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The effects of a finite system volume on thermodynamic quantities, such as the pressure, energy density,
specific heat, speed of sound, conserved charge susceptibilities, and correlations, in hot and dense strongly
interacting matter are studied within the parity-doublet chiral mean field model. Such an investigation is
motivated by relativistic heavy-ion collisions, which create a blob of hot QCD matter of a finite volume,
consisting of strongly interacting hadrons and potentially deconfined quarks and gluons. The effect of the
finite volume of the system is incorporated by introducing lower momentum cutoffs in the momentum
integrals appearing in the model, the numerical value of the momentum cutoff being related to the de
Broglie wavelength of the given particle species. It is found that some of these quantities show a significant
volume dependence, in particular, those sensitive to pion degrees of freedom, and the crossover transition is
generally observed to become smoother in finite volume. These findings are relevant for the effective
equation of state used in fluid dynamical simulations of heavy-ion collisions and efforts to extract the
freeze-out properties of heavy-ion collisions with susceptibilities involving electric charge and strangeness.
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I. INTRODUCTION

The study of the properties of strongly interacting matter
under extreme conditions of temperature and density is an
active area of research for some decades. It is expected that
strongly interacting matter should show a phase transition
between confined hadronic degrees of freedom and decon-
fined quark-gluon plasma (QGP) phase. Experimental
programs like the Large Hadron Collider at CERN and
Relativistic Heavy-ion Collider at Brookhaven National
Laboratory (BNL) have enriched our understanding of such
states to a great extent. Future facilities like FAIR at
Gesellschaft für Schwerionenforschung (GSI) will join
their hand in such explorations in the near future. The
matter formed in relativistic heavy-ion collisions has a
finite volume. Therefore, for a comparison of the exper-
imental findings with theoretical insights, the effects of
finite volume must be taken into account. The absence of a

well-defined volume of such systems and its smallness can
lead to nonequilibrium effects which are beyond the scope
of effective models based on thermodynamic equilibrium.
On the other hand, models which describe the dynamics of
heavy-ion collisions on the basis of locally equilibrated
thermal systems, e.g., fluid dynamic models [1–9] have
been very successful in describing bulk matter properties.
Finite volume effects in heavy-ion collisions depend on

the size of the colliding nuclei, the center of mass energy,ffiffiffiffiffiffiffiffi
sNN

p
, and centrality of collisions as well as the size of the

regions of homogeneity which can be considered coherent
thermal systems. There have been some studies regarding
the values of the volume of such systems both theoretically
and experimentally. Hanbury Brown and Twiss (HBT) radii
measurements [10] imply that the freeze-out volume
increaseswith the increase of

ffiffiffiffiffiffiffiffi
sNN

p
. The freeze-out volumes

have been analyzed by the ALICE Collaboration [11],
and they found radii as large as 10 fm. Within the Ultra-
relativistic QuantumMolecular Dynamics model (UrQMD)
model [12] framework, the volume of homogeneity has been
calculated in Ref. [13] and has been compared with
experimental results. The volume of homogeneity with a
transverse momentumwindow of 300–400MeV was found
to vary from 50 to 250 fm3 in the case of lead-lead collision
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at different centralities for
ffiffiffiffiffiffiffiffi
sNN

p
in the range of 62.4 to

2760 GeV. It is expected that the system size is even smaller
during the initial equilibration time [14,15]. It is therefore
relevant to investigate finite size effects on a system with a
radius less than 10 fm within an effective model approach.
Finite size scaling analysis [16,17] is a tool to understand

the effects of finite size on the properties of a system of
strongly interacting matter. Such analyses have been
considered in Refs. [18–21]. It was found that there is a
smoothing and broadening of singularities in a finite
volume, which is expected since it is well known that in
a finite volume no strict first order phase transition can
exist, and infinite correlation lengths are not possible. The
T − μB region, where discontinuities in the chiral conden-
sate are observed, is shrunken, and the pseudo-critical lines
are shifted to a higher chemical potential region. Other
theoretical studies regarding finite volume have been done
in Refs. [22–32]. These works also indicate smoothing of
the singular behavior of the system.
The effects of finite sizes in QCD matter have been

