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The internal structure of all lowest-lying pseudoscalar mesons with heavy-light quark content is studied
in detail using an algebraic model that has been applied recently, and successfully, to the same physical
observables of pseudoscalar and vector mesons with hidden-flavor quark content, from light to heavy quark
sectors. The algebraic model consists on constructing simple and evidence-based Ansätze of the meson’s
Bethe-Salpeter amplitude (BSA) and quark’s propagator in such a way that the Bethe-Salpeter wave
function (BSWF) can then be readily computed algebraically. Its subsequent projection onto the light front
yields the light front wave function (LFWF) whose form allows us a simple access to the valence-quark
parton distribution amplitude (PDA) by integrating over the transverse momentum squared. We exploit our
current knowledge of the PDAs of lowest-lying pseudoscalar heavy-light mesons to compute their
generalized parton distributions (GPDs) through the overlap representation of LFWFs. From these three
dimensional knowledge, different limits/projections lead us to deduce the related parton distribution
functions (PDFs), electromagnetic form factors (EFFs), and impact parameter space GPDs (IPS-GPDs).
When possible, we make explicit comparisons with available experimental results and earlier theoretical
predictions.

DOI: 10.1103/PhysRevD.109.014016

I. INTRODUCTION

In working toward an understanding of hadrons, we have
discovered that they are complicated bound-states of quarks
and gluons whose interactions are described by a Poincaré
invariant quantum non-Abelian gauge field theory; namely,
quantum chromodynamics (QCD). While the principles

and practice of perturbation theory in QCD are fairly well
understood, nonperturbative tools such as lattice-regularized
QCD and continuum Dyson-Schwinger equations are
essential because the gluon and quark degrees-of-freedom
used to express the QCD’s Lagrangian appear not to be the
objects that determine the low-energy ground of QCD
where hadrons live. Future experimental facilities world-
wide will deliver data that promises to reveal the innermost
workings of hadrons in terms of QCD’s (effective) elemen-
tary excitations: (dressed pseudo-) quarks and gluons. In
order to fulfill that promise, phenomenology and theory
must be developed accordingly.
Within a continuum Dyson-Schwinger equations app-

roach to the valence-quark and -antiquark bound-state
problem in QCD, the Bethe-Salpeter wave function (BSWF)
is the key object to compute in order to determine most of
the physical observables related to mesons. The BSWF is
computed by combining the Dyson-Schwinger equation
(DSE) for the quark propagator and the Bethe-Salpeter
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equation (BSE) for mesons [1–7]. This formalism has
produced a plethora of theoretically interesting and
experimentally testable quantities such as mesons
masses [4,6–10], their other static properties [11,12], form
factors (FFs) [13,14] and parton distribution amplitudes
(PDAs) [15–18]. However, the calculation of, for example,
parton distribution functions (PDFs) [19,20], generalized
parton distributions (GPDs) [21–23] and transverse
momentum distributions (TMDs) [24–27] remains a highly
nontrivial task.
Our current understanding of the intricate interplay

between the DSE of the quark propagator and the meson’s
BSE allows us to build a simplified model [28] that enables
algebraic manipulations while producing reliable predic-
tions of physical observables whose extraction from first
principles remains still troublesome [28,29].
The algebraic model consists on constructing the mes-

on’s BSWF in terms of the spectral density function (SDF)
that appears in a Nakanishi integral representation of the
covariant quark-antiquark bound-state amplitude. Then, the
BSWF leads to the derivation of the leading-twist LFWF by
merely appealing to the definition of its Mellin moments.
The resulting LFWF permits an algebraic connection
with the PDA so that the need to specify a SDF is
completely circumvented with prior knowledge of the
PDA. Moreover, we can extract the GPD in the so-called
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) kin-
ematic region through the overlap representation of
LFWFs. Finally, different limits/projections of the GPDs
provide related PDFs, EFFs, and IPS-GPDs.
We exploit our current knowledge of the PDAs of

lowest-lying pseudoscalar heavy-light mesons [17,18] to
compute all corresponding structure distributions men-
tioned above using the algebraic model that has been
successfully applied to the same physical observables of
pseudoscalar [28] and vector [29] mesons with hidden-
flavor quark content, from light to heavy quark sectors.
This manuscript is organized as follows. Section II

describes briefly the algebraic model for the quark propa-
gator and the BSA of heavy-light pseudoscalar mesons.
The same section contains, on one hand, a derivation of the
algebraic relation between LFWFs and PDAs and, on the
other hand, the associated phenomenology of the computed
LFWFs for the D, Ds, B, Bs, and Bc mesons. With the
LFWFs of lowest-lying heavy-light pseudoscalar mesons at
hand, we proceed to discuss the derivation of the corre-
sponding GPDs in the DGLAP kinematic region in Sec. III;
moreover, we provide related PDFs, EFFs and IPS-GPDs
from different limits/projections of the GPDs. Finally, we
provide a brief summary and some concluding remarks
in Sec. IV.

II. ALGEBRAIC MODEL

We briefly describe the algebraic model that was reported
first in Ref. [28] and successfully applied to the computation

of LFWFs of pseudoscalar [28] and vector [29] mesons with
hidden-flavor quark content, from light to heavy quark
sectors. This presentation is indeed focused on the case of
heavy-light pseudoscalar mesons.

A. Bethe-Salpeter wave function

The BSWF encapsulates the internal dynamics of a
meson in quantum field theory. For a heavy-light pseudo-
scalar meson, it can be written as

χ0−ðp−; PÞ ¼ SqðpÞΓ0−ðp−; PÞSQ̄ðp − PÞ; ð1Þ

where p− ¼ p − P=2, P2 ¼ −m2
0− is the negative mass

squared of the pseudoscalar meson in Euclidean-metric
space, SqðQ̄Þ is the light-quark (heavy-antiquark) propagator
and Γ0− is the BSA, where JP ¼ 0− indicates explicitly the
meson’s spin-parity quantum numbers.
Within our algebraic model, the expressions for the

quark (antiquark) propagator and BSA are given by

SqðQ̄ÞðpÞ ¼
�
−iγ · pþMqðQ̄ÞÞΔðp2;M2

qðQ̄Þ
�
; ð2Þ

N0−Γ0−ðp;PÞ ¼ iγ5

Z
1

−1
dwρ0−ðwÞ

�
Δ̂ðp2

w;Λ2
wÞ
�
ν; ð3Þ

where Δðs; tÞ≡ ðsþ tÞ−1 and Δ̂ðs; tÞ≡ tΔðs; tÞ. Besides,
N0− is a normalization constant, MqðQ̄Þ is the dynamically-
dressed quark (antiquark) mass, ρ0−ðwÞ denotes the SDF
which defines the point-wise behavior of the BSA, pω ¼
pþ ω

