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We use anti-de Sitter/quantum chromodynamics based holographic light-front wavefunction (LFWF) for
vector meson, in conjunction with the dipole model to investigate the cross sections data for the diffractive
and exclusive J=ψ and ψð2SÞ production. We confront the experimental data using a new explicit form of
the holographic LFWF, where the longitudinal confinement dynamics in the light-front Schrödinger
equation is captured by the ’t Hooft equation of (1þ 1)-dim, in large Nc approximation, in addition to the
transverse confinement dynamics governed by the confining mass scale parameter κ in vector mesons. We
obtain the LFWF parameters from fitting to the exclusive J=ψ electroproduction data from the electron-
proton collision at the Hadron Electron Ring Accelerator collider for mc ¼ 1.27 GeV. Our results suggest
that the dipole model together with holographic meson LFWFs with longitudinal confinement is able to
give a successful description for differential scattering cross section for exclusive J=ψ electroproduction for
H1 and ZEUS data. We also predict the rapidity distributions of differential scattering cross section and
total photoproduction of J=ψ and ψð2SÞ states in proton-proton ultraperipheral collisions (UPCs) at center
of mass energy

ffiffiffi
s

p ¼ 7; 13 TeV. Using the minimum set of parameters, our predictions for the UPCs are in
good agreement with the recent experimental observations of UPCs at ALICE and LHCb Collaborations.

DOI: 10.1103/PhysRevD.109.014019

I. INTRODUCTION

Deep inelastic scattering (DIS) experiments and exclu-
sive diffractive processes in electron-proton (ep) collisions,
such as deeply virtual Compton scattering (DVCS) and
exclusive vector meson production (VMP), can provide
valuable information about the parton saturation regime at
small x [1]. The small-x physics are important because of
their implications in our understanding of the parton
density functions in ultraperipheral collisions (UPCs) in
proton-proton, proton-nuclei, and nuclei-nuclei interactions
at the LHC, Relativistic Heavy Ion Collider, and Large
Hadron Electron Collider experiments. These days the high
energy photons in UPCs are extensively used as a probe to
study the internal structure of protons and strong interaction
dynamics in quantum chromodynamics (QCD).
One of the thoroughly studied UPC processes at the

LHCb is exclusive photoproduction of heavy vector mes-
ons, in particular, photoproduction of J=ψ and ψð2SÞ.

Several measurements of exclusive J=ψ and ψð2SÞ pro-
duction have been reported by the H1 and ZEUS collab-
orations at the Hadron Electron Ring Accelerator (HERA)
ep collider [2,3]. The CDF Collaboration at the Tevatron
collider reported the exclusive charmonia production in pp̄
collisions at

ffiffiffi
s

p ¼ 1.96 TeV [4]. The first measurement of
exclusive J=ψ and ψð2SÞ production cross sections in pp
collisions was made by the LHCb Collaboration at

ffiffiffi
s

p ¼
7 TeV [5,6] and then at

ffiffiffi
s

p ¼ 13 TeV [7]. These exper-
imental measurements are significant as they extended the
photon-proton center of mass energy to reach up to
∼2 TeV. Exclusive J=ψ photoproduction off protons in
ultraperipheral p-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV was
investigated by the ALICE Collaboration [8,9]. The ratio of
cross sections ψð2SÞ to J=ψ have been measured by the H1
[10] and ZEUS Collaborations [11,12] for the exclusive
and photoproduction data. Further, more precise data on
J=ψ photoproduction and exclusive production is expected
from the LHC run 3 to give better understanding of the
parton distribution functions at small x.
The dipole model is an important theoretical framework

to provide a unified framework to study the exclusive and
inclusive diffractive data in ep collisions at HERA and
inclusive particle production data in UPCs [1,13]. An
important ingredient for particle production in dipole model
approach is that the scattering amplitude for the singly
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diffractive processes γ�p → Vp, where V is a vector meson
or a real photon γ in DVCS, factorizes into a product of
light-front wavefunctions (LFWFs) associated with the
initial state photon and final state vector meson and a
dipole-nucleon cross section. Though, the exact form of the
photon wavefunction is known exactly in perturbative
QCD, the vector meson wavefunction remains an open
question.
In the recent past, a new analytical insight into the meson

LFWFs was proposed by Brodsky and de Téramond in a
semiclassical relativistic approximation in the light-front
Schrödinger wave equation (LFSWE). It has been shown
that the LFSWE in the chiral limit of massless quarks in
physical space-time can be mapped with the equation of
motion of spin-J strings in the fifth dimension of anti-de
Sitter (AdS) space, thus establishing a connection between
light-front QCD and AdS5, widely known as the Brodsky
and de Téramond “light-front holography” (BdT-LFH)
[14–16]. This approach has been successfully applied to
investigate the hadron spectroscopy, including the Regge
trajectories, hadron form factors, parton distributions,
infrared behavior of the strong coupling, etc. [17–19].
The precise mapping of the electromagnetic/gravitational
form factors in the AdS space with the corresponding
expressions from light-front QCD in physical space-time
leads to the exact form of holographic LFWFs, referred as
the “BdT-LFWF.” In a series of previous work, it has been
shown that the BdT-LFWF together with the dipole model
successfully predict the cross section for the diffractive ρ
[20] and ϕ [21], when compared with the available data at
the HERA ep collider [22–24].
It is important to mention here that the “BdT-LFH”