subject of discussion in different contexts. For example, in
Ref. [33], the authors have considered the effect of the
surface term in the free energy of a bubble of quark or
hadron matter at the quark-hadron phase transition. Such an
approach is relevant in the vicinity of a first order phase
transition and valid for systems that form spherical bubbles
of finite sizes. Similar problems were investigated in [34]
where interface effects such as the interface tension, the
interface entropy, and critical bubble size were studied in
the Nambu-Jona-Lasinio (NJL) model and in [35] where
the nucleation of quark matter in magnetars and the effect
of finite droplets were discussed. In [36], the surface
tension and curvature term of strange quark matter was
investigated. In numerical lattice simulations, artifacts can
arise from the finiteness of the practical lattice size used
which was discussed in [37] in the context of the dual string
tension of a spatial ’t Hooft loop in the deconfined phase of
Yang-Mills theory.
In this paper, we discuss mainly the properties of QCD

matter at vanishing chemical potentials where no phase
coexistence occurs and thus no clear interface between two
phases. Instead, we use a simple method to calculate the
thermodynamic quantities of strongly interacting matter
with finite size by introducing a lower momentum cutoff.
Thismethod assumes that the total force on a particle exerted
by all the other particles in the finite system is position
independent, as long as the test particle is inside the finite
volume of our interest. Here, excluding the states with
momentum less than the cutoff mimics the lowering of the
energy density due to the limited number of particles in the
small system. Therefore, this simplified approach does not
exclude any term with a specific power of the system size.
The specific heat, speed of sound, and susceptibilities of

conserved charges all provide useful information about the
medium properties, degrees of freedom, and interactions in
the QCD system [38–56]. The purpose of this paper is to

investigate the effect of a finite volume on the above
thermodynamic quantities within the framework of a Chiral
Mean Field (CMF) model formulated in the grand canoni-
cal ensemble.
The paper is organized as follows: In Sec. II, we discuss

the Chiral Mean Field model briefly and introduce the finite
size corrections. The results are presented and discussed in
Sec. III. In Sec. IV, we conclude and make remarks on our
findings.

II. CHIRAL MEAN FIELD MODEL

To investigate the effect of a finite size in heavy-ion
collisions, we employ the Chiral Mean Field model (CMF)
which has been developed over the past years. The reason for
this choice is that theCMFcontains both a hadronic aswell as
deconfined phase with a smooth crossover consistent with
lattice QCD thermodynamics at μB ¼ 0. To not be over-
whelmed with all the gory details of the CMF, we refer the
reader to [57–59] for a detailed description of the model and
in the following only recapitulate themost important aspects.
The CMF is a chiral SU (3)-flavor parity-doublet Polyakov-
loop quark-hadron mean field model and provides an
effective approach to describe the interplay of hadronic
and deconfined QGP states, i.e., the phase diagram of
strongly interacting matter. In the hadronic phase, the
baryonic octet and all its parity partners interact with the
chiral mean field.
In this scenario, the effective masses of the ground state

octet baryons and their parity partners (assuming isospin
symmetry) read [60]

m�
b� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih
ðgð1Þσb σþ gð1Þζb ζÞ2þðm0þnsmsÞ2

ir
� gð2Þσb σ; ð1Þ

where the various coupling constants gð�Þ�b are chosen such
that they reproduce the vacuum masses and nuclear matter
properties, and ns is the SU(3) breaking mass term that
generates an explicit mass corresponding to the strange-
ness. The above mass formula shows a mass splitting
between the baryon parity partners which is generated by
the scalar mesonic fields σ and ζ [61–64].
Here, ω is the field responsible for vector repulsion at

finite baryon densities, ρ is the repulsive vector field at
finite isospin densities, and ϕ is for vector repulsion at finite
strangeness densities.
In addition, all the hadrons listed in Particle Data Tables

