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In this work, we take the X(3872) as the hidden-charm tetraquark state with both isospin / = Qand I = 1
components, then investigate the strong decays X(3872) — J/wa 2", J/yw, y17°, D**D°, and D°D°7°
with the QCD sum rules. We take account of all the Feynman diagrams, and acquire four QCD sum rules
based on rigorous quark-hadron duality. We obtain the total decay width about 1 MeV, which is in excellent
agreement with the experiment data I'y = 1.19 = 0.21 MeV from the PDG, it is the first time to reproduce
the tiny width of the X(3872) via the QCD sum rules, which supports assigning the X (3872) as the hidden-

charm tetraquark state with the J7€ = 17+,
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I. INTRODUCTION

In 2003, the Belle Collaboration observed a narrow
charmoniumlike state, the X(3872), in the z*7~J/y mass
spectrum in the exclusive process B* — K*ztz~J/y,
which has a mass of 3872.0 + 0.6 + 0.5 MeV and a width
less than 2.3 MeV, the X(3872) lies very near the D*D
threshold [1], which stimulated the interpretation in terms
of the D*D molecular state [2—10]. At the same time, other
interpretations were suggested, such as the tetraquark
state [11-16], hybrid state [17], charmonium-molecule
mixing state [18-21], charmonium state [22], etc. In fact,
the observations of the X(3872) in the pp and pp collisions
by the CDF, ATLAS, LHCb, and CMS Collaborations
disfavor the pure molecule assignment [23-27].

In 2015, the LHCb Collaboration studied the angular
correlations in the BT — X(3872)K* decays with the
subprocess X(3872) — p°J/w — ata utu~ to measure
orbital angular momentum contributions and to determine
the JPC of the X(3872) to be 17" [28]. The X(3872) state
is probably the best known (and most enigmatic) repre-
sentative of the X, Y, and Z states. One important
discriminant between different models is the width of
the X(3872). In 2020, the LHCb Collaboration updated the
mass and width of the X(3872), and obtained the Breit-
Wigner width T' = 0.961[¢ +0.21 MeV [29], or 1.39 +
0.24 £+ 0.10 MeV [30], which indicates nonzero width of
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the X(3872) and leads to the average width I'y = 1.19 +
0.21 MeV listed in [31]. As known, we cannot assign a
hadron with the mass alone, and we should study the
decays to obtain more robust interpretation. Up to today,
only the decays X(3872) — J/yxtn~, J/ww, J/yy, y'y,
ya7®, D°DO and D°D°7° are established [31].

In the present work, we will focus on the scenario of
tetraquark states. In Ref. [16], we take the pseudoscalar,
scalar, axialvector, vector, and tensor (anti)diquarks as the
basic constituents, and construct the scalar, axialvector,
and tensor tetraquark currents to study the mass spectrum
of the ground state hidden-charm tetraquark states with the
QCD sum rules in a comprehensive way, and observe that
the X(3872) can be assigned to be the hidden-charm
tetraquark state with the quantum numbers J©C = 17+,
According to the recent combined data analysis, the decays
X(3872) - J/yp - J/yratz~ and X(3872) - J/yw —
J/wratn~ 2" have almost the same branching fractions
[32], the isospin breaking effects in the decays are large
enough and beyond the naive p — @ mixing. In this work,
we introduce the isospin breaking effects explicitly and
study the decays X(3872) — J/yntn~, J/ww, y.z°,
DD and D°D°z° with the QCD sum rules based on
rigorous quark-hadron duality, and try to decipher the
width of the X(3872).

The article is arranged as follows. We obtain the QCD
sum rules for the hadronic coupling constants in Sec. II. In
Sec. III, we present numerical results and discussions and
Sec. IV is reserved for our conclusion.