approach discussed so far, addresses the chiral limit of
massless quarks where only the transverse dynamics of
hadrons were solved analytically and the longitudinal light-
front momentum fraction is frozen. Recently, there has
been a lot of attention on incorporating the longitudinal
dynamics for understanding the chiral dynamics, contribu-
tion of nonzero quark masses, and for identifying the
physical states in the excited states spectrum, etc. One of
the important phenomenological models for the longitudinal
confining interaction is based on one-gluon exchange inter-
action in basis light-front quantization [25–28].
Recently, another important approach viz. the ’t Hooft

model of (1þ 1)-dim, in large Nc limit [29], was employed
successfully to go beyond the BdT prescription [30]. It has
been proven that the ’t Hooft equation is complementary to,
and consistent with, the LFSWE and provides a global
description of the mass spectra of ground and excited states
of hadrons and tetraquarks, with a universal mass scale
parameter κ [31,32].

In view of the successes of ’t Hooft approach, we intend
to use the LFWFs obtained by solving the ’t Hooft equation
in the large Nc limit to confront the data for diffractive J=ψ
and ψð2SÞ production with the HERA experiment. We will
refer to this wavefunction as ’t Hooft LFWF. For this
purpose, we use the best fit set of parameters for the dipole
model [21] obtained via fitting to the recent and precise
HERA data on inclusive deep inelastic scattering [33]. We
obtain the parameters of the LFWFs via χ2 minimization to
the recent measurement of the electroproduction data at
HERA. Furthermore, we intend to investigate the impli-
cation of the LFWFs in the exclusive J=ψ and ψð2SÞ
photoproduction and rapidity distribution in proton-proton
collisions in ultraperipheral as a probe of the QCD at high
energies.
The plan of the work is as follows: We begin with briefly

reviewing the dipole model in Sec. II and then discuss the
holographic ’t Hooft light-front meson wavefunction in
Sec. III. We report the predictions of the dipole cross section
with the holographic meson wavefunction to compute the
diffractive cross sections for J=ψ and ψð2SÞ production and
ultraperipheral collisions in Sec. IV. We discuss results and
conclusions in the Sec. V.

II. THE DIPOLE MODEL

It has been widely established that the exclusive dif-
fractive VMPs and DVCS processes can be explained by
the dipole model of high-energy scattering. In the dipole
picture, the scattering amplitude for the diffractive process
γ�p → Vp, with an exclusive final state vector meson
V ∼ ρ, ϕ, J=ψ , ψð2SÞ, ϒ or a real photon γ in DVCS in the
forward limit, factorize into an overlap of incoming photon
and exclusive final state vector meson LFWF and a
universal dipole-proton scattering amplitude [34]. In the
light-front form, the incoming virtual photon γ� at first
fluctuates into a neutral quark-antiquark pair (qq̄) which
forms a dipole. The dipole than interacts with the proton via
gluon exchanges, and then the qq̄ pair recombines to form
either a final-state exclusive vector meson or a real photon.
The lifetime of a qq̄ dipole at small x is much larger than its
typical interaction time with target proton or nuclei [35].
The differential cross section for the exclusive VMP in

the final state can be expressed in terms of the imaginary
part of scattering amplitude [35,36]:

dσγ
�p→Vp
λ

dt
¼ 1

16π
jℑmAλðs; t;Q2Þj2: ð1Þ

The scattering amplitude for the diffractive process in
Eq. (1) can be expressed as

ℑmAλðs; t;Q2Þ ¼ 2
X
h;h̄

Z
d2r

Z
dx

Z
d2bΨγ�;λ

h;h̄
ðr; x;Q2ÞΨV;λ

h;h̄
ðr; xÞe−i½b−ð1−xÞr�·ΔN ðxm; r;bÞ; ð2Þ
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where N ðxm; r;bÞ represents the proton-dipole scattering
amplitude, and Δ2 ¼ −t is the squared momentum transfer
at the proton vertex. The LFWFs for photon and proton
Ψγ�=V;λ

h;h̄
ðr; xÞ are the probability amplitudes for the virtual

photon or vector meson to fluctuate into a qq̄ dipole for a
given helicity configuration h (h̄) of the quark (antiquark).
The LFWFs depend on the fraction of light-front momen-
tum of the photon (or vector meson) carried by the quark x,
the transverse separation between the quark and antiquark
r, photon’s virtuality Q2, and impact parameter separation
between the dipole and proton b. The label λ ¼ L, T
denotes the photon or vector meson longitudinal and
transverse polarizations. We will discuss in detail the
explicit form of the LFWFs for the photon and mesons
in the next section.
For the case of diffractive processes, the b-integration

gives the four momentum transfer t dependence of the cross
section. In the forward limit [34], the impact parameter
dependence of the dipole amplitude factorizes as

