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The effect of the temperature evolution of quark-gluon plasma (QGP) on its thermal conductivity and
elliptic flow is investigated here in the presence of a time-varying magnetic field. Thermal conductivity
plays a vital role in the cooling rate of the medium or its temperature evolution. The magnetic field
produced during the early stages of (noncentral) heavy-ion collisions decays with time, where electrical
conductivity plays a significant role. As the medium expands, the electrical and thermal properties change,
reflecting the effect in various observables. In this study, we have calculated the thermal conductivity of the
QGP medium, incorporating the effects of temperature and magnetic field evolution. We discovered that
conductivity significantly depends on the cooling rate, and its value increases due to temperature evolution.
Furthermore, the influence of these evolutions on the elliptic flow coefficient is measured, and elliptic flow
decreases due to the evolution. We also extend our study for the case of Gubser flow, where, along with the
longitudinal Bjorken expansion, the radially transverse expansion is also present.
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I. INTRODUCTION

The experimental facilities Large Hadron Collider
(LHC) and Relativistic Heavy Ion Collider (RHIC) have
successfully produced the quark-gluon plasma (QGP)
during the heavy-ion collision experiments [1–4]. The
experimental signatures of QGP suggest that its initial
stage is of very high-energy density and low viscosity often
referred to as nearly perfect fluid [5]. The successful
explanation of experimental observables such as the elliptic
flow coefficient v2 [6–8] created confidence in the
applicability of relativistic dissipative hydrodynamics for
QGP evolution. The equation of state, as well as dissipa-
tive, nonequilibrium processes, influence the space-time
evolution of a medium. The temperature drops when QGP
expands. Hydrodynamic simulations can explain the tem-
perature evolution very well. First-order dissipative hydro-
dynamic theory given by Eckart [9], and Landau and
Lifshitz [10] leads to an acausality problem. This problem
vanishes in second-order hydrodynamics given by Muller,
Israel, and Stewart, also known as MIS theory [11].

The hydrodynamic stage of the QGP expansion is
described as an adiabatic thermodynamic process but not
strictly adiabatic [12]. During the early stages of the
expansion, thermal conductivity can play a vital role in
the equilibration of the system. As the medium expands, the
temperature drops, which can lead to local temperature
gradients. This can lead to the creation of hotspots in the
QGP, as shown in Ref. [13]; hence, heat current will be
generated, and the thermal conductivity of the system takes
a significant role here. The thermal conductivity of quark
and hadronic matter is widely investigated in microscopic
theories, where two formalisms are widely used. One is
Kubo formalism [14,15] based on quantum field theory,
and the other is the relaxation time approximation (RTA)
formalism based on kinetic theory approach [16–20]. In all
the previous calculations, a static picture of QGP is
considered, ı.e., the effect of cooling due to the expansion
of QGP is not considered. In principle, cooling of QGP
with time should affect the temperature gradients in the
system as well, depending on the change in thermal
conductivity of the medium. To account for this effect,
heat current modifies depending on the rate of change of
temperature gradient and change in thermal conductivity.
Here, we will show that this effect on thermal conductivity
is significant and non-negligible.
According to the theoretical predictions [21], a substan-

tial magnetic field is created in the noncentral heavy-ion
collision experiments, which magnetize the created
medium [22]. With the finite electrical conductivity of
QGP, the magnetic field can survive until the medium
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exists [23]. The decay of the magnetic field is influenced by
various parameters, such as electrical conductivity, expan-
sion rate or cooling rate, etc. In reality, electrical conduc-
tivity changes as the medium evolves, affecting the
electromagnetic field in the medium. Indeed the actual
picture is very complicated, and one possible solution to a
time-dependent electromagnetic field could be to solve
Maxwell’s equation in a self-consistent manner [24,25].
Direct quantitative measurement of a magnetic field from
the experiment is yet to be discovered; however, a recent
discovery of separation of directed flow coefficient v1 of
D0 and D̄0 proves the existence of a very high magnetic
field at the early stage of QGP creation [26,27]. Many
theoretical studies [19,28,29] attempted to explain this
experimental finding using various decay profiles of the
electromagnetic field. It is found that the results are
sensitive to the decay parameter and the decay profile
of the magnetic field, therefore, on the electromagnetic
properties of the matter. The other transport properties of
QGP, such as viscosity, thermal conductivity, etc., are also
highly affected by the magnetic fields [30]. Recently, a few
studies [19,31] show that the time evolution of electro-
magnetic field has a non-negligible effect on the transport
properties—thermal and electrical conductivity of QGP and
hadronic matter. However, in all these estimations, a static
picture of QGP is considered, ı.e., the effect of cooling is
not considered, which can significantly impact transport
coefficients, especially in thermal conductivity, as we will
show here.
In this work, we estimated the thermal conductivity of

the evolving quark-gluon plasma in a time-varying mag-
netic field at finite baryon chemical potential. Here we used
a quasiparticle-based model of QGP for quantitative
estimations. Moreover, we investigated the deviation of
the elliptic flow coefficient v2 of the QGP in evolving
pictures from the static one in the presence of a time-
varying magnetic field. Furthermore, we extend the study
for a ð1þ 1ÞD hydrodynamical system that is longitudi-
nally boost invariant and has an azimuthally symmetric
radial expansion with a finite viscosity as described in
Gubser flow [32]. The paper is organized in the following
manner. The derivation of thermal conductivity compo-
nents for static and evolving medium in the presence of a
time-varying field is briefly given in the formalism in
Sec. II. In Sec. III, we discuss the results in detail. In the
first part of the results, we discuss various cooling rates.
This is followed by thermal conductivity and the effect of
different cooling rates. Then, we discuss the impact of the
evolution picture on the elliptic flow coefficient. Further,
we also provide an extended study to incorporate the effect
of evolution in conductivity with the Gubser hydrodynamic
model. Finally, in Sec. IV, we have summarized the study
with possible outlooks. Detailed conductivity and cooling
rate calculations are given in the Appendices.

II. FORMALISM

In this section, we calculate the thermal conductivity of
an evolving relativistic fluid in the presence of an external
time-dependent magnetic field. The detailed calculations
are mentioned in Appendix B.
The conservation laws associated with energy-

momentum tensor Tμν and particle four-flow Nμ can be
used to study the fluid properties of a medium. Within the
kinetic theory formalism, one can express these quantities
in terms of the particle’s energy, momentum, and phase
space integration as

Tμν ¼
X
i

gi

Z
d3jk⃗ij
ð2πÞ3

kμi k
ν
i

ωi
fi;

Nμ ¼
X
i

gi

Z
d3jk⃗ij
ð2πÞ3

kμi
ωi

fi: ð1Þ

Where kμi ¼ ðωi; k⃗iÞ is particle’s four-momentum of the ith
species. The total single-particle distribution function (fi)
for a system slightly out of equilibrium (δfi) can be
written as fi ¼ f0i þ δfi, where f0i is total single-particle
distribution function for ith species at equilibrium, which is
given by

f0i ¼
1

e
ωi−biμB

T � 1
; ð2Þ

where � stands for fermion and boson, respectively. For a
system slightly out of equilibrium, Tμν and Nμ can be
expressed as the sum of the ideal and dissipative parts,
respectively as

Tμν ¼ Tμν
ideal þ δTμν;

Nμ ¼ Nμ
ideal þ δNμ: ð3Þ

The equilibrium distribution function f0 contributes to the
ideal parts, whereas the deviated part of the distribution
function δf contributes to the dissipative part. Any dis-
sipative current must have a conserved quantity, which in
the case of heat current in QGP is baryon number bi. As a
result, only quarks (and antiquarks) contribute to thermal
conduction in QGP. When the total number of gluons is
conserved, gluons can contribute to the heat conductivity of
a system. According to Ref. [33], the contribution is
negligible (about 107 times smaller) compared to the
quark-antiquark mixture. Therefore, we ignore the thermal
conductivity caused by gluons in our work, yet they
contribute to the system’s total enthalpy and affect its
thermal conductivity. In general heat current in terms of Tμν

and Nμ can be expressed as [16]

Ij ¼ δT0j − hδNj; ð4Þ
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where h ¼ ϵþP
n is the enthalpy per particle, and ϵ, P,

and n are total energy density, total pressure, and net
baryon density of the system, respectively. Employing
Eq. (1) in Eq. (4), we can express the heat current due
to conserved baryon number in the kinetic theory for ith

species particles as

I⃗i ¼
Z

d3jk⃗ij
ð2πÞ3

k⃗i
ωi

ðωi − bihÞδfi: ð5Þ

To find the expression of δfi, we solve the Boltzmann
transport equation (BTE) using RTA; to satisfy the energy-
momentum conservation law, we have to work with the
Landau-Lifshitz frame [10], where the rest frame is
attached to energy flow. In the local rest frame, the heat
current will take the form, [19,34],

I⃗ ¼ −κ0∇⃗T; ð6Þ

where κ0 is the coefficient of thermal conductivity. In the
current work, we introduce the cooling rate using hydro-
dynamical theories and study the thermal response of
evolving QGP. Now we discuss the static and the evolving
pictures of QGP one by one.