II. QCD SUM RULES FOR THE HADRONIC
COUPLING CONSTANTS

We write down the three-point correlation functions
H}téﬁ(p q) and H,lléz(p, g) in the QCD sum rules,
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d*xd'ye et (0]T{J;" (x)J5 () (0)}]0),

d*xd*ye're (0|T{J3Y (x)J2 (v)J5 1(0)}0),

Mu(p.q) = [ dixdye e (0]T{J}(x)J5(y)Ja (0)}0),
Lu(p.q) = [ d'xd'ye e (0[T{J0 (x)J2(y)Ja" (0)}0). (1)
|
h th t - ijk nimn
e e s T(0) = S [ul (0)Crs¢4(0)it (0)74CEE (0)
V2
I () = e(e), — Ul (0)Craci(0)7, (0)y5CEL(0)],
Ji(x) = e(x)yursc(x), i gilkgimn
: _ J44(0) = [dfoccozzmoacam
Jﬁ) (x) :u(x)y#c(x), (2) u ( ) \/E j( ) 75 k( ) ( )}' ( )
= d7(0)Craci(0)d,, (0)15CEL(0), (5)
1 -
Jo(y) = NG [a(y)r,u(y) —d(y)r.d(y)], interpolate the mesons J/y, y., D*, p, o, n, D, and
] X(3872), respectively. As the decays X(3872) — J/wp —
JOy) = —=[a(y)yu(y) + d(y)y,d(y)]. J/wrtz~ and X(3872) —» J/yw — J/wyrnta x° have
2 almost the same branching fractions [32], which is beyond
. . the naive expectation of the p — @ mixing, we have to
J” == d ) . . . !
50) V2 [0)irsu(y) = d(y)irsd() introduce mixing effects in the X(3872) and abandon the
JP(y) = e(y)iysu(y) (3) obsession that the X(3872) has definite isospin / = 0. We
> ' determine the mixing angle # by the experimental data via
trial and error.
X i AT At the hadron side, we insert a complete set of inter-
Ja(0) = cos J5%(0) + sin 0J5%(0), (4)  mediate hadronic states with the same quantum numbers as
the currents into the three-point correlation functions, and
isolate the ground state contributions explicitly,
|
;LXfJ/lI/mJ/lI/fﬂmﬂGlXJ/
Hlva(pv Q) = . ie yao—qo—p gt
! (m% = p?)(m3,,, = p*)(my —q*) "
= H/)(p/zv p27 qz)igﬂurlaqﬂp gt (6)
AXfJ/ ml/y/fwmwG,Xj/
qua<p7 Q) = - = i€ zxaaqﬂp /A
! (m% = p?)(m3,,, = p*)(mg —q*) "
= Hw(p/z’ p27 q2)i€uy(mqﬁp /AR (7)
Ixt gy 1:Gly
Hl (p q) Yot Mo ){ﬂ €y Dapyqa_i_”_’
(my = p?)(mg,, = p*)(mz —q*) ™
=11 (p p q ) aﬂuo’pyq” +oee (8)
Axfp-mppupGyp- .
Hza(pvq): X AL lp'qg(z+""
g (my = p”)(mp. = p*)(mp, - ¢°) g
=Tp(pP% P*.4")ip QG+ ©9)
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where p' = p+q, pu, = mf”fmm”d p =1 'D".lZD, the hadronic
coupling constants Gy, ,» Gy;/ya Gyrr and Gyp.p are
defined by
<J/l//( ),0(6])|X(p’)> Gaﬂbpaéa Gip : qG’XJ/W,,
<J/l//( )a)(q) |X(p/)> = aa/wpaz:ag*gzp : qG/XJ/l//m’
et (P)2(@)|X(p')) = ie”* pelaPuSy Gy
(D*(p)D(q)|X(p")) = = - &P - aGypp- (10)

the decay constants Ay, f;/y fy..» fps fws fpts fp> and [,
are defined by

O 0)X(p)) = 2xLys (11)
O, )T /w(P)) = F17ymy 1y
OOz (P)) = Fymy
<0|JE*(0)|D*(P)> :fD*mD*‘fw (12)
(0172(0)p(q)) = f,m,5,.
(0172(0)|@(q)) = fumas,. (13)
m2
O12(0)[D(g)) =122
fam?
(O13(0)ln(q)) = =220 (14)

the ¢, £, and ¢, are polarization vectors of the axialvector
or vector mesons.