σ̂ðqq̄Þ ¼ 2

Z
d2bN ðxm; r;bÞ ¼ 2

Z
d2bN ðxm; rÞTðbÞ

¼ σ0N ðxm; rÞ: ð3Þ

In this way, the impact parameter dependence in Eq. (2) can
be treated as an overall normalization factor σ0. The factor
σ0 can be obtained via a fit to DIS data on F2 structure
functions.
The expression for the scattering amplitude N ðx; rÞ is

obtained by smoothly interpolating between two limiting
types of behavior for the varying dipole sizes. For small
dipole sizes, r ≪ 2=Qs, N is obtained from the saddle
point approximation to the leading-order (LO) Balitsky-
Kovchegov (BK) equation [37–39], and for large dipole
sizes, r ≫ 2=Qs, the Levin-Tuchin solution of the BK
equation inside the saturation region is used [40]. The
dipole-proton scattering amplitude is therefore expressed as

N ðxm;rQsÞ¼N 0

�
rQs

2

�
2½γsþ lnð2=rQsÞ

kλlnð1=xmÞ�
for rQs ≤ 2

¼ 1− exp½−Aln2ðBrQsÞ� for rQs > 2; ð4Þ

where the saturation scale Qs ≡QsðxÞ ¼ ðx0=xmÞλ=2 GeV.
The coefficientsA and B in Eq. (4) are determined from the
fact that the N ðxm; rQsÞ and its derivative with respect to
rQs are continuous at rQs ¼ 2. This leads to the following
expressions:

A¼−
ðN 0γsÞ2

ð1−N 0Þ2 ln½1−N 0�
; B¼ 1

2
ð1−N 0Þ−

ð1−N 0Þ
N 0γs : ð5Þ

The scattering amplitude for the elastic scattering of the
dipole on the proton contains all the high energy QCD of

the dipole-proton interaction. It depends on the photon-
proton center of mass energy W via the modified Bjorken

variable xm where xm ¼ xBjð1þ M2
V

Q2 Þ with xBj ¼ Q2

W2 [36].
The dipole model parameter k and anomalous dimension

coefficient γs were fixed to 9.9 and 0.63 at the LO Balitsky-
Fadin-Kuraev-Lipatov (BFKL) predictions [34]. The cen-
tral fits are obtained at a fixedN 0 ¼ 0.7, and the other three
parameters (σ0, x0, and, λ) were obtained via fitting the F2

structure functions data [35]. Further, it has been shown [41]
that allowing the anomalous dimension parameter at the
saturation scale to vary to a higher value, γs ¼ 0.74,
improves the fit to the F2 data. This predicted value of γs
is also significantly close to the value extracted from the
renormalization-group-improved next-to-leading order
BFKL kernel calculations [42].
Following Ref. [43], choosing the profile function TðbÞ

in Eq. (3) in the form

TðbÞ ¼ 1

2πBD
exp

�
−

b2

2BD

�
; ð6Þ

where BD is the diffractive slope parameter. Substituting
Eq. (6) in the Fourier transform over b in Eq. (2) gives the
diffractive cross section, decreasing exponentially with t as
expð−BDjtjÞ [11,12,44,45]. The t dependence of the cross
section in exponential form is expressed as

dσλ
dt

¼ 1

16π
½Aλðs; t ¼ 0Þ�2 expð−BDjtjÞ; ð7Þ

where BD is expressed as

BD ¼ N
�
14.0

�
1 GeV2

Q2 þM2
V

�
0.3

þ 1

�
; ð8Þ

with N ¼ 0.55 GeV−2 in accordance with the experimental
data [46,47].
The contribution of the real part of the scattering

amplitude can be incorporated in Eq. (7) for the differential
scattering amplitude as follows:

dσλ
dt

¼ 1

16π
½ℑmAλðs; t;Q2Þ�2 expð−BDjtjÞð1þ β2λÞ; ð9Þ

where the factor βλ is the ratio of real to imaginary parts of
the scattering amplitude expressed as [48]

βλ ¼ tan

�
π

2
αλ

�
with αλ ¼

∂ ln jℑmAλðx; tÞj
∂ ln ð1=xÞ : ð10Þ

Integrating differential scattering cross section in Eq. (9)
over t, one can obtain the transverse and longitudinal
contribution to the cross section. We considered the total
cross section for J=ψ electroproduction is σ ¼ σT þ 0.98σL
to be compared with the experimental data.
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Wewill now briefly discuss the photon and vector meson
light-front wavefunction. The explicit form of the photon
light-front wavefunction is obtained in the perturbative
methods in light-front QED in r space. The photon wave-
function to the lowest order in the electromagnetic coupling
αEM is expressed as [49–52]

Ψγ;L
h;h̄

ðr; x;Q2; mfÞ ¼
ffiffiffiffiffiffi
Nc

4π

r
δh;−h̄eef2xð1 − xÞQK0ðϵrÞ

2π
;

ð11Þ

Ψγ;T
h;h̄
ðr; x;Q2; mfÞ ¼ �

ffiffiffiffiffiffi
Nc

2π

r
eef

h
ie�iθrðxδh�;h̄∓ − ð1 − xÞ

× δh∓;h̄�Þ∂r þmfδh�;h̄�
iK0ðϵrÞ

2π
;

