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Mean-field model quantum field theories of hadrons were traditionally developed to describe cold
and dense nuclear matter and are by now very well constrained from the recent neutron star merger
observations. We show that when augmented with additional known hadrons and resonances but not
included earlier, these mean-field models can be extended beyond its regime of applicability. Calculating
some specific ratios of baryon number susceptibilities for finite temperature and moderate values of baryon
densities within mean-field approximation, we show that these match consistently with the lattice QCD
data available at lower densities, unlike the results obtained from a noninteracting hadron resonance gas
model. We also estimate the curvature of the line of constant energy density, fixed at its corresponding
value at the chiral crossover transition in QCD, in the temperature-density plane. The number density at low
temperatures and high density is found to be about twice the nuclear saturation density. Moreover from this
line we can indirectly constrain the critical endpoint of QCD to be beyond μB ¼ 596 MeV for temperature
∼125 MeV.
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I. INTRODUCTION

Developing an effective field theory description of
hadrons preceded the discovery of the field theory of
strong interactions, quantum chromodynamics (QCD).
Indeed, based on the observation of the exponential
increase in the density of states of hadrons with increasing
temperature, it was proposed that hadronic matter will
undergo a phase transition to a deconfined phase [1].
Ab initio lattice studies have confirmed this scenario and
showed the existence of a smooth crossover at zero baryon
density [2–6] from a hadron phase to a quark-gluon plasma
phase in 2þ 1 flavor QCD with physical quark masses at
a temperature Tc ¼ 156.5� 1.5 MeV [7]. Furthermore
lattice QCD techniques have now provided us with the
state-of-the art equation of state (EoS) of hadrons in the
continuum limit [8–10]. Such reliable results have boosted
the efforts for understanding the different hadron inter-
actions and develop effective relativistic quantum field
theories of hadrons, the so-called hadrodynamics. Con-
straining hadrodynamics to a very good extent is of
fundamental importance in understanding QCD at finite
temperature and density.
A description of the hadron phase in terms of a gas of

non-interacting hadrons and the narrow-width resonances

(HRG) [11–13] has been shown to describe bulk thermo-
dynamic observables in QCD, e.g., free-energy [14–16]
and chiral condensate [17,18] to a surprisingly good
accuracy. This description is the basis for statistical
hadronization models that have been very successful in
describing the experimental yields of different hadron
species in heavy-ion colliders [19]. A justification of this
comparison came from the observation that nonresonant
part of the phase shifts of the attractive hadron interactions
largely cancel out in the calculation of free-energy, and the
interacting part of the pressure can be well described by the
contribution of resonances treated as stable particles [20].
However with increasing precision of the lattice data on
fluctuations of conserved numbers like baryon number,
strangeness and electric-charge, a visible departure from
the HRG model predictions are by now clearly evident.
Extension of the basic HRG model by augmenting it with
the many not-yet experimentally measured baryon reso-
nances [21] mainly in the strangeness sector [22], but
predicted from lattice QCD and different relativistic quark
models, termed as QMHRG can explain many puzzles like
simultaneous freezeout of light, strange and open-charm
hadrons [23–25]. However there are thermodynamic
observables in QCD which cannot be yet explained within
the QMHRG model, specially close to Tc [19,26,27],
highlighting the importance of nonresonant and repulsive
interaction channels. Moreover attempts have been made to
extend HRG model to finite densities using van-der Waals
inspired potentials [28,29] which has both attractive as well
as repulsive interactions. However due to hard sphere
interactions, the speed of sound exceeds that of the speed

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 109, 014007 (2024)

2470-0010=2024=109(1)=014007(10) 014007-1 Published by the American Physical Society

https://orcid.org/0000-0001-5775-4805
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.014007&domain=pdf&date_stamp=2024-01-05
https://doi.org/10.1103/PhysRevD.109.014007
https://doi.org/10.1103/PhysRevD.109.014007
https://doi.org/10.1103/PhysRevD.109.014007
https://doi.org/10.1103/PhysRevD.109.014007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


of light at higher values of baryon densities which require
further modifications [30]. In these extensions of the
HRG model one cannot constraint the couplings from
experimental data on nucleon-meson scatterings hence
in order to understand hadrodynamics from a more
fundamental perspective we need to choose a different
approach.
Repulsive interactions between baryons will become