We choose the components ,(p”, p*. 4%).
I, (P p*.¢*). (P p*.¢*), and TIp(p?. p*.q%) to
study the hadronic coupling constants Gy, Jup? e Iy
GY,r» and Gyp.p, respectively. In Ref. [14], the tensor
structures p,€,45:P°q" and €,,4,9°, which differ from the
structure €,,,,4°p - q in Egs. (6) and (7) greatly, are chosen
to study the hadronic coupling constants Gy, and
GxJ/yo- The Gyyyy, and Gy, defined in Ref. [14] (also
Ref. [33]) and the G, Jup and G/, defined in this work

have the relations, Gy;/,, =

XJ/yw

=p- qGXJ/l//p and GXJ/I//(U :|

p-qGy, e although the two definitions are both reason-

able, they lead to quite different QCD sum rules. It is not odd
that different predictions may be obtained. Then, we acquire
the hadronic spectral densities pg(s’, s, u) through triple
dispersion relation,

I (p", p*. ¢%) =/ dS’/ dS/
A2 A2 A2

/)H(S/’ S, ’4)
(s =p?)(s=p)u—¢q*)’

where the A’”?, A2, and A2 are thresholds, we add the
subscript H to stand for the components I1,(p", p*, %),
,(p", p*,4%), TL(p", p*, ¢*), and Tp(p”, p*, ¢*) at the
hadron side.

As far as the operator product expansion is concerned,
we calculate the vacuum condensates up to dimension 5,
and obtain the QCD spectral densities through the double-
dispersion relation,

Hoep (P2, p%.q%) /dS/
A2 A2

as

X du

(15)

PQCD (P >, ”)

=) (16)

ImHQCD(S/ + i€, pz, q2)
T

=0.

(17)

lim,_,

In calculations, we neglect the gluon condensates due to
their tiny contributions [34,35]. We accomplish the integral
over ds’ firstly at the hadron side, then match the hadron
side with the QCD side below the continuum thresholds s
and u, to obtain rigorous quark-hadron duality [34,35],

fie 3l o =t
/A2 ds/Az du szCD > ”)qz). (18)

In the following, we write down the hadron representation
explicitly,

,(p2 p. ¢%) = ’IXfJ/me/wfﬂmpG;(J/x,/p C,
! (my = p?)(m3,, = p*)(my—q*) ~ (m3,, = p*)(m;—q°)
Inl (p,2 pz qz) _ j'XfJ/l//’nl/l//fa)n/la)G;(j/V/w Céu
@ ’ ? E)
(m% = p?)(m3,, = p*)(miy = q*) ~ (m3,, — p*)(m — ¢*)
I (p/2 pz qZ) _ ’1Xf)m m)(clluﬂG/X)ﬂr + C;r
(mg = p?)(m;, = p*)(mz—q*)  (my, = p*)(mz —q*)
AxfompupGypp Ch
(2 p*.q*) = : (19)
(mx = p")(mp. = p*)(mp —¢*) ~ (mp. — p*)(m}, — ¢%)

014017-3



ZHI-GANG WANG

PHYS. REV. D 109, 014017 (2024)

where we introduce the parameters C’ ojw/z/D O stand for all

the contributions concerning the higher resonances in the s’
channel,

4 2 ’

':) S - p
~ ! 2 2
C - o0 d ,pm(s s mj/y/’ m(u)
o [ S o — p”? ’
" P

2 2
C;[:/ d/ﬂﬂ'( ){Ll’mﬂ)7
s s’ =

c —/ a5 P )

p/2

o Brls mie m2
S,

0 §=p
|

where the densities py (s', s, u) = p, (s, s, u)6(s — mi/ ) X

8(u—m3), ﬁw(s’,s,u)é(s—mﬁ/wﬁ(u m2), p(s' s,u)x
8(s—m2 )6(u—m32), and pp(s',s,u)8(s —m3.)6(u—m3}),
respectively. The densities p,(s",m J/w’mp) Do(s', mﬁ/w,

m2), pa(s'.m2 .m2), and pp(s’,m}.,mj) are complex

and we have no knowledge about the higher-resonant
states, as the spectrum is vague. We take the unknown
functions C’p/w/ﬂ/D as free parameters and adjust the

suitable values to obtain flat Borel platforms for the

hadronic coupling constants Gy, . Gy;),,» Gy, and
G p-p» respectively [34,35].
In Ref. [14] (also Ref. [33]), Navarra and Nielsen

approximate the hadron side of the correlation functions as

/’i’XfJ/l//mJ/l[If/)m/)GX]/l///) Bp

IL,(p” p*. ¢*) = 5

(m% = p)(m3,, = p*)(m} — q%)

