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Recent BESIII data on radiative J=ψ decays from ∼1010 J=ψ samples should significantly advance our
understanding of the controversial nature of ηð1405=1475Þ. This motivates us to develop a three-body
unitary coupled-channel model for radiative J=ψ decays to three-meson final states of any partial wave
(JPC). Basic building blocks of the model are bare resonance states such as ηð1405=1475Þ and f1ð1420Þ,
and πK, KK̄, and πη two-body interactions that generate resonances such as K�ð892Þ, K�

0ð700Þ, and
a0ð980Þ. This model reasonably fitsKSKSπ

0 Dalitz plot pseudodata generated from the BESIII’s JPC ¼ 0−þ

amplitude for J=ψ → γKSKSπ
0. The experimental branching ratios of ηð1405=1475Þ → ηππ and

ηð1405=1475Þ → γρ relative to that of ηð1405=1475Þ → KK̄π are simultaneously fitted. Our 0−þ amplitude
is analytically continued to find three poles, two of which correspond to ηð1405Þ on different Riemann
sheets of the K�K̄ channel, and the third one for ηð1475Þ. This is the first pole determination of
ηð1405=1475Þ and, furthermore, the first-ever pole determination from analyzing experimental Dalitz plot
distributions with a manifestly three-body unitary coupled-channel framework. Process-dependent ηππ,
γπþπ−, and πππ lineshapes of J=ψ → γð0−þÞ → γðηππÞ, γðγρÞ, and γðπππÞ are predicted, and are in
reasonable agreement with data. A triangle singularity is shown to play a crucial role to cause the large
isospin violation of J=ψ → γðπππÞ.
DOI: 10.1103/PhysRevD.109.014021

I. INTRODUCTION

Since their first observation in 1967 [1], the light isoscalar
pseudoscalar states in the 1.4–1.5 GeV region, named
ηð1405=1475Þ, have invited lots of debate about their
peculiar features in experimental data and about various
theoretical interpretations. There are two major open ques-
tions regarding ηð1405=1475Þ: (i) are there one or two η
excited states in this energy region?, and (ii) what is the
internal structure of the excited state(s)? What makes
ηð1405=1475Þ difficult to understand is that ηð1405=1475Þ
could include various components such as a quark-antiquark
pair, various hadronic coupled-channels, and a glueball,
reflecting the complex nature of QCD in the low-energy
regime. Also, the mixing between ðuūþ dd̄Þ= ffiffiffi

2
p

and ss̄
is significant only in the isoscalar pseudoscalar sector.

Thus, understanding ηð1405=1475Þ seems particularly
important for deepening our understanding of QCD.
ηð1405=1475Þ has been seen in various processes.

However, the ηð1405=1475Þ lineshapes appear rather proc-
ess different and thus have been explained with a single or
two different states. For example, a single peak appears in
ηππ final states from pp̄ annihilation [2], radiative J=ψ
decays [3–5], and J=ψ → ωðηππÞ [6] at somewhat process-
dependent peak positions. A single peak is also found in
KK̄π and ηππ final states from γγ collisions [7] and γρ0 final
states from radiative J=ψ decays [5,8,9] and pp̄ annihilation
[2]. On the other hand, structures seemingly due to two
overlapping resonances are seen in KK̄π invariant mass
distributions in π−p scattering [10,11], pp̄ annihilations
[12], and radiative J=ψ decays [13,14].
The conventional quark model expects radially excited η

and η0 states in this energy region, and they correspond to
ηð1295Þ and (one of) ηð1405=1475Þ states, respectively
[15,16]. If ηð1405=1475Þ includes two states, what is its
nature? A proposal was made to interpret ηð1405Þ as a
glueball [17]. However, the isoscalar pseudoscalar glueball
from lattice QCD (LQCD) predictions turned out to be
significantly heavier [18–22]. Meanwhile, an LQCD pre-
diction from Ref. [23] indicated only two states in this
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region. However, the authors did not identify them with
ηð1295Þ and ηð1405=1475Þ since the experimental situ-
ation is unclear. Thus, although the two-state solution for
ηð1405=1475Þ is not accommodated in the quark model, it
is not forbidden by any strong theoretical arguments.
Another peculiar property of ηð1405=1475Þ is its anoma-

lously large isospin violation in ηð1405=1475Þ → πππ
decays, as found in radiative J=ψ decays by the BESIII
Collaboration in 2012 [24]. The BESIII Collaboration found
that the decays mostly proceed as ηð1405=1475Þ →
f0ð980Þπ → πππ, and that the rate is significantly larger
than that expected from ηð1405=1475Þ → a0ð980Þπ fol-
lowed by the a0ð980Þ-f0ð980Þ mixing. It was also found
that the f0ð980Þ width in the ππ invariant mass distribution
is significantly narrower (∼10 MeV) than those seen in other
processes (∼50 MeV) [15]. A theoretical explanation for
these experimental findings was proposed in Refs. [25–28].
First, the authors pointed out that aK�K̄K triangle loop from
a ηð1405=1475Þ decay can hit an on-shell kinematics,
causing a triangle singularity (TS) that can significantly
enhance the amplitude. At the same time, this triangle loop
causes the isospin violation due to the mass difference
between K� and K0 in the K�K−Kþ and K�K̄0K0 triangle
loops. This mechanism can naturally explain the large
isospin violation without any additional assumptions.
The discovery of the potentially important TS effects in

the ηð1405=1475Þ decays encouraged theorists to describe
all ηð1405=1475Þ-related data, including process-dependent
lineshapes, with one ηð1405=1475Þ state, based on the
principle of Occam’s razor [25–28]. Indeed, it was shown
that the TS mechanisms can shift the resonant peak position
somewhat, depending on KK̄π, ηππ, and πππ final states.
However, the experimental data of KK̄π and ηππ were
rather limited at this time, and these theoretical results were
not sufficiently tested. Also, it has not been possible to
discriminate one- and two-state solutions of ηð1405=1475Þ.
A significant advancement has been made recently by a

BESIII analysis of J=ψ → γðKSKSπ
0Þ data from the high-

statistics ∼1010 J=ψ decay samples [29]. They fitted the
data with JPC ¼ 0−þ; 1þþ, and 2þþ partial-wave ampli-
tudes, and identified two ηð1405=1475Þ states in the 0−þ
amplitude with a high statistical significance.
However, there are theoretical issues in the BESIII

analysis since they described the ηð1405=1475Þ states with
Breit-Wigner (BW) amplitudes. The BW amplitude is
known to be unsuitable in cases when a resonance is close
to its decay channel threshold and/or when multiple
resonances are overlapping [30]. This difficulty arises since
the BW amplitude does not consider the unitary. In the
present case, ηð1405Þ is close to the K�K̄ threshold, and
ηð1405Þ and ηð1475Þ are overlapping. Furthermore, while
coupling parameters in the BW formalism implicitly absorb
loop contributions, they cannot simulate nonsmooth behav-
ior such as a TS. Thus, it is highly desirable to develop an
appropriate approach where the data are fitted with a unitary

coupled-channel J=ψ decay amplitude, and ηð1405=1475Þ
poles are searched by analytically continuing the amplitude.
The ηð1405=1475Þ exists in a complicated coupled-channel
system consisting of quasi-two-body channels such as K�K̄
and a0π and three-body channels such as KK̄π and ππη.
The unitary coupled-channel approach seems the only
possible option to describe such a system. Also in this
approach, we automatically take account of the TS effects
that are expected to play an important role, and thus taking
over the sound physics in the previous models of
Refs. [25–28].
In this work,1 we develop a three-body unitary coupled-

channel model for radiative J=ψ decays to three-meson
final states of any JPC. Then, we use the model to fit
KSKSπ

0 Dalitz plot pseudodata generated from the BESIII
0−þ amplitude for J=ψ → γðKSKSπ

0Þ [29]. At the same
time, the branching fractions of other final states such as
ηπþπ− and ρ0γ relative to that of KK̄π are also fitted.
Based on the obtained model, we examine the pole
structure of ηð1405=1475Þ in the complex energy plane
to see if ηð1405=1475Þ is one or two states. We also use
the model to predict ηð1405=1475Þ → ηππ, γππ, and πππ
lineshapes and branchings. By examining the
ηð1405=1475Þ decay mechanisms for different final states,
we identify dominant mechanisms and address major
issues regarding ηð1405=1475Þ how the process-depen-
dent lineshapes and large isospin violations come about.
Precise Dalitz plot data are a great target for a three-body

unitary model. Single-channel three-body unitary frame-
works based on the Khuri-Treiman equations have been
used extensively to analyze Dalitz data in elastic kinemati-
cal regions: e.g., Refs. [32,33] for ω=ϕ → πππ. However,
Dalitz-plot analyses covering inelastic kinematical regions
with coupled-channel three-body unitary frameworks are
very limited: e.g., Ref. [34] for Dþ → K−πþπþ and the
present analysis. Since more and more precise Dalitz data
are expected from the contemporary experimental facilities,
the importance of the three-body unitary coupled-channel
analysis will increase. Thus, related theoretical develop-
ments have been made recently [35–37].
A three-body unitary analysis like the present work

involves pole extractions. Some works [38–40] have dis-
cussed the pole extraction from three-body unitarity ampli-
tudes. Practically, however, such a pole extraction from
experimental three-body distributions had not been done
until recently. The first case was made in Refs. [41,42]
where a ρπ single-channel model was used to analyze
mπþπ−π− lineshape data for τ− → πþπ−π−ντ, extracting an
a1ð1260Þ pole. Reference [42] ([41]) treated the three-body
unitarity rigorously (partially). The two analyses high-
lighted the importance of the full three-body unitarity in
the pole extraction since an additional spurious pole existed
in Ref. [41]. Our present analysis treats the three-body

1A part of the results has been published in Ref. [31].
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unitarity as rigorously as in Ref. [42]. Furthermore, we
improve the pole extraction method of Ref. [42] since we
consider relevant coupled channels and fit Dalitz plot
distributions rather than the projected invariant mass
distributions.
The organization of this paper is as follows. In Sec. II we

present formulas for the radiative J=ψ decay amplitude
based on the three-body unitary coupled-channel model
and the partial decay width. In Sec. III we analyze
Dalitz plot pseudodata from the BESIII 0−þ amplitude
for J=ψ → γðKSKSπ

0Þ. The quality of the fits is shown and
the ηð1405=1475Þ poles are extracted. In Sec. IV we
predict the lineshapes of ηππ, γπþπ−, πππ final states
from the radiative J=ψ decays. The branching fractions for
the πππ final states are also predicted. Finally, in Sec. V we
summarize the paper and discuss the future prospects.