more important at large baryon densities. However con-
straining them is challenging [31] as there are no first
principles calculations of the EoS available yet from lattice
QCD due to the infamous sign-problem [32,33]. Experi-
mental constraints are also few and come mainly from the
study of supernovae, neutron star mergers and nuclear
matter from the intermediate energy heavy-ion collision
experiments at CERN SPS and HADES, Darmstadt and in
future from the upcoming FAIR facility at GSI Darmstadt
and NICA at Dubna. Recent advances in the multi-
messenger astronomy of neutron stars have opened a
new avenue to constrain the nuclear models and its
EoS [31,34,35]. In this regime of high baryon densities
there are a multitude of nuclear models with different
EoS. These are usually based on the Dirac-Brueckner-
Hartree-Fock [36–38] approach or relativistic mean field
models [39–41]. In the former approach parameters of
the interactions are fixed from experimental inputs of
nucleon-nucleon and nucleon-meson scatterings. How-
ever its application to finite density nuclear matter remains
difficult. On the other hand in relativistic hadron models,
pioneered by Walecka, the interactions between the nucle-
ons are implemented at mean-field level by coupling to
effective meson degrees of freedom. The parameters of
the interaction terms are instead determined by matching
to the empirical saturation properties of nuclear matter.
Recent observation of a medium sized neutron star heavier
than twice the solar mass [42–45], simultaneous mass
radius measurements [46–50] and bounds on tidal deform-
ability [51,52] during neutron star mergers have lead to
more stringent constraints on the nuclear EoS [53–64] and
hence on these mean-field models.

In this paper we address the question of how well these
nuclear models which are traditionally designed to explain
cold-dense nuclear matter, can describe QCD thermody-
namics at a relatively higher temperatures and moderate
baryon densities. By extending the study of relativistic
hadron models (which are well constrained from neutron-
star merger observations) to moderate values of baryon
densities and higher temperatures, i.e., in the region
μB=T ¼ 3–5, we estimate the hadronic freezeout line.
Using the information about the pseudo-critical line at
small baryon densities from lattice QCD, we constrain the
location of the critical endpoint (CEP) at μCEP=TCEP > 5 if
TCEP ∼ 0.8 Tc [65]. The broad outline of the paper is as
follows: we begin in the next section by introducing the
specific relativistic mean-field hadron model used in this
work. In the subsequent sections we calculate different
thermodynamic observables within these mean-field mod-
els and compare to the lattice QCD results on thermody-
namic susceptibilities at finite temperatures and moderate
values of net-baryon densities. We show that these mean-
field models can be very well extended beyond its tradi-
tional regime of application and in some cases can explain
lattice data better than QMHRG. This has deeper impli-
cations and suggest that nonresonant interactions between
the hadrons are crucial to explain the lattice QCD data at
moderate baryon densities revealing the universal nature of
hadronic interactions.

II. RELATIVISTIC MEAN-FIELD MODELS
FOR HADRODYNAMICS

In order to choose a suitable starting point we consider a
relativistic mean-field effective model which includes
strange baryons [66]. This specific model along with other
two models [67,68] are very well constrained out of many
hadronic models using the latest gravitational wave data
coming from neutron star mergers and experimental data on
nuclear skin thickness [57]. Indeed the recent ab initio
result for the neutron skin of Pb208 [69] is consistent with
this model.
The Lagrangian of this effective model [66] is given as,

L ¼
X
B

ψ̄B

�
γμði∂μ − gωBωμ − gρBρμ · τ − gϕBϕμÞ − ðM − gσBσ − gδBδ · τ − gσsBσsÞ

�
ψB þ 1

2
ð∂μσ∂μσ −m2

σσ
2Þ

−
1

3
bσMðgσσÞ3 −

1

4
cσðgσσÞ4 −

1

4
ðωμνω

μνÞ þ 1

2
m2

ωðωμω
μÞ þ 1

4
cωðg2ωωμω

μÞ2 þ 1

2
ð∂μδ∂μδ −m2

δδ
2Þ

þ 1

2
m2

ρρ
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1
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ðρμν · ρμνÞ þ

1
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ð∂μσs∂μσs −m2

σsσ
2
sÞ þ

1

2
m2

ϕϕμϕ
μ −

1

4
ϕμνϕ

μν:

We henceforth refer to this as model 1. In this model, the
baryon fields ψB are coupled to the Lorentz scalar isoscalar
σ; σs, vector isoscalar ωμ, ϕμ, scalar isovector δi and vector
isovector ρiμ meson fields respectively and τ is the isospin

matrix. The field strength tensor corresponding to vector
meson ρμ is denoted as ρμν ¼ ∂μρν − ∂νρμ − ½ρμ; ρν� and
similarly defined for ϕμ fields as ϕμν ¼ ∂μϕν − ∂νϕμ. The
terms gaB denotes the coupling of meson labeled by index a
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to a baryon labeled by an index B. The couplings ga
without a second subscript B simply denotes the coupling
of meson a to a nucleon. Interactions involving σ and ω
mesons to nucleons are characterized by couplings gσ, gω.
These couplings along with terms bσ and cσ are important
in obtaining the correct values for binding energy, satu-
ration density and compressibility of infinite nuclear matter.
The interactions mediated by δ and ρ-mesons involving
couplings gδ and ΛV contribute to the asymmetry energy
between protons and neutrons and is important for the
stability of the nuclei drip line. One additionally has the
hyperon interactions built in the same model. The strength
of hyperon interactions are constrained from different
sources. The coupling of hyperons to vector and isovector
mesons, given by gij where i labels ω; ρ; δ;ϕ mesons and j
labels Λ0, Σ− baryons, are constrained from SUð6Þ sym-
metry within the quark model. Furthermore their couplings
to scalar mesons σ and σs denoted by gσj and gσsj are
constrained from the hyper-nuclear potentials in saturated
nuclear matter. The strange mesons σS and ϕ play important
role in accounting for hyperon-hyperon interactions [66].
We next calculate the Euler-Lagrange equations of motion
for the meson fields. In the mean field approximation one
neglects the spacetime dependence of the fields. Hence the
space and time derivatives of fields are zero. For vector
mean-fields, additionally, the time component is taken to
have a nonzero mean-field value in order to maintain
rotational symmetry. In case of scalar isovector δ field
only its third component is assumed to have nonzero value
and we represent it as δ3. The mean field equations which
we solve comes out to be,

m2
σσ¼gσ

"X
B

gσB
gσ

ρSB−bσMðgσσÞ2−cσðgσσÞ3
#

m2
ωω0¼gω

"X
B

gωB
gω

ρBB−cωMðωμω
μω0Þ−g2ρρμ:ρμΛVgωω0

#

m2
ρρ03¼gρ

"X
B

gρB
gρ

ρBBτ3B−gρρ03ΛVg2ωωμω
μ

#

m2
δδ3¼gδ

X
B

gδB
gδ

ρSBτ3B

m2
σsσs¼gσsΛ

X
B

gσsB
gσsΛ

ρSB

m2
ϕϕ0¼gϕΛ

X
B

gϕB
gϕΛ

ρBB: ð1Þ

The τ3B represents isospin quantum number for baryon B
and takes the values τ3B ¼ 1;−1;−1, 0 for proton, neutron,
Σ− and Λ0 respectively. In the mean field approximation,
the vector meson fields Vμ satisfy, VμVμ ¼ V02 . For
simplicity we will drop the subscripts and superscripts
and refer to mean field values of vector fields simply as V.

Once the values of mean-fields are known from the
solutions of these equations satisfying the above constraint
equations, the pressure can be calculated. The baryon and
scalar densities ρBB and ρSB are defined in terms of the spin-
degeneracy factors dB corresponding to baryons and the
Fermi-Dirac distributions nðpÞ; n̄ðpÞ for baryons and its
anti-particles as,

ρBB ¼ dB

Z
d3p
ð2πÞ3 ½nðpÞ − n̄ðpÞ�;

ρSB ¼ dB

Z
d3p
ð2πÞ3

M�
B

E�
BðpÞ

½nðpÞ þ n̄ðpÞ�: ð2Þ

Here the medium modified masses and energies of
baryons are defined as M�

B ¼ MB-gσBσ-gδB δ3τ3-gσsBσs
and E�

BðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM�2

B

p
. In Fig. 1 we have shown the

mean-field values of σ, ω mesons in model 1 [66] as a
function of the baryon chemical potential. From the plot we
observe that as μB increases, the mean-field values of σ and
ω fields also increases, hence the interactions mediated by
these mesons become more relevant. This is because the
mean-field values for σ and ω fields are proportional to
scalar and baryon densities respectively, which increase
with the baryon chemical potential. The ρ and δ mean-
fields are proportional to the isospin baryon and scalar
densities respectively. Since the isospin chemical potential
is negligibly small, these mean-fields remain insignificant.
The σs and ϕs mesons couple only to strange baryons
which are heavy and thus their mean-field values remain
small. The mean-fields which enhance the pressure corre-
spond to mesons which mediate repulsive interactions and
those which decreases the value of pressure correspond to
those mediating attractive interactions. The ω thus mediates
repulsive interactions and the σ, attractive interactions.
It is also evident that the mean-values of the σ field are
most sensitive to μB followed by the ω field. Hence for