ﬂXfJ/y/m.l/y/fwmwGXJ/y/w Bw

,(p% p*. ¢*) =

then only match them with the QCD side below the continuum threshold s, where the B

2)(mg, = )

(mgf - pa)(mg/y/ - P

(21)

/o Stand for the pole-continuum

transitions, and we have changed their notations (symbols) into the present form for convenience. Although Navarra and
Nielsen take account of the continuum contributions by introducing a parameter s, in the s’ channel phenomenologically,
they neglect the continuum contributions in the # channel at the hadron side by hand. It is the shortcoming of that work.
While in this work, we match the hadron side with the QCD side below the continuum thresholds, s, and u, to obtain
rigorous quark-hadron duality, and we take account of the continuum contributions in the s’ channel.

We set p”> = p? in the correlation functions Iy (p’, p?, ¢%), and perform double Borel transform in regard to P> = —p
T? to obtain four QCD sum rules,

and Q% = —¢?, respectively, then we set T3 = T3 =

2

AXJ/WG;U/W [y my mlz mi/ +m;
e ST - _°X 7 C IV —
e o (7)o Tz)]exp( %)+ o (-5

cos@—sm& m,.

V2 16\/_7r/st/ = (

AXJ/V/(H 3(J/1//a) mg/l// m%(
T B [exp <— T2 ) — exXp <_T2

my —my,,

~cosf+sinf  m,

Y [ 4m? ( s+u
ds dur/1 — exp | —
V2 1627t / / s P T?

AXX”G/X/YJT m)zfz‘l _ _ m_g(
7] 2N 2 282 2
my — m)(rl T T

_ cosf —sinfm.(qg,0Gq)

V2 16V27%  Jam?

s+u)

2 m ol
exp <— n;g,) + Cl, exp (— WT2>
) (23)

(24)
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2
_Mp
T2

! 2
lXD*DGXD*D

2 2

2
my — My

[exp(
2 s0, S%
< /D ds/ du
2 m?
9, 2\ 2

/D ds(l—ﬂ> ex
m? s

5
/ du(l
<1+
<1+
s[z)* 1
[
m oS
s0, 1
/D ds—exp
m S

SO

D
[ o
/s%d 1
m?2 u

)-on

3m
64274
m.(qq)
8\/§ﬂ2
m.(qq)
8212
m.(q9,0Gq)
3222272
96272212
m.(q9,6Gq)
32272
m;(q9,06Gq)
96+/272
m.(q9,6Gq)
32V2x2
m}(q9,6Gq)

96+/27>

= cosd

—cos @

—cos 6

+ cos @

+ cos @

—cos @

—cos @

0 du—

u

— COS

+ cos @

mxﬂ

(_s

(-
(-

2 2

)

2

2

(25)

where AXJ/y/p:/IXfJ/y/ml/y/fpmp’ /1X.I/y/w :AXf.I/y/mJ/y/fwmw9 ﬁXA{ﬂ.’ = /IXf)mm)m/"m and /IXD*D = AXfD* Mmppp-

In Ref. [14] (also Ref. [33]), Navarra and Nielsen set
p? = p? in the correlation functions Iy (p”%, p?, ¢°),
perform single Borel transform in regard to P?> = —p?,
and take the Q> = —¢ as a free parameter to parametrize
the off shellness of the hadronic coupling constants Gy,
and Gy, Which are fitted into some functions of 02,
then extract them to the physical points ¢* = m> ), and
finally too large partial decay widths are obtained. The
schemes are quite different, we should not be surprised that
the predictions in Ref. [14] and in this work are also quite
different.