II. MODEL

A. Radiative J=ψ decay amplitudes within a three-body
unitary coupled-channel approach

In constructing our three-body unitary coupled-channel
model, we basically follow the formulation presented in
Refs. [34,35]. However, there is one noteworthy difference.

While we specified a particle with its isospin state in
Refs. [34,35], we now use its charge state. This is an
important extension of the model to describe isospin-
violating processes. In what follows, we sketch our model,
putting an emphasis on the differences from Refs. [34,35].
A radiative J=ψ decay mechanism within our model is

diagrammatically represented by Fig. 1(a). First, J=ψ
radiatively couples, via a vertex ΓγM�

j ;J=ψ
, to a bare excited

state (M�) such as ηð1405=1475Þ of JPC ¼ 0−þ and
f1ð1420Þ of JPC ¼ 1þþ; we consider M� with I ¼ 0
(I: isospin) in this work. Second, the bare M� nonperturba-
tively couples with quasi-two-body Rc and three-body abc
states to form a dressed M� propagator ḠM� [Fig. 1(b)] that
includes M� resonance pole(s). Here, abc are pseudoscalar
mesons (π; K; η) and R is a bare two-meson resonance such
as K�, a0ð980Þ, or f0ð980Þ. The particles R and ab also
nonperturbatively couple through a vertex Γab;R, forming a
dressed R propagator τR;R0 [Fig. 1(e)] that includes R
resonance poles. Third, M� decays to a final abc via a
dressed M�

i → Rc decay vertex Γ̄cR;M�
i
[Fig. 1(c)] that

includes nonperturbative final-state interactions. The ampli-
tude formula for the above radiative J=ψ decay process is
given by2

Aγabc;J=ψ ¼
X
JPC

AJPC
γabc;J=ψ ; ð1Þ

with

AJPC
γabc;J=ψ ¼

Xcyclic
abc

X
RR0szR

X
ijsz

M�

Γab;RτR;R0 ðpc; E − EcÞ

× Γ̄cR0;M�
i
ðpc; EÞ½ḠM�ðEÞ�ijΓγM�

j ;J=ψ
; ð2Þ

where cyclic permutations ðabcÞ; ðcabÞ; ðbcaÞ are indi-
cated by

Pcyclic
abc , the indices i and j specify one of the bare

M� states belonging to the same JPC, and E denotes the abc
total energy in the abc center-of-mass (CM) frame. Below,
we give a more detailed expression for each of the
components in the amplitude.
The J=ψ → γM�

j vertex is given in a general form as

ΓγM�
j ;J=ψ

¼
X
ll̃zs

glsJ=ψM�
j γ
ðsM� s̃zM�1s̃zγjss̃zM� þ s̃zγÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ẼγmJ=ψmM�

j

q
× ðlelzss̃zM� þ s̃zγj1s̃zψÞYlelzð ˆ̃pγÞp̃l

γ ; ð3Þ

FIG. 1. (a) Diagrammatic representation for the radiative J=ψ
decay amplitude of Eq. (2). The dashed lines represent pseudo-
scalar mesons, while the solid lines are bare two-meson reso-
nances R. The double lines withM�

iðjÞ represent bare states forM
�

such as ηð1405=1475Þ. (b) Dressed M� propagator: the first
(second) diagram on the rhs is a bare M� propagator (self-
energy). (c) Dressed M� decay vertex: the first (second) diagram
is a bare vertex (rescattering term). The ellipse stands for the
scattering amplitude X. (d) Lippmann-Schwinger-like equation
for the amplitude X. (e) Dressed R propagator: the first (second)
diagram is a bare R propagator (self-energy).

2We denote a particle x’s mass, momentum, energy, polariza-
tion, spin and z component in the abc CM frame by mx, px, Ex,
ϵx, sx, and szx, respectively; Ex ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

x þ p2
x

p
with px ¼ jpxj. The

mass values for pseudoscalar mesons (π, K, η) are taken from
Ref. [15]. Symbols with a tilde such as p̃x indicate quantities in
the J=ψ -at-rest frame.
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where glsJ=ψM�
j γ
is a coupling constant and mM�

j
is a bare M�

j

mass, Ylmðq̂Þ denotes the spherical harmonics with
q̂≡ q=jqj, and P

l is restricted by parity conservation.
WhenM� belongs to JPC ¼ 0−þ, Eq. (3) reduces to (up to a
constant overall factor)

Γγη�j ;J=ψ
¼

gJ=ψη�j γðϵ̃J=ψ × ϵ̃γÞ · p̃γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ẼγmJ=ψmη�j

q : ð4Þ

In our numerical analysis from Sec. III, we use the coupling
gJ=ψη�j γ defined in this reduced form. The R → ab vertex is

given by

Γab;R ¼ ðtatzatbtzbjtRtzRÞ
X

LLzSSz
ðsaszasbszbjSSzÞ

× ðLLzSSzjsRszRÞYLLzðp̂�
aÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mREaðp�

aÞEbðp�
aÞ

ERðpcÞEaðpaÞEbðpbÞ

s
fLSab;Rðp�

aÞ; ð5Þ

where the parentheses are Clebsch-Gordan coefficients, tx
and tzx are the isospin of a particle x and its z component,
respectively, and p�a denotes a particle a’s momentum in the
ab CM frame. Since particles a and b are pseudoscalars in
this paper, the total spin is S ¼ 0 and the orbital angular
momentum is L ¼ sR. Thus, we simplify the above notation
for the R → ab vertex as

Γab;R ¼ ðtatzatbtzbjtRtzRÞYsR;s
z
R
ðp̂�

aÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mREaðp�

aÞEbðp�
aÞ

ERðpcÞEaðpaÞEbðpbÞ

s
fab;Rðp�

aÞ; ð6Þ

with a vertex function

fab;RðqÞ ¼ gab;R
ð1þ q2=c2ab;RÞ−2−

L
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mREaðqÞEbðqÞ
p qL

mL−1
π

; ð7Þ

and use this notation hereafter. The coupling gab;R and
cutoff cab;R in Eq. (7) and the bare mass mR in Eq. (8) are
determined by analyzing L-wave ab scattering data as
detailed in Appendix A where the parameter values are
presented.
The dressed R propagator [Fig. 1(e)] is given by

½τ−1ðp;EÞ�R;R0 ¼ ½E − ERðpÞ�δR;R0 − ΣR;R0 ðp; EÞ; ð8Þ

with the R self-energy

ΣR;R0 ðp;EÞ ¼
X
ab

ðtatzatbtzbjtR; tza þ tzbÞðtatzatbtzbjtR0 ; tza þ tzbÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mRmR0

ERðpÞER0 ðpÞ
r Z

q2dq
MabðqÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
abðqÞ þ p2

q
×

BabfR;abðqÞfab;R0 ðqÞ
E −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

abðqÞ þ p2
q

þ iϵ
; ð9Þ

where MabðqÞ ¼ EaðqÞ þ EbðqÞ and mR is the bare mass
of R; R and R0 in Eq. (9) have the same spin state
(sR ¼ sR0 ). Due to Bose symmetry, we have a factor
Bab: Bab ¼ 1=2 for identical particles a and b, and Bab ¼
1 otherwise. In Eq. (9), the a0-f0 mixing occurs (Σa0;f0 ≠ 0)
due to the mass difference between ab ¼ KþK− and K0K̄0

states. The dressed R propagators include R resonance
poles, as summarized in Tables III–V in Appendix A.
The dressed M�

i → Rc decay vertex [Fig. 1(c)] is
given by

Γ̄cR;M�
i
ðpc; EÞ ¼

X
l;lz

ðllzsRszRjsM�szM� ÞðtRtzRtctzcjtM�tzM� Þ

× Yl;lzð−p̂cÞF̄ðcRÞl;M�
i
ðpc; EÞ; ð10Þ

where l is the relative orbital angular momentum between R
and c. The dressed M�

i → Rc vertex function is

F̄ðcRÞl;M�
i
ðpc; EÞ ¼ FðcRÞl;M�

i
ðpcÞ þ

X
c0R0R00l0

Z
q2dq

× XJPC
ðcRÞl;ðc0R00Þl0 ðpc; q;EÞ

× τR00;R0 ðq; E − Ec0 ÞFðc0R0Þl0 ;M�
i
ðqÞ; ð11Þ

where the first and second terms are direct decay and
rescattering mechanisms, respectively. Common isobar
models do not have the second term. We use a bare vertex
function including a dipole form factor as

FðcRÞl;M�
i
ðqÞ ¼ C

M�
i

ðcRÞl
½1þ q2=ðΛM�

i
ðcRÞlÞ2�−2−

l
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8EcðqÞERðqÞmM�
i

q ql

ml−1
π

; ð12Þ

where C
M�

i
ðcRÞl and Λ

M�
i

ðcRÞl are coupling and cutoff parameters,

respectively. We also introduced JPC partial-wave ampli-
tudes for cR → c0R0 scatterings, XJPC

ðcRÞl;ðc0R0Þl0 , that are

obtained by solving the scattering equation [Fig. 1(d)]:
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XJPC
ðc0R0Þl0 ;ðcRÞlðp

0; p;EÞ
¼ VJPC

ðc0R0Þl0 ;ðcRÞlðp
0; p;EÞ

þ
X

c00;R00;R000;l00

Z
q2dqVJPC

ðc0R0Þl0 ;ðc00R000Þl00 ðp
0; q;EÞ

× τR‴;R00 ðq; E − Ec00 ÞXJPC
ðc00R00Þl00 ;ðcRÞlðq; p;EÞ; ð13Þ

with

VJPC
ðc0R0Þl0 ;ðcRÞlðp

0; p;EÞ ¼ Zc̄;JPC

ðc0R0Þl0 ;ðcRÞlðp
0; p;EÞ

þ vHLS;J
PC

ðc0R0Þl0 ;ðcRÞlðp
0; pÞ: ð14Þ

The driving term Zc̄;JPC

ðc0R0Þl0 ;ðcRÞl , which we call the Z diagram,

is diagrammatically expressed in the first term on the rhs of
Fig. 1(d); c̄ indicates an exchanged particle. Explicit
formulas for the partial-wave-expanded Z diagram can
be found in Appendix C of Ref. [35]. One important
difference from Ref. [35] is that here we do not project the
Z diagrams onto a definite total isospin state. As a result, an
isospin-violating K�K̄ → f0π process is caused by a Z
diagram and mK� ≠ mK0 , leading to η� → πππ.
The second term on the rhs of Eq. (14) is a vector-meson

exchange mechanism based on the hidden local symmetry
model [43]. In the present case, this mechanism works for
K�K̄ ↔ K�K̄; K̄�K interactions. Formulas were presented
in Appendix A of Ref. [34], but here we use a different form
factor of ð1þ p2=Λ2Þ−2ð1þ p02=Λ2Þ−2 with Λ ¼ 1 GeV,
rather than Eq. (A15) of Ref. [34].
The dressed M� propagator [Fig. 1(b)] is given by

