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Factorization underlies all predictions at the Large Hadron Collider, but has only been rigorously proven
in a few cases. One of these cases is the Drell-Yan process, pp → Z=γ þ X, in the limit of small-boson
transverse momentum. We introduce a one-parameter family of observables, that we call vector
angularities, of which the transverse momentum is a special case. This enables the study of factorization
violation, with a smooth transition to the limit for which factorization has been established. Like the
angularity event shapes, vector angularities are a sum of transverse momenta weighted by rapidity, but
crucially this is a vector sum rather than a sum of the magnitude of transverse momenta. We study these
observables in PYTHIA, using the effect of multiparton interactions (MPI) as a proxy factorization violation,
finding a negligible effect in the case where factorization is established but sizable effects away from it.
We also present a factorization formula for the cross section, that does not include factorization violating
contributions from Glauber gluons, and thus offers a baseline for studying factorization violation
experimentally using vector angularities. Our predictions at next-to-leading logarithmic accuracy are in
good in agreement with PYTHIA (not including MPI), and can be extended to higher order.
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I. INTRODUCTION

All predictions for scattering processes at the Large
Hadron Collider (LHC), rely on factorization. Factorization
allows one to write the cross section σ for a given process
and measurement as some convolution of various ingre-
dients. At the LHC this is essential to separate the
perturbatively-calculable partonic cross section σ̂, from
the nonperturbative dynamics of the incoming protons,
described by parton distribution functions f. For example,
for the Drell-Yan process pp → γ=Z þ X, this takes the
form

dσ
dQ dY

¼
X
i;j

Z
dx1 fiðx1; μÞ

Z
dx2 fjðx2; μÞ

×
dσ̂ij
dQ dY

ðx1; x2; μÞ: ð1Þ

Here the sum on i; j ¼ g; u; ū; d;… runs over all parton
flavors, whose momentum fractions x1;2 are integrated
over, Q and Y the invariant mass and rapidity of the vector
boson, and μ the factorization scale.

When measurements significantly restrict the quantum
chromodynamics (QCD) radiation in the final state, the
factorization becomes more involved. For example, if in the
Drell-Yan process the transverse momentum of the boson is
measured to be small compared to Q, this implies that
hadronic radiation must be soft (low-energetic) or collinear
(parallel to one of the incoming protons). In this case, the
factorization involves transverse-momentum-dependent
parton distributions.
While factorization is proven for the Drell-Yan

process [1–3], it is used for generic LHC processes.
However, a crucial and nontrivial step to establish factori-
zation involves showing that the Glauber region (or
Glauber modes [4–6] in soft-collinear effective theory
[7–11]) does not give a nontrivial contribution.1 There
has been progress in understanding the origin of this
factorization violation, finding e.g., that for single-scale
observables such contributions necessarily involve a
Lipatov vertex [12]. A concrete example of factorization
violation was presented in Ref. [13]. For other work on
factorization violation, see e.g., Refs. [14–17].
In this paper we introduce a family of observables, which

we call vector angularities. Though we focus on the Drell-
Yan process, these observables can be applied to other

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1We write “nontrivial”, since Ref. [6] shows that certain
“Cheshire” Glauber contributions can simply be accounted for
by using the proper orientation of Wilson lines.
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processes in which a color singlet is produced. The vector
angularities are defined as2