FIG. 1. σ and ω fields mean field values vs μB for
T ¼ 155 MeV. Other mean-fields are much smaller in magnitude
compared to these data.
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μB < 300 MeV, the attractive interactions due to σ domi-
nates over the repulsive vector interactions due to ω
mesons. Since the strange mesons are comparatively more
massive, their mean-fields have a negligibly small depend-
ence on μB.
One may note that while mean values of the fields other

than σ and ω are tiny and hence not shown in Fig. 1, they
play an important role at high densities and low temper-
atures in fitting with the experimental data, even though
their contributions are subdominant. Recalling that the
contribution from the ω mean field is essentially propor-
tional to the baryon density at the mean-field level whereas
that from the σ mean-field depends on the sum of baryon
and anti-baryon densities. Hence the effect of repulsive ω
interactions in thermodynamic observables are visible only
at finite net-baryon density, within this approximation.
In this work we augment this basic model 1, which is

well constrained at temperatures close to zero and large
baryon densities, in order to describe hadrodynamics for a
wide range of temperatures and densities. We define a
model 2 in which we make the following extensions,
(1) We include more baryons and mesons which are

listed in the QMHRG model but not yet observed in
the experiments.

(2) We have not included any repulsive interactions
among these augmented list of mesons. The attrac-
tive resonant interactions in the meson sector are
implemented by including all possible resonances in
the model 2 upto 3 GeV.

(3) Adding more baryons to model 1 requires the
knowledge of the couplings of these additional
degrees of freedom to meson fields. These couplings
cannot be fixed from experiments as not enough data
is currently available.

(4) As a first attempt we consider the couplings of all
these extra baryons with mesons to be identically
same, differentiating only on the basis of their
strangeness content. The couplings of nonstrange
baryon degrees of freedom with mesons are taken to
be a fraction of nucleon-meson couplings and those
of the additional strange baryons to mesons to be a
fraction of Λ hyperon-meson couplings.

(5) We introduce parameters α; αS which are defined as
gB−M ¼ αgN−M and gSB−M ¼ αSgΛ−M. The param-
eter α denote the strength of couplings of the
additional QMHRG nonstrange baryons denoted
by B and mesons compared to the nucleon N and
mesonM couplings present in model 1. Similarly αS
denotes a similar quantity for the baryons carrying
strangeness quantum number denoted by the abbre-
viation SB.

Wewill first constrain the parameter space of α and αS by
comparing the results of different correlation data between
baryon number, charge and strangeness quantum numbers
calculated from the hadronic model 2 and those obtained

from lattice QCD. We will henceforth show our results at
finite μB for two cases,

ð1Þ nQ=nB ¼ 0.4; nS ¼ 0;

ð2Þ μQ ¼ 0; μS ¼ 0:

The condition (1), the so-called strangeness neutral con-
ditions that are realized in a typical heavy-ion collision for
the phase diagram. The constraint (2) corresponds to the
case where most of the lattice QCD thermodynamics data
are available for comparison. In these models the mean
field values of meson fields at different temperature and
densities are obtained by solving a set of self-consistent
equations corresponding to different nucleon masses and
energies, the details of which are discussed in the next
section.

III. THERMODYNAMIC OBSERVABLES AND
THEIR NUMERICAL IMPLEMENTATION

Given the Lagrangian of model 1, one can calculate [70]
the pressure P, which at the mean-field level is,

P ¼
X
i∈B

2

3

Z
d3p
ð2πÞ3

p2

E�
i ðpÞ

½niðpÞ þ n̄iðpÞ� −
1

2
m2

σσ
2

−
1

3
bσMðgσσÞ3 −

1

4
cσðgσσÞ4 þ

1

2
m2

ωω
2
0

þ 1

4
cωðg2ωω2

0Þ2 −
1

2
m2

δδ
2
3 þ

1

2
m2

ρρ
2
03

þ 1

2
ΛVðg2ρρ203Þðg2ωω2

0Þ −
1

2
m2

σsσ
2
s þ

1

2
m2

ϕϕ
2
0: ð3Þ

Here M�
i ¼ Mi-gσiσ-gδi δ3τ3-gσsiσs is the effective mass

for ith baryon where i ¼ p; n;Λ0;Σ− and E�
i ðpÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þM�2
i

p
. The effective chemical potential is defined

as μ�i ¼ μi-gωiω0-gρi ρ03τ3i-gϕiϕ0. Using the relation
ϵ ¼ −Pþ Tsþ μnB, we get the energy density,