ð12Þ

where ϵ2 ¼ xð1 − xÞQ2 þm2
f, and K0ðϵrÞ is the modified

Bessel function. Here the quark massmf acts as an infrared
regulator as at Q2 → 0 or x → ð0; 1Þ, and the photon light-
front wavefunctions become sensitive to the nonzero quark
mass mf, which prevents the modified Bessel function
K0ðϵrÞ from diverging.
We will now discuss the vector mesons light-front

wavefunction, however, the explicit form of the wave-
function is not completely known using the present
perturbative techniques. In this work, we follow the non-
perturbative prescription in Ref. [51] for predicting the
meson light-front wavefunction. Taking an analogy from
the photon LFWF, the helicity dependent vector meson
LFWF consisting of a spinor, scalar part, and an unknown
nonperturbative wavefunction are expressed as [20,21]

ΨV;L
h;h̄

ðr; xÞ ¼ 1

2
δh;−h̄

�
1þ m2

f −∇2
r

xð1 − xÞM2
V

�
ΨLðr; xÞ; ð13Þ

and

ΨV;T
h;h̄

ðr; xÞ ¼ �½ie�iθrðxδh�;h̄∓ − ð1 − xÞδh∓;h̄�Þ∂r

þmfδh�;h̄��
ΨTðr; xÞ
2xð1 − xÞ ; ð14Þ

where Ψh;h̄ðr; xÞ is the nonperturbative part of the
wavefunction.
There are various prescriptions for modeling the non-

perturbative Ψhðr; xÞ part of the meson wavefunction.
Variants of quark models indicate that hadrons at rest
can be modeled simply by considering a Gaussian fluctua-
tions in transverse space, referred to as the boosted
Gaussian (BG) wavefunction [50,51,53]. The BG wave-
function is self-consistent, fully boost-invariant, and has a
proper short-distance behavior of xð1 − xÞ in the limit of
massless quarks. It has been used widely to describe

simultaneously the cross section data on diffractive vector
meson ρ;ϕ, and J=Ψ production using the dipole model,
impact parameter dependent models, and IP-sat models
[36,43,54,55]. Recently there has been interest in using the
dipole cross section extracted in Ref. [36] with the same
BG wavefunction to predict vector meson production in
ultraperipheral collisions at the LHC [56].

III. LONGITUDINAL CONFINEMENT IN
HOLOGRAPHIC MESON WAVEFUNCTIONS

In the past decade, a new insight into the meson
holographic light-front wavefunctionsΨL;Tðr; xÞ have been
obtained based on the semiclassical approximation of light-
front QCD with massless quarks, referred as the LFH
[14–16]. This approach, pioneered by Brodsky and de
Tŕamond, determines the effective potential based on the
uniquemapping between the equation ofmotion of the string
spin J modes in the AdS space and the Hamiltonian
formulation of (3þ 1)-dim QCD on the light-front form,
to obtain a Schrödinger-like equation for the hadrons. The
semiclassical approximation is successful in explaining
hadron spectroscopy, including tetraquarks and exotic states,
form factors, parton distribution, and the behavior of the
QCD running coupling in the nonperturbative domain, etc.
The valence meson light-front wavefunction in light-

front QCD are expressed as [18]

Ψðζ; x;φÞ ¼ eiLφ
ϕðζÞffiffiffiffiffiffiffiffi
2πζ

p XðxÞ; ð15Þ

where L≡ jLmax
z j being the light-front orbital angular

momentum quantum number, XðxÞ is the longitudinal,
and ϕðζÞ is the transverse part of wavefunction. In order to
completely specify the holographic wavefunction given by
Eq. (15), we need to specify the longitudinal XðxÞ and
transverse part ϕðζÞ of wavefunction. In “BdT approach,”
the longitudinal modes XðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − xÞp
χðxÞ are fixed

from the mapping of electromagnetic (or gravitational)
form factors in physical space-time to the AdS space [18].
The holographic mapping leads to χðxÞ ¼ 1, giving the
solution of longitudinal modes: XðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − xÞp
.

The transverse wavefunction ϕðζÞ is the solution of the
following LFSWE:

�
−

d2

dζ2
þ 4L2 þ 1

4ζ2
þU⊥ðζÞ

�
ϕðζÞ ¼ M2ϕðζÞ; ð16Þ

where U⊥ðζÞ is the confining potential at equal light-front
time, and M is the meson mass. The form of confining
potentially is uniquely determined from the underlying
conformal symmetry and a holographic mapping of vari-
able ζ to the fifth dimension of AdS space gives
ζ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − xÞp
r⊥. A quadratic dilaton field ðφðzÞ ¼

κ2z2Þ in the AdS background breaks the conformal
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invariance and leads to a harmonic oscillator potential in
physical space-time as [57]

U⊥ðζ; JÞ ¼ κ4ζ2 þ κ2ðJ − 1Þ: ð17Þ
Solving the LFSWE with the harmonic potential given

by Eq. (17) leads to the normalized eigenfunctions for
meson

ϕn;LðζÞ ¼ κ1þL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n!