½Ḡ−1
M� ðEÞ�ij ¼ ðE −mM�

i
Þδij − ½ΣM� ðEÞ�ij; ð15Þ

where the M� self-energy in the second term is given by

½ΣM�ðEÞ�ij ¼ BRc

X
cRR0l

Z
q2 dqFðcRÞl;M�

i
ðqÞ

× τR;R0 ðq; E − EcðqÞÞF̄ðcR0Þl;M�
j
ðq; EÞ: ð16Þ

The above formulas show that the dressed M� propagator
(M� pole structure) and the dressed M�

i → Rc form factor
(M� decay mechanism) are explicitly related by the
common dynamics. This is a consequence of the three-
body unitarity.
In the above formulas, we assumed that two-body

ab → a0b0 interactions occur via bare R excitations,
ab→R→a0b0. We can straightforwardly extend the for-
mulas if two-body interactions are from bare R excitations
and separable contact interactions, as detailed in Ref. [34].
Also, the above formulas are valid when c is a pseudoscalar
meson, and they need to be slightly modified for the Rc ¼
ρρ channel. We consider the spectator ρ width in the first

term on the rhs of Eq. (8) by E − ERðpÞ → E − ERðpÞþ
iΓρ=2; Γρ ¼ 150 MeV and is constant. Also, the label in the
bare form factor of Eq. (12) is extended to include the total
spin of ρρ (sρρ) as ðcRÞl → ðcRÞlsρρ .
For describing J=ψ → γM� → γðγπþπ−Þ, we assume the

vector-meson-dominance mechanism where the ρρ channel
from M�

i → ρρ or coupled-channel dynamics is followed
by ρ → γ and ρ → πþπ−. The photon-ρ direct coupling is
from the vector-meson-dominance model. This mechanism
can be implemented in the decay amplitude formula of
Eq. (2) by multiplying by 2e=gρ; each of the two ρ’s can
couple to the photon, giving a factor of 2, and e2=4π ≃
1=137 and g2ρ=4π ¼ 2.2. There are some experimental
indications for ηð1405=1475Þ → ρρ → 4π but they are
rather uncertain [2,44]. Thus, we do not calculate this
process in this paper.

B. Radiative J=ψ decay rate formula

The partial decay width for a radiative J=ψ decay,
J=ψ → γðabcÞ, is given by

dΓJ=ψ→γðabcÞ ¼
B

25ð2πÞ8mJ=ψ
jMJ=ψ→γðabcÞj2δð4Þðpi − pfÞ

×
d3pa

Ea

d3pb

Eb

d3pc

Ec

d3pγ

Eγ

¼ B
ð2πÞ5

p̃2
γ

Ẽγ

jMJ=ψ→γðabcÞj2
32mJ=ψE2

dp̃γ dm2
ab dm

2
ac;

ð17Þ

where mab and mac are the invariant masses of the ab
and ac subsystems, respectively, p̃γ denotes the photon
momentum in the J=ψ -at-rest frame, and MJ=ψ→γðabcÞ is
the invariant amplitude that is related to Eq. (1) with an
overall kinematical factor. The Bose factor B is B ¼ 1=3!
for three identical particles abc, B ¼ 1=2! for two identical
particles among abc, and B ¼ 1 otherwise. The J=ψ spin
state is implicitly averaged.
Using our amplitude in Eq. (2) for the J=ψ radiative

decays via M� excitations, the decay formula of Eq. (17)
can be written as

dΓJ=ψ→γðabcÞ
dE

¼
X
JPC

dΓJPC
J=ψ→γðabcÞ
dE

; ð18Þ

with

dΓJPC
J=ψ→γðabcÞ
dE

¼ 2E2

π

X
ijsz

M�

X
kls0z

M�

dΓik
M�→abc

½ḠM� ðEÞ�ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffimM�
i
mM�

j

p
×
½ḠM� ðEÞ��klffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffimM�

k
mM�

l

p Γjl
J=ψ→M�γ; ð19Þ
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where szM� (s0zM�) is a spin state of M� in ḠM� (½ḠM� ��), and

dΓij
M�→abc ≡ B

MM�
i→abcM�

M�
j→abc

ð2πÞ332E3
dm2

ab dm
2
ac; ð20Þ

Γij
J=ψ→M�γ ≡ 1

8π

p̃γ

m2
J=ψ

MJ=ψ→M�
i γ
M�

J=ψ→M�
j γ
: ð21Þ

The invariant amplitudes MM�
i→abc and MJ=ψ→M�

j γ
are

related to components of the amplitude in Eq. (2) by

MM�
i→abc ¼ −ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16mM�

i
EaEbEc

q
TM�

i→abc; ð22Þ

with

TM�
i→abc ¼

Xcyclic
abc

X
RR0szR

Γab;RτR;R0 ðpc; E − EcÞ

× Γ̄cR0;M�
i
ðpc; EÞ; ð23Þ

and

MJ=ψ→M�
j γ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ẼγmJ=ψmM�

j

q
ΓγM�

j ;J=ψ
: ð24Þ

For the case of i ¼ j, Eqs. (20) and (21) reduce to the
standard formulas of the M�-decay Dalitz plot distribution
and J=ψ two-body decay width, respectively. Our decay
formula in Eq. (19) can be made look similar to that of a
Breit-Wigner model by the replacement ½ḠM� ðEÞ�ij → δij=
ðE −MM�

i
þ iΓM�

i
=2Þ, with MM�

i
and ΓM�

i
being the Breit-

Wigner mass and width, respectively.

III. DATA ANALYSIS AND ηð1405=1475Þ POLES

In this paper, we study radiative J=ψ decays via
ηð1405=1475Þ excitations with the unitary coupled-
channel model described above. We thus consider only
the JPC ¼ 0−þ partial-wave contribution in the above
formulas. In the following, we discuss our data set, our
default setup of the model, and analysis results.

A. Data set

A main part of our data set is KSKSπ
0 Dalitz

plot pseudodata. We generate the pseudodata using the
E-dependent 0−þ partial-wave amplitude from the recent
BESIII Monte Carlo (MC) analysis on J=ψ → γðKSKSπ

0Þ
[29]. We often denote this process by J=ψ → γð0−þÞ →
γðKSKSπ

0Þ. The pseudodata is therefore detection-
efficiency-corrected and background free.
The pseudodata includes ∼1.23 × 105 events in total,

being consistent with the BESIII data, and is binned as
follows. The range of 1300 ≤ E ≤ 1600 MeV is divided
into 30 E bins (10 MeV bin width, labeled by l).

Furthermore, in each E bin, we equally divide
ð0.95 GeVÞ2 ≤ m2

KSKS
≤ ð1.50 GeVÞ2 and ð0.60 GeVÞ2 ≤

m2
KSπ

0 ≤ ð1.15 GeVÞ2 into 50 × 50 bins (labeled by m);

mab is the ab invariant mass. We denote the event numbers
in the fl; mg and lth bins by Nl;m and N̄lð≡P

m Nl;mÞ,
respectively; their statistical uncertainties are

ffiffiffiffiffiffiffiffiffi
Nl;m

p
andffiffiffiffiffi

N̄l

p
, respectively. We fit both fNl;mg and fN̄lg pseudo-

data, since fNl;mg and fN̄lg would efficiently constrain the
detailed decay dynamics and the resonant behavior (pole
structure) of ηð1405=1475Þ, respectively. We use the boot-
strap method [45] to estimate the statistical uncertainty of
the model, and we thus generate and fit 50 pseudodata
samples.
Other final states from the radiative J=ψ decays are also

considered in our analysis. We fit the model to a ratio of
partial decay widths [15],

Rexp
1 ¼ Γ½J=ψ → γηð1405=1475Þ → γðKK̄πÞ�

Γ½J=ψ → γηð1405=1475Þ → γðηπþπ−Þ�

¼ ð2.8� 0.6Þ × 10−3

ð3.0� 0.5Þ × 10−4
¼ 6.8 − 11.9; ð25Þ

and also another ratio [8,9],

Rexp
2 ¼ Γ½J=ψ → γηð1405=1475Þ → γðρ0γÞ�

Γ½J=ψ → γηð1405=1475Þ → γðKK̄πÞ�
¼ 0.015 − 0.043: ð26Þ

The partial widths Γ in the above ratios are calculated
by integrating the E distributions [Eq. (18)] for KK̄π,
πþπ−η, and ρ0γ final states over the range of
1350 MeV < E < 1550 MeV. The ratio of Eq. (25) is
important to constrain the a0ð980Þπ contributions since
the relative coupling strengths of a0ð980Þ → KK̄ and
a0ð980Þ → ηπ are experimentally fixed in a certain range
[46–49]. Also, f0η and ρρ channels indirectly contribute
to KSKSπ

0 through loops, and therefore the KSKSπ
0 data

does not constrain their parameters well. Since these
channels directly contribute to the ηπþπ− and ρ0γ final
states, the above ratios will be a good constraint. The
partial width for all KK̄π final states in Eqs. (25) and (26)
is 12 times larger than that of KSKSπ

0, as determined by
the isospin Clebsch-Gordan coefficients.
The MC-solution-based fNl;mg, fN̄lg, Rexp

1 , and Rexp
2 are

simultaneously fitted, with a χ2 minimization, by our
default model described in the next subsection; the actual
BESIII data are not directly fitted. We calculate χ2 from
fNl;mg by comparing Nl;m to the differential decay width
[dΓJ=ψ→γðabcÞ=dEdm2

abdm
2
ac in Eqs. (18)–(21)] evaluated at

the bin center and multiplied by the bin volume. We omit
Nl;m on the phase-space boundary from the χ2 calculation.
This simplified procedure keeps the computation time
reasonable. Also, if a bin has Nl;m < 10, it is combined
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with neighboring bins to have more than nine events for the
χ2 calculation. The number of bins for fNl;mg depends on
the pseudodata samples, and is 4496–4575. χ2’s from fN̄lg,
Rexp
1 , and Rexp

2 are weighted appropriately to reasonably
constrain the model.