2
P and

Λ2
w ≡ Λ2ðwÞ ¼ M2

q þ
1

2

�
M2

Q̄ −M2
q

�ð1 − wÞ

−
1

4
m2

0−ð1 − w2Þ: ð4Þ

As already noticed in Ref. [28], the ω-dependence of Λ
leads to a simplification in relevant integrals, providing
closed algebraic expressions that relate different structure
distributions. Moreover, Eq. (4) has some additional
striking features that deserve to be highlighted. First, a
constant term M2

q is retained, it is inherited from kindred
models [21–23,30–36] that have been employed success-
fully to compute an array of GPD-related distributions.
Second, the linear term in w is added in order to study
mesons with different flavored quark and antiquark content.
And, third, all coefficients in Eq. (4) are chosen in such a
way that the positivity of Λ2

ω is guaranteed; in particular,
one must find sensible values for the constituent masses to
fulfill the inequality jMQ̄ −Mqj < m0− < MQ̄ þMq.
It is worth noting herein that the parameter ν > −1

controls the asymptotic behavior of the BSAwhich must be
ultraviolet finite since it resembles the wave function of a
bound state [37]; therefore, ν does not control any possible
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divergence but fits the asymptotic trend of the meson’s
BSWF. The value ν ¼ 1 is used herein since it has been
demonstrated that it yields the correct power law of the
asymptotic behavior for mesons [1] and, in particular,
ν ¼ 1 recovers the results in Refs. [21,31,32,34,35].
Combining Eqs. (1)–(3), a Nakanishi integral represen-

tation (NIR) of the BSWF can be obtained:

N0−χ0−ðp−; PÞ ¼ Mq;Q̄ðp; PÞ
Z

1

−1
dwDν

q;Q̄ðp;PÞρ̃ν0−ðwÞ;

ð5Þ

where the function Mq;Q̄ðp;PÞ is given by

Mq;Q̄ðp;PÞ ¼ ð−iγ ·pþMqÞiγ5ð−iγ · ðp−PÞ þMQ̄Þ
¼ −γ5fMqγ ·Pþ ðMQ̄ −MqÞγ ·p
þ σμνpμPν − i½p · ðp−PÞ þMqMQ̄�g; ð6Þ

the profile distribution ρ̃ν0−ðwÞ is defined in terms of the
SDF as

ρ̃ν0−ðwÞ ¼ Λ2ν
w ρ0−ðwÞ; ð7Þ

and the product of three denominators,

Dν
q;Q̄ðp; PÞ ¼ Δ

�
p2;M2

q

�
Δðp2

w;Λ2
ωÞνΔ

�ðp − PÞ2;M2
Q̄

�
;

ð8Þ

can be combined using standard Feynman parametrization
techniques to arrive at

Dν
q;Q̄ðp; PÞ ¼ νðνþ 1Þ

Z
1

0

dβ
Z

1
2
½ðwþ1Þβ−ðw−1Þ�

1
2
ðβ−1Þðw−1Þ

dα

×
ð1 − βÞν−1

½ðp − αPÞ2 þ Λ2
1−2α�νþ2

: ð9Þ

Finally, suitable changes of variables and subsequent
rearrangements in the order of integrations yield the
following expression for the BSWF:

N0−χðp−; PÞ ¼ Mq;Q̄ðp; PÞ
Z

1

0

dαF ν
0−ðα; p; PÞ; ð10Þ

where

F ν
0−ðα; p; PÞ ¼ 2νðνþ 1Þ

�Z
1−2α

−1
dw

	
α

1 − w



ν

þ
Z

1

1−2α
dw

	
1 − α

1 − w



ν
�

×
ρ̃ν0−ðwÞ

½ðp − αPÞ2 þ Λ2
1−2α�νþ2

: ð11Þ

B. Light-front wave function

The LFWF of a pseudoscalar meson can be extracted
from the following light-front projection of the BSWF:

ψ0−ðx; p2⊥Þ ¼ Tr
Z

d2pk
π

δðn · p − xn · PÞ

× γ5ðγ · nÞχ0−ðp−; PÞ; ð12Þ

where the trace is taken over color and spinor indices, n is a
light-like four-vector, such that n2 ¼ 0 and n · P ¼ −m0− ,
the variable x corresponds to the light-front momentum
fraction carried by the quark and the 4-momentum integral
has been decomposed as

Z
d4p
ð2πÞ4 ¼

Z
d2p⊥
16π3

Z
d2pk
π

: ð13Þ

We define the Mellin’s moments of the pseudoscalar
meson’s LFWF as

hxmiψ0−
¼

Z
1

0

dx xmψ0−ðx; p2⊥Þ; ð14Þ

in such a way that, performing the integral over x, the
Mellin’s moments of the distribution become

hxmiψ0−
¼ Tr

Z
d2pk
π

1

n · P

	
n · p
n · P



m
γ5ðγ · nÞχ0−ðp−; PÞ:

ð15Þ

From Eqs. (10)–(15), one arrives at

hxmiψ0−
¼

Z
1

0

dα αm
�
12

N0−

Gν
0−ðα; p2⊥Þ
νþ 1

�
; ð16Þ

with

Gν
0−ðα;p2⊥Þ ¼ 2νðνþ 1ÞðαMQ̄þð1−αÞMqÞ

×

�Z
1−2α

−1
dw

	
α

1−w



ν

þ
Z

1

1−2α
dw

	
1−α

1−w



ν
�

×
ρ̃ν0−ðwÞ

½p2⊥þΛ2
1−2α�νþ1

: ð17Þ

Uniqueness of the Mellin moments implies the connection
between the Feynman parameter α and the momentum
fraction x; therefore one can identify the LFWF as

ψ0−ðx; p2⊥Þ ¼
12

N0−

Gν
0−ðx; p2⊥Þ
νþ 1

: ð18Þ
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C. Parton distribution amplitude

With the LFWF at hand, ψ0−ðx; p2⊥Þ, its integration over
p2⊥-dependence yields the PDA:

f0−ϕ0−ðxÞ ¼
Z

d2p⊥
16π3

ψ0−ðx; p2⊥Þ; ð19Þ

where f0− is the leptonic decay constant. The only term in
the above equation that depends on p⊥ is the denominator
ðp2⊥ þ Λ2

1−2xÞνþ1 in Gν
0−ðx; p2⊥Þ; therefore, we arrive at

the following algebraic relation between the LFWF and
the PDA:

ψ0−ðx; p2⊥Þ ¼ 16π2f0−
νΛ2ν

1−2x
ðp2⊥ þ Λ2

1−2xÞνþ1
ϕ0−ðxÞ: ð20Þ

This result is a merit of the algebraic model. Note also that,
throughout this manuscript, we shall employ dimensionless
and unit normalized PDAs, i.e.,

R
1
0 dxϕ0−ðxÞ ¼ 1.

