtain the baryon density nB in the stationarity equation (34b) the result has to be multiplied by 2
due to the (degenerate) contributions from neutrons and protons. One easily checks that one obtains the expected limits

∂Pmat

∂μ
¼
8<
:

Θðμ�−MÞk3F
3π2

for q ¼ 0

μ3�
3π2

for M ¼ 0:
ðB2Þ

In particular, the density does not depend on q for zero fermion mass M ¼ 0.
The scalar density is given by

−
∂Pmat

∂M
¼ 1

2π2
X
s¼�

Z
∞

0

dkl

Z
∞

0

dk⊥k⊥
M
Es
k

 
1þ sqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2l þM2
q

!
Θðμ − Es

kÞ

¼ −
Θðμ� − q −MÞM

4π2

�
½M2 þ 2qðq − μ�Þ� ln

μ� − qþ k−
M

− ðμ� − 3qÞk−
�

−
Θðμ� þ q −MÞM

4π2

�
½M2 þ 2qðqþ μ�Þ� ln

μ� þ qþ kþ
M

− ðμ� þ 3qÞkþ
�
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−
Θðq − μ� −MÞM

4π2

�
½M2 þ 2qðq − μ�Þ� ln

q − μ� þ k−
M

þ ðμ� − 3qÞk−
�

þ Θðq −MÞM
2π2

�
ðM2 þ 2q2Þ ln qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 −M2

p
M

− 3q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 −M2

q �
: ðB3Þ

In this case, we recover the well-known expression for q ¼ 0,

−
∂Pmat

∂M
¼ Θðμ� −MÞM

2π2

	
μ�kF −M2 ln

μ� þ kF
M



; ðB4Þ

while for small M we find the expansion

−
∂Pmat

∂M
¼ M

2π2

	
μ2� − μ�q ln

���� μ� þ q
μ� − q

���� − q2 ln

���� μ2�q2 − 1

����


þOðM3Þ; ðB5Þ

which confirms that Eq. (34a) is solved by M ¼ 0 in the chiral limit ϵ ¼ 0.
Finally, the axial current from a single nucleonic degree of freedom is

−
∂Pmat

∂q
¼ 1

2π2
X
s¼�

s
Z

∞

0

dkl

Z
∞

0

dk⊥k⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2l þM2

q
þ sq

Es
k

Θðμ − Es
kÞ

¼ Θðμ� − q −MÞ
4π2

�
M2ðμ� − 2qÞ ln μ� − qþ k−

M
−
k−
3
ð4M2 − μ2� − μ�qþ 2q2Þ

�

−
Θðμ� þ q −MÞ

4π2

�
M2ðμ� þ 2qÞ ln μ� þ qþ kþ

M
−
kþ
3
ð4M2 − μ2� þ μ�qþ 2q2Þ

�

þ Θðq − μ� −MÞ
4π2

�
M2ðμ� − 2qÞ ln q − μ� þ k−

M
þ k−

3
ð4M2 − μ2� − μ�qþ 2q2Þ

�

þ Θðq −MÞ
π2

�
M2q ln

qþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 −M2

p
M

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 −M2

p
3

ð2M2 þ q2Þ
�
: ðB6Þ

The current is linear in q for small q,

−
∂Pmat

∂q
¼ −q

Θðμ� −MÞM2

π2
ln
μ� þ kF

M
þOðq2Þ; ðB7Þ

while it is quadratic in M for small M,

−
∂Pmat

∂q
¼ −

M2

2π2

	
μ�
2
ln

���� μ� þ q
μ� − q

����þ q ln

���� μ2�q2 − 1

����


þOðM4Þ: ðB8Þ

APPENDIX C: MODEL PARAMETERS

In this appendix, we first present—for completeness and replicability—the model parameters used for the specific cases
discussed in Secs. III A and III B, see Table I.

TABLE I. Parameter sets together with resulting physical quantities used for the left panel of Fig. 1 (top four rows) and for Fig. 2
(bottom two rows). In all cases, K ¼ 250 MeV, and the remaining vacuum and saturation properties not shown here are fixed to their
physical values. To compute L we always use a value for the symmetry energy of S ¼ 32 MeV. The last column indicates whether the
Dirac sea is taken into account or not, which is relevant for the parameter fit.

gω a2 a3½MeV−2� a4½MeV−4� d M0=mN L½MeV� mσ ½MeV� mπ½MeV� Sea

7.574 59.94 −9.427 × 10−3 1.188 × 10−4 0 0.82 87.3 708 0 ×
7.574 57.75 −2.247 × 10−2 8.612 × 10−5 0 0.82 87.3 708 0 ✓

7.574 57.66 −8.892 × 10−3 1.178 × 10−4 0 0.82 87.3 707 139 ×
7.574 55.48 −2.193 × 10−2 8.512 × 10−5 0 0.82 87.3 707 139 ✓

12.45 130.8 0.4333 7.850 × 10−4 104 0.81 53.8 1063 0 ✓

12.45 128.5 0.4338 7.840 × 10−4 104 0.81 53.8 1063 139 ✓
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In our main results in Sec. III C, the parameters are varied
continuously. Therefore, second, we present the most
relevant physical information about these continuous param-
eter sets in Fig. 6. This figure shows the slope parameter of
the symmetry energy L and the sigma mass mσ for different
values of the vector meson self-coupling and the incom-
pressibility as a function of the effective nucleon mass at
saturation, computed from Eqs. (36) and (42b). Additionally,
we show the coefficient of the leading-order term of the
effective potential for large chiral condensates,

ŨðϕÞ¼að8Þϕ8þOðϕ6Þ; að8Þ≡ 1

96

	
a4
4
−

g4σ
π2f2π



: ðC1Þ

The sign of að8Þ indicates whether the potential is bounded
from below for large ϕ. The Dirac sea contribution is
negative and thus tends to render the potential unbounded,
which is indeed the case for small vales of d and not too large
values of M0, as the figure demonstrates.
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