τ⃗a ¼
X
i

k⃗⊥;ie−ajyij; ð2Þ

where the sum on i runs over the hadronic final state, and
the transverse momentum k⃗⊥;i of particle i is weighed by its
rapidity yi, in accordance to the choice of the parameter a.
This is similar to the angularity event shape [20], which has
been extended to Drell-Yan [18], deep-inelastic scattering
[21], and jets [22]. A crucial difference is that we take the
vector sum of transverse momenta.
For the special case of τ⃗0, this corresponds to the transverse

momentumof the hadronic final state, and thus the transverse
momentum of the boson, bymomentumconservation. In this
case it has been shown that the factorization violating
contributions from theGlauber region can indeed be ignored.
Our family of observables therefore allows one to explore
possible factorization-violating effects in a way that lets one
smoothly turn them off as a → 0.
The effect of Glauber gluons has been connected to

multiple-parton interactions (MPI) [23], i.e., multiple
partonic collisions between the same pair of colliding
protons. As in Ref. [24], we therefore study the effect of
MPI in PYTHIA [25] on our vector angularities to get a first
impression of possible factorization violation.
Wewill also present a factorization formula for the Drell-

Yan cross section differential in τ⃗a, assuming the absence of
factorization-violating effects. Interestingly, this vector-
type observable does not involve rapidity divergences,
and it is another example where resummation needs to
be carried out in the conjugate space [26]. We obtain
resummed predictions at next-to-leading logarithmic
(NLL0) accuracy, which are in agreement with PYTHIA

(without MPI). Though the accuracy of these predictions is
limited, they can in principle be substantially improved by
including higher-order corrections. Indeed, for τ⃗0 results
for Drell-Yan have even been obtained at next-to-next-to-
next-to-next-to-leading logarithmic (N4LL) accuracy!
[27–29] Such resummed calculations would provide a
baseline for studying factorization violation experimen-
tally, using vector angularities.
The outline of this paper is as follows: In Sec. II we show

numerical results from PYTHIA for the vector angularities, to
explore their sensitivity to factorization violation using its
MPI model. Our factorization formula and resummed
results are presented in Sec. III, with the perturbative
ingredients relegated to the Appendix. We conclude in
Sec. IV.

II. PYTHIA AND UNDERLYING EVENT

In this section we study the effect of MPI in the PYTHIA

Monte Carlo event generator to assess the sensitivity of
vector angularities τ⃗a to factorization violation. In particu-
lar, we are interested in studying the dependence on a,
knowing that for a ¼ 0 factorization violation effects
should be absent.
We simulate proton-proton collisions in PYTHIA with a

center-of-mass energy of 13 TeV. One parton from each
colliding proton engages in a hard scattering process to
produce a Z boson/photon (the Drell-Yan process). For
definiteness, we set the subsequent decay of this boson to
an electron-positron pair. There can be additional inter-
actions between the remaining partons in the protons.
These MPI lead to additional radiation, i.e., on top of that
emitted in the production of a Z boson/photon. We will
furthermore always include initial-state radiation, and
explore the effect of hadronization by turning it on/off.
For the PDFs we use MSTW2008 at next-to-leading order
(NLO) [30] with αsðMZÞ ¼ 0.12, which we also employ in
our analytic calculations in Sec. III.
For each simulated event, the vector angularity τ⃗a in

Eq. (2) is calculated by summing over the contribution from
each final-state particle, except for the decay products of
the boson. Due to the fact that other processes besides the
boson decay can also create electrons or positrons, we need
to select the proper final-state particles to calculate the
vector angularities. Events are selected based on the
requirement that exactly one electron and one positron
have a transverse momentum of k⊥ ≥ 2.5 GeV, which we
assume to be from the boson decay and are not included in
the calculation of τ⃗a. Only 2 percent of the events are
discarded due to this cut.
The simulations are run for three scenarios. First we have

MPI and hadronization turned off, which can be compared
to our analytical calculation. Second, MPI and hadroniza-
tion are both on, which should be representative of
measurements of the LHC, though a full study would
require including backgrounds and detector simulations.
Third, hadronization is kept on but MPI is turned off to
assess the size of factorization-violating effects. For each
simulation scenario, different values of the parameter a
were considered, ranging from a ¼ −0.25 to a ¼ 1. This
range was chosen to explore the vicinity of a ¼ 0, where
the effect of MPI is expected to be negligible. Furthermore,
for a ≤ −1, we would run into problems of IR safety, while
for very large values of a only radiation at extremely central
rapidities would be probed. We generate 100,000 events
and calculate the vector angularities for each value of a.
Because the angle of τ⃗a is irrelevant, we show results
for jτ⃗aj.
The results are shown in Fig. 1, where we choose

a ¼ −0.25, 0, 0.5, and 1 as representative values. First
we note by comparing the curves with/without hadroniza-
tion, that its effect is rather mild. (Though we also explored

