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The internal image of the proton is unveiled by examining the generalized parton distributions (GPDs) at
zero skewness, within the basis light-front quantized environment. Several distributions emerge when a
quark is sampled with different currents depending upon the helicity arrangements of the active quark and
the proton target. We investigate six of the eight leading-twist proton GPDs of the valence quarks, the
helicity conserving distributions ðH;E; H̃Þ and the helicity nonconserving ðHT; ET; H̃TÞ distributions at
skewness set to zero (ζ ¼ 0). We consider purely transverse momentum transfer and, hence, obtain results
describe only the proton’s two-dimensional structure in the transverse plane. We present the Mellin
moments of these distribution functions, where the first moment produces a form factor and the second
Mellin moments help extract the information on partonic contributions to the hadronic angular momentum.
We compare our results for the Mellin moments with those from lattice QCD and other approaches where
available. We also present the GPDs in transverse position space.
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I. INTRODUCTION

Probing the hadron’s complex internal structure provides
knowledge of the nonperturbative aspects of quantum
chromodynamics (QCD) and insights into fundamental
questions such as the nature of confinement. Generalized
parton distributions (GPDs) are three-dimensional func-
tions that convey structural details of the hadron. For
example, from these functions, one can obtain information
about the distribution of partons in the plane transverse to
the direction in which the hadron is moving. Alternatively,

one can deduce the distribution of the longitudinal momen-
tum carried by the partons. These distribution functions
have the potential to address one of the major issues in
hadron physics—the proton spin problem. This is simply
because the GPDs provide information on the orbital
motion of the partons in conjunction with their spatial
flavor distributions.
Multivariable GPDs are functions of ðx; ζ; tÞ where x is

the longitudinal momentum fraction held by the parton,
while ζð¼ −Δþ=2PþÞ and tð¼ Δ2Þ define the longitudinal
momentum transfer from the initial to the final state of a
hadron and the square of the total momentum transferred,
respectively. While they are not probabilistic functions,
their two-dimensional (2D) Fourier transforms from trans-
verse momentum transfer to the impact-parameter plane in
the absence of the longitudinal momentum transfer provide
a probabilistic interpretation of the GPDs [1,2].
Further value can be derived from GPDs by implement-

ing certain limits that provide notable 1D distributions.
For instance, the first Mellin moments of different
GPDs reproduce different form factors depending upon
the helicity configurations of both quark and proton.
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Also, one can retrieve the parton distribution functions
(PDFs) at the forward limit of the GPDs, i.e. when there is
no momentum transfer from the initial to the final state of
the proton. Further, at the t → 0 limit, one can find the
connection of GPDs via second Mellin moments to the
quark’s and gluon’s angular momentum distribution inside
the hadron. An indirect connection has been stated between
the basic mechanical properties of the proton, like pressure,
shear distributions etc. and the GPDs [3]. It is worth
noticing that the different helicity configurations of the
active parton and the hadron give rise to different GPDs and
they, in turn, provide a bounty of information on the hadron
structure and its spin.
The GPDs are generally classified into two categories:

the chiral-even GPDs and the chiral-odd GPDs based on
whether the quark helicity is preserved or not. At leading
twist, the chiral-even GPDs are further divided into
unpolarized ½Hðx; ζ; tÞ; Eðx; ζ; tÞ� and helicity-dependent
GPDs ½H̃ðx; ζ; tÞ; Ẽðx; ζ; tÞ�, where H and H̃ appear when
the helicity of the proton is conserved in the initial and final
states, which is not the case for E and Ẽ. The GPD Ẽ can
be evaluated by considering the momentum transfer in the
longitudinal direction. Since we focus on extracting the
GPDs at ζ ¼ 0, Ẽ is beyond the scope of this work. To
clarify, one can potentially determine Ẽ by conducting a
calculation at a nonzero ζ value in order to isolate this GPD
from the parametrization. Then, substituting ζ ¼ 0 may
provide the nonzero distribution. Hence, the approach
used in this study initializes ζ as zero at the outset of
the calculation, making Ẽ unattainable using this approach.
These GPDs are convoluted with other quantities when
forming representations of amplitudes for hard exclusive
processes, such as deeply virtual Compton scattering [4–6]
and deeply virtual meson production [7].
Extensive experimental efforts have been undertaken

to investigate GPDs. One can cite, for example, H1 [8,9],
ZEUS [10,11], HERMES at DESY [12–14], Hall A [15,16],
CLAS at Jefferson Lab [17–19], COMPASS at CERN [20].
Recently, these distributions have been determined by
analysing the world electron scattering data [21,22].
There are a total of four chiral-odd GPDs, also known as

transversity GPDs: HTðx; ζ; tÞ, ETðx; ζ; tÞ, H̃Tðx; ζ; tÞ, and
ẼTðx; ζ; tÞ. The distribution ẼT vanishes for ζ ¼ 0, since it
is an odd function under the transformation ζ → −ζ. Such
GPDs are quite challenging to measure through hard
exclusive processes. Nevertheless, it has been proposed
that these GPDs could be probed in diffractive double
meson electroproduction [23–25]. Theoretical efforts have
shown the possibility of describing the hard exclusive
electroproduction of pseudoscalar mesons by a hard scat-
tering mechanism involving the leading-twist chiral-odd
GPDs of the nucleon [26–31]. The first evidence of the
existence of these GPDs was given by the COMPASS
collaboration where the exclusive production of ρ0 mesons
was studied by scattering muons off transversely polarized