[65] contribute to the system as multicomponent hadron
resonance gas.
The coupling constants and the parameters of the

effective potential for these fields [60] are described in
much more detail in [66].
To include deconfinement and quark degrees of freedom,

a Polyakov-loop-extended Nambu-Jona-Lasinio (PNJL)
inspired model [67] is used.
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For the quarks, the σ and ζ fields dynamically generate
the masses m�

q of the quarks,

m�
u;d ¼ −glσσ þ δml þm0;

m�
s ¼ −gsζζ þ δms þm0: ð2Þ

m0q is the contribution to the quark mass from the gluon
condensate.
The phase transition is controlled by two mechanisms:

the quarks appear when the Polyakov loop order parameter
becomes finite, and hadrons become suppressed due to
their excluded volumes as the system’s pressure and density
increase. Assigning an excluded volume to the hadrons
suppresses their number density in the system at high
pressure [60,68]. We take the excluded volume of all the
mesons vM ¼ 1=8 fm3 and that of baryons vB ¼ 1 fm3. In
principle, already the inclusion of a finite size of the
hadrons, preventing the hard cores of hadrons to overlap,
will already introduce finite size effects if the system size
becomes of the order of the largest hadron size [69]. In
addition, the excluded volume effect will lead to significant
modifications of the pressure and susceptibilities of the
system, as studied in [70–73]. A comparative study of charge
susceptibilities for various combinations of excluded vol-
umes for infinitevolume,within theCMF, has beenpresented
in Ref. [66]. However, it should be noted that the excluded
volume effect is different from the finite system volume
effect that we study here, where the finite size effects stem
from the fact that the wave function of hadrons with small
momenta cannot be localized in a finite total volume.
Therefore, in the following, we study the finite size effects
assuming a fixed set of excluded volumes and under the
assumption that the total volume is always significantly
larger than the largest excluded volume vB (see, e.g., [69,74]
for a discussion what happens as one approaches that limit).
Consistent treatment of small systems which are of similar
size as the eigenvolume of the largest hadrons is out of the
scope of the present work.
To untangle the various contributions from the confined

vs deconfined part of the system as well as understand the
effect of the excluded volume, we also compare the full
CMF results with a reduced model which contains only the
hadronic part of CMF and neglects the excluded volume
effect (keeping all other parameters fixed). In such a
scenario, which we refer to as pure hadronic CMF, the
hadronic degrees of freedom to are not suppressed by the
excluded volume term and thus numerously appear at
increasing temperature, with the excitation of an increasing
number of heavier and heavier resonances. Historically,
such an effect has led to the discovery of the “limiting”
Hagedorn temperature [75], which can be tamed with the
excluded volume effect [76,77] and which is now under-
stood to signal the liberation of partonic degrees of free-
dom. In the following, we do not focus on the physics of
Hagedorn temperature but rather discuss how different

contributions from hadrons vs quarks to the finite volume
effects can be separated. One should also note that the pure
hadronic CMF still goes beyond a simple hadron resonance
gas model, as the hadronic degrees of freedom interact with
the chiral mean-fields of the model leading to chiral
restoration in the high temperature and density part of
the phase diagram.
The effect of finite volume is incorporated by introduc-

ing a nonzero lower momentum cutoff [53],

pmin ¼ π=R ¼ λ; ð3Þ
in all the momentum integrations, where R is the diameter
of the spherical volume V ¼ 4

3
πR3. This constraint on pmin

can be obtained directly from the fact that the maximum de
Broglie wavelength of a particle inside a finite volume is
2R ¼ h

p. The argument behind this is that the de Broglie
wavelength of any particle cannot be larger than twice the
size of the system. Such a consideration excludes the low-
lying energy levels, reducing the number density of
particles and, hence, reducing the pressure as compared
to that of an infinitely large system with the same temper-
ature and chemical potentials.
Such an approach has been applied before on the hadron

resonance gas (HRG) model and PNJL model separately
where it was found that the properties of the system depend
significantly on its size [53,54,78–84]. The restriction of
the system to a finite volume leads to discrete energy levels
available for the constituting particles. But for simplicity,
we take integration over particle momenta instead of
summation. This approximation has been shown to be
accurate [85]. Alternatively, one could consider a system
with (anti)periodic boundary conditions, which would
resemble better the systems studied with lattice gauge
theory. In this case, one would have to pay special attention
to zero momentum modes that appear in such systems [86].
The lower momentum cutoff studied here corresponds to a
system where the matter vanishes outside the finite volume
which seems appropriate for heavy-ion collisions.
This lower momentum cutoff approach to mimic the