2Alternatively, one can include the boost of the γ=Z in the
definition of the vector angularities, yi → yi − Y. This simplifies
the factorization in Eqs. (3) and (5), eliminating the explicit Y
dependence in the convolution of τ⃗a [18,19].
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more negative values of a, such as a ¼ −1, where hadro-
nization effects are large.) For a ¼ 0, MPI clearly have very
little effect on the vector angularities. This is in agreement
with the expectation for τ⃗0, for which factorization-
violating effects from Glauber gluons are known to be
absent. For the other values of a, there is a more pronounced
difference between the distribution that includes MPI and
those that do not, and this difference increases as a is further
from 0. These same conclusions are reached if HERWIG [31]
is used; though the individual curves are slightly different,

the effect of MPI is very similar.3 Based on this we conclude
that the vector angularities are indeed sensitive to MPI,
suggesting their use as a probe of factorization violation.

III. RESUMMED CALCULATION

A. Factorization

Using the framework of soft-collinear effective theory
(SCET), we factorize the cross section for small jτ⃗aj into
the following ingredients:

dσ
dQ dY d2τ⃗a

¼
X
q

σ0;qHðQ2; μÞ
Z

d2τ⃗0a;1Bqðτ⃗0a;1; x1; μÞ
Z

d2τ⃗0a;2Bq̄ðτ⃗0a;2; x2; μÞS
�
τ⃗a −

τ⃗0a;1
ðQeYÞa −

τ⃗0a;2
ðQe−YÞa ; μ

�

¼
X
q

σ0;qHðQ2; μÞ
Z

d2b⃗⊥
ð2πÞ2 e

−iτ⃗a·b⃗⊥B̃q

�
b⃗⊥

ðQeYÞa ; x1; μ
�
B̃q̄

�
b⃗⊥

ðQe−YÞa ; x2; μ
�
S̃ðb⃗⊥; μÞ; ð3Þ

where we obtained the second line by performing a Fourier
transform. Our convention for the Fourier transform is
given in Eq. (A1), and we include a tilde to indicate
that the functions have been transformed. The sum on q ¼
u; ū; d;… runs over all (anti)quark flavors, and the mo-

mentum fractions x1 ¼ QeY=Ecm, x2 ¼ Qe−Y=Ecm are

fixed by the invariant mass Q and rapidity Y of the
vector boson, and the center-of-mass energy Ecm of the
collision.

FIG. 1. Normalized cross sections differential in the vector angularity jτ⃗aj, for a ¼ −0.25 (top left), 0 (top right), 0.5 (bottom left), 1
(bottom right), obtained from PYTHIA as described in Sec. II. Shown are the results without MPI and no hadronization (green dashed),
without MPI but hadronization turned on (orange dotted) and with both MPI and hadronization (blue).

3We thank A. Papaefstathiou for help with verifying this.
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The Born cross section is given by

σ0;q ¼
8πα2em

3NcQE2
cm

�
Q2

q þ
ðv2q þ a2qÞðv2l þ a2lÞ − 2Qqvqvlð1 −m2

Z=Q
2Þ

ð1 −m2
Z=Q

2Þ2 þm2
ZΓ2

Z=Q
4

�
; ð4Þ

where αem is the electromagnetic coupling, Nc ¼ 3 is the
number of colors,Qq is the electric charge of the quark, vl;q
and al;q are the standard vector and axial couplings of the
leptons and quarks, and mZ and ΓZ are the mass and width
of the Z boson.
The hard function H describes the short-distance colli-