B. Model setup

For the present analysis of the radiative J=ψ decays, we
consider the following coupled channels as a default in our
model described in Sec. II. We include two bare M� of
JPC ¼ 0−þ; we refer to them as η� hereafter. The Rc
channels are Rc ¼ K�ð892ÞK̄, κK̄, a0ð980Þπ, a2ð1320Þπ;
f0η; ρð770Þρð770Þ, and f0π, where charge indices are
suppressed.3 To form positive C-parity states, K̄�ð892ÞK
and κ̄K channels are implicitly included. A symbol R may
refer to more than one bare state and/or contact interaction.
For example, the f0π channel includes two bare states and
one contact interaction that nonperturbatively couple with
ππ − KK̄ continuum states, forming f0ð500Þ, f0ð980Þ, and
f0ð1370Þ poles; see Appendix A for details.
Regarding the πη − KK̄ coupled-channel s-wave

scattering amplitude that includes an a0ð980Þ pole,
we consider two experimental inputs; see Appendix A 2
for details. First, the a0ð980Þ amplitude from the
BESIII amplitude analysis on χc1 → ηπþπ− constrains
the energy dependence of our a0ð980Þ model. Second, we
determine a0ð980Þ → KK̄ and a0ð980Þ → ηπ decay
strengths using an analysis of pp̄ → KK̄π; ηππ [46] giving
jga0ð980Þ→KK̄=ga0ð980Þ→ηπj ∼ 1; ga0ð980Þ→ab is the residue of
a0ð980Þ → ab decay. The ratio of branching fractions of
a0ð980Þ → KK̄ and a0ð980Þ → ηπ, which can be trans-
lated into jga0ð980Þ→KK̄=ga0ð980Þ→ηπj, has not been precisely
determined experimentally [15,46–49]. Later, we will
discuss possible impacts of using a different a0ð980Þ
model with different jga0ð980Þ→KK̄=ga0ð980Þ→ηπj.
We mention the channels considered in the BESIII

amplitude analysis of J=ψ → γðKSKSπ
0Þ [29]. In the

0−þ partial wave, the BESIII Collaboration considered
ηð1405Þ and ηð1475Þ resonances that decay into
K�ð892ÞK̄, a0ð980Þπ, and a2ð1320Þπ. All resonances,
except for a0ð980Þ, are described with Breit-Wigner ampli-
tudes. No rescattering or channel coupling such as those in
the second term on the rhs of Fig. 1(c) is taken into account.
In addition, a nonresonant Kπ p-wave amplitude supple-
ments the K�ð892Þ tail region. Clearly, our coupled-channel
model includes more channels than the BESIII model does.
This is to satisfy the coupled-channel three-body unitarity
and describe different final states in a unified manner.
We consider isospin-conserving η� → Rc decays in

Eq. (12) for all bare η� and Rc states specified in the first
paragraph of this subsection. One exception applies to the
lighter bare η� → ρρ, which is set to zero. This is because

the lighter bare η� seems consistent with an excited ss̄ state
from the quark model [16] and LQCD prediction [23], and
ss̄ → ρρ should be small for the Okubo-Zweig-Iizuka rule.
We may add nonresonant (NR) amplitudes AJPC;NR

γabc;J=ψ ,
which do not involve M� excitations, to the resonant
amplitudes AJPC

γabc;J=ψ of Eq. (1). We can derive AJPC;NR
γabc;J=ψ

and modify AJPC
γabc;J=ψ so that their sum still maintains the

three-body unitarity. However, this introduces too many
fitting parameters to determine with the data set in the
present analysis. We thus use a simplified NR amplitude in
this work [cf. Eq. (4)]:

MNR
J=ψ→γðabcÞ ¼ cNRðϵ̃J=ψ × ϵ̃γÞ · p̃γ; ð27Þ

where cNR is a complex constant. Only when fitting the
J=ψ → γð0−þÞ → γKSKSπ

0 Dalitz plot pseudodata, this
NR term is added to MJ=ψ→γðabcÞ in Eq. (17) and cNR is
determined by the fit.
We summarize the parameters fitted to the data set

discussed in the previous subsection. We have two bare η�
masses in Eq. (15), two complex coupling constants
(gJ=ψη�j γ) in Eq. (4), and one complex constant cNR in

Eq. (27). We also adjust real coupling parameters C
M�

i
ðcRÞl in

Eq. (12). While the cutoffs ΛM�
i

ðcRÞl in Eq. (12) are also
adjustable, we fix them to 700 MeV in this work to reduce
the number of fitting parameters and speed up the fitting
procedure. Since the overall strength and phase of the full
amplitude are arbitrary, we have 25 fitting parameters in
total. The parameter values obtained from the fit are
presented in Table IX of Appendix B.
All of the radiative J=ψ decay processes included in our

data set for the fit are isospin conserving. Since the isospin-
violating effects are very small in these processes, we make
the model isospin symmetric for fitting and extracting poles
and thus use the averaged mass for each isospin multiplet.
The amplitude formulas in Sec. II A reduce to the isospin-
symmetric ones given in Refs. [34,35]. This simplification
significantly speeds up the fitting and pole extraction
procedures. When calculating the isospin-violating J=ψ →
γð0−þÞ → γðπππÞ amplitude of Eq. (2), we still use the
isospin-symmetric Ḡη�ðEÞ and parameters determined by
fitting the data set, and the pole positions stay the same; the
isospin violations occur in τR;R0 and Γ̄cR;η�i

due to the
difference between mK� and mK0 .

C. Fits to KSKSπ0 Dalitz plot pseudodata generated
from the BESIII 0− + amplitude

By fitting the 50 bootstrap samples of the KSKSπ
0 Dalitz

plot pseudodata with the default dynamical contents
described above, we obtain χ2=d:o:f: ¼ 1.40–1.54 by
comparing with fNl;mg. The ratios of Eqs. (25) and (26)
are also fitted simultaneously, obtaining Rth

1 ∼ 7.5 and
Rth
2 ∼ 0.025, respectively.3κ is also referred to as K�

0ð700Þ in the literature.
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The Dalitz plot distributions obtained from the fit are
shown in Fig. 2 for representative E values, in comparison
with one of the bootstrap samples.4 The fit quality is

reasonable overall. For E≲ 1400 MeV, there is a peak near
the KSKS threshold. While this is seemingly the a0ð980Þ
contribution, it is actually due to a constructive interference
between K�ð892Þ and K̄�ð892Þ, as detailed later. For
E≳ 1430 MeV, on the other hand, the main pattern is
mostly understood as the K�ð892Þ and K̄�ð892Þ resonance
contributions. The good fit quality can be seen more clearly
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FIG. 2. KSKSπ
0 Dalitz plot distributions for J=ψ → γð0−þÞ → γðKSKSπ

0Þ. Our fit result and pseudodata (MC) are shown. The E
values used in our calculation (the central values of the E bins of the pseudodata) are indicated in each panel. The distributions are
shown, in descending order, in red, yellow, green, and blue. Depending on E, the same color means different absolute values.

4The same bootstrap sample is also shown in Figs. 3, 4, 5(a), 7,
and 8.

NAKAMURA, HUANG, WU, PENG, ZHANG, and ZHU PHYS. REV. D 109, 014021 (2024)

014021-8



in the KSKS and KSπ
0 invariant mass distributions, as

shown in Figs. 3 and 4, respectively. The model is well
fitted to the K� peak (the sharp peak near the KSKS

threshold) in the m2
KSπ

0 (m2
KSKS

) distributions.

The E dependence of the radiative J=ψ decay to
KSKSπ

0, obtained by integrating the Dalitz plots in
Fig. 2, is shown in Fig. 5(a). The E dependence would
be largely determined by the pole structure of the
ηð1405=1475Þ resonances. The E distribution shows a
broad peak with an almost flat top, and our model

reasonably agrees with the pseudodata. We now study
dynamical details. The η� decay mechanisms can be
separated according to Rc states in Fig. 1(a) that directly
couple to the final states. We will refer to these Rc states as
final Rc states. Contributions from the final K�K̄, κK̄, and
a0ð980Þπ states are shown separately in Fig. 5(a). The final
K�K̄ and κK̄ contributions are the first and second largest,
while the final a0ð980Þπ contribution is very small. The
constant nonresonant contribution from Eq. (27) gives a
small phase-space shape contribution.
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FIG. 4. KSπ
0 invariant mass distributions. Other features are the same as those in Fig. 3.
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The final K�K̄, κK̄, and a0ð980Þπ contributions are also
shown separately in Figs. 5(b)–5(d), respectively, and main
contributions from the diagrams in Fig. 6 are also shown.
The direct decays of Fig. 6(a) and single-rescattering
mechanisms of Fig. 6(b) are obtained by perturbatively
expanding the dressed η� decay vertex of Fig. 1(c) in terms
of V in Eq. (14), and taking the first two terms. The final
K�K̄ contribution is mostly from the direct decay, while the
final κK̄ and a0ð980Þπ contributions are dominantly from
the single-rescattering mechanism and therefore a coupled-
channel effect. The K�K̄K triangle loop causes a TS in the
final a0ð980Þπ contribution at E ∼ 1.4 GeV. However, we
do not find a large contribution from the TS. The TS-
induced enhancement may have been suppressed since the
K�K̄ pair is relatively p-wave.
Figure 7 illustrates the mechanism that creates the sharp

a0ð980Þ-like enhancement near the KSKS threshold.
Clearly, the final K�K̄ contribution alone creates the
structure mostly, and the other mechanisms moderately
change it. The final a0ð980Þπ contribution is minor. As the
Dalitz plots in Fig. 2 show, K� and K̄� constructively
interfere to generate a peak near the KSKS threshold for
E ¼ 1.45–1.5 GeV. The a0ð980Þ-like peaks seen at E ¼
1.3–1.45 GeV are also caused by the same mechanism.
The BESIII model obtained from their amplitude analy-

sis describes the data rather differently from ours (see Fig. 3
of Ref. [29]): (i) the a0ð980Þπ contribution is the largest
overall, (ii) the K�K̄ contribution is comparable to

a0ð980Þπ only around E ¼ 1.5 GeV, and (iii) the κK̄
channel is not included. These differences come mainly
from the fact that our model is fitted not only to theKSKSπ