It is worth noting here that the degree of ðx; p2⊥Þ-
factorization of the LFWF of a pseudoscalar meson is
exposed within our algebraic model through Eqs. (4)
and (20). In the chiral limit, m0− ¼ 0, and quark-antiquark
flavor symmetry, Mq ¼ MQ̄, one has

ψ chiral
0− ðx; p2⊥Þ ¼

�
16π2f0−

νM2ν
q

ðp2⊥ þM2
qÞνþ1

�
ϕ0−ðxÞ: ð21Þ

where the bracketed term no longer depends on x; hence,
the x and p2⊥ dependence of the LFWF is completely
factorized in the chiral limit. Contrary, as captured by
Eqs. (4) and (20), a nonzero meson mass and quark-
antiquark flavor asymmetry, i.e., m2

0− ≠ 0 and Mq ≠ MQ̄,
yield a LFWF which correlates x and p2⊥. Therefore, one
should expect an increasingly dominant role of x and p2⊥
correlations in heavy-light systems.

D. Phenomenology of LFWFs from PDAs

We now have all the necessary tools to compute the
LFWF in terms of the PDAwithin this algebraic model. We
proceed then to compute the LFWFs of the lowest-lying
heavy-light pseudoscalar mesons, i.e., the D, Ds, B, Bs,
and Bc mesons, from previous determinations of their
PDAs. While much has recently been learned about the
point-wise behavior of light-meson PDAs [13–15,38–50],
the information about heavy-light meson DAs remains
sketchy [51–57]. Up to our knowledge, there are in the
literature only two comprehensive analyses of PDAs for
all lowest-lying heavy-light pseudoscalar mesons [17,18],
both based on a symmetry-preserving approach to the
continuum bound-state problem in quantum field theory.
The PDAs that we use in this manuscript are those

computed within the so-called continuum Schwinger

function method (CSM) [17], which are fully compatible
with the results obtained in Ref. [18].
The continuum bound-state problem within CSM is

defined by a set of coupled integral equations [1,58,59]
and thus a manageable solution is only obtained once a
truncation scheme is specified. References [60,61] describe
a systematic, symmetry-preserving approach whose leading-
order term is the widely-used rainbow-ladder (RL) trunca-
tion. It is accurate for ground-state light-quark vector- and
isospin-nonzero-pseudoscalar-mesons, for related ground-
state octet and decouplet baryons [59,62–66], and also for
similar heavy hadrons when a judicious modification is
performed [11,12,16]. The RL truncation is precise in these
channels because higher-order corrections largely cancel
owing to preservation of relevant Ward-Green-Takahashi
identities [67–69]. The RL truncation becomes a poor
approximation in systems constituted by valence-quarks
whose masses are quite different. This is because the
mentioned higher-order corrections cannot be effectively
canceled in such cases. Truncations which improve upon
RL are known [3,5,6,70–73], but they have not been tested
in heavy-light systems.
Authors of Ref. [17] compute all necessary quantities to

obtain the PDAs using the RL truncation on a conservative
domain where it is known that the truncation works well,
and then extrapolate into the complementary domain
using the Schlessinger point method (SPM), whose proper-
ties and accuracy are explained elsewhere [74–78].
Distribution amplitudes for D, Ds, B, Bs and Bc mesons
are then delivered by Ref. [17] with the following
parametrization:

ϕ0−ðxÞ ¼ 4Nαβxx̄e4α
2xx̄−β2ðx−x̄Þ; ð22Þ

where the parameters α and β are determined by requiring a
least-squares best-fit to hxmiϕ0−

, with m ¼ 1, 2, 3 and

hxmiϕ0−
¼

Z
1

0

dx xmϕ0−ðxÞ: ð23Þ

Besides, x̄ ¼ 1 − x and Nαβ is a normalization factor that
ensures hx0iϕ0−

¼ 1. The ðα; βÞ values are listed in Table I
and the associated PDAs are depicted in Fig. 1. One can
observe that the PDAs become more asymmetric and
sharply peaked as the difference between the masses of
the meson’s valence-quarks increases.

TABLE I. The ðα; βÞ-pairs that specify the PDAs of heavy-light
mesons via Eq. (22).

D Ds B Bs Bc

α 0.265(30) 0.508(30) 0.497(70) 0.669(60) 1.901(70)
β 1.435(30) 1.391(30) 2.166(60) 2.177(60) 2.163(60)
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At this point, it is worth mentioning that the quark and
antiquark PDAs are connected via momentum conservation
through the equality:

ϕq
0−ðxÞ ¼ ϕQ̄

0−ðx̄Þ; ð24Þ
which is a constricted and firm relation that prevails even
after scale evolution [79–81].
It is also important to note that the presented algebraic

model is equally valid for any momentum-scale that
characterizes the exclusive scattering process in which
the meson is involved. That is to say, given the valence-
quark (twist-two) PDA of a pseudoscalar heavy-light
meson at a given momentum scale, ζ, the formalism
provides us the corresponding leading-twist LFWF of
the pseudoscalar meson at the same energy scale. The
PDAs, and thus their related LFWFs, are expressed in a
quasiparticle basis at an intrinsic scale, ζH, for which the
valence degrees of freedom fully express the properties of
the hadron under study. Most results herein are quoted at
ζH ¼ 2 GeV (unless specified otherwise); however, for the
sake of simplicity, the label ζH shall be omitted.
Let us now proceed with the computation of the LFWFs

for theD,Ds,B,Bs, andBcmesons through their connection
with the corresponding PDAs, Eq. (20). Besides, the

parameters needed to compute the LFWFs are shown in
Table II. Note that these are not free-parameters of this
analysis, these are computed in connection with the PDAs
collected herein and originally reported in Ref. [17]. As
shown in Table II, the static properties of pseudoscalar
heavy-light mesons are in fairly good agreement with the
experimental data collected in theReviewof Particle Physics
by the Particle Data Group [82] and also with the latest
results reported by Lattice-QCD [83].
Figure 2 shows the leading-twist LFWFs of the lowest-

lying pseudoscalar charmed mesons. It is evident that the
LFWF of the D-meson exhibits a more pronounced
x-dependence, being narrower than the one corresponding
to the Ds-meson. Moreover, both LFWFs indicate that the

FIG. 1. Distribution amplitudes of heavy-light mesons.