protons [32]. Results from GPDs-based model calculations
were found to be in agreement with the data. Further,
results of exclusive π0 and η electroproduction by CLAS
collaboration confirm the direct experimental accessibility
of transversity GPDs [33,34]. It is noteworthy that experi-
ments are planned to extract GPDs at upcoming facilities
such as the Electron Ion Collider [35], the Electron Ion
Collider in China [36,37] and the 12 GeVupgrade program
at Jefferson Lab [38,39].
Theoretically, the proton GPDs have drawn immense

attention. Several QCD inspired models have been devel-
oped to understand the proton structure (see, for example,
Refs. [40–52]), but deriving the theoretical links with QCD
remains a challenge. For instance, numerous studies on
moments which are related to the GPDs in certain limits
are presented in the lattice QCD approach [53–60] and
Dyson-Schwinger equation approach [61–64]. Unlike the
Euclidean methods, the QCD observables are directly
obtainable in Minkowski space-time. However, no such
method has been developed so far. The basis light-front
quantization (BLFQ) approach [65–72] has potential to
achieve this goal of solving the QCD from first principles
when QCD interactions alone are included. Since we
consider only the valence Fock sector, this work utilizes
an effective Hamiltonian, in essence a QCD-inspired
model, in order to solve for observables.
We adopt the BLFQ approach which is a convenient

framework defined on the light-front to get the hadron
spectra and its structure while obtaining the light-front
wave functions (LFWFs) through diagonalization of
the Hamiltonian. One can access the distributions of sea
quarks and gluons in this approach by including the higher
Fock sector representations of a hadron. This approach
has successfully described the QCD bound states of mesons
[68,69,73–79] and baryons [70,71,80–82]. Recently, these
states have been expanded in the Fock space including one
dynamical gluon component for the pion jqq̄gi [79] and the
nucleon jqqqgi [83]. Within this approach, one now has
access to the gluon distributions based on coupling defined
by QCD.
In this work, we employ the LFWFs to study the proton

GPDs by taking into account the valence Fock sector jqqqi,
where the chiral-even GPDs along with the other applica-
tions have already been studied [70,71,80]. Note that the
proton form factors (FFs), such as electromagnetic FFs and
axial-vector FFs have been evaluated in this approach and
have been found consistent with the available experimental
data [70,71]. Further, the 1D proton PDFs, particularly the
unpolarized, helicity-dependent and transversity PDFs
have been examined by comparing them with the available
global fits and measured data [70,71]. Overall, the results
have been found in agreement with the data. In Ref. [80],
the angular momentum distributions have been explored,
which have been evaluated using the unpolarized and
helicity-dependent GPDs. The previous results are
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encouraging and motivate us to extend this approach to
study the chiral-odd GPDs, when the quark helicity flips
unlike for the case of chiral-even GPDs. The 3D chiral-odd
GPDs are the extended version of the transversity PDF and
tensor form factors, which provide the spatial tomography
of the proton when the valence quarks are transversely
polarized. In this way, the chiral-odd GPDs provide
important details on the correlation between the angular
momentum and spin of quarks inside the proton.
Our aim is to investigate the structure of the proton

through its GPDs and other observables in greater detail in
order to provide a better understanding using the BLFQ
approach. Our selected observables include different Mellin
moments (so-called generalized form factors) and impact-
parameter dependent GPDs.

II. BASIS LIGHT-FRONT QUANTIZATION
APPROACH

In the BLFQ approach, an eigenvalue problem of the
Hamiltonian,Heff jΨi ¼ M2

HjΨi, is solved on the light front
(LF). The eigensolutions provide LFWFs, and the eigen-
values are recognized as the hadronic mass spectra (MH).
The former play crucial roles in understanding the detailed
structure of QCD bound state systems.
The baryonic state on which the Hamiltonian operator

would act is expanded at fixed LF time as

jΨi ¼ ψ ðqqqÞjqqqi þ ψ ðqqqqq̄Þjqqqqq̄i
þ ψ ðqqqgÞjqqqgi þ � � � ; ð1Þ

where q; q̄, and g represent quark, antiquark, and gluon
Fock particles, respectively. The significance of LFWFs
ψ ðqqqÞ;ψ ðqqqqq̄Þ;ψ ðqqqgÞ;… is to provide the probability
amplitudes for the Fock states defined by jqqqi;
jqqqqq̄i; jqqqgi and so on. In this work, we consider only
the valence Fock state, i.e., the first term in Eq. (1).
The effective Hamiltonian of the baryonic systems in our

chosen Fock space is defined as [70,71,80–82]

Heff ¼
X
i

k2⊥i þm2
i

xi

þ 1

2

X
i≠j

κ4
�
xixjðr⊥i − r⊥jÞ2 −

∂xiðxixj∂xjÞ
ðmi þmjÞ2

�

þ 1

2

X
i≠j

4πCFαs
Q2

ij
ūs0iðk0iÞγμusiðkiÞūs0jðk0jÞγνusjðkjÞgμν:

ð2Þ

The first term in Eq. (2) expresses the kinetic energy with
mi being mass of the valence quark; xi and k⊥i symbolize
the longitudinal momentum fraction and transverse
momentum carried by ith constituent of the system withP

i xi ¼ 1 and
P

i k⊥i ¼ 0. The second term in Eq. (2)

expresses the confining potential, which is separately
defined in transverse and longitudinal directions through
the soft-wall LF holographic QCD [84] and the phenom-
enological modeling [68], respectively. With regard to the
compatibility of our harmonic oscillator (HO) basis func-
tion in the transverse direction (details about the basis are
given in the ensuing paragraphs), the holographic QCD
provides us with the HO potential. In the nonrelativistic
limit, the total confinement potential emerges as a 3D HO
potential [68,70,71,82]. The third term in Eq. (2) refers to
the one gluon exchange interactions with coupling constant
αs, which underlies the dynamical spin structure in the
LFWFs. Here, usiðkiÞ represents the Dirac spinor with si
and ki being the spin and momentum carried by the ith
valence quark. CF and gμν define the color factor and
the metric tensor, respectively. Further, the square of the
average four-momentum transfer is expressed as
Q2

ij ¼ −q2 ¼ − 1
2
ððk0i − kiÞ2 þ ðk0j − kjÞ2Þ.

Our goal is to follow BLFQ and evaluate the
Hamiltonian, defined in Eq. (2), in a suitably truncated
basis and diagonalize it to produce the baryon mass spectra
and corresponding wave functions. For the BLFQ basis, we
choose the 2D HO basis and the discretized plane-wave
basis in transverse and longitudinal directions, respectively,
to expand jΨi [65,66]. The orthonormalized 2D HO basis
function in the transverse direction is given by

ϕn;mðk⊥; bÞ ¼
ffiffiffi
2

p

bð2πÞ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n!
ðnþ jmjÞ!

s
e−k

2⊥=2b2
�jk⊥j

b

�jmj

× Ljmj
n

�
k2⊥
b2

�
eimθ; ð3Þ

where b is the HO scale parameter. The quantum numbers n
and m represent the radial excitation and angular momen-
tum projection, respectively, of a particle in a 2D HO.

Ljmj
n represents the associated Laguerre polynomial.
In the discretized plane-wave basis, the longitudinal

momentum fraction of ith particle is represented by

xi ¼ pþ
i

Pþ ¼ ki
K with the dimensionless quantity being

k ¼ 1
2
; 3
2
; 5
2
; � � � The values of k are chosen to signify the

choice of antiperiodic boundary conditions. Note that
K ¼ P

i ki. In addition, the total angular momentum
projection is defined for many-body basis states as
MJ ¼

P
iðmi þ λiÞ with λ being the quark helicity. The

effective Hamiltonian in Eq. (2) conserves MJ, which
leads to efficiencies in numerical calculations. We select
MJ ¼ 1=2 to solve for the proton spectroscopy.
Apart from restricting the Fock space, a further trunca-

tion is necessary to limit the basis size within each
Fock sector. With our chosen basis, further truncation
can be achieved by specifying two basis parameters (K)
and ðNmaxÞ. The former is conserved by the effective
Hamiltonian, which is held fixed and controls the basis
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in the longitudinal direction. Meanwhile,Nmax limits a total
transverse quantum number Nα ¼

P
lð2nl þ jmlj þ 1Þ

for multiparticle basis state jαi such that Nα ≤ Nmax.
This parameter acts as a UV and an IR regulator for
the LFWFs with ΛUV ≈ b

ffiffiffiffiffiffiffiffiffiffi
Nmax

p
and ΛIR ≈ b=

ffiffiffiffiffiffiffiffiffiffi
Nmax

p
,

respectively [66].
The resulting LFWFs in momentum space are

expressed as

ΨΛ
fxi;k⊥i;λig ¼ hP;Λjfxi;k⊥i; λigi

¼
X

fni;mig

�
ψΛ
fxi;ni;mi;λig

Y
i

ϕni;mi
ðk⊥i; bÞ

�
; ð4Þ

with ψΛ
fxi;ni;mi;λig ¼ hP;Λjfxi; ni; mi; λigi being the LFWF

in BLFQ’s chosen basis and with P and Λ being the
momentum and helicity of the target spin-1=2 composite
system, respectively.
To produce our LFWFs, the basis truncation parameters

in the transverse and longitudinal directions are taken as
Nmax ¼ 10 and K ¼ 16.5, respectively [70,71]. Besides
this, other model parameters are fixed in a way that they
provide the known nucleon mass and the electromagnetic
form factors [70,71], leading us to adopt fmq=K:E:; mq=OGE;
κ; αsg ¼ f0.3 GeV; 0.2 GeV; 0.34 GeV; 1.1� 0.1g where

mq=K:E: and mq=OGE represent the quark masses in kinetic
energy and OGE interaction terms with the HO scale
parameter being b ¼ 0.6 GeV. The calculated LFWFs
for the valence Fock sector using these parameters, which
imply a model scale μ20 ¼ 0.195� 0.020 GeV2 [70,71],
are employed to provide physical observables and distri-
bution functions of the valence quarks inside the proton.
In this work, we specifically study the proton GPDs using
these LFWFs.