ðnþ LÞ!

s
ζ1=2þL exp

�
−κ2ζ2

2

�
LL
n ðx2ζ2Þ:

ð18Þ
Importantly, this prescription predicts the massless pions as
expected in the chiral limit. It also correctly predicts the
Regge-like linear dependence of the meson mass squared
on the radial n and orbital quantum numbers L. This
information is further used to constraint the parameter κ
from the fit to the Regge slopes data [58]. Reference [18]
reports a universal κ ∼ 0.54 GeV for vector mesons.
The complete wavefunction for mesons in the position

space with the quark mass terms and polarizing part can be
expressed as

Ψλ
BdTðr; xÞ ¼ N λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p
exp

�
−
κ2xð1 − xÞr2⊥

2

�

× exp

�
−

m2
f

2κ2xð1 − xÞ
�
; ð19Þ

where the polarization-dependent normalization constant
N λ to be calculated using the following normalization
condition:

X
h;h̄

Z
d2r dxjΨV;λ

h;h̄
ðr; xÞj2 ¼ 1: ð20Þ

Recently, there has been a lot of interest in understanding
the longitudinal wavefunction XðxÞ dynamically for per-
forming the more realistic calculations of the mass spectrum
of hadrons. The main idea is to separate out the light-front
Schördinger equation for the longitudinal part that includes a
dynamical confining potential along with the contribution of
quark mass. Using this approach, a new phenomenological
longitudinal potential in the basis light-front quantization
approach was proposed, UBLFQ

k ðxÞ ¼ −σ2∂xðxð1 − xÞÞ∂x,
where σ is a mass scale parameter to explain the ground
states of light and heavy mesons, including their excited
states [59–61].
Another class of longitudinal potential models based on

instantaneous gluon exchange potential are the ones
obtained from the ’t Hooft model in the large-Nc limit
[29]. The ’t Hooft model based potential is confining in
nature and yields a longitudinal wavefunction consistent
with the AdS=QCD duality in the chiral limit. A few

decades ago, the ’t Hooft model was used extensively to
investigate the properties of mesons, such as, confinement,
Regge trajectories, etc. [29,62,63]. Recently, the idea of
exploiting the ’t Hooft model as a possible way out to go
beyond the BdT prescription and add longitudinal confine-
ment was first proposed in Ref. [30] for predicting the
decay constant of mesons. In a series of recent work
[31,32], authors have solved the ’t Hooft equation follow-
ing the work of Ref. [30], together with the holographic
Schrödinger equation, to provide a global description of the
mass spectrum of the ground and excited states of mesons,
baryons, and tetraquark with a universal mass scale κ.
These recent developments in the ’t Hooft model make it a
promising avenue for confronting the diffractive J=ψ and
ψð2SÞ vector mesons data.
We will now briefly discuss the ’t Hooft formalism. Note

that ’t Hooft derived a Schrödinger-like equation for the
longitudinal modes, starting from the QCD Lagrangian in
(1þ 1)-dim and in the large Nc approximation [29]:

�
m2

f

x
þ

m2
f̄

1 − x

�
XðxÞ þULðxÞXðxÞ ¼ M2

LXðxÞ; ð21Þ

with

ULðxÞXðxÞ ¼
g2

π
P
Z

dy
jXðxÞ − XðyÞj

ðx − yÞ
2

; ð22Þ

where g≡ gs
ffiffiffiffiffiffi
Nc

p
is the finite ’t Hooft coupling constant

with mass dimensions, and P denotes the principal value
prescription. It is worth mentioning here that while the
holographic Schrödinger equation is solved analytically,
the ’t Hooft equation does not have any exact analytical
solution. To find the numerical solution of the ’t Hooft
equation (21), we expand the longitudinal mode onto a
Jacobi polynomial basis χðxÞ ¼ P

n Cnfn, where Cn are
the expansion coefficient, and fn is the Jacobi polynomial
basis [30]. The resulting matrix representation of Eq. (21) is
then diagonalized numerically in fn basis to find the
wavefunction. This procedure guarantees that predicted
masses are independent of the choice of basis and remain
stable with respect to variations of basis parameters. For
equal-mass cases, the longitudinal equation obeys an x ↔
1 − x symmetry and the resultant ’t Hooft wavefunction for
mesonic states can be expressed as

Ψλ
’t Hooftðr; xÞ ∼ xβð1 − xÞβ exp

�
−
κ2xð1 − xÞr2⊥

2

�
: ð23Þ

IV. PREDICTING DIFFRACTIVE CROSS
SECTIONS AND ULTRAPERIPHERAL

PROTON-PROTON COLLISIONS

Having specified the formalism of dipole cross section
and the ’t Hooft LFWF, we will now discuss the various
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parameters needed to compute cross sections for diffractive
J=ψ and ψð2SÞ production. We use the dipole model
parameter k ¼ 9.9 (LO BFKL values) and N 0 ¼ 0.7
(central fit) [34]. Other model parameters σ0, λ, x0, and
γs were fixed from a high quality DIS data on structure
function F2 and reduced cross sections from HERA [35].
The idea behind the fitting is that the dipole-proton
scattering amplitude is a universal object and appears in
the formula for the fully inclusive DIS process: γ�p → X. If
we replace the vector meson in the final state by a virtual
photon in Eq. (2), then one can obtain the cross section for
DIS [35,36,43,47,48,64].
Using this procedure, the recent extraction of the dipole