0

Dalitz plot pseudodata but also to the ratios of Eqs. (25)
and (26); the BESIII model was fitted to the J=ψ →
γðKSKSπ

0Þ data only. The ratio of Eq. (25), albeit a large
uncertainty, is an important constraint on the final a0ð980Þπ
contribution to η� → KK̄π, since the relative coupling of
a0ð980Þ → KK̄ to a0ð980Þ → πη is experimentally deter-
mined in a certain range [15,46–49]. The final a0ð980Þπ
contribution to KK̄π needs to be small as in our model in
order to satisfy the ratio of Eq. (25). Furthermore, the κK̄
channel in our model gives a substantial contribution
through the channel coupling required by the unitarity.
Since the a0ð980Þπ contribution is very different between

our model and the BESIII model, one may wonder how
much our result depends on a particular a0ð980Þ model.
As we discussed in Sec. III B, our default a0ð980Þ model
is based on Ref. [46] and jga0ð980Þ→KK̄=ga0ð980Þ→ηπj ∼ 1.
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The Particle Data Group (PDG) [15] considered two other
analyses of Refs. [47,48] in averaging Bða0ð980Þ → ηπÞ=
Bða0ð980Þ → KK̄Þ. This ratio of the branchings can be
translated into jga0ð980Þ→KK̄=ga0ð980Þ→ηπj ∼ 0.77 [47] and
jga0ð980Þ→KK̄=ga0ð980Þ→ηπj ∼ 0.85 [48]. Thus, if we use an
a0ð980Þ model based on Refs. [47,48] in our present
analysis, the corresponding a0ð980Þπ contribution would
be even smaller. There was also an analysis of γγ → KK̄; ηπ
giving jga0ð980Þ→KK̄=ga0ð980Þ→ηπj ∼ 2 [49]. However, this
analysis did not include a0ð980Þ → KK̄ data. Even if we
use an a0ð980Þmodel based on this, our default result would
not qualitatively change since the a0ð980Þπ contribution
could be at most ∼4 times larger than our default result.

D. Fit with one bare η� state

It is important to examine if the BESIII data can also be
fitted with a single bare η� model, since the ηð1405=1475Þ
was claimed to be a single state in the literature. We try to fit
only the mKSKSπ

0ð¼ EÞ distribution, but a reasonable fit is
not achievable. The result is shown in Fig. 8 along with the
final Rc contributions. The final κK̄ and a0π contributions
have lineshapes expected from the η� pole position,
1416 − 61iMeV. The TS caused by the K�K̄K loop does
not noticeably shift the lineshape of the final a0ð980Þπ
contribution. The peak of the lineshape of the final K�K̄
contribution is 30–40 MeV higher than the peak positions
of the final κK̄ and a0ð980Þπ contributions, since its
threshold opens at E ∼ 1.4 GeV and the K�K̄ pair is
relatively p-wave. Still, the peak shift is not large enough
to explain the significantly broader peak of the pseudodata.
Another possible single-state solution for ηð1405=1475Þ

describes the BESIII data by including an interference with
ηð1295Þ. To examine this possibility, we include two bare
η� states, and restrict one of the bare masses below 1.4 GeV,
and the other around 1.6 GeV. We are not able to obtain a
reasonable fit to the pseudodata with this model. We thus

conclude that two bare η� for ηð1405=1475Þ are necessary
to reasonably fit the KSKSπ

0 pseudodata generated from
the BESIII 0−þ amplitude.

E. Pole positions for ηð1405Þ and ηð1475Þ
The properties of a resonance are characterized by its pole

position and residue of the (scattering or decay) amplitude.
In the present unitary coupled-channel framework, a pole
position corresponds to a complex energy E that satisfies
det½Ḡ−1ðEÞ� ¼ 0, where Ḡ−1ðEÞ has been defined in
Eq. (15) and is analytically continued to the complex E
plane. The analytic continuation involves deformations of
the integral paths in Eqs. (9), (11), (13), and (16).
Otherwise, singularities on the complex momentum planes
cross the real momentum paths asE goes to complex values,
invalidating the analytic continuation. The driving term

Zc̄;JPC

ðc0R0Þl0 ;ðcRÞl in Eq. (14) and τR;R0 in Eqs. (11), (13), and (16)

cause such singularities. To avoid these singularities, a
possible deformed path to be used in Eqs. (11), (13), and
(16) can be found in Fig. 7 of Ref. [42]. The energy
denominator in Eq. (9) also causes a singularity and, for a
complexE, we need to avoid it by choosing a deformed path
as found in Fig. 3 of Ref. [42]. Our analytic continuation
procedure is very similar to those discussed in detail in
Ref. [42], and we do not go into it further.
We search for poles in the region of Re½E� ¼

1300–1600 MeV and Im½−E� ¼ 0–200 MeV on the rel-
evant Riemann sheets (RSs) close to the physical energy.
We find three poles as listed in Table I. The poles are
labeled by α ¼ 1; 2 [α ¼ 3] corresponding to ηð1405Þ
[ηð1475Þ]. The ηð1405=1475Þ poles are close to the branch
points associated with the K�ð892ÞK̄ and a2ð1320Þπ
thresholds at ∼1396 − 30iMeV and ∼1460 − 56iMeV,
respectively. Thus, we specify the pole’s RS of these
channels in Table I; the relevant RS of the other channels
should be clear.5 The locations of the poles and branch
points are also shown in Fig. 9.
The BESIII analysis result (Breit-Wigner parameters) is

also shown for comparison. A noticeable difference is that
our model describes ηð1405Þ with two poles (α ¼ 1; 2).
The two-pole structure does not mean two physical states
but is simply due to the fact that a pole coupled to a
channel is split into two poles on different RSs of this
channel. The mass and width values are fairly similar
between our results and the BESIII results. However, the
use of the Breit-Wigner amplitude could cause an artifact
due to the issues discussed in the introduction and below,
which might explain the difference between the two
analysis results. In Ref. [30], a unitary coupled-channel
model and an isobar (Breit-Wigner) model were fitted to
the same pseudodata. Resonance poles from the two
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5For the definition of a (un)physical sheet, see the review
section 50 “Resonances” in Ref. [15].
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models can be significantly different, particularly when
two resonances are overlapping. Also, if the pole is located
near a threshold, the lineshape (E dependence) caused by
the pole can be distorted by the branch cut. In the present
case, ηð1405Þ and ηð1475Þ are fairly overlapping and
ηð1405Þ is located near the K�K̄ threshold. Our three-
body unitary coupled-channel analysis fully considers
these issues and is a more appropriate pole-extraction
method.
We examine the resonance pole contributions to the E

distribution. For this purpose, we expand the dressed η�
propagator of Eq. (15) around the resonance pole at MRα

as [50]

½ḠðEÞ�ij ∼
χα;iχα;j
E −MRα

; ð28Þ

with

χα;1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MRα

−mη�
2
− ½Ση� ðMRα

Þ�22
Δ0ðMRα

Þ

s
; ð29Þ

χα;2 ¼
½Ση� ðMRα

Þ�12
MRα

−mη�
2
− ½Ση� ðMRα

Þ�22
χα;1; ð30Þ

ΔðEÞ≡ det½Ḡ−1ðEÞ�, and Δ0ðMRα
Þ ¼ dΔðEÞ=dEjE¼MRα

.

Then, we replace ḠijðEÞ in the full amplitude of Eq. (2)
with the above expanded form and calculate the mKSKSπ

0

distribution. In Fig. 10, we show each of the pole con-
tributions and their coherent sum, in comparison with the
full calculation. The α ¼ 2 pole contribution is not included
in the figure since the K�K̄ branch cut mostly screens this
pole contribution to the amplitude on the physical real E
axis. The contributions from the α ¼ 1 and 3 poles are
dominant, and the lineshape of the full calculation is mostly
formed by the pole contributions. The nonresonant term in
Eq. (27) enhances the spectrum overall through the inter-
ference. Still, the branch cuts and nonpole contribution are
missing in the pole approximation of Eq. (28), and their
effects should explain the difference between the red
triangles and the magenta squares in the figure.
The resonance amplitude of Eq. (28) suggests that one of

the pole contributions can be eliminated from our full
model by adjusting the coupling gJ=ψη�j γ in the initial vertex
of Eq. (4). Specifically, we can eliminate the contribution of
the pole α by setting

gJ=ψη�
2
γ ¼ −ðχα;1=χα;2ÞgJ=ψη�

1
γ; ð31Þ

as demonstrated in Fig. 11(a). The figure shows a full
calculation without the pole approximation of Eq. (28).
Eliminating the initial radiative transition of J=ψ → ½α ¼ 1�,
we obtain the magenta squares (gJ=ψ ½α¼1�γ ¼ 0) showing a

 0

 2

 4

 6

 8

 1.3  1.4  1.5  1.6

x
1

0
3
 e

v
e

n
ts

/(
0

.0
1

 G
e

V
)

mKSKS�
0 (GeV)

default

�
� 1,3 + NR

�
� 1,3

�
� 1

�
� 3

FIG. 10. Pole contributions from ηð1405Þ (α ¼ 1) and ηð1475Þ
(α ¼ 3) and their coherent sum (α ¼ 1, 3) to the mKSKSπ

0

distribution. The poles labeled by α are listed in Table I. The
NR contribution is from Eq. (27).

-60

-50

-40

-30

-20

 1400  1450  1500

K*K
�

a��

Im
 E

 (
M

e
V

)

Re E (MeV)

�
�
�
�
�
�
�
�
�

BESIII

-34

-33

-32

 1400  1402

FIG. 9. Locations of ηð1405Þ and ηð1475Þ poles (labeled by α)
from 50 bootstrap fits. Averaged locations of poles and their
standard deviations are indicated by the crosses. The K�ð892ÞK̄
and a2ð1320Þπ branch points and cuts are shown by the orange
circles and dotted lines, respectively. The BESIII result [29]
(Breit-Wigner parameters) is shown by the green crosses. The
inset shows the α ¼ 1; 2 region. Figure taken from Ref. [31].

TABLE I. Locations of poles (Eη� ); each pole is labeled by α.
The mass, width, and Eη� are related by M ¼ Re½Eη� � and
Γ ¼ −2Im½Eη� �. Each pole is located on the RS specified by
ðsK�K̄; sa2ð1320ÞπÞ; sx ¼ pðuÞ indicates the physical (unphysical)
sheet of a channel x. Breit-Wigner parameters from the BESIII
analysis are also shown. Errors are statistical only. Table taken
from Ref. [31].