In calculations, we factorize out the mixing angle € in
Egs. (22)—(25) so as to facilitate determining the mixing
effects, and redefine the hadronic coupling constants G and
free parameters C,

cos@ —sin 6
Cxipyp = Cxip =75
cos @+ sin @
Cxipyo = GXJ/wa’
y cos @ —sind
e = G5

(26)

/ —
GXD*D = GXD*D COS 9,

cos@ —sin @

V2
cos @ + sin@

V2

cosf@ —sin @

V2

'» = Cpcoso,

Cc,=¢C,

El

C/m = Ca)

’

c.=C, :

(27)

then it is easy to study the dependence on the mixing
angle 6.

ITII. NUMERICAL RESULTS AND DISCUSSIONS

We take the conventional vacuum condensates,
(Gq) = —(0.24 £ 0.01 GeV)?, (gg9,6Gq) = m3(gq), and
m} = (0.8 +£0.1) GeV? at the energy scale u =1 GeV
[36-38], and take the MS mass m.(m,) = (1.275 +
0.025) GeV from the PDG [31]. We set m, =m,; =0
and take account of the energy-scale dependence from
renormalization group equation,
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(aq) (1) = (qq)(1 GeV) [%(;‘;V)}W

(29,0G4) (1) = (29,0G4)(1 GeV) {%]—f

) = mon) | 2 ]_

’

ay(m)
1 by logt
() =—1[1-=—=
b?(log’t —logt — 1) + byb
+ i(log %2 ) 02]’ (28)
2 33-2n, 153—19n
where = logA’éCD, by =" bi=——F5 b=

2857393, 4352

58 7S Agcp = 210, 292, and 332 MeV for the
flavors ny =5, 4, and 3, respectively [31,39], and we
choose ny = 4, and evolve all the input parameters to the
energy scale 4 = 1 GeV.

At the hadron side, we take m_~ = 0.13957 GeV, m 0 =
0.13498 GeV, m,,,, = 3.0969 GeV, m, = 3.51067 GeV,
m, = 0.77526 GeV, m,,=0.78266 GeV, f, = 0.130 GeV
from the PDG [31], mp = 2.01 GeV, mp = 1.87 GeV,
fp =263 MeV, fp =208 MeV, s%. = 6.4 GeV?, 5% =

O FAE AEIN BRI
3.6 | (O
32 ]
28 ]

24 ]
20 ]

G(GeV?)

16 N
12 ]
08 ]
04 ]

ool v ey
10 15 20 25 30 35 40 45 50 55 6.0

T4(GeV?)

1.0 T T T T T T T T
09

08|
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06
05[
04

G|

0.3
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0.1

0_0- 1 1 1 1 1 1 1 1 1
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TX(GeV?)

FIG. 1.
(IV) denote the Gx;/yp> Gxyjyws Gxyr» and Gyprp, respectively.

6.2 GeV2 [401, f,,, = 0.418 GeV [41], f, = 0.338 GeV

[42], f, = 0215 GeV, f,, = f, /50 = 1.2 GeV, 50, = 5§
[43], my = 3.91 GeV, Ay = 2.10 x 1072 GeV” [16] from
the QCD sum rules, and f,m2/(m, + my) = =2(Gq)/f,
from the Gell-Mann-Oakes-Renner relation.

In calculations, we fit the free parameters as Cp =
0.000250(7% — 1.5 GeV?) GeV?,  C, = 0.000245(T%—
1.5 GeV?) GeV?, C,=0, and Cp = 0.0000725(T* —
2.1 GeV?) GeV* to obtain the Borel windows 75 =
(23-3.3) GeV?, T? =(23-3.3) GeV?, T2 = (3.6—
4.6) GeV?, and T% = (4.0 —5.0) GeV?, where the sub-
scripts p, @, 7, and D denote the corresponding channels.
We obtain uniform enough flat platforms 72, — 72, =
1 GeVZ, where max and min denote the maximum and
minimum, respectively. In Fig. 1, we plot the hadronic
coupling constants Gy, /> Gxj/yw> Gxyr» and Gxp+p With
variations of the Borel parameters at large intervals. In the
Borel windows, very flat platforms appear; indeed, it is
reliable to extract the hadron coupling constants.