A. Static picture (without temperature evolution)

In this picture, we discuss two cases in the presence and
absence of an external (time-varying) magnetic field to
study the thermal response of the medium. In the presence
of a time-varying magnetic field, heat current in the fluid
rest frame can be expressed as [19]

I⃗ ¼ −fκs0∇⃗T þ κs1ð∇⃗T × B⃗Þ þ κ̄s2ð∇⃗T × ˙B⃗Þg
¼ −fκs0∇⃗T þ ðκs1 þ κs2Þð∇⃗T × b̂Þg
¼ −fκs0∇⃗T þ κsHð∇⃗T × b̂Þg; ð7Þ

where κs0 is the component of thermal conductivity along
the temperature gradient, and the Hall-like components are
κs1 ¼ κ̄s1B, κ

s
2 ¼ κ̄s2Ḃ. Here, superscript s in κs corresponds

to a static picture.
Here, Eq. (5) also expresses the microscopic three-vector

form of heat current. To find the expression of δfi, we solve
the BTE in the presence of an external magnetic field under
the RTA as

∂fi
∂τ

þ k⃗i
ωi

·
∂fi
∂x⃗

þ qi

�
k⃗i
ωi

× B⃗

�
·
∂fi
∂k⃗i

¼ −
δfi
τiR

: ð8Þ

Weconsider a time-varyingmagnetic field of the form [25,29]

B ¼ B0 exp

�
−

τ

τB

�
; ð9Þ

where B0 is magnitude of the initial field having decay
parameter τB, and τ is the proper time. We can assume an
ansatz of δfi as [16]

δfi ¼
ðk⃗i:Ω⃗κÞ

T
∂f0i
∂ωi

; ð10Þ

where a general form of Ω⃗κ up to first order time derivative of
B⃗ can be expressed as

Ω⃗κ ¼ α1B⃗þ α2∇⃗T þ α3ð∇⃗T × B⃗Þ þ α4
˙B⃗þ α5ð∇⃗T × ˙B⃗Þ:

ð11Þ

Considering the same magnetic field profile as mentioned
in Eq. (9), we can find the unknown coefficients αi
[i ¼ ð1; 2;…; 5Þ] by solving Eq. (8) employing Eq. (11)
in Eq. (10). From Eqs. (7) and (5), we can obtain the
expressions of thermal conductivity components as [20]

κs0 ¼
1

3T2

X
i

gi

Z
d3jk⃗ij
ð2πÞ3

k⃗2i
ω2
i
ðωi − bihÞ2τiR

1

ð1þ χi þ χ2i Þ
× f0i ð1 ∓ f0i Þ;

κsH ¼ 1

3T2

X
i

gi

Z
d3jk⃗ij
ð2πÞ3

k⃗2i
ω2
i
ðωi − bihÞ2τiR

χi
ð1þ χi þ χ2i Þ

× f0i ð1 ∓ f0i Þ; ð12Þ

with, χi ¼ τiR
τB
.

The methodology adopted here is the same as
Refs. [35,36] in the absence of an external magnetic field,
ı.e., (B ¼ 0). Unlike the case of the presence of a magnetic
field, there is only a single component of the thermal
conductivity as

κs ¼ 1

3T2

X
i

gi

Z
d3jk⃗ij
ð2πÞ3

k⃗2i
ω2
i
ðωi− bihÞ2τiRf0i ð1∓ f0i Þ: ð13Þ

B. Evolving picture (with temperature evolution)

In the evolution picture, we consider the evolution of
QGP using temperature evolution with time, for which we
have taken different hydrodynamics cooling rates, which
are discussed below in three cases.
In an evolving system Eq. (6) gets modified. As the

temperature falls with time, the temperature gradient (∇⃗T)
should also change, which will have a finite effect on

heat current. Therefore, in addition to ∇⃗T, there are also

contributions ∇⃗ Ṫ in the heat current I⃗. Hence, in the
evolution picture, the heat current in the rest frame of the
fluid can be expressed as
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I⃗ ¼ −ðκ0∇⃗T þ κ1∇⃗ ṪÞ; ð14Þ

where κ̄1 is a new coefficient of thermal conductivity

arising after introducing cooling rate or ∇⃗ Ṫ term.
Similarly, in the presence of (time-varying) magnetic field
heat current Eq. (7) will also be modified for evolving
picture as

I⃗ ¼ −fκ0∇⃗T þ κ̄1ð∇⃗T × B⃗Þ þ κ̄2ð∇⃗T × ˙B⃗Þ þ κ̄3∇⃗ Ṫ

þ κ̄4ð∇⃗ Ṫ ×B⃗Þg; ð15Þ

where, κ̄3 and κ̄4 are the new coefficients arising due to
temperature evolution. All these new components are
calculated below for three cooling rates obtained from
ideal hydrodynamics, ideal magnetohydrodynamics, and
first-order dissipative hydrodynamics.

1. Case-I: Ideal hydrodynamics (B = 0)

The expression of cooling rate in ideal hydrodynamics
with the parameters, medium formation time τ ¼ τ0 and
initial temperature T ¼ T0 is (see Appendix A for more
detail)

T ¼ T0

�
τ0
τ

�1
3

: ð16Þ

There is no dissipation or dissipative current in ideal
hydrodynamics, whereas conductivity is a dissipative
quantity. However, here we use ideal hydro only for
the cooling rate, and the calculation of conductivity using
this cooling rate will only give us a reference. Therefore,
the cooling rate from dissipative hydro is a must for actual
conductivity measurement, and we have used only

first-order hydro in case-III. In the case of evolving medium
in the fluid rest frame, the heat current can be expressed as
mentioned in Eq. (14)

I⃗ ¼ −κe∇⃗T; ð17Þ

where, κe ¼ κ0 þ κ1 and κ1 ¼ −1
3τ κ̄1. The superscript e in κ

e

corresponds to the evolving picture. To obtain a micro-
scopic expression of heat current using the cooling rate
Eq. (16), we follow a similar prescription as discussed in
Sec. II A. We find the deviated part of the distribution
function δf by solving the BTE for evolving medium under
the RTA as

∂fi
∂τ

þ k⃗i
ωi

·
∂fi
∂x⃗

¼ −
δfi
τiR

: ð18Þ

We can assume an ansatz of δfi for thermal conductivity
as [16]

δfi ¼
ðk⃗i:Ω⃗κÞ

T
∂f0i
∂ωi

; ð19Þ

where a general form of Ω⃗κ up to first order time derivative
of T⃗ can be expressed as

Ω⃗κ ¼ α1∇⃗T þ α2∇⃗ Ṫ : ð20Þ

The unknown coefficients α1 and α1 can be found by
substituting Eqs. (20) and (19) in Eq. (18). Finally, the
expression of thermal conductivity for evolving medium
(ideal hydrodynamic evolution) can be obtained as (see
Appendix B),

κ0 ¼
1

3T2

X
i

gi

Z
d3jk⃗ij
ð2πÞ3

k⃗2i
ω2
i
ðωi − bihÞ2τiRf0i ð1 ∓ f0i Þ −

1

3T2

X
i

gi

Z
d3jk⃗ij
ð2πÞ3

k⃗2i
ωi

ðωi − bihÞτiR expð−τ=τRÞf0i ð1 ∓ f0i Þ;

κ1 ¼
1

9τT2

X
i

gi

Z
d3jk⃗ij
ð2πÞ3

k⃗2i
ω2
i
ðωi − bihÞ2τiR2f0i ð1 ∓ f0i Þ −

1

9τT2

X
i

gi

Z
d3jk⃗ij
ð2πÞ3

k⃗2i
ωi

ðωi − bihÞτiR2 expð−τ=τRÞf0i ð1 ∓ f0i Þ;

or
κe ¼ κ0 þ κ1;

¼ 1

3T2

X
i

gi

Z
d3jk⃗ij
ð2πÞ3

k⃗2i
ω2
i
ðωi − bihÞτiR

�
1þ τiR

3τ

�
fðωi − bihÞ − ωi expð−τ=τRÞgf0i ð1 ∓ f0i Þ: ð21Þ

2. Case-II: Ideal magnetohydrodynamics

In the presence of a magnetic field, the cooling of the medium is affected. In the case of ideal magnetohydrodynamics, the
cooling rate for a time-dependent magnetic field can be obtained as (see Appendix A),

T ¼
�
T4
0

�
τ0
τ

�4
3 þ 4α

ð2βτÞ43 fΓð4=3; 2βτÞ − Γð4=3; 2βτ0Þg −
2α

ð2βτÞ73 fΓð7=3; 2βτÞ − Γð7=3; 2βτ0Þg
�1

4

: ð22Þ
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Where τ0 and T0 are medium formation time and initial

temperature, respectively; α ¼ B2
0

12a with a ¼ ð16þ 21
2
NfÞ π290

and β ¼ 1
τB
. Here Nf is the number of quark flavors, taken

to be three. In the considered evolving picture, heat current
using Eqs. (22) and (15) can be expressed as