III. GENERALIZED PARTON DISTRIBUTIONS

The 3D spatial distributions are categorized as chiral-
even and chiral-odd GPDs and are defined through the
nonforward matrix elements of the bilocal operators
between hadronic states. The connection between the
correlator functions and various GPDs strictly depends
upon the bilocal operator. Note that, for the present work,
we restrict ourselves to the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi region, ζ < x < 1, where the number of
partons in the initial and the final states remains conserved.
Also, the momentum transfer in the longitudinal direction
is taken to be zero. Accordingly, these distributions are
classified and parametrized as we now show.
The distributions where the quark does not transfer

helicity are parametrized as [85]

Z
dz−

8π
eιxP

þz−=2hP0;Λ0jφ̄ð0Þγþφðz−ÞjP;Λijzþ¼z⊥¼0 ¼
1

2P̄þ ūðP0;Λ0Þ
�
Hqðx; ζ; tÞγþ þ Eqðx; ζ; tÞ ισ

þαΔα

2MP

�
uðP;ΛÞ; ð5Þ

Z
dz−

8π
eιxP

þz−=2hP0;Λ0jφ̄ð0Þγþγ5φðz−ÞjP;Λijzþ¼z⊥¼0 ¼
1

2P̄þ ūðP0;Λ0Þ
�
H̃qðx; ζ; tÞγþγ5 þ Ẽqðx; ζ; tÞ γ5Δ

þ

2MP

�
uðP;ΛÞ: ð6Þ

On the other hand, the transversity distributions where the quark transfers helicity are parametrized as [85]

Z
dz−

8π
eιxP

þz−=2hP0;Λ0jφ̄ð0Þσþjγ5φðz−ÞjP;Λijzþ¼z⊥¼0

¼ 1

2P̄þ ūðP0;Λ0Þ
�
Hq

Tðx;ζ;tÞσþjγ5þH̃q
Tðx;ζ;tÞ

ϵþjαβΔαP̄β

M2
P

þEq
Tðx;ζ;tÞ

ϵþjαβΔαγβ
2MP

þ Ẽq
Tðx;ζ;tÞ

ϵþjαβP̄αγβ
MP

�
uðP;ΛÞ; ð7Þ

with MP being the mass of the target spin-1=2 composite system which is the proton in our case. We choose a frame such
that the momenta of the target proton at the initial and final state, at ζ ¼ 0, become

P ¼
�
Pþ;

M2
P

Pþ ; 0⊥
�
; ð8Þ

P0 ¼
�
Pþ;

M2
P þ Δ2⊥
Pþ ;−Δ⊥

�
: ð9Þ

where P̄ ¼ 1
2
ðPþ P0Þ. The overlap representation of the GPDs in terms of the LFWFs for ζ ¼ 0 are expressed as

Hqðx;0;tÞ¼
X
fλig

Z
½dXdK⊥�Ψ↑�

fx0i;k0⊥i;λigΨ
↑
fxi;k⊥i;λigδðx−x1Þ; ð10Þ
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Eqðx; 0; tÞ ¼ −
2M

ðΔ1 − ιΔ2Þ
X
fλig

Z
½dXdK⊥�Ψ↑�

fx0i;k0⊥i;λigΨ
↓
fxi;k⊥i;λigδðx − x1Þ; ð11Þ

H̃qðx; 0; tÞ ¼
X
fλig

Z
½dXdK⊥�λ1Ψ↑�

fx0i;k0⊥i;λigΨ
↑
fxi;k⊥i;λigδðx − x1Þ; ð12Þ

Eq
Tðx; 0; tÞ þ 2H̃q

Tðx; 0; tÞ ¼
X
fλ0i;λig

Z
½dXdK⊥�Ψ↑�

fx0i;k0⊥i;λ
0
igΨ

↑
fxi;k⊥i;λigδðx − x1Þ; ð13Þ

Hq
Tðx; 0; tÞ ¼

X
fλ0i;λig

Z
½dXdK⊥�Ψ↑�

fx0i;k0⊥i;λ
0
igΨ

↓
fxi;k⊥i;λigδðx − x1Þ; ð14Þ

H̃q
Tðx; 0; tÞ ¼ −

X
fλ0i;λig

Z
½dXdK⊥�Ψ↓�

fx0i;k0⊥i;λ
0
igΨ

↑
fxi;k⊥i;λigδλi;−λ0iδðx − x1Þ; ð15Þ

where

½dXdK⊥� ¼
Y3
i¼1

dxid2k⊥i

16π3
16π3δ

�
1−

X3
i¼1

xi

�
δ2
�X3

i¼1

k⊥i

�
;