ϵ ¼
X
i∈B

Z
d3p
ð2πÞ3 2E

�ðpÞ½niðpÞ þ n̄iðpÞ� þ
1

2
m2

σσ
2

þ 1

3
bσMðgσσÞ3 þ

1

4
cσðgσσÞ4 þ

1

2
m2

ωω
2
0

þ 1

4
cωðg2ωω2

0Þ2 þ
1

2
m2

δδ
2
3 þ

1

2
m2

ρρ
2
03

þ 1

2
ΛVðg2ρρ203Þðg2ωω2

0Þ þ
1

2
m2

σsσ
2
s þ

1

2
m2

ϕϕ
2
0; ð4Þ

The susceptibilities corresponding to different conserved
quantum number, i.e., baryon number (B), charge (Q), and
strangeness (S) can be calculated from the partition
function as,
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χBQSijk ¼ −
T
V
∂
iþjþk lnZ

∂μiBμ
j
Qμ

k
S

; ð5Þ

where i, j, k denote the order of derivative with respect to
the chemical potentials μB, μQ, μS respectively. In what
follows we are only interested in derivatives of pressure
with respect to chemical potential and keep T constant
while calculating derivatives. We schematically outline our
numerical procedure for calculating the pressure and the
different susceptibilities. We solve the following equations
where Xi denote the meson mean-fields, μj the chemical

potentials and f⃗ denote the mean field Eqs. (1) in a compact
form. The quantities g⃗ denote the constraints (1), (2) on
charge densities or chemical potentials,

f⃗ðXi; μj; TÞ ¼ 0

g⃗ðXi; μj; TÞ ¼ 0: ð6Þ

In order to calculate the derivative of pressure with
respect to chemical potential μk, we need the derivatives of
mean fields X and other chemical potentials μj; j ≠ k, with
respect to μk. This is because X and μj; j ≠ k depend on μk
through gap and constraint equations respectively. Most
often the first derivatives with respect to the chemical
potential μk are calculated using the finite difference
method with a grid δμk which is numerically accurate up
to OðδμkÞ. Moreover the truncation error increases with
increasing order of the derivatives. We thus follow a
different procedure. Instead of performing a numerical
differentiation, we use the gap and constraint equations to
calculate the derivatives analytically. This is possible
because the Eqs. (6) are satisfied at each value of T and
μk in the parameter space of interest in this study hence
these functions f⃗, g⃗ are continuous and differentiable. The
total derivative of each of Eq. (6) with respect to any
chemical potential is zero in the mean-field approximation.
Finding the derivatives of mean fields with respect to μk
amounts to solving the following set of equations,

∂f⃗
∂μk

þ ∂f⃗
∂Xi

dXi

dμk
þ ∂f⃗
∂μj

dμj
dμk

¼ 0; j ≠ k;

∂g⃗
∂μk

þ ∂g⃗
∂Xi

dXi

dμk
þ ∂g⃗
∂μj

dμj
dμk

¼ 0: ð7Þ

Due to the constraints g⃗ðXi; μj; TÞ ¼ 0, other chemical
potentials μj are function of μk. Hence Eqs. (7) are two
linear differential equations from which one can solve for

the two unknowns dX
dμk

and dμj
dμk

. Obtaining these first order
derivatives allows us to calculate the subsequent derivatives
dnX
dμnk

and dnμj
dμnk

; n ≥ 2 iteratively. Once the nth order

derivatives of the mean-fields are known, the nth order
derivatives of pressure and hence the susceptibilities can be
calculated.

IV. HOW CAN MEAN-FIELD MODELS
BE EXTENDED TO EXPLAIN QCD

THERMODYNAMICS IN T-μB PLANE

As mentioned earlier, the mean-field models were tradi-
tionally introduced to explain the nuclear liquid-gas tran-
sition in the T ∼ 0 and large μB regime. We suggest here
how we can extend the applicability of such models in the
finite temperature and moderately high baryon number
densities. We first study the ratio χBS31 =χ

BS
11 which motivates

for the need to consider model 2 as the hadronic model
which can describe QCD thermodynamics over a large
range of T-μB values. This particular ratio χBS31 =χ