sion of an incoming quark and antiquark that produce the
Z=γ, and includes virtual hard corrections. Real hard
radiation is not possible for small jτ⃗aj, and so the hard
function is independent of the vector angularity measure-
ment. Bq and Bq̄ are the beam functions of the incoming
(anti)quark, which include the PDFs and initial-state
radiation coming from the extracted partons [18]. At
next-to-leading order, this includes a contribution from
the gluon PDF, where the extracted gluon splits into a quark
and antiquark pair, with one of them entering the hard
interaction and the other going into the final state. The
contribution of soft radiation to the measurement, emitted
by the incoming partons, is encoded in the soft function S.
The hard function was calculated a long time ago

[32,33]. We have calculated the one-loop beam and soft
function, and present our results in the Appendix A 1. As
these functions contain at most one real emission, there is
only a small but subtle difference4 between a vector or
scalar sum, allowing us to validate our results with the
known angularity soft [36] and beam function [37]. The
difference between vector and scalar sum does lead to
distinct features for the resummation, since this encodes the
dominant effect of multiple emissions.

B. Resummation

To perform the resummation, we evaluate the hard, beam
and soft functions at their natural scale and use the
renormalization group to evolve them to a common scale.
In the case of transverse momentum resummation, perform-
ing the resummation directly in momentum space is
challenging (see e.g., Refs. [38,39]), so we will also switch
to Fourier space for τ⃗a.
The resummed Drell-Yan cross section differential in Q,

Y and jτ⃗aj is given by

dσ
dQdY djτ⃗aj

¼
X
q

σ0;qHðQ2;μHÞ
Z

∞

0

db⊥ b⊥jτ⃗ajJ0ðb⊥jτ⃗ajÞ

× B̃q

�
b�⊥

ðQeYÞa ;x1;μB
�
B̃q̄

�
b�⊥

ðQe−YÞa ;x2;μB
�

× S̃ðb�⊥;μSÞUHðQ2;μH;μBÞUSðb�⊥;μS;μB;aÞ:
ð5Þ

We have now written the cross section differential in jτ⃗aj,
and indicated that the soft and beam functions depend on
b⊥ ≡ jb⃗⊥j and not the angle of b⃗⊥ (due to azimuthal
symmetry). Compared to Eq. (3), we have included the
evolution kernels UH and US of the hard and soft function,
that we use to evolve them from their natural scale μH and
μS to the beam scale μB. The expressions for the renorm-
alization group equations and evolution kernels are given in
the Appendix A 2, and the natural scales μH, μB, and μS
are discussed below. Finally, the star in b�⊥ indicates a
prescription to avoid the Landau pole, which also enters
through the scales μB and μS, see Eq. (7).
The natural scales of the hard, beam, and soft functions

are those for which they do not contain large logarithms. As
the hard function contains logarithms of Q2=μ2H [see
Eq. (A2)] the natural scale is μH ¼ Q. In the soft and
beam functions the large logarithms are Lb and L0

b in
Eqs. (A4) and (A7). We simply choose μS and μB such that
Lb ¼ 0 and L0

b ¼ 0, respectively. If we strictly follow this
procedure, μB would depend on Y, so we instead choose to
use the scale obtained in this manner for Y ¼ 0. The natural
scales are then given by

μH ¼ Q;

μS ¼
2e−γE

b�⊥
;

μB ¼ Q
a

1þa

�
2e−γE

b�⊥

� 1
1þa

: ð6Þ

The uncertainties on the cross section are determined by
varying the hard, beam, and soft scales up and down. For
the hard scale this is a factor of two, i.e., we take μH ¼ Q
for the central curve and consider μH ¼ Q=2 and μH ¼ 2Q
to estimate the perturbative uncertainty. For the soft scale
we also take a factor of 2 but simultaneously vary μB in
order to maintain μ1þa

B ¼ μaHμS. The μS variation dominates
our scale uncertainty, and we symmetrize the resulting
uncertainty band.