I⃗ ¼ −fκ0∇⃗T þ κ1ð∇⃗T × B⃗Þ þ κ̄2ð∇⃗T × ˙B⃗Þ þ κ̄3∇⃗ Ṫ

þ κ̄4ð∇⃗ Ṫ ×B⃗Þg;
¼ −fðκ0 þ κ3Þ∇⃗T þ ðκ1 þ κ2 þ κ4Þð∇⃗T × b̂Þg
¼ −fκe0∇⃗T þ κeHð∇⃗T × b̂Þg: ð23Þ

Here, κ1 ¼ κ̄1B, κ2 ¼ κ̄2Ḃ, κ3 ¼ κ̄3f−13τ ð1 − 3B2

4aT4Þ − B2

4aτBT4g,
and κ4 ¼ κ̄4f−13τ ð1 − 3B2

4aT4Þ − B2

4aτBT4gB. From Eq. (22),

∇⃗ Ṫ ¼
�
−1
3τ

�
1 −

3B2

4aT4

�
−

B2

4aτBT4

�
∇⃗T; ð24Þ

(see Appendix A).
To obtain the expression of conductivity components, we

follow the same methodology as for the case of static
picture (Sec. II A). In this case, the ansatz δfi will be
modified such that Eq. (11) takes the form,

Ω⃗κ ¼ α1B⃗þ α2∇⃗T þ α3ð∇⃗T × B⃗Þ þ α4
˙B⃗þ α5ð∇⃗T × ˙B⃗Þ

þ α6∇⃗ Ṫþα7ð∇⃗ Ṫ ×B⃗Þ þ α8ð∇⃗ Ṫ × ˙B⃗Þ; ð25Þ

where we considered up to first-order time derivative of B⃗

and ∇⃗T. The unknown coefficients αi [i ¼ ð1; 2…::8Þ] can
be obtained by substituting Eqs. (25) and (10) in Eq. (8).
Solving the Boltzmann equation, we can obtain the
expressions of thermal conductivity components from
Eqs. (5) and (23) as (see Appendix B)

κ0 ¼
1

3T2

X
i

gi

Z
d3jk⃗ij
ð2πÞ3

k⃗2i
ω2
i
ðωi − bihÞ2τiR

1

ð1þ χi þ χ2i Þ
f0i ð1 ∓ f0i Þ;

κ1 ¼
1

3T2

X
i

gi

Z
d3jk⃗ij
ð2πÞ3

k⃗2i
ω2
i
ðωi − bihÞ2τiR

χi
ð1þ χiÞð1þ χi þ χ2i Þ

f0i ð1 ∓ f0i Þ;

κ2 ¼
1

3T2

X
i

gi

Z
d3jk⃗ij
ð2πÞ3

k⃗2i
ω2
i
ðωi − bihÞ2τiR

χ2i
ð1þ χiÞð1þ χi þ χ2i Þ

f0i ð1 ∓ f0i Þ;

κ3 ¼
1

3T2

X
i

gi

Z
d3jk⃗ij
ð2πÞ3

k⃗2i
ω2
i
ðωi − bihÞ2τi2R

ðð1þ χiÞðχ2i − 1ÞÞ þ χ2i
ð1þ χiÞð1þ χi þ χ2i Þð1þ χ2i Þ

�
−1
3τ

�
1 −

3B2

4aT4

�
−

B2

4aτBT4

�
f0i ð1 ∓ f0i Þ;

κ4 ¼
1

3T2

X
i

gi

Z
d3jk⃗ij
ð2πÞ3

k⃗2i
ω2
i
ðωi − bihÞ2τi2R

χi þ χið1þ χiÞ
ð1þ χiÞð1þ χi þ χ2i Þð1þ χ2i Þ

�
1

3τ

�
1 −

3B2

4aT4

�
þ B2

4aτBT4

�
f0i ð1 ∓ f0i Þ;

or

κe0 ¼ κ0 þ κ3;

¼ 1

3T2

X
i

gi

Z
d3jk⃗ij
ð2πÞ3

k⃗2i
ω2
i
ðωi − bihÞ2

τiR
ð1þ χi þ χ2i Þ

�
1 −

�
τiR

ð1þ χiÞðχ2i − 1Þ þ χ2i
ð1þ χiÞð1þ χ2i Þ

��
1

3τ

�
1 −

3B2

4aT4

�
þ B2

4aτBT4

��

× f0i ð1 ∓ f0i Þ;
κeH ¼ κ1 þ κ2 þ κ4;

¼ 1

3T2

X
i

gi

Z
d3jk⃗ij
ð2πÞ3

k⃗2i
ω2
i
ðωi − bihÞ2

τiRχi
ð1þ χi þ χ2i Þ

�
1þ

�
τiR

ð2þ χiÞ
ð1þ χiÞð1þ χ2i Þ

��
1

3τ

�
1 −

3B2

4aT4

�
þ B2

4aτBT4

��

× f0i ð1 ∓ f0i Þ; ð26Þ

with χi ¼ τiR
τB
. Here, it is essential to note that the expressions are obtained in the limit of slowly varying magnetic field, for

which we approximated the decay parameter as the inverse of cyclotron frequency, ı.e., τB ¼ ωi
qiB

. Furthermore, κH should
have explicit sign dependency from the electric charge of the particle due to χi on the numerator. However, this information
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vanishes due to the approximation, leading to inaccurate
results. Therefore, we use the minus (plus) sign in κH for
negatively (positively) charged particles and antiparticles
for the numerical estimations.

3. Case-III: First-order dissipative
hydrodynamics (B = 0)

The expression of cooling rate in the first-order dis-
sipative theory with the parameters, medium formation
time τ ¼ τ0 and initial temperature T ¼ T0 can be obtained
as mentioned in Ref. [37],

T ¼ T0

�
τ0
τ

�1
3

�
1þ b

6a
1

τ0T0

�
1 −

�
τ0
τ

�2
3

��
; ð27Þ

where a is same as used in Eq. (22), and

b ¼ ð1þ 1.70NfÞ
0.342

ð1þ Nf=6Þα2s lnðα−1s Þ :

Here, αs is the strong fine-structure constant and taken to be
0.5, and Nf is the number of quark flavors, taken to be
three. To get the final expression for thermal conductivity,
the formalism followed here for this case is similar to what
we followed for case-I. The difference in both cases comes
from their respective cooling rates. Instead of Eq. (16), here
we use the cooling rate from Eq. (27) into Eq. (17). Hence,
the obtained expression of thermal conductivity compo-
nents for this case is

κ0 ¼
1

3T2

X
i

gi

Z
d3jk⃗ij
ð2πÞ3

k⃗2i
ω2
i
ðωi − bihÞ2τiRf0i ð1 ∓ f0i Þ −

1

3T2

X
i

gi

Z
d3jk⃗ij
ð2πÞ3

k⃗2i
ωi

ðωi − bihÞτiR expð−τ=τRÞf0i ð1 ∓ f0i Þ;

κ1 ¼
1

3τT2

X
i

gi

Z
d3jk⃗ij
ð2πÞ3

k⃗2i
ω2
i
ðωi − bihÞ2τiR2f0i ð1 ∓ f0i Þ −

1

3τT2

X
i

gi

Z
d3jk⃗ij
ð2πÞ3

k⃗2i
ωi

ðωi − bihÞτiR2 expð−τ=τRÞf0i ð1 ∓ f0i Þ;

or

κe ¼ κ0 þ κ1;

¼ 1

3T2

X
i

gi

Z
d3jk⃗ij
ð2πÞ3

k⃗2i
ω2
i
ðωi − bihÞτiR

�
1þ τiR

τ

�
fðωi − bihÞ − ωi expð−τ=τRÞgf0i ð1 ∓ f0i Þ; ð28Þ

where, κ1 ¼ −1
τ κ̄1. To satisfy the energy-momentum con-

servation law in theRTAmethod, the relaxation timemust be
momentum independent, which is not the case in general.
However, we can find a momentum-independent relaxation
time of quark in QCD matter as given in Ref. [34]

τR ¼ 1

5.1Tα2s logð1=αsÞ½1þ 0.12ð2Nf þ 1Þ� : ð29Þ

Here, we considered a fixed value of the strong coupling
constant αs ¼ 0.5.