Now, we estimate the uncertainties in the following
ways. For example, the uncertainties of an input parameter
& & = &+ 8¢, result in the uncertainties xS 1S 0 Gxipyp =

jLXJ_cl/t/fJ_C/JGXJ/lI/p + 62x L 11w S pGxipppr Cp = C/’ +6C,,

4.0 L EL B N B B B
sof (an A
32 ]
28| ]
24 L ]

2.0 K ]

16 L

G(GeV?)

12 ]
08 ]
04 ]
00 n 1 n 1 n 1 n 1 n 1 n 1 n 1 n 1 n 1 n
1.0 1.5 20 25 30 35 40 45 50 55 6.0

T%(GeV?)

40—t
36
32 N
28 J
2.4 | J
2.0 Z\ J
16 4

12 N
o8l N

G(GeV?)

04 J

oolL— 0 vy
1.0 15 20 25 30 35 40 45 50 55 6.0

T4(GeV?)

The central values of the hadronic coupling constants with variations of the Borel parameters 72, where the (I), (IT), (III), and
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o (8fsy o,
xS 11y S 0Gxstyp = AxL 1wt pGxipup < Ly +=
fJ/v/ fﬂ
Sy OG
e (29)
x  Gxipp
we can set 6C,=0 and 6}-{5/2”’ = 5;;” = ‘1’1: = 55;%
approximately.

Finally, we obtain the values of the hadronic coupling
constants,

GX.]/I//p = 1883())11(% GCV_2,
GXJ/y/w = 1881—811(% GCV_Z,
|Gyl = 011,

Gypp = 1.87579564 Gev=2, (30)

1 (my— mj/u,
F(X—)J/WHE)ZW/AZ d|T |2
X JAy,

where we only present the central value of the Gy, due to
the tiny partial decay width of the X(3872) — y.,2°.

Now we take the hadron masses my = 3.87165 GeV,
mpo = 2.00685 GeV, mpo = 1.86484 GeV and m,), =
3.09690 GeV from the PDG to calculate the partial decay
widths [31]. As the X(3872) lies near the thresholds of the
final states J /wp, J/ww, and D*D, we should take account
of the finite width effects of the p, w, and D* mesons, due to
the decay cascades,

X(3872) = J/wp® = J/yntn,
X(3872) = J/ww = J/yntn" 2",

X(3872) —» D*°D® — D°DO7". (31)

Then we obtain the partial decay widths via trial and error,
as there is an additional parameter 6, = 0.12z = 21.6°.
The partial widths are listed in the following:

m/)r/)p(mX’ myjys \/E)

(s —m2)? +mir3 ~
= 0.1327091¢ MeV, (32)
(my—m m, I My, My, Br
F(X — ]/1//7[71-77;) = W/ x=mypy) ds |Tm|2 4 /Jp( Xo "Ny 2\/;) .
TTmy A%ﬂ (S - u)) +mwa
= 0.1297001¢ MeV, (33)
_|TaPp(my. m My M )
r(x 1 :
=0.0016 MeV, (34)
1 (my—=mp)? mp-Tpep(my, mp,\/s)
I'(X - D°D°x%) = N / ds|Tp? —P—L— =D SN
w°my Jimp-m, 2 (s = mp.)* + mp.Tp,
=2.262"012] MeV  for I'po = 2.0 MeV,
= 17957013} MeV  for I'po = 1.0 MeV,
= 1.3261 0% MeV  for o = 0.5 MeV,
=0.4851003F MeV  for ' = 0.1 MeV, (35)
where
T, = G} (m% mi/w —s)? (mg —s)* (m - mg/w)2 + 4m? iy TS
Xl vp 4 2m3,, 2s X 2
2 2 2 2 2 2
|T |2 G/2 <mx mJ/lI/ B S) (m%( - S)Z 4 (mX B m«]/V/) + 4m2 mJ/l// +s
Xijyw 4 2m3,, 25 2 ]
Mm%, m2 ,m2)
2 _ 2 X "y
T2l = G5y 5 ;
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|TD|2 - G?D*D (mg( - m%) - 5)2 [3 i ﬂ(m% s, m%))] 7