M (MeV) Γ (MeV) RS

α ¼ 1 1401.6� 0.6 65.8� 1.0 ðupÞ
α ¼ 2 1401.6� 0.6 66.3� 0.9 ðppÞ
α ¼ 3 1495.0� 1.5 86.4� 1.8 ðupÞ
BESIII [29] 1391.7� 0.7 60.8� 1.2

1507.6� 1.6 115.8� 2.4
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single peak from the α ¼ 3 pole. Similarly, a calculation
with gJ=ψ ½α¼3�γ ¼ 0 gives the green diamonds that have a
single peak from the α ¼ 1 pole.
Among various processes that include ηð1405=1475Þ-

decay into KK̄π final states, some of them show a single
peak from either of ηð1405Þ or ηð1475Þ, and others have a
broad peak from a coherent sum of them. Figure 11(a)
indicates that our coupled-channel model can describe both
cases by appropriately adjusting the couplings of initial
vertices.
In the presented analysis, two bare states are required to

reasonably fit the data set. The lighter bare mass is
determined to be ∼1.6 GeV, while the heavier one is
∼2.3 GeV, as listed in Table IX of Appendix B. The
heavier bare mass is not tightly constrained by the fit,
and those in the range of 2–2.4 GeV can give comparable

fits. Within our coupled-channel model, the bare states are
mixed and dressed by meson-meson continuum states,
forming the resonance states. In concept, the bare states
are similar to states from a quark model or LQCD without
two-hadron operators. The lighter bare state seems com-
patible with the excited ss̄ [15,16,23]. The heavier bare state
could be either a second radial excitation of ηð0Þ, a hybrid
[23], a glueball [18–22], or a mixture of these states.

IV. PREDICTIONS FOR
J=ψ → γð0− + Þ → γðππηÞ; γðπ +π − γÞ; γðπππÞ

In this section, we present E dependences of various final
states from the radiative J=ψ decays via ηð1405=1475Þ,
using the three-body unitary coupled-channel model devel-
oped in the previous section. The model has been fitted to
theKSKSπ

0 Dalitz plot pseudodata (Fig. 2) and the ratios of
Eqs. (25) and (26).

A. π +π − η and π0π0η final states

We show in Fig. 12(a) the mππηð¼ EÞ distributions for
the πþπ−η final state; the π0π0η distribution is smaller by a
factor of 1=2. The lineshape is qualitatively consistent with
the MARK III analysis [3]. The final a0ð980Þπ and f0η
states have comparable contributions. On the other hand,
the KK̄π final states are mainly from the final K�K̄ and κK̄
contributions, as seen in Fig. 5(a). Since different Rc final
states couple with ηð1405Þ and ηð1475Þ differently, the
KK̄π and ππη final states have different E dependences.
The ππη final states give a single peak at mππη ∼ 1.4 GeV,
while the KK̄π distribution has a flat peak. The process-
dependent lineshape of the ηð1405=1475Þ decays can thus
be understood.
In Figs. 12(b) and 12(c), we decompose the final a0ð980Þπ

and f0η contributions into direct decays [Fig. 6(a)] and
single-rescattering mechanisms [Fig. 6(b)]. The final
a0ð980Þπ state is mostly from the single-rescattering
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mechanisms and the direct decays are minor. On the other
hand, a completely opposite trend applies to the final f0η
state. In more detail, the K�KK̄, κKK̄, and f0πη triangle
mechanisms contribute to the final a0ð980Þπ state. We find
that the three loops give comparable contributions, even
though only the K�KK̄ loop causes a TS. This is perhaps
because the K�K̄ pair is relatively p-wave, suppressing
the TS.
We also present in Fig. 13 a prediction for the m2

πη

distribution from the default model. Clear a0ð980Þ peaks
are predicted, which is qualitatively consistent with the data
[4]. This prediction should be confronted with future data
from BESIII.
As already discussed, the final a0ð980Þπ contribution to

the KK̄π and ππη final states are related by the relative
coupling of a0ð980Þ → KK̄ to a0ð980Þ → πη determined
experimentally [15,46–49]. As we have seen in Fig. 5(a), the
final a0ð980Þπ contribution to KK̄π is very small to satisfy
the ratio of Eq. (25). If the final a0ð980Þπ contribution to
KK̄π were as large as that of the BESIII amplitude model,
then Eq. (25) would require that the final a0ð980Þπ → ππη
amplitude has to be drastically canceled by destructively
interfering with the final f0η → ππη amplitude. Such a large
cancellation seems unlikely since there is no symmetry
behind. Also, the large cancellation makes the a0ð980Þ peak
in the mπη distribution rather unclear, but the data [4] shows
a clear a0ð980Þ peak. As shown in Fig. 13, our default model
creates a clear a0ð980Þ peak.

B. π +π − γ final state

The branching to J=ψ → γð0−þÞ → γðπþπ−γÞ in the
default model is constrained by the ratio of Eq. (26).

Then, the model predicts the E distribution as shown in
Fig. 14. The lineshape has a single peak at E ∼ 1.4 GeV,
being consistent with the previous data [8,9]. The process is
mostly from a sequence of η�i → ρ0ρ0 followed by ρ0 → γ
and ρ0 → πþπ−. Thus, ηð1405Þ couples to ρρ much more
strongly than ηð1475Þ does, implying different natures of
the two η� resonances. Also, as mentioned in Sec. III B,
only the heavier bare η� couples with ρρ. This implies that
ηð1405Þ includes a larger content of the heavier bare η� than
ηð1475Þ does.
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C. π +π −π0 and π0π0π0 final states

Our default model makes predictions for the isospin-
violating J=ψ → γð0−þÞ → γðπππÞ; the model has not been
constrained by any data of theπππ final states. These isospin-
violating processes are mainly from the mechanisms of
Fig. 15 that are not completely canceled due to the small
difference between the charged and neutral K masses. In
particular, the isospin-violating mechanisms in Figs. 15(b)
and 15(c) are called thea0-f0 mixing. Themπππ distributions
are shown in Fig. 16(a). The πþπ−π0 distribution is almost
twice as large as the π0π0π0 distribution. The mπππ distri-
butions have a single peak at ∼1.4 GeV.
Contributions from the diagrams of Figs. 15(a)–15(d) are

separately shown in Fig. 16(b). The K�ðκÞK̄K triangle loop
diagram of Fig. 15(a) generates a clear peak. As has been
discussed in the literature, this K�K̄K triangle loop is
significantly enhanced by a TS occurring at E ∼ 1.40 GeV.
The κK̄K triangle loop without a TS gives a smaller
contribution. The TS enhancement is larger around the
higher end of the TS energy range since the p-wave K�K̄
pair suppresses the TS enhancement around the lower end.
This explains the peak position in Fig. 16.
The a0-f0 mixing contribution is very small. This is

because ηð1405=1475Þ → a0ð980Þπ is very little as seen in
Fig. 5(a). This small branching is required by the exper-
imental ratio of Eq. (25). The two-loop mechanisms of
Fig. 15(d) are sizable; the second loop involves a TS. A part

of the two-loop contribution is from mechanisms where the
two loops are mediated by vHLS in Eq. (14). The coherent
sum of the mechanisms in Fig. 15 (green diamonds in
Fig. 16) mostly explain the full calculation (red triangles).
We confront our predictions for the πþπ−π0 and π0π0π0

lineshapes with the BESIII data [24] in Figs. 17(a)
and 17(b), respectively. Our model correctly predicts the
peak position. This remarkable agreement suggests that the
peak position is determined by a kinematical effect (TS) that
does not depend on dynamical details. However, the peak
width from our calculation seems somewhat broader than the
data; we will come back to this point later.
In Fig. 18, we also compare the mπþπ− distribution from

our full calculation with the BESIII data [24]. Again, the
agreement is reasonable, showing the sound predictive
power of the coupled-channel model that appropriately
consider the relevant kinematical effect for the isospin
violation. The f0ð980Þ-like peak width (∼10 MeV) is
much narrower than the world average (∼50 MeV) [15].
This occurs because the ðK�ÞKþK− and ðK�ÞK0K̄0 loops
in Fig. 15 almost exactly cancel with each other due to the
isospin symmetry, except in a small window (∼8 MeV) of
2mK� < mππ < 2mK0 where the two loops are rather
different and the cancellation is incomplete. Furthermore,
the TS enhances the f0ð980Þ-like peak. Therefore, the
f0ð980Þ pole plays a minor role in developing the peak
in Fig. 18.

FIG. 15. Main mechanisms for isospin-violating η� → πππ decay included in Fig. 1(c): (a) isospin-violating K�ðκÞK̄K triangle loop,
(b) isospin-conserving K�ðκÞK̄K triangle loop followed by a0-f0 mixing, (c) direct decay to a0ð980Þπ followed by a0-f0 mixing, and
(d) isospin-conserving K�ðκÞK̄π triangle loop followed by isospin-violating πK̄�ðκ̄ÞKK̄ box loop.

0

1

 1.3  1.4  1.5  1.6

(a)

d�

�


dm
��
� 

(a
.u

.)

m��� (GeV)

�+���0

�0�0�0

0

1

 1.3  1.4  1.5  1.6

(b)

m�+���0 (GeV)

(a+b+c+d)

(a)

(b)

(c)

(d)

FIG. 16. mπππð¼ EÞ distributions for J=ψ → γð0−þÞ →
γðπππÞ predicted by the default model. (a) lineshapes and
relative magnitudes of the πþπ−π0 and π0π0π0 final states.
(b) Contributions to the πþπ−π0 final state from the diagrams
in Figs. 15(a)–15(d).