III. RESULT AND DISCUSSIONS

In Fig. 1, we have plotted the cooling rate for the QGP
medium [temperature (T) versus proper time (τ)] for three
cases. Case-I is for ideal hydrodynamics (solid black line),
case-II is for ideal magnetohydrodynamics (red dashed for
τB ¼ 3 fm and green dotted line for τB ¼ 7 fm), and case-III
is for first-order dissipative hydrodynamics without mag-
netic field (blue dash-dot line). For all the cases,
we have considered the same formation time (τ0) and
thermalization temperature (T0) of QGP as τ0 ¼ 0.5 fm
and T0 ¼ 0.35 GeV, respectively. Expression of cooling
rate for the corresponding cases is given by Eqs. (16), (22),

and (27), respectively. In case-II, we have considered
a time-dependent magnetic field with decay parameter
τB ¼ 3 fm indicated by the red dashed line and τB ¼ 7 fm
by the green dotted line. The smaller the decay parameter,
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0.25
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T
 (
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 = 3 fmB�Case-II with 
 = 7 fmB�Case-II with 
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FIG. 1. Cooling rate for three cases. Case-I: Ideal hydrody-
namics, Case-II: Ideal magnetohydrodynamics, Case-III: First-
order hydrodynamics.
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the faster the decay of the magnetic field in themedium. The
strength of the initial magnetic field depends on the
collision energy, impact parameter, system size, etc.
Here, we have considered the initial magnetic field
eB0 ¼ 9m2

π , which is possible at RHIC and LHC energies
[21]. From the figure, it is also noticeable that at the initial
time of temperature evolution, the case-I and case-II
cooling rates are the same, almost up to 2 fm. Including
the dissipation or the magnetic field, the cooling rate slows
down compared to ideal hydrodynamics. Furthermore,
slower decay of the magnetic field leads to slower cooling
of the medium. In the coming discussion, we will see the
effect of these different cooling rates on the thermal
conductivity of the medium and, hence, its related phe-
nomenological quantity.
In this work, for the numerical estimations, we used

a quasiparticle model formulated by Gorenstein and
Yang [38], where the lattice equation of state for QGP is
achieved by introducing the thermal mass of the partons.
By virtue of interactions, quarks and gluons get their
thermal mass mðTÞ, and the thermodynamic consistency
is achieved by introducing bag constant arising from
vacuum energy [39]. The dispersion relation of the particle
in the quasiparticle model having energy ωi and momen-
tum ki is ω2

i ðki; TÞ ¼ k2i þm2
i ðTÞ [38]. For further details

of quasiparticle models, one can check Refs. [38–42].

A. Thermal conductivity

In Fig. 2 (left), the top panel represents κ0 component of
thermal conductivitywith proper time (τ) at baryon chemical
potential μB ¼ 0.3 GeV for all the three cases. This com-
ponent is responsible for the heat current along the temper-
ature gradient. When the effect of cooling is considered in
the conductivity calculation, the corresponding result for
each case is denoted by the term “evolving”, and where it is

not considered is designated by “static.” Black lines re-
present case-I with a dotted line for the evolving picture and
a solid line for the static one. Case-II represents a red dashed
line for a static picture and a red dash-single dot line for the
evolving one. The blue lines represent case-III with a dash-
double dotted line for the evolving picture and a dash-dot
line for the static one. In all three cases, we see an
enhancement in the thermal conductivity in the evolving
picture as compared to the static one. This comes from the
new components κ1 in case-I and case-III, and κ3 in case-II

arising due to the ∇⃗ Ṫ term in the heat current.
In static pictures, the expression of thermal conductivity

[Eq. (13)] is the same for case-I and case-III except for their
temperature evolution. Hence, we can see that the solid
black line and blue dash-dotted line start from the same
point but later on follow different paths due to their
respective cooling rates. For all three cases, we notice that
conductivity decreases with time, mainly dominated by
their thermodynamical phase space part for baryons as
expected from the existing knowledge [16]. The effect of
the magnetic field can be found in further suppression of
conductivity, as introduced in case-II. We can quantify the
effect of the cooling rate and magnetic field by looking at
their respective expressions of conductivity. In the absence
of magnetic field, comparing the static picture [Eq. (13)]
with evolving pictures (Eqs. (21) and (28)), we can argue
that the thermodynamical phase space part ðωi − bihÞ
as well as the relaxation time τiR get modified in the
evolving picture. However, in the presence of a magnetic
field comparing static picture [Eq. (12)] and evolving
picture (26), one observes the effect of evolution is mainly
taken care of by relaxation time or effective relaxation time.
From the bottom panel of Fig. 2 (left), we can quantify
the effect of cooling for all the cases. On the average,
10%–20% effects are there for all the cases. In the presence
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FIG. 2. Components of thermal conductivity as a function of proper time (τ). Left: Upper panel represents κ0 component, bottom panel
represents its percentage deviation (where Δκ̃0 ¼ κe0 − κs0) of static picture from evolving picture. Right: Same as the left figure but for
“Hall-like” component.
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of a magnetic field, the effect is comparatively less and
decreases with increasing decay parameters. The effect of
evolution is greater in case-III than in other cases, which
indicates that the evolution of thermal conductivity is
highly sensitive to the cooling rate of the system. We
can roughly state that the slower the cooling higher the
effect of evolution in the conductivity, and the effect
decreases with time evolution.
In Fig. 2 (right), the time evolution of the “Hall-like”

component and the effect of evolution in this component is
demonstrated at baryon chemical potential μB ¼ 0.3 GeV.
This component arises only due to the magnetic field, and
the heat current for this component is perpendicular to both
the magnetic field and temperature gradient. This figure
represents κH for case-II at two decay parameters, τB ¼ 3,
7 fm. The absolute value of κH is almost ten times less than
that of the κ0 component because the contribution from
particles and antiparticles are opposite, leading to a smaller
net value. Similar to the κ0 component, we see an enhance-
ment in κH in the evolving picture as compared to the static
one. In this case, enhancement comes from the new
component κ4 arising in the evolution picture due to

ð∇⃗ Ṫ ×B⃗Þ term. In the bottom panel of the figure, we
notice that the effect of evolution is large in the early stages
of evolution (around 40%) as compared to the later stages
(around 10%). As the system evolves with time, the
strength of the magnetic field also starts to weaken,
and the κH component diminishes, leaving only the κ0
component.

B. Phenomenological significance

In the RHICs, azimuthal anisotropy in the momentum
space of the produced particles, especially the elliptic
flow coefficient v2, is one of the important observable
in determining the thermalization of produced medium
[43,44]. To estimate the effect of evolution in v2 via thermal
conductivity, we use the simple relation [44–46]

v2 ¼
vhydro2

1þ Kn
Knhydro

; ð30Þ

where Kn is Knudsen number, vhydro2 is the value of elliptic
flow in the hydrodynamic limit, ı.e., at Kn → 0 limit. The
Knudsen number is defined as Kn≡ λ

l, representing the
degree of thermalization of the medium with λ as mean-free
path and l as the characteristic length scale of the system.
One can calculate the mean-free path (λ) using the simple
classical relation [47]

λ ¼ 3κ

vCV
; ð31Þ

which relates the coefficient of thermal conductivity κ,
the specific heat at constant volume CV , and relative

speed v. For the numerical estimation of v2, we have
approximated v ≈ 1 and system size l ≈ 3 fm; vhydro2 ≈ 0.3
and Knhydro ≈ 0.7, which are obtained from the transport
calculation [46].
To obtain v2 as a function of center-of-mass energyffiffiffiffiffiffiffiffi
sNN

p
(in GeV) we use the following parametrization [48]

TðμBÞ ¼ 0.166 − 0.139μ2B − 0.053μ4B;

μB ¼ 1.308
1þ 0.273

ffiffiffiffiffiffiffiffi
sNN

p : ð32Þ

We also parametrize the magnetic field as [21],

B ¼
ffiffiffiffiffiffiffiffi
sNN

p
8πmN

Ze
b
R3

exp

�
−

τ

τB

�
: ð33Þ

Here, R is the radius of colliding ions with electric charge
Ze, b is the impact parameter, and mN ¼ 0.938 GeV is the
nucleon mass. For Au-Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV,
with R ¼ 6.38 fm, b ¼ 7.2 fm, and Z ¼ 79 we get
eB ¼ 9m2

π at τ ¼ 0, which is in accordance with the results
for RHIC energies [49].
In Fig. 3 (left), we have plotted the elliptic flow

coefficient (v2) as a function of the center-of-mass energyffiffiffiffiffiffiffiffi
sNN

p
(in GeV) for Au-Au collision with impact param-

eter 7.2 fm in the upper panel for all the three cases. We
see that for all three cases, the elliptic flow coefficient (v2)
decreases as

ffiffiffiffiffiffiffiffi
sNN

p
increases. In Eq. (32), we can see that

the baryon chemical potential μB decreases as
ffiffiffiffiffiffiffiffi
sNN

p
increases. With the increase in values of μB, the baryon
density of medium increases, which alternatively lowers
the value of relaxation time ðτRÞ of medium constituents.
Therefore, the higher the μB value, the lower the
thermal conductivity coefficient values (κ). Hence, it is
clear from the Eq. (30) that v2 decreases as

ffiffiffiffiffiffiffiffi
sNN

p
increases. The blue solid square represents STAR data
of all charged particles for Au-Au collisions with
20%–30% centralities, i.e., within the range of impact
parameter b ¼ 6.61–8.1 fm [50], shown for reference
purpose only. We can not compare these results with
the current estimation, as our results are for the whole
medium, including all the charged and uncharged par-
ticles. The bottom panel of the figure shows the percent-
age deviation of v2 for the evolving picture from the static
picture. The positive value of the deviation represents that
the elliptic flow in the evolving picture is smaller than the
static picture. This deviation is slightly negative at very
low energy for all the cases. Later, the deviation value is
positive for all the cases throughout the mentioned energy
range. So, the temperature evolution reduces the elliptic
flow. This effect reduces as we increase the energy. Also,
note that the deviation is highly sensitive to the cooling
rate, varying from minimum 2% to maximum 24% for
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different cases. In Fig. 3 (right), we have plotted the same
as a function of proper time (τ) for Au-Au collision atffiffiffiffiffiffiffiffi
sNN

