
Inclusive, prompt and nonprompt J=ψ identification in proton-proton
collisions at the Large Hadron Collider using machine learning

Suraj Prasad ,† Neelkamal Mallick ,‡ and Raghunath Sahoo *

Department of Physics, Indian Institute of Technology Indore, Simrol, Indore 453552, India

(Received 7 August 2023; accepted 4 December 2023; published 5 January 2024)

Studies related to J=ψ meson, a bound state of charm and anticharm quarks (cc̄), in heavy-ion collisions,
provide genuine testing grounds for the theory of strong interaction, quantum chromodynamics. To better
understand the underlying production mechanism, cold nuclear matter effects, and influence from the
quark-gluon plasma, baseline measurements are also performed in proton-proton (pp) and proton-nucleus
(p-A) collisions. The inclusive J=ψ measurement has contributions from both prompt and nonprompt
productions. The prompt J=ψ is produced directly from the hadronic interactions or via feed down from
directly produced higher charmonium states, whereas nonprompt J=ψ comes from the decay of beauty
hadrons. In experiments, J=ψ is reconstructed through its electromagnetic decays to lepton pairs, in either
eþ þ e− or μþ þ μ− decay channels. In this work, for the first time, machine learning techniques are
implemented to separate the prompt and nonprompt dimuon pairs from the background to obtain a better
identification of the J=ψ signal for different production modes. The study has been performed in pp
collisions at

ffiffiffi

s
p ¼ 7 and 13 TeV simulated using PYTHIA8. Machine learning models such as XGBoost and

LightGBM are explored. The models could achieve up to 99% prediction accuracy. The transverse
momentum (pT) and rapidity (y) differential measurements of inclusive, prompt, and nonprompt J=ψ , its
multiplicity dependence, and the pT dependence of fraction of nonprompt J=ψ (fB) are shown. These
results are compared to experimental findings wherever possible.

DOI: 10.1103/PhysRevD.109.014005

I. INTRODUCTION

Over the last couple of decades, two of the world’s most
powerful particle accelerators, the Large Hadron Collider
(LHC), CERN, and the Relativistic Heavy-Ion Collider
(RHIC), Brookhaven National Laboratory, USA, have
studied the hot and dense state of deconfined partons,
known as the quark-gluon plasma (QGP) by colliding
heavy ions at ultrarelativistic speeds. These studies are
crucial to understand the physics of the early Universe, and
the phase transition between the partonic and hadronic
matter. Due to the nature of the strong interaction, QGP is
extremely short lived. Therefore, to study the properties of
QGP, several indirect signatures are investigated. One such
signature is the melting of heavy quarkonia (qq̄) in QGP,
also known as the quarkonia suppression, where the color
force responsible for binding the quarks into hadrons is

screened in the presence of deconfined partons [1–6]. The
production of heavy quarkonia pairs (cc̄ and bb̄) follow the
perturbative QCD (pQCD) calculations, whereas the evo-
lution to a bound colorless state is a nonperturbative
process. Due to their high mass, heavy quarks are produced
via partonic interactions in the early stages of the collision,
and experience the full evolution of QGP. Thus, they are
sensitive probes to study the properties of QGP and the
theory of strong interaction [7].

FIG. 1. Schematic representation of topological production of
prompt and nonprompt J=ψ mesons in hadronic and nuclear
collisions.
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J=ψ is the lightest charm vector meson, which is the
bound state of a charm and an anticharm quark (cc̄). The
studies related to J=ψ meson, in heavy-ion collisions
provide genuine testing grounds for QCD [8,9]. To better
understand the underlying production mechanism, cold
nuclear matter effects, and influence from the quark-gluon
plasma, baseline measurements are also performed in
proton-proton (pp) and proton-nucleus (p-A) collisions
[10,11]. The inclusive J=ψ production can have contribu-
tions from three sources. The first one is the direct prompt
production, in which J=ψ is produced directly from the
hadronic/nuclear collisions; the second one is the indirect
prompt production via feed down from directly produced
higher charmonium states [i.e., from χc and ψð2SÞ], and the
third one is the nonprompt production which comes from
the decay of beauty hadrons [12,13]. Figure 1 depicts the
topological productions of J=ψ , where L⃗ denotes the vector
joining the J=ψ decay vertex to the primary vertex. In
Fig. 1, it is evident that the prompt J=ψ is produced nearer
to the primary vertex compared to the nonprompt J=ψ ,
where b hadrons fly off to a finite distance before decaying
to J=ψ via weak decay. Since the rest mass of J=ψ is larger
than the other decay daughters of beauty hadron, the
momentum of J=ψ is closer to the decaying beauty hadrons,
thus nonprompt J=ψ gives a better handle to study the
production of these beauty hadrons [14]. Another important
implication of separating the nonprompt J=ψ from prompt
J=ψ comes from the fact that their spin state polarization is
conceptually and effectively different [15,16]. The meas-
urement of nonprompt J=ψ can also provide direct deter-
mination of the nuclear modification of beauty hadrons.
In experiments, J=ψ is reconstructed through its electro-