TABLE II. Quoted in GeV, Masses, M, and decay constants, f,
of the lowest-lying heavy-light pseudoscalar mesons reported in
Ref. [17]; compared with averages of available experimental and
lattice-QCD determinations reported in Refs. [82,83]. The
current-quark masses are mu=dðξ¼ ξ2 ¼ 2 GeVÞ ¼ 0.0049 GeV,
msðξ2Þ ¼ 0.114 GeV, mcðξ2Þ ¼ 1.25 GeV, mbðξ2Þ ¼ 4.35 GeV
which correspond to the following dressed quark masses
Mu=dðξ ¼ ξ0 ¼ 0 GeVÞ ¼ 0.317 GeV, Msðξ0Þ ¼ 0.574 GeV,
Mcðξ0Þ ¼ 1.65 GeV, Mbðξ0Þ ¼ 5.09 GeV.

Theory Experiment Lattice

M f M f M f

D 1.88(5) 0.158(8) 1.87 0.153(7) 1.87 0.150(1)
Ds 1.94(4) 0.171(6) 1.97 0.177(3) 1.97 0.176(1)
B 5.30(15) 0.142(13) 5.28 0.138(19) 5.28 0.132(3)
Bs 5.38(13) 0.179(12) 5.37 � � � 5.37 0.161(2)
Bc 6.31(1) 0.367(1) 6.27 � � � 6.28(1) 0.346(3)

FIG. 2. LFWFs of the D-meson (upper panel) and Ds one
(lower panel). From Eq. (20), the LFWF has mass dimension −1,
which is expressed in GeV−1; whereas p2⊥ has dimension GeV2

and x is dimensionless.
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most probable fraction of light-front total momentum
carried by the light quark inside the charmed meson is
around x ¼ 0.2. The LFWF of the D-meson presents a
strong p2⊥-dependence; for instance, the maximum in x is
one sixth of its original value when modifying p2⊥ from 0.0
to 0.2 GeV2. The fall-off along the p2⊥-range depicted is
smoother for the LFWF of the Ds-meson. Its extreme in
the variable x decreases toward two thirds of its original
value at p2⊥ ¼ 0.2 GeV2. It is worth emphasizing that the
maximum in the LFWFs does not move in x as varying the
value of p2⊥. The features presented can be directly
connected with the masses of the valence dressed quarks
that constitute the hadron.
Figure 3 shows the leading-twist LFWFs of the lowest-

lying pseudoscalar bottom mesons: B-meson (upper panel),
Bs-meson (middle panel) and Bc-meson (lower panel). A
clear pattern is shown, the x point-wise behavior of the
LFWF is the narrowest for the B-meson and it becomes
successively wider for the Bs and Bc mesons. Moreover,
at p2⊥ ¼ 0, the LFWF peaks at x ¼ 0.08, 0.10 and 0.25
for the B, Bs, and Bc, respectively. Besides, the Bc’s LFWF
is more symmetric than the other two. With respect to the

p2⊥-dependence, the LFWF of the B-meson exhibits the
strongest behavior, with its maximum decaying two thirds
of its original value at p2⊥ ¼ 0.2 GeV. The LFWFs of the
Bs and Bc mesons are much smoother in p2⊥-dependence,
the maximum of the Bs LFWF is still three fourths of its
initial value at p2⊥ ¼ 0.2 GeV, whereas the LFWF of the Bc

meson is almost constant along the p2⊥-range depicted.
Again, one can mention that the maximum in the LFWFs
does not move in x as varying the value of p2⊥ and that all
the properties highlighted here can be traced back to the
masses of the valence quarks in the meson.
For completeness, Table III shows the computed

hð2x − 1Þmi moments, with m ¼ 0, 1, 2, …, 10, at p2⊥ ¼
0.0, 0.1 and 0.2 GeV2, of the leading-twist LFWFs of the
lowest-lying pseudoscalar charmed and bottom mesons.
The most salient features of this analysis are: (i) even
moments are positive and odd ones are negative but, in
absolute value, they systematically fall-off toward zero
being always the former larger than the later; (ii) higher
order moments have lower values for all mesons being in
general the last reported moment an order of magnitude
smaller than the first one; (iii) the value of a given moment
decreases as p2⊥ increases for any meson, however, once
such a value is small enough it remains nearly constant with
respect to changes in p2⊥; and (iv) the symmetric shape in
the x-dependence of the Bc LFWF can be deduced from the
rapid fall-off of high order moments.

III. INTERNAL STRUCTURE OF PSEUDOSCALAR
HEAVY-LIGHT MESONS

A. Generalized parton distribution function

Generalized parton distributions (GPDs) were intro-
duced in the factorization analysis of some hard exclusive
processes by a series of authors [84–89]. GPDs are formally
defined as off-diagonal hadronic expectation values of
nonlocal quark- or gluon-field operators projected onto
the light-front. Therefore, a naive interpretation relates the
GPDs with transitions between hadron states that involve
momentum and/or helicity transfers and thus they encode a
large amount of information about the nature of these
reactions and the structure of involved hadrons.
GPDs are difficult to calculate from QCD’s first prin-

ciples. However, their properties, which can be deduced
from the fundamental features and symmetries of QCD,
serve to develop modeling strategies. In fact, the most
common approaches to the evaluation of GPDs are the
so-called double distribution [88] and overlap [90] repre-
sentations. While the double distribution approach fulfills,
at the price of hiding positivity, the property of poly-
nomiality inherited from the invariance of QCD’s action
under Lorentz transformations, the overlap representation
complies with the positivity condition imposed by the
underlying Hilbert-space’s norm but spoils a practical
management of polynomiality.