BS
11 in the

extended model 2 is more sensitive to coupling αS between
strange baryons and mesons.
Since at the mean-field level we cannot include the

effects of baryon-mediated repulsive interactions at
μB ¼ 0 MeV, we cannot compare our results with lattice
QCD results at zero baryon density. We thus show the data
for this particular ratio as a function of μB at T ¼ 135 MeV
and μQ ¼ μS ¼ 0 in Fig. 2 for μB > 400 MeV. As we
extrapolate lattice results to finite density, their resultant
error band increases. We thus choose a value of μB ¼
400 MeV in order to have a sizeable effect of repulsive
interactions on this observable in model 1 and 2 as well
as a reasonably small error band on the lattice data. The
upper limit of μB is chosen such that the energy density at
T ¼ 135 MeV is close to ϵ ¼ 348� 41 MeV=fm3 which
is the typical energy density at the chiral crossover
transition [65]. The green band represents the results
from lattice QCD [71] which is extrapolated up to
μB ¼ 400 MeV. Results from QMHRG model and model
1 are also shown in the same plot from μB ¼ 400 MeV to

FIG. 2. The ratio χBS31 =χ
BS
11 from lattice QCD shown as green

band compared to the corresponding results from ideal HRG
shown in blue, model 1 in magenta and model 2 as an
orange band.
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μB ¼ 600 MeV as solid lines in the right hand corner. The
results from model 1 are different from QMHRG model
results and ∼12% higher than the upper band of the lattice
QCD result at μB ¼ 400 MeV. Thus while the inclusion
of baryon-interactions inbuilt in model 1 improves the
approach toward explaining the lattice data, clearly inclu-
sion of just two strange baryons is not enough.
This discrepancy justifies the need for extending the

model 1 to a model 2 which we have defined in the previous
section. In order to constrain the parameters α and αS, their
values are varied such that the result of model 2 matches
with the upper boundary of lattice QCDwhich gives a value
of α ¼ αS ¼ 0.15. If we also want to match the lower
boundary of the lattice QCD result we have to choose the
fractions as α ¼ 0.2 and αS ¼ 0.7. Thus between the upper
and lower edges of the lattice QCD band in Fig. 2, the
nonstrange couplings change little while the strange cou-
pling vary significantly. If the precision of the lattice QCD
results could be improved it would allow us to quantify how
strongly interacting the baryons are.
Now having fixed the couplings, we plot what are its

implications for other thermodynamic observables. In Fig. 3
we study χBQ31 =χ

BQ
11 within the model 2. Comparing with the

lattice QCD results we find that the results from model 1
already agrees with the lattice band but toward the upper
edge of the band. Now calculating the same observable in the
model 2 with additional hadrons, we find a much constrained
region of match with the lattice QCD results shown as a
green band, with the lower boundaries of these bands
agreeing well at μB ¼ 400 MeV. Recall that the band in
model 2 result comes from variation of α from 0.15 to 0.2
and αS from 0.15 to 0.7.
We next show the results of another interesting observ-

able χB4 =χ
B
2 as a function of μB at T ¼ 135 MeV and μQ ¼

μS ¼ 0 in Fig. 4. Again, the calculations within the model 1
agrees with the upper boundary of lattice QCD data band.

Using model 2, we find that the results of this ratio have a
smaller spread due to the uncertainty in the values of the
heavier baryon-meson couplings, compared to the current
error band in the lattice QCD data. In fact the ratios χB4 =χ

B
2

and χBQ31 =χ
BQ
11 is found to be more sensitive to nonstrange

coupling α compared to αS. We note that tuning the
couplings ðα; αSÞ such that χBS31 =χ

BS
31 varies along the entire

width of lattice band at μB ¼ 400 MeV, we get a variation
of about only 50% in the quantities χB4 =χ

B
2 and χBQ31 =χ

BQ
11 .

Thus the later two ratios can quite independently constrain
the couplings than χBS31 =χ

BS
31 . Thus to summarize the main

findings of this section, we note that
(1) A fit of with the coupling ratios (0.7, 0.2) for (α,αS)

was found to have a good match with all the three
independent data on ratios of fluctuations obtained
from lattice QCD.

(2) For α ¼ 0, no value of αS in the interval (0, 1) was
found to completely cover the lattice error band in
χBS31 =χ

BS
11 , thus constraining the value of to have a

lower bound α ¼ 0.15.
(3) Typically larger values of α were found to violate

lower bounds on χB4 =χ
B
2 and χBQ31 =χ

BQ
11 obtained from

the lattice QCD data hence can be now safely
ignored with our analysis.

V. DO EXTENDED MEAN-FIELD MODELS
SATISFY HIGH DENSITY CONSTRAINTS?

Since the model 1 satisfies very well the constraints from
high density matter, like nuclear liquid-gas transition,
neutron star EoS, etc, we would like to check whether
augmenting this model with these additional hadrons would
in anyway worsens this agreement. While the contribution
of heavier baryons at high densities and low temperatures
are expected to be suppressed due to the thermodynamic
distribution functions, their multiplicities are large which
could influence the thermodynamics despite suppression of

FIG. 3. The ratio χBQ31 =χ
BQ
11 from lattice QCD shown as green

band compared to the corresponding results from ideal HRG
shown in blue, model 1 in magenta and model 2 as an
orange band.