magnetic decay to lepton pairs, in either eþ þ e− or
μþ þ μ− decay channels. By reconstructing the invariant
mass spectra of these lepton pairs (mee or mμμ), one can
extract the signal for inclusive J=ψ by fitting a suitable
signal function and subtracting the background continuum.
Usually, a Crystal Ball function [17] is used as the signal
function. To further estimate the nonprompt contribution in
the inclusive J=ψ signal, one has to rely on the nonprompt
production topology. As the beauty hadrons undergo weak
decay, the resulting J=ψ will originate from a decay vertex
that is displaced from the primary interaction vertex (as
shown in Fig. 1). For this, the pseudoproper decay length
(cτ) of the candidate is estimated, which is given in Eq. (2).
The cτ probability density functions for the prompt
[FpromptðcτÞ] and nonprompt [FBðcτÞ] production can be
obtained from Monte Carlo simulations separately. By
using an unbinned two-dimensional likelihood fit as
described in detail in Refs. [8,12], the ratio of the non-
prompt to inclusive J=ψ production (fB) can be estimated,
which can be used to calculate the nonprompt and prompt
production cross sections (σJ=ψ ), as given below:

σnonprompt J=ψ ¼ fB · σJ=ψ ;

σprompt J=ψ ¼ ð1 − fBÞ · σJ=ψ : ð1Þ

Machine learning (ML) techniques are in use in the
field of nuclear and particle physics over the last couple of
decades [18,19]. Recently, with the advancement of
superior hardware and smart algorithms, it has gained
its rightful popularity in the big data community. By
construction, machine learning is trained to learn the
mapping from the input features to the output class. The
algorithm helps to learn the correlations between the input
and output by optimizing the model parameters on the
training data. This is practically useful when the mapping
function is not trivial, or sometimes it cannot be defined.
In such cases, machine learning helps to do the mapping in
a faster and more efficient manner, without compromising
the quality of the result. The successful application of
machine learning techniques in collider experiments is
well proven by now. It has been used to tackle many
varieties of problems. Some of them include the impact
parameter estimation [20–24], particle identification and
track reconstruction [25–27], jet tagging [28–31], aniso-
tropic flow measurements [32–34], etc. Interested readers
may refer to some of the recent reviews on machine
learning in high energy physics [35–38]. In this work, for
the first time, machine learning techniques are imple-
mented to separate the prompt and nonprompt dimuon
pairs from the background to obtain a better identification
of the J=ψ signal for different production modes. The
study has been performed in pp collisions at

ffiffiffi

s
p ¼ 7 and

13 TeV simulated using PYTHIA8. Machine learning
models such as XGBoost and LightGBM are explored.
Some of the motivations of this work are as follows. This
technique provides a faster and more efficient method to
identify the inclusive, prompt, and nonprompt J=ψ signal
than the conventional template fitting method discussed
above. It can be applied to identify J=ψ meson in the entire
range of transverse momentum (pT) and rapidity (y), thus
allowing us to probe the production fraction (fB) of
nonprompt J=ψ easily for very fine bins in pT and y.
This method has another advantage, as it can directly
identify the dimuon pairs, hence it can tag them to one of
the three sources, prompt, nonprompt, or background.
This identification of the dimuon level tags can help in
studying many aspects of charmonia and bottomonia
production, which are almost impossible using conven-
tional methods. One such application would be the effect
of polarization on prompt and nonprompt J=ψ production.
Apart from these motivations, the novelty of this work
also lies in the fact that the attempt to separate prompt
versus nonprompt production for J=ψ is never attempted
before using the machine learning approach.
The paper is organized as follows. It begins with a brief

introduction in Sec. I. The methodology, including the data
generation using PYTHIA8, and the description of the
machine learning models, are described in Sec. II. The
training, evaluation, and quality assurance of the models
are discussed in Sec. III followed by the results and
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discussions in Sec. IV. Finally, the paper concludes by
summarizing the findings in Sec. V.

II. METHODOLOGY

The descriptions of pQCD-based particle production,
such as jets, charm, and bottom hadrons, etc., are well
explained by the PYTHIA8 Monte Carlo model. In the
current work, we use the PYTHIA8 event generator to
simulate the datasets required to train the machine learning
model to identify the prompt and nonprompt dimuon
signals from the background dimuon pairs. This section
provides a brief description of PYTHIA8, along with the
different models used in the study.