ð16Þ
with the longitudinal momentum fraction and the transverse
momentum for the active quark being x01 ¼ x1 and
k0⊥1 ¼ k⊥1 þ ð1 − x1ÞΔ⊥. For the spectators these
momenta become x0i ¼ xi and k0⊥i ¼ k⊥i − xiΔ⊥. Here,
t ¼ −Δ2⊥ when the skewness ζ ¼ 0.
We show the results of the chiral-even GPDs ðH;E; H̃Þ

for the valence quarks in Fig. 1, where the distribution
functions are plotted with respect to the light-cone momen-
tum (x) and the square of the total momentum transferred
to the final proton state (−t). The GPDs for u and d quarks
are presented in the left and the right panels of Fig. 1,
respectively. We find that the distributions have their
maxima when the proton does not transfer transverse
momentum to its final state and the struck quark inside the
proton carries less than 50% of the proton’s longitudinal
momentum. As expected, by increasing the momentum
transfer in the transverse direction, the distribution peak
shifts gradually towards the higher values of x accom-
panied by a continuous drop in the magnitude. At the large
x region, all the distributions eventually decay and
become independent of t. However, this decay is observed
to be faster for Eq than the other GPDs (Hq and H̃q). As
the anomalous magnetic moment and the axial charge are
measured to be negative for the d quark, the connected
GPDs, Ed and H̃d, are correspondingly negative. All the
mentioned features appear to be model independent as
they have also been observed in other QCD inspired
models [40–42,48,49,52].
When there is no momentum transfer (t ¼ 0), these

distributions reproduce the valence quark distribution

functions, particularly, the unpolarized and helicity-
dependent functions, i.e., Hqðx; 0; 0Þ ¼ fqðxÞ and
H̃qðx; 0; 0Þ ¼ gqðxÞ. These 1D functions have been studied
previously in the BLFQ approach by considering both the
Fock sector containing valence quarks (jqqqi) [70,71] and
one beyond this sector (jqqqgi) [83]. Additionally, the
detailed interpretation of the moments, which are functions
of t, is given below in Sec. III A.
The 3D graphical representations of the chiral-odd

proton GPDs ðHT; ET; H̃TÞ for the u quark and the d
quark are shown in the left and right panels of Fig. 2,
respectively. Similar to the helicity conserving GPDs,
these helicity nonconserving distribution functions are
illustrated as functions of x and −t. All the helicity flip
distributions show similar behavior as for the case of
helicity nonflip GPDs, except the behavior of Eq

T and H̃q
T

in the small x region. In that case, the peaks observed
near x → 0 are model dependent [43,51]. All the flavor
distribution peaks move along x, when the momentum
transfer from the initial proton is increased gradually.
A noteworthy distribution is the combination of two
chiral-odd GPDs, 2H̃q

T þ Eq
T which provides the details

on the angular momentum contribution at certain limits
and is reducible to the tensor form factor. We observe zero
crossing points in Ed

T along x, which has also been
observed in other models [43,51]. Our GPDs’ results,
for the case of Hu

T and H̃u
T , are observed to be opposite to

that of the d-quark distributions. Similar to Hq and H̃q,
the helicity nonconserving GPD Hq

T is reducible to
transversity PDF, Hq

Tðx; 0; 0Þ ¼ hqðxÞ and has been pre-
viously studied in this approach [70,71,83].
We perform the QCD evolution to obtain the GPDs

at higher scale μ2 using the next-to-next-to-leading order
Dokshitzer-Gribov-Lipatov-Altarelli-Paris equations of
QCD [50,86–93]. To solve these equations numerically,
we use the Higher Order Perturbative Parton Evolution
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toolkit [94]. We show the evolved chiral-even GPDs,
unpolarized GPD Hq and helicity GPD H̃q, for both u
and d quarks at different values of momentum trans-
ferred (t) in Fig. 3. The evolution is performed from the

initial scale μ20 ¼ 0.195 GeV2 to μ2 ¼ 5 GeV2. The
method is not well established for the evolution of
transversity GPD; hence we refrain from evaluating this
at the higher scale.

FIG. 1. The chiral-even GPDs: (a)Hðx; 0; tÞ, (c) Eðx; 0; tÞ and (e) H̃ðx; 0; tÞ for the u quark, where the respective GPDs for the d quark
are shown in (b), (d), and (f). The GPDs are presented with respect to x and −t (in GeV2).
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FIG. 2. The chiral-odd GPDs (a) HTðx; 0; tÞ, (c) ETðx; 0; tÞ and (e) H̃Tðx; 0; tÞ for the u quark, where the respective GPDs for the d
quark are shown in (b), (d), and (f). The GPDs are presented with respect to x and −t (in GeV2).
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FIG. 3. The GPDs Hq and H̃q multiplied by x evolved to the scale μ2 ¼ 5 GeV2 with respect to x.

FIG. 4. (a) The first and (b) second Mellin moments of GPDs, also known as generalized form factors, for the u quark (upper) and the
d quark (lower) with respect to the square of the momentum transfer −t (in GeV2).
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A. Mellin moments of GPDs

For zero skewness (ζ ¼ 0), the moments of the valence
quark GPDs are defined as

½Mellin-moment�qn0ðtÞ ¼
Z

1

0

dxxn−1½GPD�qðx; 0; tÞ; ð17Þ

where n ¼ 1; 2; 3;… represent first, second, third moments
and so on. The first moments of GPDs provide form factors
depending upon the helicity configurations of the active
quark and the proton. Specifically, the first moments of the
unpolarized GPDs, Hqðx; 0; tÞ and Eqðx; 0; tÞ, provide the
Dirac and Pauli form factors, Fq

1ðtÞ and Fq
2ðtÞ, respectively.