effect of finite volume has been previously used to study the
effect of finite volume in the Polyakov-loop-extended
Nambu-Jona-Lasinio (PNJL) model [80,87]. It was found
that the ratios of susceptibilities depend on system volume
even in the absence of hadrons.
We have checked that the approach of using a momen-

tum cutoff preserves thermodynamic consistency, similar to
conclusions found in [79] and also neglect surface and
curvature [88] effects which would be more relevant in the
presence of a phase transition and the formation of droplets.

III. RESULTS AND DISCUSSION

A. Thermodynamic quantities

In this section, we present the results for several thermo-
dynamic quantities, including scaled pressure ðP=T4Þ,
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scaled energy density ðϵ=T4Þ, specific heat at constant
volume ðCVÞ, speed of sound squared ðc2sÞ, ratios of
susceptibilities, and correlations of conserved charges for
different system volume sizes at zero chemical potentials.
In Fig. 1, we show the dependence of the scaled pressure

ðP=T4Þ and scaled energy density ðϵ=T4Þ on the temperature
(at μB ¼ μQ ¼ μS ¼ 0) for various system volumes. In the
following, the red lines correspond to the full CMF model
including deconfined quarks, and the black lines are the
purely hadronic model without excluded volume. In both
cases, it is seen that the scaled pressure and scaled energy
density decrease as the volume of the system is decreased. At
lower temperatures, the pressure and energy density are
dominated by pions, especially those with rather low
momenta. For this reason, a significant dependence of the
scaled pressure on the volume is observed. As the temper-
ature increases, other, more massive degrees of freedom start
to contribute more. Furthermore, the average momentum is
increased which means that the low-momentum cutoff

removes a relatively smaller fraction of the total pressure
contribution, even though the absolute shift is still
significant.
When the temperature is increased to even higher values,

low mass quarks become the dominant degrees of freedom
in the CMF model, and the effect of the cutoff decreases. In
the purely hadronic CMF model, the pressure keeps
increasing due to the large number of hadronic resonances
available, and the effect of the momentum cutoff remains
significant. In addition, at this temperature regime, the
Polyakov loop potential attains significantly large values
which are not affected by the momentum cutoff. The
interplay of these effects (mass, excluded volume, and
the Polyakov loop) governs the difference between the
results of different finite volumes.
Note that the above described systematics also lead to a

larger quark number fraction at smaller system volumes.
The energy density generally shows a stronger dependence
on system volume than the pressure, and the chiral tran-
sition at μ ¼ 0 continues to remain a crossover although the
energy density plot shows that it is smoothened to some
extent for finite volume.
Next, we turn to derivatives of the pressure at vanishing

chemical potentials. The upper panel of Fig. 2 shows that
the specific heat

CV

T3

����
μ¼0

¼ 1

T3

�
∂ϵ

∂T

�
V;μ¼0

ð4Þ

in the CMF model with quarks increases monotonically
with temperature. CV rises rapidly. In the scenario without
quarks and excluded volume, the chiral crossover transition
is sharper, and a maximum in the specific heat appears.
This is expected since the specific heat is discontinuous
near a phase transition of first order and becomes singular at
a phase transition of second order. In this case also a smaller
system volume leads to an increased temperature of the
inflection point of the pressure. Away from the crossover,
the CV at a particular temperature decreases with system
volume because statistical fluctuations scale as

ffiffiffiffi
N

p
where N ¼ number of particles.
At low temperatures, the difference in CV for different

system volumes is smaller due to smaller number of
particles in the system. As the temperature rises to a
medium range, this difference is the largest. At even higher
temperatures, point-size quarks become the dominant
particles, and hence, the effect of finite volume decreases.
The speed of sound is a very important property of