4The measurement of the scalar angularity involves the
(d − 2)-dimensional transverse momentum, while the vector
angularity involves the two-dimensional part. For details on
the treatment of transverse momenta in dimensional regulariza-
tion see e.g., [34,35]. This affects the π2-term in the one-loop soft
and beam functions, though not in their sum.
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To avoid the Landau singularity, we regularize the
nonperturbative region at large b⊥ in Eq. (5) by using a
“b-star” prescription [2],

b�⊥ ¼ b⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2⊥=b2max

p : ð7Þ

This ensures that b�⊥ → bmax when b⊥ → ∞. We determine
an appropriate value for bmax by requiring that the scales μH,
μB, and μS stay above the minimum value μ0 ¼ 0.8 GeV.
Since the beam scale depends on the parameter a, the
expressions for bmax will depend on the value of a that is
considered; for a ≥ 0, μS is the smallest scale, while for
a < 0, μB is the smallest scale. This leads to

bmaxðaÞ ¼
2e−γE

μ0

�
Q
μ0

�
minða;0Þ

: ð8Þ

For our normalized distributions, the integration over Q
is numerically irrelevant (percent-level effect). Performing
the Y integral changes the shape of the τ⃗a distribution by
less than 10% compared to using Y ¼ 0, and is extrapolated
from the leading logarithmic (LL) cross section using,

Z
dY

dσNLL0

dY d2τ⃗a
¼

�
dσNLL0

dY d2τ⃗a
=

dσLL
dY d2τ⃗a

�
Y¼0

×
Z

dY
dσLL

dY d2τ⃗a
: ð9Þ

Finally, we note that for large b, b�⊥ → bmax and the cross
section in b approaches a constant. A constant in b-space
transforms to a delta function in τ⃗a, and we therefore
subtract of this contribution to improve the numerical
stability. Alternatively, one can include a nonperturbative
model expð−Λb⃗2⊥Þ to suppress this region, which for
Λ ¼ 0.35 GeV yields the same within a few percent.

C. Numerical results

We have implemented our resummation in Eq. (5) at LL
and NLL0 order. The former only involves the tree-level
hard, beam and soft function as well as the lowest order
cusp anomalous dimension Γ0 and running coupling (β0).
At NLL0 we include all ingredients in the Appendix,
and consistently expand the cross section, e.g., dropping
cross terms involving a one-loop beam and one-loop soft
function. We do not include the matching to NLO cross
section, so our results become less reliable for large values

FIG. 2. Normalized cross sections differential in the vector angularity jτ⃗aj, for a ¼ −0.25 (top left), 0 (top right), 0.5 (bottom left),
1 (bottom right), obtain using our resummed calculation at LL (blue dotted) and NLL0 (purple). The bands indicate the perturbative
uncertainty, estimated using the scale variations in Sec. III B. The PYTHIA result without MPI and without hadronization (green dashed)
from Fig. 1, is shown for comparison.
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of jτ⃗aj. For this reason, we normalize the distribution on the
plotted interval.
Our results for a ¼ −0.25, 0, 0.5, 1 at LL and NLL0 are

shown in Fig. 2. The bands indicate the perturbative
uncertainty and are obtained by scale variations, as dis-
cussed in Sec. III B. We apply the same factor for the scale
variations aswas used to normalize the central curve, instead
of separately normalizing each of the scale variations. This
makes our uncertainty estimatemore conservative. Formally
our expressions diverge at a ¼ 0, so in this case we take
the limit numerically by setting a ¼ 0.01.5 This yields a
reasonable result at LL, but theNLL0 curve is unstable due to
large cancellations between the one-loop soft and beam
functions and therefore omitted. For the other values of a,
the LL and NLL0 uncertainty bands tend to overlap, except
for larger values of jτ⃗aj. There, our results are anyway less
reliable because our factorization formula does not account
for power corrections of Oðjτ⃗aj2=Q2Þ, which could be
remedied by matching to the NLO cross section. For
a ¼ 0.5 and 1, the uncertainties at NLL0 are smaller than
at LL, indicating convergence. For a ¼ −0.25, the (relative)
uncertainties at LL and NLL0 are very similar. This is in line
with the results in Ref. [47] for angularities in jets, see their
Fig. 7, where their β corresponds to aþ 1.
Finally, these plots also include the PYTHIA results at