p ¼ 100 GeV and b ¼ 7.2 fm. Here also, we notice
the reduction of v2 in the evolving picture. The effect is
very high at the early stage of evolution. In both figures,
we see that the effect is comparatively less in the presence
of the magnetic field. The slower the decay of the
magnetic field, the higher the impact in v2.
Next, we discuss the possibility of incorporating the

effect of evolution in different hydrodynamic models. In
principle, ð3þ 1ÞD hydrodynamics models for RHICs
show that cooling rates are direction or flow dependent,
for which conductivity will be different in different
directions during the evolution. However, in ð3þ 1ÞD,
the complete analytical solution to the hydrodynamics
equations is not achievable, and we have to rely on partial
analytical solutions or hydrodynamic models where an
analytical solution is possible. Here, we use ð3þ 1ÞD
Gubser hydrodynamic [32], which, due to symmetry
consideration, reduces to ð1þ 1ÞD flow.

C. Conductivity in Gubser flow

Here, we work out thermal conductivity for Gubser
hydrodynamics [32]. Gubser flow describes a conformally
symmetric system that expands cylindrically along the
beamline and in the transverse direction (radial flow)
in the coordinate system (τ; η; r;ϕ), related to Cartesian
coordinate system ðt; x; y; zÞ as

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
; η ¼ arctanh

z
t
;

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
; ϕ ¼ arctatan

y
x
: ð34Þ

The four-velocity uμ is constructed from symmetry con-
sideration with boost, rotation invariance, and reflection
invariance (η → −η),

uτ ¼ cosh κ ¼ γr;
ur

uτ
¼ tanh κ ¼ vr;

uη ¼ uϕ ¼ 0; ð35Þ

where γr ¼ 1ffiffiffiffiffiffiffiffi
1−v2r

p and vr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v⃗2x þ v⃗2y

q
, vr is known as

transverse velocity, and κ is parametrized as κðτ; rÞ ¼
arctanhð 2q2τr

1þq2τ2þq2r2Þ. Now, for the viscous case, with shear

viscosity η̃ ¼ H0ϵ
3=4, preserving the conformal symmetry

of the system, p ¼ ϵ=3, temperature can be expressed
as [32]

T ¼ 1

τf1=4�

�
T̂0

ð1þ g2Þ1=3 þ
H0gffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p
×

�
1 − ð1þ g2Þ1=62F1

�
1

2
;
1

6
;
3

2
;−g2

���
; ð36Þ

where T̂0 is an integration constant, H0 is a dimensionless
quantity, f� is taken to be 11 and 2F1 denotes a hyper-
geometric function, g is the function of radial (r), and
proper time (τ) coordinates given as

g ¼ 1 − q2τ2 þ q2r2

2qτ
: ð37Þ

Here, we use the same parametrization as given in Ref. [32]
for 1=q ¼ 4.3 fm at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV for a central Au-Au
collision; the parameters turns out to be T̂0 ¼ 5.55 and
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FIG. 3. Left: Upper panel represents the elliptic flow coefficient (v2) as a function of center-of-mass energy
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H0 ¼ 0.33. In Fig. 4, we have plotted the cooling rate for
the Gubser flow at different points in the transverse plane
ı.e., r ¼ 0, 1, 2, 3, 4 fm. Now, we are using this cooling rate
to study its effect on the thermal conductivity of the
medium. From Eq. (36),

∂T
∂τ

¼ −T
τ

− ζðgÞ;

where

ζðgÞ¼ 1

τf1=4�

�
−1
q
−
g
τ

��
2

3
gð1þg2Þ−4=3T̂0

−H0ð1þg2Þ−1=2ð1−g2ð1þg2Þ−1ÞþH0

× ð1þg2Þ−1=3
�
1−

2g2

3
ð1þg2Þ−12F1

�
1

2
;
1

6
;
3

2
;−g2

�

−
g2

9 2F1

�
3

2
;
7

6
;
5

2
;−g2

���
:

Therefore,

∇⃗ Ṫ ¼ −1
τ
∇T þ ∇⃗ζðgÞ: ð38Þ

Substituting Eq. (36) into Eq. (23), we obtain the expres-
sions for components of thermal conductivity, which are

κe0 ¼ κ0 þ κ3;

¼ 1

3T2

X
i

gi

Z
d3jk⃗ij
ð2πÞ3

k⃗2i
ω2
i
ðωi − bihÞ2

τiR
ð1þ χi þ χ2i Þ

�
1 −

�
τiR

ð1þ χiÞðχ2i − 1Þ þ χ2i
ð1þ χiÞð1þ χ2i Þ

��
1

τ

��
× f0i ð1 ∓ f0i Þ;

κeH ¼ κ1 þ κ2 þ κ4;

¼ 1

3T2

X
i

gi

Z
d3jk⃗ij
ð2πÞ3

k⃗2i
ω2
i
ðωi − bihÞ2

τiRχi
ð1þ χi þ χ2i Þ

�
1þ

�
τiR

ð2þ χiÞ
ð1þ χiÞð1þ χ2i Þ

��
1

τ

��
× f0i ð1 ∓ f0i Þ; ð39Þ

where κ1 ¼ κ1B, κ2 ¼ κ̄2Ḃ, κ3 ¼ κ̄3f−1τ g, and κ4 ¼ κ̄4f−1τ gB,
with χi ¼ τiR

τB
. Here, for the static case, expressions of

conductivity are the same as in Eq. (12) with temperature
profile Eq. (36). Note that expressions of conductivity in
Eq. (39) do not directly depend on r but show the indirect
dependence through the Gubser temperature profile, which
is a function of r and τ.
In the upper panels of Fig. 5, we have plotted Ohmic

(left) and Hall-like (right) thermal conductivity components
using the Gubser cooling rate as a function of proper time
(τ) for two different values of r ¼ 0 fm, 3 fm. Here, we
have plotted the results in the presence of a time-varying
magnetic field and the decay parameter τB ¼ 3 fm. Here,
we see that as r increases, the value of thermal conductivity
for both the cases of Ohmic and Hall-like components
decreases. The black solid line shown in the upper panel
of the left figure represents the thermal conductivity
component in the static case for ideal hydrodynamics. In
the Gubser case, there is a large deviation in thermal

conductivity components from the black solid line. In the
Gubser case, the temperature falls faster, leading to this
deviation from the Bjorken case in the later evolution time.
The bottom panel of both sides shows the deviation of
these thermal conductivity components in the static picture
from the evolving picture in Gubser flow. A significant
deviation, nearly 50%–60% for the Ohmic component and
60%–70% in the Hall-like component, is visible in the early
stages of the medium at 0.5 fm. However, in the later stages
at 5 fm, it is comparatively less nearly 0%–10% for the
Ohmic component and 20%–30% for the Hall-like
component.
In Fig. 6, we study v2 for the Gubser flow case. Here

also, we find that v2 reduces in the evolving picture.
Though conductivity is r dependent, because of the para-
metrization in Eq. (32), v2 no longer depends on r. It is
important to note that the experimental measurements
reveal an increasing trend of v2 with

ffiffiffiffiffiffiffiffi
sNN

p
[50].

However, the formula used here to study v2 here is not
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FIG. 4. Cooling rate in Gubser flow for different value of r ¼ 0,
1, 2, 3, 4 fm.
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robust. This phenomenological study aims to measure a
possible effect of the considered evolution picture on v2
due to modification in thermal conductivity instead of
absolute v2. A rigorous study with the hydrodynamic
simulation is necessary to quantify the exact effect in v2
or any other phenomenological quantities due to conduc-
tivity modification in the evolving picture.