0

50

100

150

200

250

 1.2  1.4  1.6  1.8

(a)

x
 e

v
e
n
ts

/(
0
.0

2
 G

e
V

)

m�+���0 (GeV)

Full

BG

BESIII

0

10

20

30

40

50

60

 1.2  1.4  1.6  1.8

(b)

m�0�0�0 (GeV)

FIG. 17. mπππð¼ EÞ distributions for J=ψ → γð0−þÞ → γðπππÞ
in comparison with the BESIII data [24] for (a) πþπ−π0 and
(b) π0π0π0 final states. The full calculations are smeared with the
bin width, scaled to fit the data, and augmented by the back-
ground polynomials (BG) from Ref. [24]. Figure 17(a) is taken
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How do ηð1405Þ and ηð1475Þ resonances work in
J=ψ → γðπππÞ? We address this question by using the
models shown in Fig. 11(a). In the figure, the models
labeled by gJ=ψ ½α¼1�γ ¼ 0 and gJ=ψ ½α¼3�γ ¼ 0 do not have
J=ψ → γηð1405Þ and J=ψ → γηð1475Þ couplings, respec-
tively, and they are normalized to have the same peak
height in the mKSKSπ

0 distribution. Then, we use them to
calculate J=ψ → γðπþπ−π0Þ as shown in Fig. 11(b). For the
model of gJ=ψ ½α¼3�γ ¼ 0, the peak positions are almost the
same for KK̄π and πππ final states. This is because
ηð1405Þ → πππ is dominant and the ηð1405Þ mass and
the TS region overlap well. However, the peak width is
narrower for πππ because the TS region is narrower than
the ηð1405Þ width. On the other hand, the model of
gJ=ψ ½α¼1�γ ¼ 0 gives a significantly suppressed mπππ dis-
tribution in comparison with the model of gJ=ψ ½α¼3�γ ¼ 0.
This is because the ηð1475Þ mass is outside of the TS
region and ηð1475Þ → πππ is not enhanced. In this way, we
understand the origins of the different KK̄π and πππ
lineshapes in Fig. 11.
Finally, we compare ratios of KK̄π and πππ branching

fractions from our model with the experimental counter-
parts. Using the KK̄π and πππ branching ratios in
Refs. [15,24], we have the experimental ratios

Rexp
3 ¼ Γ½J=ψ → γηð1405=1475Þ → γðπþπ−π0Þ�

Γ½J=ψ → γηð1405=1475Þ → γðKK̄πÞ�

¼ ð1.50� 0.11� 0.11Þ × 10−5

ð2.8� 0.6Þ × 10−3

¼ 0.004 − 0.007; ð32Þ

and

Rexp
4 ¼ Γ½J=ψ → γηð1405=1475Þ → γðπ0π0π0Þ�

Γ½J=ψ → γηð1405=1475Þ → γðKK̄πÞ�

¼ ð7.10� 0.82� 0.72Þ × 10−6

ð2.8� 0.6Þ × 10−3

¼ 0.002 − 0.003: ð33Þ
Our coupled-channel model predicts

Rth
3 ¼ 0.0020− 0.0021; Rth

4 ¼ 0.0010− 0.0011; ð34Þ

which is significantly smaller than the data. A possible
reason for the deficit is that we do not consider a
contribution from the JPC ¼ 1þþ partial wave that includes
f1ð1285Þ and f1ð1420Þ. The BESIII analysis [29] found
that 20–30% of J=ψ → γðKSKSπ

0Þ is from the 1þþ con-
tribution in which f1ð1420Þ → K�K̄ is a dominant mecha-
nism. Considering the consistency with J=ψ → γðKK̄πÞ,
J=ψ → γðπππÞ should come not only from the mechanisms
of Fig. 15 but also from similar mechanisms that originate
from f1 decays. In particular, the triangle diagram from the
f1ð1420Þ decay similar to Fig. 15(a) would be significantly
enhanced by the TS, since the f1ð1420Þ mass and width
have a good overlap with the TS region. Furthermore,
f1ð1420Þ creates an s-waveK�K̄ pair while ηð1405Þ creates
a p-wave pair. Thus, the triangle mechanism from f1ð1420Þ
is more enhanced by the TS than that from ηð1405Þ. This
1þþ contribution might explain the difference between our
prediction of Eq. (34) and the experimental ratios of
Eqs. (32) and (33). We also note that the BESIII [24] did
not separate out a possible f1ð1420Þ contribution from
Γ½J=ψ → γηð1405=1475Þ → γðπππÞ� in Eqs. (32) and (33).
The stronger TS enhancement would create a sharper peak
in the mπππ lineshape. In Fig. 17, our 0−þ model shows a
peak that is somewhat broader than the data. By adding a
sharper 1þþ peak, the data might be better fitted.

V. SUMMARY AND FUTURE PROSPECTS

Whether ηð1405=1475Þ is one or two states has been a
controversial issue. The recent BESIII amplitude analysis
of J=ψ → γKSKSπ

0 made important progress by claiming
two states with a high confidence level. This analysis was
based on ∼1010 J=ψ decay samples which is significantly
more precise than earlier ηð1405=1475Þ-related data.
However, the BESIII analysis used a simple Breit-
Wigner amplitude for ηð1405=1475Þ. For a more reliable
determination of the ηð1405=1475Þ poles and their decay
dynamics, a three-body unitary coupled-channel analysis is
desirable.
Thus, we developed a model for radiative J=ψ decays to

three pseudoscalar-meson final states of any partial wave
(JPC). Also, a slight extension was made to include the
γρðρ → πþπ−Þ final state. The main components of the
model are two-body πK, ππ, KK̄, and πη scattering models
that generate K�

0ð700Þð¼ κÞ, K�ð892Þ, f0ð500Þð¼ σÞ,
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f0ð980Þ, a0ð980Þ, and a2ð1320Þ resonance poles in the
scattering amplitudes. The two-body scattering models as
well as bare resonance states were implemented into the
three-body coupled-channel scattering equation (Faddeev
equation). By solving the equation, we obtained the three-
body unitary amplitudes with which we described the final-
state interactions in the radiative J=ψ decays.
Using BESIII’s JPC ¼ 0−þ amplitude for J=ψ →

γKSKSπ
0, we generated KSKSπ

0 Dalitz plot pseudodata
for 30 energy bins in 1.3 GeV ≤ mKSKSπ

0 ≤ 1.6 GeV. Then,
the pseudodata were fitted with the coupled-channel model.
The experimental branching ratios of ηð1405=1475Þ →
ηππ and ηð1405=1475Þ → γρ relative to that of ηð1405=
1475Þ → KK̄π were simultaneously fitted. We obtained a
reasonable fit with two bare η� states, while we did not
find a reasonable solution with one bare η� state. A
noteworthy difference from the BESIII amplitude model
is that the a0ð980Þπ contribution is dominant (very small)
in the BESIII (our) model. The small a0ð980Þπ contribu-
tion is required by the empirical branching ratio of
ηð1405=1475Þ → ηππ that was not considered in the
BESIII analysis.
Our 0−þ amplitude was analytically continued to reach

three poles in the ηð1405=1475Þ region. Two poles
corresponding to ηð1405Þ were found near the K�K̄
threshold, and are located on different RSs of the K�K̄
channel. Another pole is ηð1475Þ. We made 50 bootstrap
fits, and estimated statistical uncertainties of the pole
positions (Table I). This is the first pole determination
of ηð1405=1475Þ and, furthermore, the first-ever pole
determination from analyzing experimental Dalitz plot
distributions with a manifestly three-body unitary coupled-
channel framework.
The obtained model was used to predict the ηππ and

γπþπ− lineshapes of J=ψ → γð0−þÞ → γðηππÞ and γðγρÞ
processes. The predicted lineshapes are process-dependent
and reasonably consistent with the existing data. We also
applied the model to the isospin-violating J=ψ → γð0−þÞ →
γðπππÞ. The importance of the TS from the K�K̄K loop was
clarified, while the a0ð980Þ-f0ð980Þ mixing gave a tiny
contribution. Furthermore, the two-loop contribution was
calculated for the first time, and this contribution was shown
to significantly enhance the isospin violation. The predicted
πππ and πþπ− lineshapes agree well with the BESIII data.
Although the predicted branching fraction underestimates
the data, we may expect the 1þþ partial wave including
f1ð1420Þ to fill the deficiency.
Here, we stress that all of the above conclusions are based

on the Dalitz plot pseudodata including only the 0−þ
contribution, and on the current branching ratios of
ηð1405=1475Þ → ηππ and ηð1405=1475Þ → γρ relative to
that of ηð1405=1475Þ → KK̄π. Since all of this experimen-
tal information was extracted with simpler Breit-Wigner
models, our results might be biased. This situation encour-
ages further studies.

In the next step, we will extend the present analysis by
including more partial waves such as 1þþ and 2þþ, and
directly analyze the BESIII data on J=ψ → γKSKSπ

0.
Then, we can perform the partial-wave decomposition with
our unitary coupled-channel framework by ourselves. With
the 0−þ amplitude obtained in this way, the two-pole
solution of ηð1405=1475Þ needs to be reexamined. Also,
we can consistently study the relevant resonances such as
ηð1405=1475Þ and f1ð1420Þ with the unitary coupled-
channel framework.
Our model can be easily applied to other decay processes

that could involve ηð1405=1475Þ by simply changing the
initial vertex of Eq. (4) and keeping the rest the same. These
processes include ψð2SÞ → ωðKK̄πÞ [51], ψð2SÞ →
ϕðηππÞ [52], J=ψ → ωðηπþπ−Þ [53], J=ψ → ωðKK̄πÞ,
ϕðKK̄πÞ, ηðK0

SK
�π∓Þ [54], and χc0 → ηðππηÞ, ηðKK̄πÞ.