FIG. 3. LFWFs of the B-meson (upper panel), Bs-meson
(middle panel) and Bc-meson (lower panel). As one can guess
from Eq. (20), the LFWF has mass dimension −1, which is
expressed in GeV−1; whereas p2⊥ has dimension GeV2 and x is
dimensionless.
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The covariant extension approach [21,31–34] has
recently been developed with the main goal of building
GPDs that fulfill by construction with the two fundamental
properties mentioned above, positivity and polynomiality.
The recipe of the covariant extension1 needs as a first step the
construction of positive DGLAP GPDs through the overlap
representation of light-front wave-functions. Therefore, the
algebraic model appears as a very suitable framework to
perform such a step in the case of pseudoscalar heavy-light
mesons. The valence quark GPD can be obtained as

H0−ðx; ξ; tÞ ¼
Z

d2p⊥
16π3

ψ�
0−

�
x−; ðp−⊥Þ2

�
ψ0−

�
xþ; ðpþ⊥Þ2

�
;

ð25Þ

where

x� ¼ x� ξ

1� ξ
; p�⊥ ¼ p⊥ ∓ Δ⊥

2

1 − x
1� ξ

: ð26Þ

If pðp0Þ denotes the initial (final) meson momentum,
then P ¼ ðpþ p0Þ=2 is the total momentum of the system
and t ¼ −Δ2 ¼ −ðp − p0Þ2 is the momentum transfer;
Δ2⊥ ¼ Δ2ð1 − ξ2Þ − 4ξ2m2

M. In addition, the longitudinal
momentum fraction transfer is ξ ¼ ½−n · Δ�=½2n · P�. Both
x and ξ have support on ½−1; 1�, but the overlap represen-
tation is only considered in the DGLAP region, jxj > jξj.
Its kinematical completion to the ERBL domain can be
achieved through the covariant extension [31–34], up to the

named D-terms and so it is a nontrivial task which goes
beyond the scope of this manuscript; hence, in the follow-
ing, we shall restrain ourselves to ξ ≥ 0 and jxj > jξj.
Note once more that Eq. (25) implies that the meson is
described as a quark-antiquark Fock state. This picture is
then valid at the hadronic scale, in which the fully dressed
quark/antiquark quasiparticles encode all the properties of
the meson.
The valence quark GPD can be worked out in detail by

substituting Eq. (20) into Eq. (25):

H0−ðx; ξ; tÞ ¼ ð16π2f0−νÞ2ϕ0−ðxþÞϕ0−ðx−ÞΛ2ν
1−2xþΛ

2ν
1−2x−

×
Z

d2p⊥
16π3

1

ððp−⊥Þ2 þ Λ2
1−2x−Þνþ1

×
1

ððpþ⊥Þ2 þ Λ2
1−2xþÞνþ1

; ð27Þ

in such a way that performing a Feynman parametrization
and after a suitable change of variables, it turns into

Z
d2p⊥
16π3

1

ððp−⊥Þ2 þ Λ2
1−2x−Þνþ1

1

ððpþ⊥Þ2 þ Λ2
1−2xþÞνþ1

¼ 2π

16π3
Γð2νþ 2Þ
Γ2ðνþ 1Þ

×
Z

1

0

du uνð1 − uÞν
Z

∞

0

dk⊥
k⊥

ðk2⊥ þM2ðuÞÞ2νþ2

¼ 1

16π2
Γð2νþ 2Þ
Γ2ðνþ 1Þ

Z
1

0

du
uνð1 − uÞν
½M2ðuÞ�2νþ1

; ð28Þ

TABLE III. Computed hð2x − 1Þmimoments, withm ¼ 0, 1, 2,…, 10, at p2⊥ ¼ 0.0, 0.1 and 0.2 GeV2, of the leading-twist LFWFs of
the lowest-lying pseudoscalar charmed and bottom mesons. All quantities are given in GeV−1.

hð2x − 1Þmi m ¼ 0 1 2 3 4 5 6 7 8 9 10

D p2⊥ ¼ 0.0 6.82 −4.24 2.97 −2.15 1.62 −1.25 0.99 −0.79 0.65 −0.54 0.45
p2⊥ ¼ 0.1 5.07 −3.03 2.10 −1.51 1.14 −0.88 0.70 −0.56 0.46 −0.38 0.32
p2⊥ ¼ 0.2 2.72 −1.47 0.99 −0.69 0.52 −0.40 0.32 −0.26 0.21 −0.18 0.15

Ds p2⊥ ¼ 0.0 5.49 −2.64 1.72 −1.14 0.84 −0.62 0.49 −0.38 0.31 −0.26 0.22
p2⊥ ¼ 0.1 5.09 −2.42 1.58 −1.05 0.77 −0.57 0.45 −0.35 0.29 −0.24 0.20
p2⊥ ¼ 0.2 4.13 −1.91 1.25 −0.82 0.61 −0.45 0.36 −0.28 0.23 −0.19 0.16

B p2⊥ ¼ 0.0 6.28 −5.24 4.46 −3.84 3.35 −2.94 2.60 −2.31 2.07 −1.85 1.67
p2⊥ ¼ 0.1 5.10 −4.19 3.53 −3.02 2.61 −2.27 2.00 −1.77 1.58 −1.41 1.27
p2⊥ ¼ 0.2 3.23 −2.56 2.10 −1.75 1.48 −1.27 1.10 −0.96 0.85 −0.75 0.67

Bs p2⊥ ¼ 0.0 5.38 −4.13 3.30 −2.69 2.24 −1.88 1.61 −1.38 1.20 −1.05 0.93
p2⊥ ¼ 0.1 5.08 −3.88 3.08 −2.51 2.08 −1.75 1.49 −1.28 1.11 −0.98 0.86
p2⊥ ¼ 0.2 4.30 −3.25 2.56 −2.07 1.71 −1.43 1.22 −1.04 0.90 −0.79 0.69

Bc p2⊥ ¼ 0.0 5.10 −2.53 1.47 −0.92 0.61 −0.42 0.30 −0.23 0.17 −0.13 0.11
p2⊥ ¼ 0.1 5.02 −2.49 1.45 −0.90 0.60 −0.42 0.30 −0.22 0.17 −0.13 0.11
p2⊥ ¼ 0.2 4.79 −2.37 1.38 −0.86 0.57 −0.40 0.29 −0.21 0.16 −0.13 0.10