strongly interacting matter as it gives important information
that can be tested, e.g., in fluid dynamic simulations of
heavy-ion collisions. It can be calculated as

c2s ¼
�
∂P
∂ϵ

�
μ¼0

¼
�

s
CV

�
μ¼0

; ð5Þ

FIG. 1. Scaled pressure (upper figure) and scaled energy
density (lower figure), in the full CMF model (red lines) and
purely hadronic model (black lines), as functions of the temper-
ature at μB ¼ μQ ¼ μS ¼ 0. Different volume sizes are compared.
Smaller system sizes lead to systematically smaller pressure and
energy densities.
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where s is the entropy density. A pronounced minimum
in the speed of sound is expected near a phase transition
[89–94] while a more shallow minimum indicates a broad
crossover [95]. It is seen from the lower panel of Fig. 2 that
speed of sound squared (c2s) decreases with increasing
temperatures at moderate temperatures, T ≲ 150 MeV.
This behavior is known for a hadron resonance gas
(HRG) where various resonance particles populate the
system significantly and account for the attractive inter-
action among the ground state hadrons leading to a sluggish
increment in the number of effective free degrees of
freedom. Hence, the entropy density increases slowly
compared to CV , and c2s decreases with increasing temper-
ature at low temperatures. At smaller volumes, the pop-
ulation of light mesons is suppressed more than that of
heavy baryons due to lower momentum cutoff, which
should result in a reduction in entropy density with system
volume. But the suppression of CV at smaller volumes is
much larger than the corresponding decrease in entropy

density. As a result, we see that c2s increases when
system volume is decreased. At higher temperatures,
T ≳ 150 MeV, c2s rises when the quark degrees of freedom
start to appear. Note that a minimum in c2s is also present in
the scenario without quarks, albeit at a higher temperature,
T ∼ 180–190 MeV. This is in contrast to the ideal HRG
model, where the speed of sound keeps decreasing at high
temperatures [71] and indicates a strong chiral crossover
transition in the purely hadronic model without Excluded
Volume (EV). The location of this crossover is also
modified by the finite system size, and a smaller system
volume leads to a slightly higher pseudo-critical temper-
ature. The rise of the speed of sound at high temperatures
that we observe here is due to the presence of hadronic
interactions in the hadronic part of the CMF model. As in
the scenario with quarks, the finite volume effect becomes
less significant at larger temperatures.

B. Fluctuations of conserved charges

The susceptibilities of conserved charges can be a very
useful tool to understand the underlying degrees of freedom
as well as to extend our knowledge of QCD thermody-
namics into the finite density regime. These susceptibilities,
χBQS
ijk , are calculated as derivatives of the thermodynamic
pressure with respect to the different chemical potentials,
corresponding to the different conserved charges, baryon
number (B), electric charge (Q) and strangeness (S),

χBQS
ijk ¼ ∂

i
∂
j
∂
kPðT; μB; μQ; μSÞ=T4

∂ðμB=TÞi∂ðμQ=TÞj∂ðμS=TÞk
: ð6Þ

The susceptibilities are not only related to the multi-
plicity distributions, and thus the fluctuations and correla-
tions of the given charges, but they also define the Taylor
series expansion of the scaled pressure ðP=T4Þwith respect
to the baryon, electric, and strange chemical potentials [96],

P ¼ P0 þ T4
X
i;j;k

1

i!j!k!
χBQS
ijk

�
μB
T

�
i
�
μQ
T

�
j
�
μS
T

�
k
; ð7Þ

where P0 is the pressure at chemical potential ¼ 0.
It has been argued that direct measurements of the

different susceptibility ratios in heavy-ion collisions may
allow the determination of the hadronization temperature
[97,98], QCD critical point [99,100], or even the speed of
sound [101] of hot QCD matter. Attempts at directly
extracting these susceptibilities from experiment and relat-
ing them to system properties are already complicated due
to the finite size, finite lifetime, canonical ensemble effects,
and complex freeze-out dynamics of the system [102].
While for sufficiently large volumes ratios of susceptibil-
ities have the advantage of not depending on the volume, in
the following we show that, even in thermal equilibrium, a
finite size of the system, comparable to that expected in