IV. SUMMARY AND CONCLUSION

In summary, we have calculated the thermal conductivity
of an evolving medium where the system temperature

changes with time. The heat current is generated when
the system has a temperature gradient (∇⃗T). In the case of
QGP created in RHICs, the temperature falls as the medium
evolves, which leads to changes in the temperature gradient
in the system with time. This change must lead to a finite
effect in thermal conductivity and related observables. In

this work, we have estimated the effect of ∇⃗ Ṫ in thermal
conductivity and elliptic flow. QGP created in noncentral
RHICs faces a substantial magnetic field at an early stage,
which decays depending on the electrical properties of the
medium. Thermal conductivity can be broken into two
independent components in a magnetic field. One is respon-
sible for heat current along the temperature gradient,
denoted with κ0. Another one is the “Hall-like” component
(κH) along the direction perpendicular to the temperature
gradient and magnetic field, which vanishes as soon as the
magnetic field diminishes. In this work, we have considered
a time-varying magnetic field to estimate thermal conduc-
tivity. For the decay profile of temperature commonly
known as cooling rate, we considered three different hydro-
dynamic expansion; ideal and first-order hydrodynamics in
the absence of magnetic field denoted here by case-I and
case-III, respectively, and in the presence of the magnetic
field, we have considered the ideal magnetohydrodynamics,
denoted by case-II. It is important to note that thermal
conductivity is a dissipative quantity and does not appear in
ideal hydrodynamics. In principle, causal and stable hydro-
dynamics, such as second-order MIS theory, should be used
to calculate thermal conductivity and cooling rate. However,
no analytical solution for cooling rate in ð3þ 1ÞD hydro-
dynamics or magnetohydrodynamics exists. Therefore, we
have used the ideal and first-order hydrodynamics, where an
analytical solution of cooling rate is possible. Furthermore,
in the end, we extend our study to Gubser hydrodynamics.
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as the left figure but for “Hall-like” component in the Gubser flow.
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In this case, the temperature is a function of proper time and
radial coordinates, affecting thermal conductivity. One can
extend the work to study the effect of the evolution in any
hydrodynamic model where an analytical or semianalytical
solution is possible.
In this work, we have used a quasiparticlemodel for QGP,

where interaction is taken care of by the thermal mass of the
partons.We found that whenwe take temperature evolution,
thermal conductivity increases which is sensitive to the
cooling rate. The effect is comparatively higher in the case of
first-order cooling rate, where cooling is comparatively
slow. In the presence of a magnetic field, the effect of
cooling in κ0 component is comparatively small and
sensitive to the magnetic field decay parameter (τB). We
have also estimated the effect of temperature evolution on
the elliptic flow of QGP via thermal conductivity. We found
that elliptic flow reduces due to temperature evolution.
The effect is smaller in the presence of a magnetic field, and
it increases with increasing the value of the decay parameter.
ı.e., slower decay of the magnetic field leads to a higher
reduction of elliptic flow due to temperature evolution.
This is the very first study that includes the effect of

temperature evolution in calculating the thermal conduc-
tivity of QGP. Despite exciting findings, this work has
some limitations or shortcomings that should be resolved
for a complete and causally stable result. First, the cooling
rate must be calculated using second-order dissipative
magnetohydrodynamics. However, in that case, the cooling
rate exists between the ideal and first-order hydrodynamics,
for which we argue that actual results would not deviate
much from our estimations. Another point to note here is
that the particle’s energy gets quantized via the Landau
quantization in the presence of a magnetic field, which is
not considered here. All these points mentioned above are
essential to take care of for hydrodynamical simulation
where thermal conductivity is required.
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APPENDIX A: COOLING RATE

The energy-momentum tensor for an ideal magneto-
hydrodynamics can be given by [51–53]

Tμν ¼ ðϵþ pþ B2Þuμuν −
�
pþ B2

2

�
gμν − BμBν; ðA1Þ

where ϵ, p, and uμ are the fluid energy density, pressure,
and four-velocity, respectively. gμν ðthemetric tensor of flat

spacetimeÞ ¼ diagð1;−1;−1;−1Þ. Here Bμ ¼ 1
2
ϵμναβFναuβ

is the magnetic field in the frame moving with the velocity
uβ and ϵμναβ is the completely antisymmetric fourth rank
Levi-Civita tensor. The magnetic field four-vector Bμ is a
spacelike vector with modulus BμBμ ¼ −B2, and orthogo-

nal to uμ, i.e., Bμuμ ¼ 0, where B ¼ jB⃗j and B⃗ is the
magnetic field three-vector in the frame moving with four-
velocity uμ. The projection of the energy-momentum
conservation equation ∂νTμν ¼ 0 along the fluid four-
velocity,

uμ∂νTμν ¼ 0; ðA2Þ
will express the conservation of energy. Using Eq. (A1)
we get

∂τ

�
ϵþ B2

2

�
þ ϵþ pþ B2

τ
¼ 0: ðA3Þ

Here, we will use Eq. (A3) to study the temperature
evolution of the system for the cases in the absence and
presence of a time-varying magnetic field.

1. Case-I (B= 0)

In the absence of an external magnetic field Eq. (A3)
reduces into the form,

∂τϵþ
ϵþ p
τ

¼ 0: ðA4Þ

Here we consider an ideal equation of state p ¼ ϵ
3
¼ aT4

for QGP where

a ¼
�
16þ 21

2
Nf

�
π2

90
: ðA5Þ

Hence, Eq. (A4) takes the form,

∂T
∂τ

¼ −T
3τ

: ðA6Þ

The solution of this differential equation with initial
conditions of τ ¼ τ0 at T ¼ T0 is

T ¼ T0

�
τ0
τ

�1
3

: ðA7Þ

2. Case-II (B ≠ 0)

In the presence of an external time-varying magnetic
field Eq. (A3) simplifies into the form,

∂T
∂τ

¼ BðτÞ2
12aT3τB

−
4aT4 þ BðτÞ2

12aT3τ
; ðA8Þ
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where BðτÞ ¼ B0 expð−τ=τBÞ. The above equation can be
rearranged into the form of a standard Bernoulli’s differ-
ential equation as

∂T
∂τ

þ pðτÞT ¼ qðτÞT−3; ðA9Þ

where pðτÞ ¼ 1
3τ, qðτÞ ¼ ðαβ − α

τÞ expð−2βτÞ with α ¼ B2
0

12a
and β ¼ 1

τB
. After solving this differential equation, we get

the temperature evolution with time with initial conditions
of τ ¼ τ0 at T ¼ T0 as

T ¼
�
T4
0

�
τ0
τ

�4
3 þ 4α

ð2βτÞ43
n
Γð4=3; 2βτÞ − Γð4=3; 2βτ0Þ

o

−
2α

ð2βτÞ73
n
Γð7=3; 2βτÞ − Γð7=3; 2βτ0Þ

o�1
4

: ðA10Þ

From Eq. (A8) one can easily find

∇⃗ Ṫ ¼
�
−1
3τ

�
1 −

3BðτÞ2
4aT4

�
−

BðτÞ2
4aτBT4

�
∇⃗T: ðA11Þ

APPENDIX B: THERMAL CONDUCTIVITY

1. Case-I (B= 0)

In the case of space-time evolving temperature, the heat
current in the rest frame of the fluid can be expressed as

I⃗ ¼ −ðκ0∇⃗T þ κ̄1∇⃗ ṪÞ: ðB1Þ

The microscopic definition of heat flow from Eq. (5),

I⃗i ¼
Z

d3jk⃗ij
ð2πÞ3

k⃗i
ωi

ðωi − bihÞδfi: ðB2Þ

To find δf, we solve the BTE in the presence of an external
magnetic field under the RTA

∂fi
∂t

þ k⃗i
ωi

·
∂fi
∂x⃗

¼ −
δfi
τiR

: ðB3Þ

We can assume an ansatz of δfi for thermal conductivity as

δfi ¼
ðk⃗i:Ω⃗κÞ

T
∂f0i
∂ωi

: ðB4Þ

The general form of Ω⃗κ is

Ω⃗κ ¼ α1∇⃗T þ α2∇⃗ Ṫ : ðB5Þ

The unknown coefficients αi [i ¼ ð1; 2Þ] can be obtained
by substituting Eqs. (B5) and (B4) into Eq. (B3), The first
term on left-hand side of the equation becomes

− ðωi − biμÞ
Ṫ
T
∂f0i
∂ωi

þ ωiv⃗i
T

:
n
α̇1∇⃗T þ α1∇⃗ Ṫ þα̇2∇⃗ Ṫ

þ α2∇⃗ T̈
o
∂f0i
∂ωi

: ðB6Þ

The second term in lhs of the Boltzmann equation leads to

∂fi
∂xi

¼ ∂

∂xi
ðf0i þ δfiÞ

¼ ∂

∂xi
ðf0i Þ þ

∂fi
∂xi

ðδfiÞ

¼ ∂

∂xi

�
1

1� exp ðβðωi − biμiÞÞ
�
þ 0

¼ −ðωi − bihÞ
∇⃗T
T

∂f0i
∂ωi

: ðB7Þ

Finally, after the substitution of the above results in both
sides of Eq. (B3), we get

− ðωi − biμÞ
Ṫ
T
∂f0i
∂ωi

þ ωiv⃗i
T

:
	
α̇1∇⃗T þ α1∇⃗ Ṫþα̇2∇⃗ Ṫ

þ α2∇⃗ T̈


∂f0i
∂ωi

− ðωi − bihÞ
∇⃗T
T

∂f0i
∂ωi

¼ −
ωi

TτiR

	
α1∇⃗T

þ α2∇⃗ Ṫ


∂f0i
∂ωi

: ðB8Þ

In the current analysis, we consider only the terms with
first-order derivatives of the fields and neglect higher-order

derivative terms. The comparison of the coefficients of v⃗ ·

∇⃗T and v⃗ · ∇⃗ Ṫ on both sides of the above equation leads to

α̇1 ¼ −
�
1

τiR
α1 −

ωi − bih
ωi

�
;