1The interested reader is referred to Refs. [91,92] for further
details.
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where the function M2ðuÞ depends on the model param-
eters, as well as the kinematic variables x, ξ, and t. It
acquires the form M2ðuÞ ¼ c2u2 þ c1uþ c0, with

c2 ¼
ð1 − xÞ2
ð1 − ξ2Þ2 t; ð29aÞ

c1 ¼ −
ð1 − xÞ2
ð1 − ξ2Þ2 tþ Λ2

1−2xþ − Λ2
1−2x− ; ð29bÞ

c0 ¼ Λ2
1−2x− : ð29cÞ

Therefore, the final expression for the valence quark GPD
is given by

H0−ðx; ξ; tÞ ¼ ðf0−νÞ2ϕ0−ðxþÞϕ0−ðx−ÞΛ2ν
1−2xþΛ

2ν
1−2x−

×
Γð2νþ 2Þ
Γ2ðνþ 1Þ

Z
1

0

du
uνð1 − uÞν
½M2ðuÞ�2νþ1

: ð30Þ

Note that the function M2ðuÞ reduces in the chiral limit to

M2ðuÞ ¼ −tuð1 − uÞ ð1 − xÞ2
ð1 − ξ2Þ2 þM2

q; ð31Þ

and so the integration in Eq. (30) can be carried out
algebraically for specific values of ν > −1. In particular,
ν ¼ 1 recovers the results in [21,31,32,34,35]. Beyond the
chiral limit, an algebraic expression is found for t ¼ 0:

H0−ðx; ξ; 0Þ ¼ Nϕq
0−ðxþÞϕq

0−ðx−Þ
Λ2ν
1−2xþ

Λ2ν
1−2x−

Γð2νþ 2Þ
Λ2
1−2x−

× 2F̃1

	
1þ ν; 1þ 2ν; 2νþ 2; 1 −

Λ2
1−2xþ

Λ2
1−2x−



;

ð32Þ

where pF̃qðu; v; w; zÞ is the regularized hypergeometric

function. Conversely, taking ξ ¼ 0, an expansion of M2ðuÞ
around−t ≈ 0 also yields an algebraic solution for Eq. (30):

H0−ðx; 0; tÞ ≈
t→0

N
½ϕq

0−ðxÞ�2
Λ2
1−2x

×

�
1 − cð1Þν ð1 − xÞ2

	
−t

Λ2
1−2x



þ…

�
; ð33Þ

with

cð1Þν ¼ ð1þ νÞð1þ 2νÞ
2ð3þ 2νÞ ; N ¼

�Z
1

0

dx
ϕ2
0−ðxÞ
Λ2
1−2x

�−1
:

ð34Þ

The D- and Ds-meson GPDs, for ξ ¼ 0, are drawn in
Fig. 4. The D-meson GPD (upper panel) presents a very
sharp behavior with respect to the momentum transfer;

in fact, it is almost zero beyond −t ≈ 1 GeV2. Besides, the
x-dependence of theD-meson GPD is also sharp; weighted
at x≲ 0.5, with a maximum at around x ¼ 0.2 and
presenting negligible values for x≳ 0.5. The Ds-meson
GPD (lower panel) shows similar but clearly smoother
features, i.e. it is close to zero for values of momentum
transfer larger than 2 GeV2, the x-dependence is weighted
on its left for the light quark, with a maximum at around
x ¼ 0.25 and having negligible values for x≳ 0.6. These
properties can be traced back with the dressed-quark
and -antiquark content of the analyzed mesons.
Figure 5 shows the B, Bs, and Bc-meson GPDs for ξ ¼ 0.

In a progressive order, from lighter to heavier mesons,
the valence quark GPD shows a strong dependence with
respect the transferred momenta, it is relatively narrow in
the x-range depicted and its maximum moves toward
larger values of the meson’s longitudinal-momentum frac-
tion. These features are remarkably striking for the B
and Bs mesons indicating that they are related not only
with the meson’s quark-antiquark content but also with the
mass difference between the valence dressed-quark and
antiquark pair. In the case of the Bc-meson, where both
quark and antiquark are heavy, the t-dependence is the
smoothest, with significant nonzero values of the GPD
for −t≳ 4 GeV2; moreover, its point-wise behavior with
respect to the fraction of the meson’s longitudinal momen-
tum is wider with a maximum more centered within the
x-range, at x ≈ 0.3.
We now proceed to discuss the derivation of parton

distribution functions (PDFs), electromagnetic form factors
(EFFs) and Impact parameter space GPDs (IPS-GPDs), as
inferred from the knowledge of the GPDs in the DGLAP
kinematic region.

FIG. 4. Valence quark GPDs obtained from Eq. (30) for ξ ¼ 0.
Upper: D-meson GPD and lower: Ds-meson GPD. Mass
units in GeV.
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B. Parton distribution function

The forward limit of the GPD (t ¼ 0, ξ ¼ 0) defines the
valence quark PDF:

q0−ðxÞ≡H0−ðx; 0; 0Þ: ð35Þ

The corresponding antiquark PDF is simply obtained as

Q̄0−ðζH; xÞ ¼ q0−ðζH; 1 − xÞ; ð36Þ

because at the hadron scale, ζH, the dressed valence quarks
express all hadron properties, in particular, the hadron’s
momentum is fully carried by them.
Figure 6 shows the corresponding valence (light) quark

PDFs of the lowest-lying pseudoscalar charmed mesons
in the left panel and those of the bottom partners in the
right panel. As a reference, the dashed (black) line is the
conformal partonlike PDF: qðxÞ ¼ 30x2ð1 − xÞ2. One can
see that all drawn PDFs are more pronounced than qðxÞ
and, obviously, asymmetric with respect qðxÞ as they
represent heavy-light mesons. When comparing the
PDFs by quark sector, it is clear that the PDF becomes
wider and the value of fractional longitudinal momentum
moves toward larger values as the light valence-quark is
getting heavier. Moreover, the valence light quark PDF of
the Bc-meson appears quite displaced in x with respect to
the PDFs of the B and Bs mesons.
From the experimental point of view, the access and

interpretation of PDFs (and GPDs) at ζH imply certain

FIG. 5. Valence quark GPDs obtained from Eq. (30) for ξ ¼ 0.
Upper: B-meson GPD, middle: Bs-meson GPD, and lower: Bc-
meson GPD. Mass units in GeV.