model parameters was performed in Ref. [21] using the
highly precise combined data for the reduced cross section
given by the H1 and ZEUS Collaborations [33]. The best fit
set for the dipole model parameters, together with the
resulting χ2 per degrees of freedom (χ2=d:o:f), are present-
ing in Table I. The same set of parameters have been
successfully used for confronting the data for diffractive ρ
and ϕ production in Ref. [21], thereby testing the success of
dipole model parameters to the holographic wavefunction
for the light vector mesons. In this work, we use the same
set of parameters to make predictions for the diffractive J=ψ
and ψð2SÞ production.
In addition to the dipole model parameters, we find the

best fit set of parameters for the ’t Hooft LFWF to
investigate the J=ψ and ψð2SÞ production diffractive
HERA data. For the sake of generalization of the LFWF,
we consider a parametrization that accommodates the
numerical solution of ’t Hooft LFWF in Eq. (21) and is
very much similar to the boosted Gaussian form of the
LFWF. The complete wavefunction after adding the polari-
zation part is as follows:

ΨJ=ψ ;λ
’t Hooftðr;xÞ¼N λxβð1−xÞβ exp

�
−
κ2xð1−xÞr2⊥

2

�
: ð24Þ

Similarly for ψð2SÞ, we have

Ψψð2SÞ;λ
’t Hooftðr; xÞ ¼ N λxβð1 − xÞβð1 − ακ2xð1 − xÞr2⊥Þ

× exp

�
−
κ2xð1 − xÞr2⊥

2

�
; ð25Þ

where N λ is the polarization-dependent normalization
constant with the following condition:

X
h;h̄

Z
d2r dxjΨV;λ

h;h̄
ðr; xÞj2 ¼ 1: ð26Þ

It is customary to obtain important constraints on the
LFWF parameters of J=ψ and ψð2SÞ from the experimental
data on electronic decay width and electroproduction data.
We start by computing the chi-square per data point
(χ2=d:p:) in the (β, κ) parameter space for the available
electroproduction data from HERA (56 data points) [2,3]
and electronic decay width [58] for J=ψ state. Our predicted
best fit has a χ2=d:p: ¼ 34=57 ¼ 0.60 and is achieved with
κ ¼ 1.41 GeV and β ¼ 4.62. The new parameter α in
ψð2SÞ wavefunction is constrained from the orthogonality
conditions for the mesonic states. Further, better fits to the
data are even possible, if we allow the parameters β and κ to
depend on the polarization of the J=ψ and ψð2SÞ, but that
will add additional free parameters in the wavefunctions.
On the other hand, the numerical solution of Eq. (21) giving
a good fit simultaneously to the J=ψ and ψð2SÞ states mass
spectrum and Regge slopes is obtained using g ¼ 0.523
and mc ¼ 1.370 and predicts β ¼ 4.5. This result also
confirms that the numerical solution of ’t Hooft LFWF
(β ¼ 4.5) is significantly close to the our minimized
solution (β ¼ 4.62). It is also important to mention here
that our minimization procedure also restricts the value κ ¼
1.4� 0.1 and ignores the idea of universal κ for the mesons
diffractive data.
Having specified the parameters for the dipole model in

Table I and best fit for ’t Hooft LFWF (κ ¼ 1.41 GeV,
β ¼ 4.62, and α ¼ 0.74), we now compute the cross
sections for diffractive J=ψ and ψð2SÞ production.
Recall that our predictions are with new holographic
light-front wavefunction specified by Eqs. (24) J=ψ and
(25) for ψð2SÞ vector meson, and we shall refer to these
predictions as the ’t Hooft LFWF (black solid curves). For
J=ψ , we predict the total cross section as a function ofQ2 as
well as W in different Q2 bins. We predict the ratio of
longitudinal to transverse cross sections as a function ofQ2

at fixed W. We also report the differential scattering cross
section given by Eq. (9) as a function of t at fixedW for H1
and ZEUS Collaborations.
For J=ψ production, our predictions for the Q2 depend-

ence of the total cross section at fixed W ¼ 90 GeV are
shown in Fig. 1, while W dependence of the total cross
section in different Q2 bins are shown in Fig. 2. We
confronted our prediction with the H1 and ZEUS data [2,3]
for J=ψ production in various kinematics. The ratio of

TABLE I. Best fit parameters of the dipole model from χ2 fit to inclusive DIS data (with xBj ≤ 0.01 and
Q2 ∈ ½0.045; 45� GeV2) for the charm quark mass mc ¼ 1.27 GeV.