parton level, without MPI, which are in agreement with
our calculation. Since PYTHIA contains NLL0 ingredients it
is not surprising they are closer to NLL0 than LL. The
agreement is not as good for a ¼ 1, indeed for small values
of the vector angularity our result is closer to PYTHIA with
MPI. (We have included the corresponding curve only in
this case, to keep the other plots clear.) This emphasizes
that to extract factorization violating effects experimentally,
it is important to have a good baseline prediction without
these effects. We note that our calculation is of course only
a first step, and expect substantial improvement at higher
orders in perturbation theory. In particular, the soft func-
tion needed at NNLL0 þ NNLO can be obtained using
SOFTSERVE [46,48,49], and there are ongoing efforts to
automate the beam function calculation at this order [50].

IV. CONCLUSIONS

In this work we proposed a new one-parameter family of
hadron collider observables, called vector angularities, that
can be used to study the effects of factorization violation.
When the parameter a ¼ 0, factorization has been

established and these effects are absent. Exploring factori-
zation violation, using the MPI model of PYTHIA as a proxy,
we found agreement with the absence of these effects for
a ¼ 0, while they grow for values of a away from 0. We
also explored the effect of hadronization in PYTHIA, which
is tiny in comparison to MPI.
We then presented a factorization formula for the vector-

angularity cross section, assuming the absence of factoriza-
tion violation. This would provide a baseline for studying
these effects at the LHC. Our numerical results at LL and
NLL0 were in agreement with PYTHIA (without MPI), but still
have large uncertainties. Calculating higher orders will
certainly reduce this, and due to the development of auto-
mated tools, NNLL0 þ NNLO should soon be within reach.
Indeed, for the special case of a ¼ 0, N4LL results have
already been obtained. Finally, it would also be very interest-
ing to attempt a direct calculation of the contribution from
Glauber gluon exchanges, using the formalism of Ref. [6].
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APPENDIX

We define our Fourier transformation as follows:

f̃ðb⃗⊥Þ ¼
Z

d2τ⃗a eiτ⃗a·b⃗⊥fðτ⃗aÞ: ðA1Þ

We now present the expressions for the ingredients in
the factorization up to next-to-leading order, as well as the
renormalization group equations and anomalous dimen-
sions needed for NLL0 resummation. The MS scheme is
employed through out.

1. Perturbative ingredients

The renormalized hard function is given by

HðQ2; μÞ ¼ 1þ αsCF

2π

�
−ln2

�
Q2

μ2

�
þ 3 ln

�
Q2

μ2

�

− 8þ 7π2

6

�
þOðα2sÞ: ðA2Þ

The renormalized soft function is given by

S̃ðb⃗; μÞ ¼ 1þ αsCF

2π

1

a

�
−L2

b −
π2

6

�
þOðα2sÞ; ðA3Þ

where

Lb ≡ lnðb⃗2⊥μ2e2γE=4Þ: ðA4Þ

5The divergence at a ¼ 0 in the one-loop soft, and beam
functions requires a rapidity regulator, see e.g., Refs. [40–42]. We
have checked that the 1=a poles cancel when summing the one-
loop contributions from the soft and beam functions, and that the
result in the a → 0 limit agrees with the known result for
transverse momentum factorization [43,44]. The soft anomalous
dimension “converts” into the rapidity anomalous dimension in
this limit, as discussed for the angularity event shape in eþe−
collisions with respect to a recoil-free axis [45,46].
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The renormalized beam functions are matched onto PDFs using