FIG. 6. Valence (light) quark PDFs at the hadron scale, ζH . Left: the solid (red) line corresponds to the D-meson case whereas the
dotted (blue) line referrers to the Ds one. Right: the solid (red) line corresponds to the B-meson case, the dotted (blue) line reflects the
case of Bs state, and the dot-dashed (green) line is related with the Bc-meson. For all these panels, the dashed (black) line corresponds to
the scale-free parton-like profile qðxÞ ¼ 30x2ð1 − xÞ2.
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technical and conceptual complications [93]. In order to
produce a consistent picture when comparing experimental
data with theoretical predictions, one needs to evolve the
hadronic scale PDF. The correct way to do this is by using
the all orders scheme introduced in Refs. [19,20,94,95].
It is based upon the assumption that an effective charge α̂
allows all beyond leading-order effects to be absorbed
within it, thus arriving at a leading-order-like DGLAP
evolution equation. There are no experimental data to
compare with and therefore this procedure is not necessary
at this time.

C. Electromagnetic form factor

The contribution of the q-quark to the meson’s elastic
electromagnetic form factor (EFF) is obtained from the
zeroth moment of the GPD,

Fq
0−ðtÞ ¼

Z
1

−1
dxHq

0−ðx; ξ; tÞ; ð37Þ

an analogous expression holds for the antiquark Q̄.
Therefore, the complete meson’s EFF is given by

F0−ðtÞ ¼ eqF
q
0−ðtÞ þ eQ̄F

Q̄
0−ðtÞ; ð38Þ

where eqðQ̄Þ is the electric charge of the light quark (heavy
antiquark) in units of the positron charge. Due to the
polynomiality property of the GPD, the EFF does not
depend on ξ, therefore one can simply take ξ ¼ 0. ATaylor
expansion around t ≈ 0 yields

Fq
0−ðtÞ ≈

t→0
1 −

ðrq0−Þ2
6

ð−tÞ þ � � � ; ð39Þ

ðrq0−Þ2 ¼ −6
dFq

0−ðtÞ
dt

����
t¼0

; ð40Þ

where rq0− denotes the contribution of the quark q to the
meson charge radius, r0− . Comparing the above equations
with the integration on x of Eq. (33), one obtains a
semianalytical expression for rq0− :

ðrq0−Þ2 ¼ 6

Z
1

0

dxf̂q0−ðxÞq0−ðxÞ; ð41Þ

with

f̂q0−ðxÞ ¼
cð1Þν ð1 − xÞ2

Λ2
1−2x

: ð42Þ

The above expressions show that the charge radius is tightly
connected with the hadronic scale PDF, and thus with
the corresponding PDA. The antiquark result is obtained
analogously; its contribution to r0− reads

ðrQ̄0−Þ2 ¼ 6

Z
1

0

dxf̂Q̄0−ðxÞq0−ð1 − xÞ; ð43Þ

where f̂h̄0−ðxÞ is defined in analogy to its quark counterpart
in Eq. (42),

f̂Q̄0−ðxÞ ¼
cð1Þν ð1 − xÞ2

Λ2
2x−1

: ð44Þ

Summing up the quark and antiquark contributions, the
meson charge radius reads:

r20− ¼ eqðrq0−Þ2 þ eQ̄ðrQ̄0−Þ2: ð45Þ

Finally, note that if the charge radius is known, then
Eqs. (41)–(45) can be employed to fix the model parameters.
Figure 7 shows in the left panel the electromagnetic form

factors of the lowest-lying pseudoscalar charmed mesons,
and analogous results for the bottom mesons in the right
one. The EFF corresponds to the charged state whose
quark-antiquark content match the qQ̄ combination where
q is the light quark and Q̄ the heavy quark, i.e., D− ¼ dc̄,
D−

s ¼ sc̄, Bþ ¼ ub̄, Bs ¼ sb̄, and Bþ
c ¼ cb̄. As a general

feature, the meson’s electromagnetic form factor falls off
with respect the transferred momentum more smoothly
when the mass difference of its valence quarks is smaller. In
addition, meson’s EFFs in the same heavy quark sector
seem to decrease asymptotically at the same rate. Note that
similar features can be deduced from the results reported in
Refs. [96–99], we have chosen not to draw them together
with ours because the hadronic scale in such models is not
specified and it has no sense to perform a detailed
comparison at different scales.
Table IV collects data from the mentioned references and

lattice-regularized QCD calculations on charge radii of
lowest-lying pseudoscalar heavy-light mesons. We also
compare with our findings and, as one can see, our results
are in reasonable agreement for the Ds, Bs and Bc mesons.
However, the charge radii predicted for theD and Bmesons
are quite large when comparing with other calculations.
This should be due to the fact that the difference between
masses of dressed valence quark and antiquark is the
largest, which is not cured by our algebraic model.

D. Impact parameter space GPD

The IPS-GPD distribution is interpreted as the probability
density of finding a parton with momentum fraction x at a
transverse distance b⊥ from the meson’s center of transverse
momentum. It can be obtained straightforwardly by carrying
out the Fourier transform of the zero-skewness GPD:

u0−ðx; b2⊥Þ ¼
Z

∞

0

dΔ
2π

ΔJ0ðb⊥ΔÞHq
0−ðx; 0; tÞ; ð46Þ

where J0ðzÞ is the zeroth Bessel function of the first kind.
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Exploiting the following representation of the GPD in
the DGLAP region,

Hq
0−ðx; 0; tÞ ¼ q0−ðxÞ exp½tf̂q0−ðxÞ�; ð47Þ

we can obtain an analytic expression for the IPS-GPD
distribution,

uq0−ðx; b2⊥Þ ¼
q0−ðxÞ

4πf̂q0−ðxÞ
exp

�
−

b2⊥
4f̂q0−ðxÞ

�
; ð48Þ

which contains an explicit dependence on the PDF and then
reveals a clear interrelation between parton’s momentum
and spatial distributions within a meson.
Furthermore, considering the mean-squared transverse

extent (MSTE),

hb2⊥ðxÞiq0− ¼ 1

r0−

Z
∞

0

db⊥b2⊥b
q
0−ðx; b⊥Þ; ð49Þ

bq
0−ðx; b⊥Þ ≔ 2πr0−b⊥uq0−ðx; b⊥Þ; ð50Þ

the IPS-GPD, defined in Eq. (48), yields the plain relation:

hb2⊥iq0− ¼ 4

Z
1

0

dx f̂q0−ðxÞq0−ðxÞ: ð51Þ

Integrating over x, and comparing with Eq. (45), one is left
with a compact expression for the expectation value:

hb2⊥iq0− ¼ 2

3
r20−

� ðrq0−Þ2
eqðrq0−Þ2 þ eQ̄ðrQ̄0−Þ2

�
; ð52Þ

i.e., the expectation value of the MSTE of the valence quark
is directly correlated with the meson charge radius.
Figure 8 shows the IPS-GPD for the D-meson in the

upper panel and for Ds-meson in the lower one. For
illustrative purposes, we have considered the convenient
representation of Eq. (50), where the quark lies in the x > 0
domain, while the antiquark in x < 0. One can conclude
that the heavy antiquark is almost fixed at the center of
transverse momentum whereas the highest probability of
finding the light quark in the transverse plane is at a