The helicity-dependent GPDs, H̃qðx; 0; tÞ and Ẽqðx; 0; tÞ,
give the axial-vector form factor Gq

AðtÞ and the pseudo-
scalar form factor Gq

PðtÞ, respectively. Lastly, the tensor
form factors gqTðtÞ and κqTðtÞ are provided by the chiral-odd
GPDs. Mathematically,

Fq
1ðtÞ ¼ Aq

10ðtÞ ¼
Z

dxHqðx; 0; tÞ;

Fq
2ðtÞ ¼ Bq

10ðtÞ ¼
Z

dxEqðx; 0; tÞ; ð18Þ

Gq
AðtÞ ¼ Ãq

10ðtÞ ¼
Z

dxH̃qðx; 0; tÞ;

Gq
PðtÞ ¼ B̃q

10ðtÞ ¼
Z

dxẼqðx; 0; tÞ; ð19Þ

gqTðtÞ ¼ Aq
T10ðtÞ ¼

Z
dxHq

Tðx; 0; tÞ;

κqTðtÞ ¼ B̄q
T10ðtÞ ¼

Z
dx½Eq

Tðx; 0; tÞ þ 2H̃q
Tðx; 0; tÞ�; ð20Þ

and

Aq
20ðtÞ ¼

Z
dxxHqðx; 0; tÞ; Bq

20ðtÞ ¼
Z

dxxEqðx; 0; tÞ;

ð21Þ

Ãq
20ðtÞ¼

Z
dxxH̃qðx;0;tÞ; B̃q

20ðtÞ¼
Z

dxxẼqðx;0;tÞ; ð22Þ

Aq
T20ðtÞ ¼

Z
dxxHq

Tðx; 0; tÞ;

B̄q
T20ðtÞ ¼

Z
dxx½Eq

Tðx; 0; tÞ þ 2H̃q
Tðx; 0; tÞ�: ð23Þ

FIG. 5. The normalized first Mellin moments with respect to −t (in GeV2) compared with the predictions of the lattice QCD approach
[58,59] and the chiral quark soliton model (χQSM) [95,96].

TABLE I. The values of first moment of the GPDs at t ¼ 0 for u
and d quarks in BLFQ.

Quantity A10ð0Þ B10ð0Þ Ã10ð0Þ AT10ð0Þ B̄T10ð0Þ
u quark 2 1.367 1.162 1.251 3.208
d quark 1 −1.279 −0.249 −0.270 2.432
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Now, in the forward limit (t ¼ 0), the Dirac form factors
exhibit the normalization as

Fu
1ð0Þ ¼ 2; Fd

1ð0Þ ¼ 1; ð24Þ

the Pauli form factors are regarded as the anomalous
magnetic moments,

Fq
2ð0Þ ¼ κq; ð25Þ

the axial-vector form factors and pseudoscalar form factors
are regarded as the axial-vector coupling constant (axial
charge) and pseudoscalar coupling constant,

Gq
Að0Þ ¼ gqA and Gq

Pð0Þ ¼ gqP; ð26Þ

respectively, and the tensor form factors identify with the
tensor charge gqT and tensor magnetic moment κqT .
In Fig. 4(a), we show the first Mellin moment of both

chiral-even and chiral-odd GPDs, defined in Eqs. (18)–(20).

FIG. 6. The normalized second Mellin moments with respect to −t (in GeV2) compared with the predictions of the lattice QCD
approach [58,59].

FIG. 8. The isoscalar generalized form factor A20 with respect
to the square of the momentum transfer −t (in GeV2) in
comparison with lattice QCD predictions [97,98].

FIG. 7. The isoscalar generalized form factors with respect to
the square of the momentum transfer −t (in GeV2).
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As discussed earlier, the first moment of unpolarized and
helicity GPDs represent the Dirac, Pauli and axial form
factors. The detailed study of these form factors can be found
in Refs. [70,71], where reasonable agreement with the
experimental data has been observed. Along with these
form factors, we evaluate tensor form factors which are
connected with Aq

T10 and B̄q
T10.