B̃qðb⃗0⊥; x; μÞ ¼
X
j

Z
dx0

x0
Ĩqjðb⃗0⊥; x0; μÞfj

�
x
x0
; μ

�
ðA5Þ

with matching coefficients

Ĩqqðb⃗0⊥; x;μÞ ¼ δð1− xÞ þ αsCF

2π

�
1

2að1þ aÞ ðL
0
bÞ2δð1− xÞ þ 1

1þ a
L0
bð−2L0ð1− xÞ þ xþ 1Þ

þ 4a
1þ a

L1ð1− xÞ þ 1− a
a

π2

12
δð1− xÞ− 2a

1þ a
ð1þ xÞ ln ð1− xÞ− 2a

1þ a
1þ x2

1− x
lnx− xþ 1

�
þOðα2sÞ;

Ĩqgðb⃗0⊥; x;μÞ ¼
αsTF

2π

�
−

1

1þ a
L0
bð2x2 − 2xþ 1Þ− ð2x2 − 2xþ 1Þ

�
−

2a
1þ a

ðln ð1− xÞ− lnxÞ þ 1

�
þ 1

�
þOðα2sÞ: ðA6Þ

Here

L0
b ≡ ln½ðb⃗0⊥Þ2μ2þ2ae2γE=4� ¼ Lb − 2a lnðp−=μÞ; ðA7Þ

with p− ¼ Qe�Y depending on the beam.

2. Renormalization group evolution

The one-loop anomalous dimensions of the hard, beam
and soft function are

γð1ÞH ¼ αsCF

π

�
2 ln

�
Q2

μ2

�
− 3

�
;

γð1ÞS ¼ αsCF

π

�
−2
a

Lb

�
;

γð1ÞB ¼ αsCF

π

�
1

a
L0
b þ

3

2

�
: ðA8Þ

As required by consistency of the factorization,

γH þ γS þ 2γB ¼ 0; ðA9Þ

where we use that p−
1p

þ
2 ¼ QeYQe−Y ¼ Q2. To achieve

NLL0 accuracy, we need to include the two-loop cusp
anomalous dimension, Γ1, given in Eq. (A12).
We carry out the resummation by evolving the hard and

soft function to beam scale. This requires solving the
differential equation

d
d ln μ

F ¼ γFF; ðA10Þ

which in general involves a convolution between γF and F,
but is multiplicative for the Fourier conjugate variables b⃗⊥
and b⃗0⊥. The evolution kernels for evolving the hard and
soft function from a scale μ0 to μ are given by

UHðQ2;μ0;μÞ¼ exp

�
−4KΓþ

6CF

β0
ln r

��
Q2

μ20

�
2ηΓ

;

USðb⃗⊥;μ0;μ;aÞ¼ exp

�
−
4

a
KΓ

��
4

b⃗2⊥μ20e2γE

�
2ηΓ=a

;

KΓ ¼−
Γ0

4β20

�
4π

αsðμ0Þ
�
1−

1

r
− ln r

�

þ
�
Γ1

Γ0

−
β1
β0

�
ð1− rþ lnrÞþ β1

2β0
ln2 r

�
;

ηΓ ¼−
Γ0

2β0

�
ln rþαsðμ0Þ

4π

�
Γ1

Γ0

−
β1
β0

�
ðr−1Þ

�
;

ðA11Þ

where r ¼ αsðμÞ=αsðμ0Þ and

Γ0 ¼ 4CF;

Γ1 ¼ 4CF

��
67

9
−
π2

3

�
CA −

20

9
TFnf

�
;

β0 ¼
11

3
CA −

4

3
TFnf;

β1 ¼
34

3
C2
A −

�
20

3
CA þ 4CF

�
TFnf: ðA12Þ
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