4 4m?s

2 4
m,—S m
/ / v _ P P
GXJ/W = Gyxypyp = GXJ/W eXp 2 A4 |
S = A2JT AZﬂ

- m2 —s md
G,/XJ/W(U - G;(J/l//(u = G;(J/y/a) exXp <_S f A% ﬁ ) (36)
n =3z

where AZﬂ =Myt +My-, A3;1 =M+ + M- +m”0, BI'((U -
) = 0.892 [31], Ala,b,c) =a*+ b*> + c* —2ab—

2ac —2be, and p(A.B.C) = YAEIN—B=CF] ppe
hadronic coupling constants from the QCD sum rules in
Egs. (22)—(25) are physical quantities under zero width
approximation. The physical widths from the PDG are
I, =1474 MeV,T', =8.68 MeV,I', = 0.88 MeV, and

I'po < 2.1 MeV, respectively, we introduce exponential

m,z, -5 mﬁ I’I’l2 ) m(’
form factors exp ( — =~ 3+ ) and exp ( — =47 3¢ ) to para-
STR Bon STA3, By,

metrize the off shell effects due to the J/yp and J/yw
thresholds, as the X(3872) lies near the J/wp and J/yw
thresholds. At the mass-shell s = m? and m2, they reduce
to 1 to match with the zero width approximation in the
QCD sum rules. At the thresholds, s = A3 and A , the
available phase spaces are very small, the decays p — zx
and w — zzz only take place through the lower tails, which
can be taken as some intermediate sates with the same
quantum numbers as the p and @ except for the masses, and
are greatly suppressed. On the other hand, since the “off
shell” effects on the hadronic coupling constants are
considerable, we need to introduce some form factors to
parametrize them.

The width I’ =0.0834 +£0.0018 MeV  from
the PDG [31], if we take the approximation
[po~Tpe ~0.1 MeV, then I'(X —» D*D°) +T'(X -
D*D%) = 0970055 MeV from Eq. (35), which is in
excellent agreement with the branching fraction
(52.47333)% from the combined data analysis [32] and
the total width 'y = 1.19 + 0.21 MeV from the PDG [31].
On the other hand, if we take the masses of the
X(3872), DF, D, #*, and z° from the PDG [31], the
decays X(3872) - D**D~ —» D*D=z° and X(3872) —
D**D~ — D°D~z" cannot take place due to the negative
phase space.

The partial widths T'(X - J/yzz) = 0.132790]° MeV
and T'(X — J/yzrzax) = 0.12970018 MeV from Egs. (32)
and (33) are in excellent agreement with the branching
fractions Br(X — J/wzr) = (4.17])% and Br(X —
J/ww) = (44173)% from the combined data analysis
[32], so the mixing angle 6 = 21.6°, which is compatible
with the values 6 = 20.0° [11] and 0 = 23.5° [14]. The
significant difference is that we take account of all the
Feynman diagrams and take rigorous quark-hadron duality,
while in Ref. [14], only the connected diagrams are taken
into account to obtain small partial decay widths.

The partial decay width ['(X — y.z) = 0.0016 MeV
from Eq. (34) is much smaller than the branching fraction
(3.6772)% from the combined data analysis [32] or the
branching fraction (3.4 + 1.6)% from the PDG [31], more
precise measurement is still needed.

All in all, in this work, we reproduce the small width of
the X(3872) via the QCD sum rules for the first time.

IV. CONCLUSION

In this work, we take the X(3872) as the hidden-charm
tetraquark state with both isospin / =0 and 7/ = 1 com-
ponents, then investigate the hadronic coupling constants
G 1o Oxspyawr Gxyns a0d Gyp., with the QCD sum rules
in details. We select the optimal tensor structures and take
account of all the Feynman diagrams, then acquire four
QCD sum rules based on the rigorous quark-hadron
duality. After careful calculations, we obtain the hadronic
coupling constants, then determine the mixing angle via
trial and error, and obtain the partial decay widths for the
X(3872) = J/wrtn~, J/ww, y.7x° DD, and D°Dx°.
The total width is about 1 MeV, which is in excellent
agreement with the experiment data I'y =1.19+
0.21 MeV from the PDQG, it is the first time to reproduce
the small width of the X(3872) via the QCD sum rules. The
present calculations support assigning the X(3872) as the
mixed hidden-charm tetraquark state with the quantum
numbers JF€ = 17+,
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