The transversity GPDs are connected with the tensor FFs
Aq
T10ð¼ gqTðtÞÞ and B̄q

T10ð¼ κqTðtÞÞ, and are illustrated in
Fig. 4(a). When comparing with other published studies,
we find that our tensor FFs qualitatively agree with the
lattice QCD predictions for both u and d quarks [58,59] and
with other model predictions [43,51,95,96]. We illustrate
the t dependence of the first Mellin moments of chiral-odd
GPDs, and compare our predictions with that of the lattice
QCD approach [58,59] and the chiral quark soliton model
(χQSM) [95,96] in Fig. 5. Since the lattice QCD method
and the χQSM have predicted their results at 4 and
0.36 GeV2, respectively, which are considerably different
from our model scale μ20 ¼ 0.195� 0.020 GeV2 [70,71],
the comparison between them is only qualitative though

some similarities are apparent. Our model scale could be
significantly increased when we increase our BLFQ basis
spaces to include Fock components beyond the valence
sector. We anticipate that, with these planned model
improvements, our results may then become more compa-
rable with the lattice QCD and other model predictions.
In Table I, we summarize our predictions for the first

Mellin moments or the generalized form factors of the
valence quark GPDs, when there is no momentum
transfer from the initial to the final state of proton
(t ¼ 0). Similar to the other model results, we also
observe that the tensor charge gqTð0Þð¼ Aq

T10Þ is larger
than the axial charge gqAð0Þð¼ Ãq

10ð0ÞÞ, regardless of the
sign. However, the difference is observed to be small in
our BLFQ computation.
In Fig. 4(b), we present the second moment of the proton

GPDs where, through a visual comparison to published
lattice QCD results [58,59], we again find similarities in the
qualitative behavior. To elucidate the comparison with
lattice QCD results, we show the t dependence of the
second Mellin moments of the chiral-odd GPDs in Fig. 6.
Again, the predictions are made at different scales so that
the comparison is only qualitative. The second moments
give information about the gravitational form factors and
our results for u and d quark contributions at t ¼ 0 are
shown in Table II. Further, by simply adding the second
Mellin moments for u and d quarks, we obtain the isoscalar
generalized FFs that we present in Fig. 7. Unlike other
generalized FFs, Buþd

20 is observed to be independent of −t,
and it appears to come out close to zero in our calculations.
Furthermore, in Fig. 8, we have shown the comparison of
our predictions of Auþd

20 by evolving it to the scale of the
lattice QCD predictions [97,98], i.e. to μ2 ¼ 4 GeV2.
A clear discrepancy has been observed which can be
attributed to the fact that our calculations are based on
only the leading Fock sector.
Since the GFFs A20ðtÞ and B20ðtÞ summing over all

partons are scale invariant, we compare these GFFs in
our BLFQ approach with those in the lattice QCD [98]

TABLE II. The values of second moment of the GPDs at t ¼ 0
for u and d quarks in BLFQ.

Quantity A20ð0Þ B20ð0Þ Ã20ð0Þ AT20ð0Þ B̄T20ð0Þ
u-quark 0.681 0.335 0.419 0.445 0.802
d-quark 0.319 −0.335 −0.084 −0.088 0.604

TABLE III. Our transversity asymmetry values for u quark and
d quark in the proton compared with the predictions of the HO
model [43], hypercentral CQM [43] and CQSM [101].

Transversity
asymmetry BLFQ HO

Hypercentral
CQM CQSM

hδxJxui 0.62 0.68 0.39 0.49
hδxJxdi 0.26 0.28 0.10 0.22

FIG. 9. The form factors A20ðtÞ and B20ðtÞ with respect to the square of the momentum transfer −t in comparison with lattice QCD
predictions [98].
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FIG. 10. The chiral-even GPDs: (a) Hðx; 0; bÞ, (c) Eðx; 0; bÞ and (e) H̃ðx; 0; bÞ for the u quark, where the respective GPDs for the d
quark are shown in (b), (d), and (f). The GPDs are presented with respect to x and b (in fm).
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FIG. 11. The chiral-odd GPDs: (a)HTðx; 0; bÞ, (c) ETðx; 0; bÞ and (e) H̃Tðx; 0; bÞ for the u quark, where the respective GPDs for the d
quark are shown in (b), (d), and (f). The GPDs are presented with respect to x and b (in fm).
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in Fig. 9. Within our current treatment of the BLFQ
approach, only u and d quarks contribute to these
quantities, while the lattice QCD considers contribution
from u, d, s quarks and gluons. We find that our results are
somewhat underestimated compared to the lattice QCD
predictions. This quantitative difference is expected as we
consider only the valence Fock sector. On the other hand,
the lattice QCD predictions involve first-principle calcu-
lations considering the quarks as well as the gluons. Our
predictions may become closer to those of the lattice QCD
when we explicitly include gluons and the sea quarks in
our approach.
According to Ji sum rule, the second moment of the

chiral-even GPDs give the partonic contribution to the total
angular momentum of the proton [99], we have

Jzq ¼
1

2

Z
dxx½Hqðx; 0; 0Þ þ Eqðx; 0; 0Þ�

¼ 1

2
½Aq

20ð0Þ þ Bq
20ð0Þ�: ð27Þ

From Table II, we observe that Ji sum rule is satisfied in our
model as we get Jzq ¼ 1=2 following Eq. (27). The detailed
study on the total angular momentum contribution of the
partons, when they do not flip their helicities, can be found
in Ref. [80].
On the other hand, the second moments of chiral-odd

GPDs are connected with the angular momentum carried
by the partons with the transverse spin along the x̂ direction
in an unpolarized proton, Jxq. According to Burkardt [100],
this quantity is one half of the expectation value of the
transversity asymmetry

hδxJxqi ¼
1

2

Z
dxx½Hq

Tðx;0;0Þ þ 2H̃q
Tðx;0;0Þ þEq

Tðx;0;0Þ�

¼ 1

2
½Aq

T20ð0Þ þ B̄q
T20ð0Þ�: ð28Þ

The obtained values of transversity asymmetry for u quarks
and d quarks in our model as well as a comparison with
other predictions from the HO model [43], hypercentral
constituent quark model (CQM) [43] and chiral quark
soliton model (CQSM) [101] are shown in Table III. We
observe that our predictions are close to those of the HO
model. Note that the methods chosen for comparison may
have different initial scales, which could be a significant
source of the differences in the results among the models.