α2 ¼ −τiRα1: ðB9Þ

Equation (B9) is a first-order differential equation. After
solving it we get,

α1 ¼ −τiR

�
ωi − bih

ωi
− expð−τ=τRÞ

�
; ðB10Þ

After substituting Eqs. (B4) and (B5) into Eq. (B2)
we get

I⃗i¼
1

3T

X
i

Z
d3jk⃗ij
ð2πÞ3ωi

k⃗2i ðωi−bihÞfα1∇⃗Tþα2∇⃗Ṫg
�
∂f0i
∂ωi

�
:

ðB11Þ

Comparison of Eqs. (B11) and (B1) leads to
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κ0 ¼ −
1

3T

X
baryons

gi

Z
d3jk⃗ij
ð2πÞ3ωi

k2i ðωi − bihÞ2α1
�
∂f0i
∂ωi

�
;

κ1 ¼ −
1

3T

X
baryons

gi

Z
d3jk⃗ij
ð2πÞ3ωi

k2i ðωi − bihÞ2α2
�
∂f0i
∂ωi

�
:

ðB12Þ

2. Case-II (B ≠ 0)

In the presence of a time-varying magnetic field heat
current in the fluid rest frame can be expressed as [19]

I⃗ ¼ −fκ0∇⃗T þ κ̄1ð∇⃗T × B⃗Þ þ κ̄2ð∇⃗T × ˙B⃗Þ þ κ̄3∇⃗ Ṫ

þ κ̄4ð∇⃗ Ṫ ×B⃗Þg: ðB13Þ

We can express the three-vector form of heat current in
terms of microscopic quantities as

I⃗i ¼
Z

d3jk⃗ij
ð2πÞ3

k⃗i
ωi

ðωi − bihÞδfi: ðB14Þ

To find δfi, we solve the BTE in the presence of an external
magnetic field under the RTA

∂fi
∂τ

þ k⃗i
ωi

·
∂fi
∂x⃗

þ qi

�
k⃗i
ωi

× B⃗

�
·
∂fi
∂k⃗i

¼ −
δfi
τiR

; ðB15Þ

where a general form of Ω⃗κ up to the first-order time
derivative of B⃗ can be expressed as

Ω⃗κ ¼ α1B⃗þ α2∇⃗T þ α3ð∇⃗T × B⃗Þ þ α4
˙B⃗þ α5ð∇⃗T × ˙B⃗Þ

þ α6∇⃗ Ṫþα7ð∇⃗ Ṫ ×B⃗Þ þ α8ð∇⃗ Ṫ × ˙B⃗Þ: ðB16Þ

The unknown coefficients αi [i ¼ ð1; 2…::8Þ] can be
obtained by substituting Eqs. (B16) and (B4) into
Eq. (B15).
The first term in left-hand side of the Eq. (B15) becomes

ωiv⃗i
T

:

�
α̇1 B⃗þα1

˙B⃗þ α̇2∇⃗T þ α2∇⃗ Ṫþα3ð∇⃗T × ˙B⃗Þ þ α̇3ð∇⃗T × B⃗Þ þ α3ð∇⃗ Ṫ ×B⃗Þ þ α̇4
˙B⃗þα4

̈B⃗

þ α̇5ð∇⃗T × ˙B⃗Þ þ α5ð∇⃗ Ṫ ×B⃗Þ þ α5ð∇⃗T × ̈B⃗Þ þ α̇6∇⃗ Ṫþα6∇⃗ T̈ þα̇7ð∇⃗ Ṫ ×B⃗Þ þ α7ð∇⃗ T̈ ×B⃗Þ þ α7ð∇⃗ Ṫ × ̈B⃗Þ

þ α8ð∇⃗ T̈ × ˙B⃗Þ þ α̇8ð∇⃗ Ṫ × ˙B⃗Þ þ α8ð∇⃗T × ̈B⃗Þ − ðωi − biμÞ
Ṫ
T

�
∂f0i
∂ωi

: ðB17Þ

The second term in the left-hand side of the Boltzmann
equation leads to

∂fi
∂xi

¼ ∂

∂xi
ðf0i þ δfiÞ

¼ ∂

∂xi
ðf0i Þ þ

∂fi
∂xi

ðδfiÞ

¼ ∂

∂xi

�
1

1� exp ðβðωi − biμiÞÞ
�
þ 0

¼ −ðωi − bihÞ
∇⃗T
T

∂f0i
∂ωi

: ðB18Þ

The third term in the left-hand side leads to

∂fi
∂ki

¼ ∂f0i
∂ki

þ ∂δfi
∂ki

¼ v⃗i
∂f0i
∂ωi

þ Ω⃗κ

T
∂f0i
∂ωi

: ðB19Þ

The identity ðv⃗i × B⃗Þ · v⃗i ∂f
0
i

∂ωi
¼ 0. Thus, we are left with

only Ω⃗κ
T

∂f0i
∂ωi

term of the above equation. Hence,

∂fi
∂ki

¼ 1

T
f−α2qiv⃗i · ð∇⃗T × B⃗Þ þ α3qiv⃗i · ∇⃗TðB⃗ · B⃗Þ − α3qiv⃗i · B⃗ðB⃗ · ∇⃗TÞ þ α5qiv⃗i · ∇⃗Tð ˙B⃗ · B⃗Þ − α5qiv⃗i ·

˙B⃗

× ðB⃗ · ∇⃗TÞ − α6qiv⃗i · ð∇⃗ Ṫ ×B⃗Þ þ α7qiv⃗i · ∇⃗ ṪðB⃗ · B⃗Þ − α7qiv⃗i · B⃗ðB⃗ · ∇⃗ ṪÞ þ α8qiv⃗i · ∇⃗ Ṫð ˙B⃗ · B⃗Þ

− α8qiv⃗i ·
˙B⃗ðB⃗ · ∇⃗ ṪÞg ∂f

0
i

∂ωi
: ðB20Þ
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Finally, after the substitution of the above results on both sides of Eq. (B15), the left side becomes

¼ ωiv⃗i
T

:

�
α̇1 B⃗þα1

˙B⃗þ α̇2∇⃗T þ α2∇⃗ Ṫ þα3ð∇⃗T × ˙B⃗Þ þ α̇3ð∇⃗T × B⃗Þ þ α3ð∇⃗ Ṫ ×B⃗Þ þ α̇4
˙B⃗þα4

̈B⃗þ α̇5ð∇⃗T × ˙B⃗Þ

þ α5ð∇⃗ Ṫ ×B⃗Þ þ α5ð∇⃗T × ̈B⃗Þ þ α̇6∇⃗ Ṫþα6∇⃗ T̈þα̇7ð∇⃗ Ṫ ×B⃗Þ þ α7ð∇⃗ T̈ ×B⃗Þ þ α7ð∇⃗ Ṫ × ̈B⃗Þ þ α8ð∇⃗ T̈ × ˙B⃗Þ

þ α̇8ð∇⃗ Ṫ × ˙B⃗Þ þ α8ð∇⃗T × ̈B⃗Þ − ðωi − biμÞ
Ṫ
T

�
− ðωi − bihÞv⃗i ·

∇⃗T
T

þ 1

T

n
−α2qiv⃗i · ð∇⃗T × B⃗Þ þ α3qiv⃗i · ∇⃗TðB⃗ · B⃗Þ

− α3qiv⃗i · B⃗ðB⃗ · ∇⃗TÞ þ α5qiv⃗i · ∇⃗Tð ˙B⃗ · B⃗Þ − α5qiv⃗i ·
˙B⃗ðB⃗ · ∇⃗TÞ − α6qiv⃗i · ð∇⃗ Ṫ ×B⃗Þ þ α7qiv⃗i · ∇⃗ ṪðB⃗ · B⃗Þ

− α7qiv⃗i · B⃗ðB⃗ · ∇⃗ ṪÞ þ α8qiv⃗i · ∇⃗ Ṫð ˙B⃗ · B⃗Þ − α8qiv⃗i ·
˙B⃗ðB⃗ · ∇⃗ ṪÞ

o
; ðB21Þ

and the right side becomes

¼ −
ωi

TτiR
fα1B⃗þ α2∇⃗T þ α3ð∇⃗T × B⃗Þ þ α4

˙B⃗þ α5ð∇⃗T × ˙B⃗Þ þ α6∇⃗ Ṫþα7ð∇⃗ Ṫ ×B⃗Þ þ α8ð∇⃗ Ṫ × ˙B⃗Þg ∂f
0
i

∂ωi
: ðB22Þ

In the current analysis, we consider only the terms with
first-order derivatives of the fields and neglect higher-order
derivative terms. The comparison of the coefficients of

v⃗ · B⃗, v⃗i · ∇⃗T, v⃗i · ð∇⃗T × ˙B⃗Þ, v⃗i · ˙B⃗, v⃗i · ð∇⃗T × B⃗Þ, v⃗i · ∇⃗ Ṫ,

and v⃗i · ð∇⃗ Ṫ ×B⃗Þ on both sides, gives us α̇1, α4, α̇2, α5, α̇3,
α6, α7 respectively as