½mu;d; ms� GeV ½mc� GeV λ γs σ0=mb x0 χ2=d:o:f

[0.14, 0.14] 1.27 0.206 0.724 29.9 6.33 × 10−6 1.07
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longitudinal to the transverse cross section ðσL=σTÞ data are
shown in Fig. 3. Predicting the ratio is interesting since the
normalization uncertainties in the diffractive BD slope and
the dipole cross section cancel out, increasing its sensitivity
to the fitted parameters of meson wavefunction. Notice that
our fitted parameter gives a fit over a wider range ofQ2. We
also predicted the variation of the differential scattering
cross section with t ½GeV2� at fixed W ¼ 100ð90Þ GeV in
Fig. 4 for the H1 and ZEUS Collaboration. It is generally

seen that the agreement between our results and the data is
excellent for the charm mass mc ¼ 1.27 GeV.
For a nontrivial consistency check of the dipole model

parameters, we have also given a comparison with the
structure functions Fcc̄

2 in Fig. 5. We have predicted the x
variation of Fcc̄

2 and compared with H1 and ZEUS
combined analysis data assuming that the contribution of

’

FIG. 1. Predictions for the J=ψ electroproduction cross section
as a function of Q2 at fixed W ¼ 90 GeV, compared to H1 and
ZEUS data [2,3].

’ ’

FIG. 2. Predictions for the J=ψ electroproduction cross section σ as a function of W in different Q2 bins compared to H1 and ZEUS
data [2,3].

’

FIG. 3. Predictions for the longitudinal to transverse cross
section ratio in J=ψ production as a function of Q2 at W ¼
90 GeV compared to the H1 and ZEUS data [2,3].
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Fcc̄
2 is close to the reduced cross section [47]. The agreement

of dipolemodel predictions for the structure functionwith the
experimental data is striking up to x < 0.01 as the parameters
of the dipole model are fitted with x < 0.01, and thus
agreement begins to fail closer to x ¼ 0.01. We have
extended our model to the range beyond the kinematics of
existing data, as a prediction for the future DIS experiments.

Now we will study the rapidity distribution for the
vector mesons production in the UPC in the process
pp → p ⊗ V ⊗ p, where the sign ⊗ denotes rapidity gaps,
and V stands for J=ψ and ψð2SÞ mesons. The measurement
of UPCs are important as they allow a probe of the gluon
distribution function at low values of x. Recently, the LHCb
Collaboration have reported preliminary measurements of
exclusive J=ψ andψð2SÞ photoproduction in UPC at 13 TeV
[7]. More refined photoproduction data is expected soon
fromLHC run 3. Inview of these developments, we intend to
extend the dipole model with ’t Hooft LFWF to investigate
the rapidity distribution of exclusive J=ψ and ψð2SÞ pro-
duction in UPCs.
Theoretically, the rapidity distributions of heavy meson

production in UPCs is the product of photoproduction cross
sections σγp→Vp, the photon flux factor, and a rapidity gap
survival factor. The differential cross section for the
exclusive J=ψ photoproduction off proton in pp UPCs is
expressed as [66,67]

dσ½pp → p ⊗ J=ψ ⊗ p�
dy

¼ S2ðWþÞ
�
kþ

dn
dkþ

�
σγp→J=ψpðWþÞ þ S2ðW−Þ

×

�
k−

dn
dk−

�
σγp→J=ψpðW−Þ; ð27Þ

where k� is the momentum of the photon radiated from the
proton, related to the rapidity y of the vector meson in the
final state via the relation: k� ¼ MV

2
expð�jyjÞ. In UPC,W is

the center of mass energy of the photon-proton system,
W� ¼ ð2k� ffiffiffi

s
p Þ1=2 with ffiffiffi

s
p

center ofmass energy in proton-
proton collision. S2ðW�Þ are rapidity gap survival factors

’
’

FIG. 4. Predictions for the differential scattering cross section for J=ψ electroproduction as a function of t ¼ −Δ2 in different Q2 bins
compared to H1 and ZEUS Collaborations [2,3].

FIG. 5. Predictions for the combined proton charmed structure
function F2

cc̄ ∼ σcc̄r as a function of x in different Q2 bins. The
experimental data points are from the combined data set from the
H1 and ZEUS Collaborations [65].
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giving theprobability that the rapidity gap is not populatedby
additional soft interactions involving the initial state specta-
tors [66,68]. For the numerical calculations,we have used the
values of rapidity gap survival probabilities S2ðWÞ from
Ref. [69].
The term dn

dk represents the photon flux [70,71], expres-
sed as

dn
dk

¼ αem
2πk

�
1þ

�
1−

2kffiffiffi
s

p
�

2
��

lnΩ−
11

6
þ 3

Ω
−

3

2Ω2
þ 1

3Ω3

�
;

ð28Þ

where Ω ¼ 1þ 0.71=Q2
min, with Q2

min ¼ k2=γ2L, γL is the
Lorentz boost factor with γL ¼ ffiffiffi

s
p

=2Mp, andMp is proton
mass.
We will now compare our theoretical predictions with

the rapidity differential cross section data from LHCb for
the process pp → p ⊗ J=ψ ⊗ p. In Fig. 6, we presented the
plots for differential scattering cross section in the dipole
model as a function of rapidity y for the exclusive J=ψ
photoproduction off proton in p − p collisions at

ffiffiffi
s

p ¼
7 TeV and

ffiffiffi
s

p ¼ 13 TeV compared to LHCb data [5,6].
For exclusive ψð2SÞ photoproduction, we presented the
plots for differential scattering cross section as a function of
rapidity y at

ffiffiffi
s

p ¼ 13 TeV compared to LHCb data [7] in
Fig. 7. The agreement between our predictions and LHCb
data is significant.
The study of J=ψ photoproduction is important as the