FIG. 4. The ratio χB4 =χ
B
2 from lattice QCD shown as green band

compared to the corresponding results from ideal HRG shown in
blue, model 1 in magenta and model 2 as an orange band.
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thermal distributions. To check how much of an impact
these additional baryons will produce, we calculate the
pressure as a function of baryon densities within model 1
and model 2 for three different temperatures T ¼ 5, 15,
20 MeV respectively. The couplings used for model 2 are
α ¼ 0.2 and αS ¼ 0.7. The results of our calculation are
shown in Fig. 5 as solid lines for model 2 which is
compared with the dashed lines in the same plot which
were estimated within the model 1. As clearly seen from
the plot, extending the model with the additional baryons
from QMHRG model even with larger allowed values of
coupling doesn’t affect the pressure plots significantly. This
gives us a proof of principle that extending mean-field
nuclear models with additional baryons to explain QCD
thermodynamics at high temperatures and intermediate
densities will not affect its already excellent agreement at
high densities and low temperatures. Our approach indeed
hints to a method toward formulating a universal theory
describing the hadronic phase of QCD.

VI. IMPLICATIONS FOR THE PHASE
DIAGRAM OF QCD

Having discussed the susceptibilities in the mean-field
nuclear model and its extended version, we study what
insights it could give us about the phase diagram of QCD.
Nuclear mean-field models do not have the ULð2Þ ×URð2Þ
chiral symmetries in-built like the Nambu-Jona-Lasinio
model and hence cannot describe its restoration. We thus
determine the line of constant energy density in the
T − μB plane for these models by setting ϵ ¼ 348�
41 MeV=fm3 [65] which is the energy density of 2þ 1
flavor QCD at the crossover region for μB ¼ 0 MeV.
Unlike in traditional QMHRG model, recent lattice studies
have observed that the energy density along the chiral
crossover line does not vary with increasing μB at least

around μB=T ≲ 3 [72]. Incidentally the line of chemical
freezeout of hadrons is also defined at a constant energy
density [73,74] and it approaches the chiral crossover
transition line as one goes to smaller values of μB. The
results of our calculations of lines of constant energy
density model 1 and 2 are shown in Fig. 6. These can
be visualized as a chemical freezeout line for the hadrons
present within the model. Indeed the line of constant energy
density in model 2 is consistent with the latest continuum
extrapolated lattice QCD data, all the way from μB ¼
0 MeV (extrapolated) to about μB ¼ 450 MeV. There is a
small difference between these two results which can be
accounted for from the fact that the repulsive interactions
present among the hadrons are not included within model 2.
Since the model 2 has more degrees of freedom, its line of
constant energy density deviates from the model 1 calcu-
lation for μB < 900 MeV. At higher values of μB, the
contributions of the heavier baryons and mesons to the
energy density gets suppressed due to their mass and due to
lowering of temperature respectively, hence the lines of
constant energy between model 2 and its extended version
start to agree. Another prominent feature of the QCD phase
diagram is the anticipated critical endpoint (CEP) of the
line of first order transitions. From the constraint that
the CEP will exist in the real-μB plane, and its location
gives the radius of convergence of thermodynamic observ-
ables, all orders of baryon number fluctuations have to be
positive. Using this constraint from the lattice QCD data of
upto 8-th order baryon number fluctuations at μB ¼ 0 [65],
it is now known that TCEP=Tc < 0.85. Noting this con-
straint by choosing the ratio T=TðμB ¼ 0Þ ¼ 0.8within the
model 2 we can conclude that the CEP, if present will be at
μB > 596MeV which provides a lower bound μB=T ∼ 4.76.
Next we calculate the curvature of these constant

energy lines by fitting to the ansatz TðμBÞ
Tc

¼ 1 − κ2
μ2B
T2
c
−

κ4
μ4B
T4
c
− κ6

μ6B
T6
c
. For model 1, the extracted curvature

FIG. 5. Pressure versus baryon density curves for nuclear liquid
gas transition. Dashed lines denote data from model 1 and solid
lines are for model 2.