TABLE IV. Charge radii, in fm, of lowest-lying pseudoscalar heavy-light mesons. Despite the fact that other
theoretical approaches do not provide their characteristic low-energy (hadron) scale and therefore a comparison
must be made carefully, we have collected the results of the Refs. [96–101].

D− D−
s Bþ B0

s Bþ
c

jr0− j 0.680 0.372 0.926 0.345 0.217
Covariant CQM [96] 0.505 0.377 � � � � � � � � �
PM [97] � � � 0.460 0.730 0.460 � � �
LFQM [98] 0.429 0.352 0.615 0.345 0.208
CI [99] � � � 0.260 0.340 0.240 0.170
Lattice [100] 0.450(24) 0.465(57) � � � � � � � � �
Lattice [101] 0.390(33) � � � � � � � � � � � �

FIG. 7. Left: electromagnetic form factors of the lowest-lying pseudoscalar charmed mesons. Right: analogous results for the bottom
mesons. We plot the EFF corresponding to charged state whose quark-antiquark content match the qQ̄ combination where q is the light
quark and Q̄ the heavy quark, i.e., D− ¼ dc̄, D−

s ¼ sc̄, Bþ ¼ ub̄, Bs ¼ sb̄, and Bþ
c ¼ cb̄.
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distance 0.6 × rD and 0.14 × rDs
for the D and Ds mesons,

respectively. It is also seen that as the constituent quark
mass becomes larger the quark plays an increasingly major
role in determining the center of transverse momentum;
furthermore, the distributions become wider in x but less
extended in b⊥, and their maximum becomes smaller.
Figure 9 shows analogous IPS-GPD results for the B-,

Bs, and Bc mesons in the upper, middle, and lower panels,
respectively. Similar features as the ones highlighted for the
charmed mesons can also be expected for the bottom
mesons. Since the quark lies in the x > 0 domain, while
the antiquark in x < 0, one can observe that the heavy
antiquark determines the center of transverse momentum,

FIG. 8. Impact parameter space GPDs. For illustrative pur-
poses, we have considered the convenient representation of
Eq. (50), where the quark lies in the x > 0 domain, while the
antiquark in x < 0. Upper: D-meson results. Lower: analogous
results for the Ds meson. The conspicuous asymmetry in both
cases is due to the difference in mass of the dressed valence
quarks: the heavy quark plays a larger role in determining the
center of transverse momentum.

FIG. 9. Impact parameter space GPDs. For illustrative pur-
poses, we have considered the convenient representation of
Eq. (50), where the quark lies in the x > 0 domain, while the
antiquark in x < 0. Upper: B-meson results. Middle: Bs results.
Lower: Bc results. The conspicuous asymmetry in all cases is due
to the difference in mass of the dressed valence quarks: the heavy
quark plays a larger role in determining the center of transverse
momentum.
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this time even more strongly due to the mass difference
between the light quark and the heavy antiquark that
constitute the bottom meson. Moreover, the light quark
is more frequently located in the transverse plane at a
distance 0.65 × rB, 0.13 × rBs

and 0.035 × rBc
for the B, Bs

and Bc mesons, respectively. Note here the fact that the c-
quark and b-antiquark are quite close in the transverse
plane for the Bc-meson. Besides, as in the charmed sector,
the distributions become wider in x but less extended in b⊥
when the constituent quark mass becomes larger; this
feature also affects the center of transverse momentum
and the maximum values reached by the distributions.

IV. SUMMARY

Following a recently proposed algebraic model which
adequately describes the internal structure of the lowest-
lying hidden-flavor pseudoscalar and vector mesons,
with either light or heavy quark content, we have applied
the same idea to the heavy-light pseudoscalar mesons. The
advantage is always the same, the knowledge of the
leading-twist LFWF from its connection to the correspond-
ing valence-quark PDAwhich is usually more amenable to
compute within sophisticated continuum approaches to the
valence-quark and -antiquark bound-state problem in QCD.
The algebraic model consists on constructing simple and

evidence-based Ansätze of the meson’s BSA and quark’s
propagator in such a way that the BSWF can then be readily
computed. Its subsequent projection onto the light front
yields the light front wave function (LFWF) whose
integration over the transverse momentum squared permits
an algebraic connection with the PDA.
We have exploited our current accurate knowledge of the

PDAs for lowest-lying heavy-light pseudoscalar mesons to
determine the corresponding LFWFs whose overlap rep-
resentation delivers the GPDs in the DGLAP region. With
the GPDs at hand, performing different limits/projections,
the related PDFs, EFFs and IPS-GPDs of the mesons
under study have been computed. Experimental results and
earlier theoretical predictions are scarce and incomplete;
therefore, we have provided comparison when possible but

this work should motivate future experiments and theo-
retical developments.
It is important to finish this manuscript highlighting that

we have presented a way to calculate a number of valence-
quark distribution functions, electromagnetic form factors
and charge radii starting from a LFWF whose calculation is
simple once the BSA is assumed to be dominated by its
leading tensor component, the γ5-term for heavy-light
pseudoscalar mesons. We have preliminarily checked that
our algebraic model provides a p2-behavior of the dom-
inant 0th Chebyshev-moment projection of the BSA’s
leading tensor component for charmed and bottom pseu-
doscalar mesons which nicely agree with those produced
by the QCD-based more sophisticated model reported in
Ref. [17][Z.-N. Xu, internal communication]. This implies
that ð90 − 80Þ% of the pseudoscalar meson dynamics is
captured by our algebraic model, since the subleading
tensor components of the BSA typically provide correc-
tions at the level of ð10 − 20Þ% in pseudoscalar-meson-
related observables [102–104]. Still, a more careful and
systematic study would be needed to confirm these
encouraging results.
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