It would be important to analyze these various processes to
establish the nature of ηð1405=1475Þ.
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APPENDIX A: TWO-MESON SCATTERING
MODELS

1. Formulas

We develop a unitary coupled-channel model for each of
the ππ, πK, and πη partial-wave scatterings. Let us consider
a ab → a0b0 scattering with total energy E. A partial wave is
specified by the total angular momentum L and total isospin
I. The incoming and outgoing momenta are denoted by q
and q0, respectively. Suppose that the scattering can be
described with a contact interaction

vLIa0b0;abðq0; qÞ ¼ wLI
a0b0 ðq0ÞhLIa0b0;abwLI

abðqÞ; ðA1Þ

where hLIa0b0;ab is a coupling constant. We also introduce a
vertex function wLI

abðqÞ in the form of

wLI
abðqÞ ¼

1ffiffiffiffiffiffiffiffi
Bab

p ½1þ ðq=bLIabÞ2�−2−L=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EaðqÞEbðqÞ

p �
q
mπ

�
L
; ðA2Þ
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where bLIab is a cutoff and Bab is a factor associated with the
Bose symmetry, with Bab ¼ 1=2 for identical particles a
and b and Bab ¼ 1 otherwise. The partial-wave amplitude is
then given by

tLIa0b0;abðq0; q;EÞ ¼
X
a00b00

wLI
a0b0 ðq0ÞτLIa0b0;a00b00 ðEÞ

× hLIa00b00;abw
LI
abðqÞ; ðA3Þ

with

½ðτLIðEÞÞ−1�a0b0;ab ¼ δa0b0;ab − σLIa0b0;abðEÞ; ðA4Þ

σLIa0b0;abðEÞ ¼
Z

dq q2
BabhLIa0b0;ab½wLI

abðqÞ�2
E − EaðqÞ − EbðqÞ þ iϵ

: ðA5Þ

Next, we also include bare R excitation mechanisms in
the interaction as

VLI
a0b0;abðq0; q;EÞ ¼

X
R

fLIa0b0;Rðq0Þ
1

E −mR
fLIR;abðqÞ

þ vLIa0b0;abðq0; qÞ; ðA6Þ

with mR being the bare R mass. A bare R → ab vertex
function is denoted by fLIab;RðqÞ and fLIR;abðqÞ ¼ fLIab;RðqÞ;
an explicit form is given in Eq. (7). With the interaction of
Eq. (A6), the resulting scattering amplitude is given by

TLI
a0b0;abðq0; q;EÞ ¼

X
R0;R

f̄LIa0b0;R0 ðq0;EÞτLIR0;Rð0; EÞf̄LIR;abðq;EÞ

þ tLIa0b0;abðq0; q;EÞ: ðA7Þ

The second term is given in Eq. (A3). The dressed R → ab
vertex, denoted by f̄ab;R, is given by

f̄LIab;Rðq;EÞ ¼ fLIab;RðqÞ þ
X
a0b0

Z
dq0 q02

×
Ba0b0tLIab;a0b0 ðq; q0;EÞfLIa0b0;Rðq0Þ
E − Ea0 ðq0Þ − Eb0 ðq0Þ þ iϵ

; ðA8Þ

f̄LIR;abðq;EÞ ¼ fLIR;abðqÞ þ
X
a0b0

Z
dq0 q02

×
Ba0b0fLIR;a0b0 ðq0ÞtLIa0b0;abðq0; q;EÞ
E − Ea0 ðq0Þ − Eb0 ðq0Þ þ iϵ

: ðA9Þ

The dressed Green function for R, τLIR0;Rðp; EÞ, in Eq. (A7) is
given in Eqs. (8) and (9) with fab;R0 being replaced by f̄ab;R0.
The partial-wave amplitude TLI

a0b0;ab in Eq. (A7) is related
to the S-matrix by

sLIab;abðEÞ ¼ ηLIe2iδLI

¼ 1 − 2πiρabBabTLI
ab;abðqo; qo;EÞ; ðA10Þ

where δLI and ηLI are the phase shift and inelasticity,
respectively, qo is the on-shell momentum (E ¼ EaðqoÞþ
EbðqoÞ), and ρab ¼ qoEaðqoÞEbðqoÞ=E is the phase-space
factor.

2. Fits to ππ, πK, and πη scattering data

In our unitary coupled-channel model for describing the
radiative J=ψ decays in the ηð1405=1475Þ region,
ππ − KK̄, πK, and πη − KK̄ coupled-channel scattering
amplitudes of E≲ 1.2 GeV are the major components. Our
choices for the scattering models such as the number of R
and contact interactions are specified in Table II. We
determine the parameters in the two-meson scattering
models such as hLIa0b0;ab, bLIab, mR, gab;R, and cab;R in
Eqs. (A1), (A6), and (7) using experimental information.
For the ππ − KK̄ and πK s- and p-wave scattering
amplitudes, we fit empirical scattering amplitudes by
adjusting the model parameters and obtain reasonable fits,
as seen in Figs. 19(a)–19(e).
Regarding the πη − KK̄ s-wave scattering amplitude that

includes the a0ð980Þ pole, we consider two experimental
inputs. First, our a0ð980Þ propagator [τLIR0;R in Eq. (A7)] is
fitted to the denominator of the a0ð980Þ amplitude [Eq. (4)
of Ref. [60]] from the BESIII amplitude analysis of
χc1 → ηπþπ−. Second, the ratio of coupling strengths

TABLE II. Description of two-meson scattering models. Partial waves are specified by the orbital angular
momentum L and isospin I.

R fL; Ig Number of bare states Contact interaction R-decay channels Number of poles

f0 f0; 0g 2 ππ; KK̄ → ππ; KK̄ ππ, KK̄ 3
ρð770Þ f1; 1g 1 � � � ππ 1
κ (K�

0ð700Þ) f0; 1=2g 1 Kπ → Kπ Kπ 1
� � � f0; 3=2g 0 Kπ → Kπ � � � 0
K�ð892Þ f1; 1=2g 1 Kπ → Kπ Kπ 1
a0ð980Þ f0; 1g 1 � � � ηπ, KK̄ 1
a2ð1320Þ f2; 1g 1 � � � ηπ, KK̄, ρð770Þπ 1
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(including the form factor) between the a0ð980Þ → πη and
a0ð980Þ → KK̄ is fitted to an empirical value of 1.03 from
Ref. [46]. Furthermore, the relative phase between the πη →
πη and πη → KK̄ amplitudes is chosen to be consistent with
those from the chiral unitary model [61]. In Fig. 19(f), we
show our πη → πη and πη → KK̄ scattering amplitudes
defined by

fLIa0b0;abðEÞ ¼ π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρa0b0Ba0b0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρabBab

p
TLI
a0b0;abðq0o; qo;EÞ:

ðA11Þ
Finally, we obtain the πη − KK̄ − ρπ d-wave scattering

amplitude with the a2ð1320Þ pole by adjusting the model
parameters so that the mass and width of a2ð1320Þ and
branching fractions of a2ð1320Þ → πη and a2ð1320Þ → KK̄
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are reproduced; all of the fitted a2ð1320Þ properties are from
the PDG listing [15].
From the obtained partial-wave amplitudes, resonance

poles are extracted and presented in Tables III–V. Overall,
the pole locations are consistent with those listed in the
PDG [15]. Numerical values of the fitting parameters are
given in Tables VI–VIII.

APPENDIX B: PARAMETERS FITTED
TO RADIATIVE J=ψ DECAY DATA

Table IX presents model parameters determined by fitting
J=ψ → γð0−þÞ → γðKSKSπ

0Þ Dalitz plot pseudodata and
the branching fractions of ηð1405=1475Þ → ηπþπ− and
ηð1405=1475Þ → ρ0γ relative to that of ηð1405=1475Þ →
KK̄π. When a two-meson scattering model includes contact
interactions, we consider a direct bare M� → abc decay
where two pseudoscalar mesons (ab) have an orbital
angular momentum L and a total isospin I. We describe
this bare vertex function with [cf. Eq. (12)]

FðcðabÞLIÞl;M�
i
ðqÞ ¼ C

M�
i

ðcðabÞLIÞl

�
q
mπ

�
l

×
½1þ q2=ðΛM�

i
ðcðabÞLIÞlÞ2�−2−

l
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4EcðqÞmM�
i

q ; ðB1Þ

TABLE IV. Pole positions (Mpole) in our πK scattering ampli-
tudes. The RSs of the pole positions are specified by ðsπKÞ.
fL; Ig Mpole (MeV) RS Name

f0; 1=2g 665 − 297i (u) κ
f1; 1=2g 902 − 30i (u) K�ð892Þ

TABLE V. Pole positions (Mpole) in our πη scattering ampli-
tudes. The RSs of the pole positions are specified by
ðsπη; sKK̄; sρπÞ.

fL; Ig Mpole (MeV) RS Name

f0; 1g 1070 − 112i ðup−Þ a0ð980Þ
f2; 1g 1322 − 56i ðuuuÞ a2ð1320Þ

TABLE VI. Parameter values for the πK partial-wave scattering
models. The ith bare R state (Ri) has a mass of mRi

, and it decays
into h1 and h2 particles with couplings (gh1h2;Ri

) and cutoffs
(ch1h2;Ri

). Couplings and cutoffs for contact interactions are
denoted by hh1h2;h1h2 and bh1h2 , respectively. The parameters
are defined in Eqs. (A1), (A2), (A6), and (7). For simplicity, we
suppress the superscripts LI of the parameters. The mass and
cutoff values are given in units of MeV, and the couplings are
dimensionless.

RfL; Ig κðK�
0Þ f0; 1=2g f0; 3=2g K� f1; 1=2g

mR1
1239 � � � 926

gπK̄;R1
5.79 � � � 0.74

cπK̄;R1
1000 � � � 752

hπK̄;πK̄ 0.59 0.47 −0.01
bπK̄ 1000 1973 752

TABLE VII. Parameter values for the ππ partial-wave scatter-
ing models. See Table VI for the description.

RfL; Ig f0 f0; 0g ρ f1; 1g
mR1

1007 834
gππ;R1

6.76 1.03
cππ;R1

1458 1040
gKK̄;R1

−4.75 � � �
cKK̄;R1

711 � � �
mR2

1677 � � �
gππ;R2

−5.87 � � �
cππ;R2

1458 � � �
gKK̄;R2

10.21 � � �
cKK̄;R2

711 � � �
hππ;ππ 0.65 � � �
hππ;KK̄ −0.42 � � �
hKK̄;KK̄ −1.11 � � �
bππ 1458 � � �
bKK̄ 711 � � �

TABLE III. Pole positions (Mpole) in our ππ scattering ampli-
tudes. The RSs of the pole positions are specified by ðsππ ; sKK̄Þ,
where sx ¼ pðuÞ indicates that a pole is on the physical
(unphysical) sheet of the channel x; “−” indicates no coupling
to the channel.

fL; Ig Mpole (MeV) RS Name

f0; 0g 438 − 311i ðupÞ σ
1000 − 20i ðupÞ f0ð980Þ
1420 − 224i ðuuÞ f0ð1370Þ

f1; 1g 769 − 78i ðu−Þ ρð770Þ

TABLE VIII. Parameter values for the πη partial-wave scatter-
ing models. See Table VI for the description.

RfL; Ig a0 f0; 1g a2 f2; 1g
mR1

1233 1436
gπη;R1

−3.08 0.09
cπη;R1

1973 1000
gKK̄;R1

2.94 0.07
cKK̄;R1

1973 1000
gρπ;R1

� � � 0.33
cρπ;R1

� � � 1000
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whereC
M�

i
ðcðabÞLIÞl andΛ

M�
i

ðcðabÞLIÞl are coupling and cutoff parameters, respectively. This bare vertex function is used in a dressed

vertex and a self-energy in a similar manner as the bare vertex FðcRÞl;M�
i
in Eq. (12) is used in Eqs. (10), (11), and (16).
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