α̇1 ¼ −
1

τiR
α1 þ

qifðB⃗ · ∇⃗TÞα3 þ ðB⃗ · ∇⃗ ṪÞα7g
ωi

;

α̇2 ¼ −
�
1

τiR
α2 þ

�
qiðB⃗ · B⃗ − τiRB⃗ · ˙B⃗Þ

ωi

�
α3 −

ωi − bih
ωi

�
;

α̇3 ¼ −
1

τiR
α3 þ

qi
ωi

α2;

α4 ¼ −τiR

�
α1 þ

τiRqiðB⃗ · ∇⃗TÞ
ωi

α5

�
;

α5 ¼ −τiRα3;

α6 ¼ −τiRα2 −
τiRqiB⃗

2

ωi
α7;

α7 ¼ −τiRα3 þ
τiRqi
ωi

α6: ðB23Þ

Here, α̇1, α̇2, α̇3 from Eq. (B23) can be expressed in terms
of matrix equation as

dX
dt

¼ AX þ G; ðB24Þ

where the matrices take the following forms:

X ¼

0
B@

α1

α2

α3

1
CA;

A ¼

0
BBB@

− 1
τiR

−
τiR

qi
ωi
Q

P
qi
ωi
ðB⃗ · ∇⃗TÞ − Q

P

0 − 1
τiR

− qiF2

ωi

0 qi
ωi

− 1
τiR
;

1
CCCA;

G ¼

0
B@

0
ωi−bih

ωi

0

1
CA; ðB25Þ

with F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðB − τiRḂÞ

p
, P ¼ 1þ τi2R

q2i B⃗
2

ω2
i
, and Q ¼

τiRqi
ωi

ðB⃗ · ∇⃗ ṪÞ. Equation (B24) can be solved by diagonal-
izing the matrix A and using the method of the variation of
constants. The eigenvalues corresponding to matrix A are
λj ¼ − 1

τiR
þ aji

qiF
ωi

with a1 ¼ 0, a2 ¼ −1, and a3 ¼ 1.

Hence, one can write the linearly independent solutions
corresponding to the homogeneous part of the differential
Eq. (B24) in terms of its eigenvectors as

y1 ¼

0
B@

eη1

0

0

1
CA; y2 ¼

0
B@

ζeη2

−iFeη2

eη2

1
CA; y3 ¼

0
B@

−ζeη3

iFeη3

eη3

1
CA;

where

ζ ¼ iðB⃗ · ∇⃗TÞ
F

þQ
P

�
τiR þ iωi

qiF

�
;

ηj ¼ −
τ

τiR
þ aj

qii
ω

Z
Fdτ: ðB26Þ
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Therefore, the fundamental matrix for Eq. (B24) is

Y ¼

0
B@

eη1 ζeη2 −ζeη3

0 −iFeη2 iFeη3

0 eη2 eη3

1
CA; ðB27Þ

We seek a particular solution of the equation with a given
form of Eq. (B24) is

Yp ¼ YU; ðB28Þ

where U is a column matrix of unknowns.

U ¼

0
BBBBBBBB@

u1

u2

:

:

:

un

1
CCCCCCCCA
: ðB29Þ

From Eqs. (B28) and (B24) we can see that Yp is a column
matrix with the same coefficients as that of matrix X.
Further, the differentiation of Eq. (B28) with respect to
time gives us Y 0

p ¼ Y 0U þ YU0, where Y 0 ¼ AY. Hence,
Y 0
p ¼ AYp þ YU0. Comparison of above equation with

Eq. (B24) tells us

G ¼ YU0: ðB30Þ

The determinant of matrix Y is −2iFeη. Then,

u01 ¼
1

−2iFeη
det

0
B@

0 ζeη2 −ζeη3
ωi−bih

ω −iFeη2 iFeη3

0 eη2 eη3

1
CA;

¼ e−η1

iF

�
ωi − bih

ωi

�
:

u02 ¼
1

−2iFeη
det

0
BB@

eη1 0 −ζeη3

0 ωi−bih
ωi

iFeη3

0 0 eη3

1
CCA;

¼ −e−η2
iF

�
ωi − bih
2ωi

�
:

u03 ¼
1

−2iFeη
det

0
BB@

eη1 ζeη2 0

0 −iFeη2 ωi−bih
ωi

0 eη2 0

1
CCA;

¼ e−η3

iF

�
ωi − bih
2ωi

�
: ðB31Þ

After integrating u01, u
0
2, and u

0
3 with respect to time, we get

the matrix U as

U ¼

0
BB@

−i ωi−bih
ωi

ξ1

i ωi−bih
2ωi

ξ2

−i ωi−bih
2ωi

ξ3

1
CCA; ðB32Þ

where ξj ¼
R

e−ηj
F dτ.

After substituting the above value of U in Eq. (B28) one
obtains,

Yp ¼

0
B@

eη1 ζeη2 −ζeη3

0 −iFeη2 iFeη3

0 eη2 eη3

1
CA
0
BB@

−i ωi−bih
ωi

ξ1

i ωi−bih
2ωi

ξ2

−i ωi−bih
2ωi

ξ3

1
CCA;

0
B@

α1

α2

α3

1
CA ¼

0
B@

eη1 ζeη2 −ζeη3

0 −iFeη2 iFeη3

0 eη2 eη3

1
CA
0
B@

c1
c2
c3

1
CA:

Hence,

α1 ¼ c1eη1 þ c2ζeη2 − c3ζeη3 ;

α2 ¼ −c2iFeη2 þ c3iFeη3 ;

α3 ¼ c2eη2 þ c3eη3 : ðB33Þ
The functions c1ðτÞ, c2ðτÞ, and c3ðτÞ can be defined

as c1 ¼ −i ðωi−bihÞ
ωi

ξ1, c2 ¼ i ðωi−bihÞ
2ωi

ξ2, and c3 ¼
−i ðωi−bihÞ

2ωi
ξ3. For the time-varying field we get

F ¼ B
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ τiR

τB

q
,
R
Fdτ ¼ Bτ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ τiR

τB

q
.

Hence, it leads to the given form,

ηj ¼ −
τ

τiR
þ aji

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ τiR

τB

q
τB

τ;

ξj ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ τiR
τB

q
B0

e

 
1

τi
R
þ 1

τB
−aji

ffiffiffiffiffiffi
1þ

τi
R
τB

q
τB

!
τ

 
1
τiR
þ 1

τB
− aji

ffiffiffiffiffiffiffiffi
1þτi

R
τB

q
τB

! : ðB34Þ

Using Eq. (B14) we get

I⃗i ¼
1

3T

X
i

Z
d3jk⃗ij
ð2πÞ3ωi

k⃗2i ðωi − bihÞfα1B⃗þ α2∇⃗T

þ α3ð∇⃗T × B⃗Þ þ α4
˙B⃗þ α5ð∇⃗T × ˙B⃗Þ þ α6∇⃗ Ṫ

þ α7ð∇⃗ Ṫ ×B⃗Þ þ α8ð∇⃗ Ṫ × ˙B⃗Þg
�
∂f0i
∂ωi

�
; ðB35Þ
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where

α2¼
ðωi−bihÞ

ωi
τiR

1

ð1þχiþχ2i Þ
;

α3¼
ðωi−bihÞ

ωiB
τiR

χi
ð1þχiÞð1þχiþχ2i Þ

;

α6¼
ðωi−bihÞ

ωi

τi2R
ð1þχiÞð1þχiþχ2i Þ

×

�ðð1þχiÞðχ2i −1ÞÞþχ2i
1þχ2i

�
;

α7¼−
ðωi−bihÞ

ωiB
τi2R

χiþχið1þχiÞ
ð1þχiÞð1þχiþχ2i Þð1þχ2i Þ

; ðB36Þ

where χi ¼ τiR
τB
.

Compare the coefficients of Eqs. (B13) and (B35)

κ0 ¼−
1

3T

X
baryons

gi

Z
d3jk⃗ij
ð2πÞ3ωi

k2i ðωi − bihÞ2α2
�
∂f0i
∂ωi

�
;

κ1 ¼−
1

3T

X
baryons

gi

Z
d3jk⃗ij
ð2πÞ3ωi

k2i ðωi − bihÞ2α3
�
∂f0i
∂ωi

�
;

κ̄2 ¼−
1

3T

X
baryons

gi

Z
d3jk⃗ij
ð2πÞ3ωi

k2i ðωi − bihÞ2ð−τiRα3Þ
�
∂f0i
∂ωi

�
;

κ̄3 ¼−
1

3T

X
baryons

gi

Z
d3jk⃗ij
ð2πÞ3ωi

k2i ðωi − bihÞ2α6
�
∂f0i
∂ωi

�
;

κ̄4 ¼−
1

3T

X
baryons

gi

Z
d3jk⃗ij
ð2πÞ3ωi

k2i ðωi − bihÞ2α7
�
∂f0i
∂ωi

�
:
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