B. Impact-parameter dependent GPDs

Taking the 2D Fourier transform of GPDs with respect to
Δ⊥ leads to the GPDs in transverse impact-parameter ðb⊥Þ
plane [1,2]. We have

½GPD�ðx; 0;b⊥Þ ¼
1

ð2πÞ2
Z

d2Δ⊥e−ιΔ⊥·b⊥ ½GPD�ðx; 0; tÞ;

¼ 1

2π

Z
ΔdΔJ0ðΔbÞ½GPD�ðx; 0; tÞ; ð29Þ

where Δ ¼ jΔ⊥j. The parameter b ¼ jb⊥j describes the
transverse distance between the active quark and the center
of momentum of the proton and satisfies the condition thatP

i xibi ¼ 0, where the sum runs over the partons.
We show the unpolarized and helicity GPDs for the

valence quarks as a function of x and b in Fig. 10.
Furthermore, we present the 3D graphical representation
of the transversity GPDs with respect to x and b in Fig. 11.
We observe that all the GPDs, regardless of their signs,
show a decrease in the width of the valence quark
distributions in transverse impact-parameter plane, as x
increases. For example, in Fig. 10(a), we find that the
width decreases from 1.00 to 0.58 fm as x increases from
0.5 to 0.7. This implies that when the quarks take a larger
longitudinal momentum fraction, they locate near the
center of transverse position (b ¼ 0). On the other hand,
the peak of distributions shift towards the lower values of x
accompanied by decreasing magnitude, and as we go away
b ¼ 0. Eventually, the distribution vanishes with increasing
transverse distance. The rate of the dropoff varies for
different GPDs, depending upon the helicities of both
target proton and the active quark. All the GPDs have
maximum distributions at b ¼ 0. When the valence quarks
carry more than 50% of the longitudinal momentum, the
GPDs Hq; H̃q and Hq

T are observed to have this maxima,
while the other GPDs have peaks at x < 0.5. Further, the
flavor distributions Ed; H̃d; Hd

T; H̃
u
T are found negative.

These signs in transverse b space are directly traced to
the GPDs in momentum space ðx; tÞ. Our impact-parameter
dependent GPDs show similarities with those of various
studies in the literature [2,48,49,51,102–104], which leads
us to suggest that there is an emerging trend towards model-
independent characteristics.

IV. CONCLUSIONS

In this work, we have presented the leading-twist GPDs
for the proton at zero skewness using the BLFQ approach,
where the effective light-front Hamiltonian includes the
transverse and longitudinal confinement as well as the one
gluon exchange interaction between the valence quarks.
The proton LFWFs have been obtained by treating it as a
relativistic three-body system and by diagonalizing the
effective Hamiltonian matrix numerically. The resulting
LFWFs are utilized to study the various static and dynamic
properties, relevant to the low-energy regime. The param-
eters used in this work were previously fixed to reproduce
the proton mass and electromagnetic FFs [70,71].
The multidimensional GPDs, when taken to specific

limits, represent unified versions of FFs and PDFs. We have
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computed the chiral-even and chiral-odd nonskewed GPDs
of the proton to observe the u and d quarks in momentum
space, where we take into account the different configu-
rations of helicities of both the active quark and target
proton. We have found qualitatively similar behavior for the
distributions at zero skewness to those in related studies
[21,22,40–43,48,49,51,52]. Note that, we have not com-
puted Ẽ and ẼT as they require ζ ≠ 0 at the initial stage of
evaluation in order to obtain the expressions which is
beyond the scope of the present work. Further, these
functions are capable of producing the different FFs based
on the helicity dependence of both quark and the proton,
such that the unpolarized, helicity and transversity GPDs
provide Dirac, Pauli, axial and tensor FFs and are also
known as the first Mellin moments of the GPDs. We
observed that these FFs qualitatively match available
predictions from other approaches [43,51,58,59,95,96].
We have also computed the second moments of the
GPDs, which provide precise information on the gravita-
tional form factors and are linked with the total angular
momentum contributions of partons inside the proton.
In addition, we have computed the GPDs in transverse
position space. Again, we have found that our results show
similar qualitative descriptions as obtained in other models.
Our approach can be systematically improved by incor-

porating Fock sectors beyond the valence quark component
(jqqqi). Our future efforts will include higher Fock compo-
nents of the proton, for example, jqqqqq̄i, jqqqgi and so on.
It will also be of great interest to see the distributions of sea
quarks and gluons describing the proton structure with input
from light-front QCD to the model at its initial scale.
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