J=ψ photoproduction cross section sheds light on the small-
x gluon parton distributions of the target proton. In Fig. 8,
we predicted the variation of photoproduction cross sec-
tions for γp → γJ=ψ with Wγp with photon-proton center

of mass energy. In case of photoproduction, the initial state
photon is real and only the transverse component of the
overlap wavefunction contributes to the cross section. We
have compared our predictions to the H1 [10,45,72,73],
ZEUS [11], and ALICE [74] data. We have also presented a
comparison to the LHCb results at

ffiffiffi
s

p ¼ 7 TeV [6] andffiffiffi
s

p ¼ 13 TeV [7]. The recent results at 13 TeV are

’ ’

FIG. 6. Predictions for the differential scattering cross section as a function of rapidity y for the exclusive J=ψ photoproduction off
proton in ultraperipheral collision p-p collisions at

ffiffiffi
s

p ¼ 7 TeV compared to LHCb data [5,6] and
ffiffiffi
s

p ¼ 13 TeV compared to LHCb
data [7].

’

FIG. 7. Predictions for the differential scattering cross section
as a function of rapidity y for the exclusive ψð2SÞ photo-
production off proton in ultraperipheral collision p-p collisions
at

ffiffiffi
s

p ¼ 7 TeV compared to LHCb data [5,6] and
ffiffiffi
s

p ¼ 13 TeV
compared to LHCb data [7].
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important as they extend the W range to reach to almost
2 TeV. The experimental data labeled as ZEUS, H1, and
ALICE are measured direct results by these collaborations
whereas the LHCb results at

ffiffiffi
s

p ¼ 13 TeV are extracted
using improved photon flux and rapidity gap survival
factors in proton-proton UPCs [7]. The cross sections of

LHCb measurements are divided by the rapidity gap
survival factor and photon flux as presented in Eq. (27).
Finally, we presented the cross section ratio R ¼

σψð2SÞ=σJ=ψ in exclusive photoproduction as measured in
ep collisions at HERA. The cross section ratio was
determined as a function of W and plots are presented in
Fig. 9. Our model calculations were compared to the
measured values of W in H1 and ZEUS detectors at
HERA and give a reasonable description of the data. It
is observed that ratio increases very slowly with increasing
W, and the value of R is almost constant. It is also important
to mention that the R value is very small signifying that the
ψð2SÞ cross section is much suppressed relative to the J=ψ
cross section. This suppression is expected as the ψð2SÞ
wavefunction has a radial node close to the typical trans-
verse separation of the virtual cc̄ pair.
In view of the above results, we conclude that the dipole

model in conjunction with ’t Hooft light wavefunctions
with minimum set of free parameters gives the simulta-
neous description of the heavy vector meson J=ψ and
ψð2SÞ diffractive and inclusive production data.

V. CONCLUSION

We have used the dipole model together with the ’t Hooft
light-front vector meson wavefunction to compute the cross
sections for diffractive J=ψ and ψð2SÞ mesons production.
The parameters of holographic light-front meson wave-
function were obtained by fitting the exclusive electro-
production cross section data at HERA data in ep
collisions. The dipole model together with LFWF is able

’

’

FIG. 8. Predictions for the J=ψ and ψð2SÞ photoproduction cross sections as a function of the center of mass energy of the photon-
proton system. The solid black line represents our prediction for using the ’t Hooft LFWF. Results from the ep collisions at H1 and
ZEUS Collaborations [10,11,45,72,73], p-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV ALICE Collaboration [8], and LHCb Collaboration atffiffiffi
s

p ¼ 7; 13 TeV [5–7] are also shown.

’

FIG. 9. Predictions for the ratio of photoproduction cross
section ψð2sÞ to the J=ψ as a function of center of mass energy
of the photon-proton system [10,12].

NEETIKA SHARMA PHYS. REV. D 109, 014019 (2024)

014019-10



to give the simultaneous description of differential scattering
cross section, electroproduction, proton charmed structure
function F2

cc̄, and photoproduction data with holographic
mass scale κ ¼ 1.41 GeV and mc ¼ 1.27 GeV.
We have also extended our work to investigate the

diffractive J=ψ and ψð2SÞ photoproduction off nucleons
in pp ultraperipheral collisions at the LHCb. Using the
dipole formalism with ’t Hooft LFWF, we investigated the
rapidity dependence y for the differential scattering cross
sections for the center of mass energies. A comparison has
been made with the recent LHCb Collaboration data atffiffiffi
s

p ¼ 7 TeV and
ffiffiffi
s

p ¼ 13 TeV. We have also investigated
the ratio of cross section for R ¼ σψð2SÞ

σJ=ψ
and compared with

H1 and ZEUS data. Our result supported the small value of
ratio as expected. We conclude that the dipole model with ’t
Hooft LFWF gives a good description of the experimental
data for J=ψ and ψð2SÞ UPCs and photoproduction data. It
will be interesting to investigate the impact of the LFWFs
on final state observables in proton-nucleus and nucleus-
nucleus collisions in the future as new data is expected from
LHC run 3.
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