FIG. 2. Scaled specific heat at constant volume and speed of
sound squared as functions of temperature at μB ¼ μQ ¼ μS ¼ 0
in the full CMF model (red lines) and purely hadronic model
(black lines). While the effect of a finite system size on the
specific heat is only modest, the speed of sound is significantly
enhanced.
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heavy-ion collisions, will have a significant impact on these
fluctuation measures.
Figure 3 shows the ratios of the fourth to second order

susceptibilities for the baryon number, electric charge, and
strangeness at μB ¼ μQ ¼ μS ¼ 0, for different system sizes.
First, we can observe that the baryon number suscep-

tibilities are almost unaffected by the finite system volume.

This is due to the large masses of the nucleons and their
resonances, which dominate the baryonic thermodynamics
in the low and intermediate mass range. Only at the highest
temperatures, where the lighter quarks dominate, we start
observing a difference. This is not observed in the purely
hadronic model. The position of the kink in the CMF
(for T > 200 MeV) depends on the system volume and is
related to the appearance of strange quarks, coupled to the
chiral fields, which is delayed in temperature compared to
the light up and down quarks. Also the purely hadronic
model without EV exhibits a strong kink in all three
susceptibility ratios. This is due to the strong chiral cross-
over, and as for the speed of sound, the location of these
kinks depends on the location of the pseudo-critical
temperature and thus on the systems volume.
The ratio of electric charge susceptibilities, on the other

hand, shows a significant dependence on system volume,
especially at low temperatures in the full CMF model.
The dominant contributors in this sector are the pions
which have a very low mass and therefore are significantly
affected by the momentum cutoff as well as by Bose
statistics. Already small electric chemical potentials will
lead to an enhancement of low-momentum pions due to the
Bose statistics; thus, a low-momentum cutoff will be more
severely felt by the pions. At low temperatures, in particu-
lar, the finite size effects lead to a strong suppression of
the χQ4 =χ

Q
2 ratio, even for the largest finite system size

considered, R ¼ 8 fm. In the purely hadronic model, this
strong effect remains visible up to large temperatures as
here the pions are not replaced by the deconfined quarks.
This effect is not observed for the strangeness susceptibil-
ities due to the much higher mass of even the lightest
strange hadrons, the kaons. In the hadronic model, domi-
nated by the kaons, no effect from the volume, besides
small shift of the peak associated with the chiral crossover,
is observed. The local maximum in the full CMF model
must therefore be from the appearance of the strange
quarks. These results have relevance both for using net-
charge fluctuations in analyzing freeze-out in heavy-ion
collisions, as well as lattice QCD calculations that are
performed in a finite volume. Indeed, the results show that
it might be challenging to extrapolate the finite volume
calculations of χQ4 =χ

Q
2 to the thermodynamic limit.

Figure 4 shows the off-diagonal susceptibilities related to
charge correlations of baryon, electric, and strange charges
at μB ¼ μQ ¼ μS ¼ 0 for different system volumes.
At low temperatures, the number density of baryons

is small. Hence, χBQ11 is very small. As the temperature
increases, hadrons with both nonzero baryon number and
electric charge begin to appear. In particular, the heavy
Delta baryon plays an important role in this baryon-charge
correlation. In addition to that, quarks also begin to
populate the system at higher temperatures, leading to
saturation. When the combined contribution due to electri-
cally charged baryons and up quarks becomes maximum,
we see a peak in χBQ11 at T ¼ 190 MeV approximately.

FIG. 3. Ratios of fourth to second order susceptibilities of
different conserved charges as function of the temperature at
μB ¼ μQ ¼ μS ¼ 0 in the full CMF model (red lines) and purely
hadronic model (black lines).
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For even higher temperatures, the number of hadrons, in
particular, Δ’s, decreases due to the excluded volume in the
full CMF model. Consequently, χBQ11 decreases at high
temperatures and slowly approaches its asymptotic value of
zero. In the model without quarks, this does not appear, and
χBQ11 keeps increasing.