FIG. 6. Lines of constant energy density for model 1 shown in
pink band and model 2 shown in orange band. Also shown is the
crossover transition from lattice QCD in green band.
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coefficients are κ2 ¼ 0.020ð2Þ, κ4 ¼ −0.0010ð3Þ, κ6 ¼
0.000060ð3Þ which are also consistent with those calcu-
lated from model 2, κ2 ¼ 0.020ð2Þ, κ4 ¼ −0.0005ð1Þ, and
κ6 ¼ 0.000010ð2Þ. The values of κ2 are somewhat larger
than the latest continuum extrapolated lattice results of the
κ2 [65,75,76] extracted from the renormalized chiral con-
densate and from a recent HRG model estimate [18], which
is expected as the results from these models are for the
entire T-μB plane. The value of κ4 from lattice QCD is
consistent with zero [65,76], whereas we find a negative
but finite value in both the models. The results for κ6 are
new and it is about 1000 times smaller than κ2. Thus its
effect should start become significant at μB=T ∼ 15,
well within the cold nuclear matter regime. Moreover the
baryon densities obtained in model 1 and 2 for a typical
neutron star environment characterized with nQ=nB ¼
0.05 − 0.2; nS ¼ 0, varies from 0.28 fm−3 to 0.35 fm−3

as energy density varies from ϵ ¼ 307–389 MeV=fm3. The
variation in the ratio for nQ=nB has a tiny effect on this
density. It is remarkable that the typical nuclear densities
we obtain from these models are about twice the nuclear
saturation density, when many-body interactions start to
become dominant [77] and quark exchanges are expected
to mediate baryon interactions [78]. Our calculations also
support this picture albeit indirectly that a mixed phase of
quarks and hadrons can survive in neutron star cores with
baryon densities greater than 0.35 fm−3.

VII. IMPLICATIONS OF LATTICE QCD DATA
AT μB = 0 FOR HIGH DENSITY MODELS

Comparisons of lattice QCD data with QMHRG model
particularly for observables like χB4 =χ

B
2 [26] and higher

order baryon number susceptibilities [16] clearly highlight
the importance of including repulsive interactions within
the QMHRG model. In our present study of nuclear model
quantum field theories, the repulsive interactions at low
baryon densities are negligible at the mean-field level.
Unless there is a mechanism by which sufficient strength of
repulsive interactions are generated at low baryon densities
by calculating beyond mean-field, it would then imply that
these models require suitable modifications to account for
such interactions. In this way one can achieve a universal
hadronic model, which is valid for both lower as well as
high baryon densities. Furthermore our comparison of
quantities like χBS31 =χ

BS
11 with the lattice data to extract

the baryon-meson couplings in the extended model 2, will
benefit from an increasing precision of the lattice QCD
data. This will allow for a tighter constraint on the values of
the couplings of strange baryons with mesons.

VIII. CONCLUSIONS

We started this work with a question of how well the
traditional nuclear mean-field models, developed for the

understanding of physics at low temperatures and large
baryon densities be used to explain QCD thermodynamics
at high temperatures and moderate densities. A remarkable
observation that comes out of our study is that augmenting
these simple models with a complete list of baryons present
in QMHRG model and tuning the couplings of their
interactions with mesons through a comparison with lattice
QCD data on a particular observable, lead to a very good
description of QCD thermodynamics at intermediate den-
sities. In our investigation we have found that the simple
baryon-meson interactions built within the nuclear models
are important in bridging the gap between lattice and other
noninteracting hadron models like QMHRG. Furthermore
we have shown that the inclusion of these additional
hadrons do not affect the nuclear liquid-gas transition,
which is well-studied in the original versions of these
mean-field models.
This allows for a route to identify the relevant baryon

interactions in chiral symmetry broken phase, which indeed
if accounted for correctly will be valid for the entire regime
of densities and temperatures. However at present there are
not much data available, either from experiments or theory
in constraining most of these baryon-meson couplings. Our
method for determining these couplings from comparison
with a particular thermodynamic observable from lattice, is
one such possibility since in this process the benchmark
data comes from the fundamental theory of strong inter-
actions, i.e., QCD. We highlighted the need of high-
precision lattice data which will allow for constraining
such couplings further. This will allow for a better synergy
between lattice QCD and such model quantum field theory
calculations in future.
There are several directions still remains to be explored.

Firstly it would be interesting to extend this study beyond
the mean-field approximation and check whether it can
account for the repulsive interactions that exist among
baryons and mesons, even at low densities and high
temperatures, evident from comparisons of lattice QCD
data with QMHRG model. Another aspect toward building
a universal hadronic model requires high density nuclear
models to incorporate spontaneous chiral symmetry break-
ing. This can be achieved by including parity doublet
partners like the pion degrees of freedom and the critical
σ-modes, important for understanding the nature of the
chiral phase transition at high densities and the thermody-
namics near the critical endpoint.
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