Electrically charged strange mesons are significantly
populated at low temperatures. Hence, χQS

11 is significantly
larger than χBQ11 at all temperatures. Strange quarks show up
at somewhat higher temperatures than up and down quarks
which means that this correlation is dominated by the
hadronic degrees of freedom to higher temperatures. The
effect of the system volume on χQS

11 is larger than that on
χBQ11 because the electric charge-strangeness correlation is
dominated by the lighter strange mesons as compared to the
heavy charged baryons dominating the baryon-electric
charge correlation. Both χBQ11 and χQS

11 decrease with the
system volume.
The baryon-strangeness correlation is negative at all

temperatures because of the opposite sign of baryon number
and strangeness of hyperons. Although it is seen in the plot
that χBS11 for smaller system volume is larger than that for
larger volume, the absolute value of χBS11 for larger volume is
larger. The trend is again understood due to the large masses
of strange baryonic hadrons which dominate this correlation.
On the other hand, we observe that this correlation in the
purely hadronic model does not changewith system volume,
while in the fullCMF, including quarks, such a dependence is
observed. A study of the BS correlation in systems of
different sizes would therefore be interesting to determine
the appearance of deconfined quarks.

IV. CONCLUSION

The effects of a finite system volume have been inves-
tigated within the Chiral Mean Field model which incor-
porates a transition between hadronic and quark degrees of
freedom and is able to describe lattice QCD results in the
thermal limit. In particular, the pressure, energy density,
specific heat at constant volume, and ratios of conserved
charge susceptibilities and correlations were studied at zero
chemical potentials. The effect of finite volume is incorpo-
rated by introducing a lower momentum cutoff in the
integrals of the particle momenta. Some of the quantities
studied, such as the speed of sound c2s , show a significant
dependence on the finite volume. As expected, the chiral
crossover transition becomes smoother as the system
volume becomes smaller, as indicated by the shallower
minimum in the speed of sound. The mass spectrum of
hadrons along with excluded volume governs the relative
abundance of hadrons at a particular system volume
through a nontrivial dependence. The system size depend-
ence up to the crossover is dominated by the lightest
bosonic degrees of freedom—the pions and kaons—and the
ratios of susceptibilities indicate that the crossover tran-
sition is influenced to some extent by the finite system
volume. The dependence on system volume is more
significant as one considers a smaller system volume,
comparable to the region of homogeneity in heavy-ion
collisions. This dependence of the ratios of susceptibilities
on the system volume is of great relevance if one tries to

FIG. 4. First order off-diagonal susceptibilities as function of
temperature at μB ¼ μQ ¼ μS ¼ 0 for different finite volumes,
in the full CMF model (red lines) and purely hadronic model
(black lines). A significant effect is observed in the QS and BS
correlations.
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extract system properties from measured susceptibility
ratios in experiments that suffer from short lifetimes and
small system sizes. The observed finite-volume effects are
different from those due to finite eigenvolumes in the
excluded volume model, where the largest effect comes
from hadrons which have large hard-core volumes, i.e., the
baryons. It is found that the largest effect is due to the
bosonic nature of the pions which makes them most
sensitive to the low momentum cutoff. The effect can be
expected to be stronger at finite chemical potentials. We
also observe a notable suppression due to finite volume in
strangeness related cross-susceptibilities, χQS

11 and χBS11 ,
which is due to the appearance of deconfined quarks.
This dependence of the ratios of susceptibilities on the

system volume is of great relevance if one tries to extract
system properties, like the freeze-out temperature from
measured susceptibility ratios in experiments that suffer
from short lifetimes and small system sizes (see, e.g., [97]).
Similarly extracting the speed of sound from flow observ-
ables [103,104] may have to be corrected for finite size
effects in the speed of sound. Finally, one should also keep

in mind that in heavy-ion collisions different observables
are often presented as function of the centrality, i.e., system
size. This means that comparing experimental measure-
ments of conserved charge susceptibilities in heavy-ion
collisions with lattice QCD data would require corrections
for the finite size (on top of corrections for global charge
conservation) and should be done with much greater care.
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