A. PYTHIA8

PYTHIA is a pQCD-based Monte Carlo event generator
used to generate ultrarelativistic pp collisions at RHIC and
LHC collision energies. PYTHIA8 contains a library of soft
and hard processes and models for initial- and final-state
parton showers, multiple parton-parton interactions, beam
remnants, string fragmentation, and particle decays [39,40].
PYTHIA8 is an improved version of PYTHIA6 where 2 → 2
hard processes are implemented along with MPI-based
scenarios to produce the charm and beauty hadrons. In this
study, we have used the 4C tune of PYTHIA8 (see Ref. [41] for
details) version 8.308 to simulate 20 billion events with
inelastic and nondiffractive components (HardQCD∶all ¼
on) of the total collision cross section inpp collisions at

ffiffiffi

s
p ¼

13 TeV and 1 billionminimumbias events in pp collisions at
ffiffiffi

s
p ¼ 7 TeV. The simulation involves a pT cutoff of pT >
0.5 GeV=c (using PhaseSpace:pTHatMinDiverge available
in PYTHIA) to avoid the divergence of QCD processes that
may occur in the limit pT → 0. Since this study involves
charm and beauty quark production, we have allowed all the
charmonia and bottomonia production processes (using
“Charmonium∶all ¼ on” and “Bottomonium∶all ¼ on”)
in PYTHIA8. In addition, we have allowed the spread of the
interactionvertex according to a simpleGaussian distribution
(Beams∶allowVertexSpread ¼ on) where offset and sigma
of the spread of the vertices in each of the cartesian axes are
taken fromRef. [42], and are mentioned in Table I. Here,Vx,
Vy, and Vz are the beam interaction vertex distance from the
global origin (0,0,0) in the x, y, and z directions, respectively.
We have put an additional cut in the z vertex, as
jVzj < 10 cm, to be consistent with the experiments.

The produced J=ψ are allowed to decay in the dimuon
channel only, i.e., J=ψ → μþ þ μ− and all other decaymodes
of J=ψ are switched off.
Figure 2 shows the comparison of transverse momentum

spectra for inclusive, prompt, and nonprompt J=ψ using
PYTHIA8 with the corresponding measurements reported by
LHCb [43]. All the track cuts for muons and dimuon pairs
are kept the same as reported in Ref. [43]. A factor of 0.47
is multiplied in the PYTHIA8 estimated inclusive and prompt
J=ψ yields as it overestimates the experimental data.
However, PYTHIA8 follows the experimental trend of pT
spectra up to pT < 6 GeV=c, and starts to deviate towards
the higher values of pT. One can intuitively note that the
yield of J=ψ from b-hadron decays is almost ten times
lower than the prompt production; however, this difference
in production yield between prompt and nonprompt J=ψ
gets smaller towards the high-pT values. The overall trend
produced by PYTHIA8 with the tunes and settings mentioned
above is reasonable when compared to the experiment. The
scaling factors are only applied in this plot to match the
trend of the experimental data. For all other plots in this
work, no such scaling is used and the results are directly
from PYTHIA8.

B. Machine learning models

The realm of ultrarelativistic collisions at the LHC and
RHIC produces complex and nonlinear systems that
demand powerful analysis techniques. These analysis

TABLE I. Offset and sigma values of the primary interaction
vertex from the origin.

Mean (mm) Sigma (mm)

Vx −0.35 0.23
Vy 1.63 0.27
Vz −4.0 40.24
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FIG. 2. Comparision of PYTHIA8 results for inclusive, prompt,
and nonprompt production of J=ψ meson with the experimental
measurements [43] in pp collisions at

ffiffiffi

s
p ¼ 13 TeV. A

constant multiplication of 0.47, 0.47, and 1.0 is performed to
the PYTHIA8 results for inclusive, prompt, and nonprompt
production, respectively.
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techniques may sometimes require superlative computa-
tional facilities yet provide results with significant uncer-
tainties. On the other hand, with the advent of machine
learning tools, one can extract insightful results from a vast
amount of experimental data with ease and less uncertainty
by learning the correlation between the input and target
variables. In collider physics experiments, ML models can
be exploited in many aspects. One of the complex problems
in collider physics experiments is understanding different
underlying physical processes that contribute to particle
production. However, the final state particles sometimes
carry some distinguished kinematic signatures that can help
identify their production mechanism and parent particles.
For example, in experiments, identifying prompt and
nonprompt J=ψ mesons relies on the statistical separation
method, which is already described in Sec. I. However,
using machine learning, one can train a model using some
of the kinematic features of the decay daughters to reject
the uncorrelated pairs easily and identify the signal and
the source of the parent J=ψ . Popular ML models include
gradient-boosting-decision-trees-based regressions and
classifications due to their simplicity, robustness, and
efficiency in handling extensive data [44,45]. The name
gradient boosting comes because it uses the gradient
descent algorithm and boosting method [45]. In this study,
we apply gradient-boosted decision tree-based ML tech-
niques to segregate prompt and nonprompt dimuon pairs
from uncorrelated background using the kinematics of all
the final state dimuon (μþ þ μ−) pairs, which are dis-
cussed below.

1. XGBoost

XGBoost (XGB) [46] stands for extreme gradient
boosting, and it is one of the most popular and widely
used ML algorithms due to its efficiency in handling large
data sets and outstanding performance in classification and
regression problems. It is an upgraded version of the
gradient-boosting decision trees (GBDT). It has several
enhancements, such as parallel computing and tree pruning,
to speed up the training process which lets it handle large
datasets in a reasonable amount of time. XGB also provides
a wide variety of hyperparameters that can be optimized for
better model performance [47].

2. LightGBM

Light gradient boosting machine (LightGBM or LGBM)
[48] is another enhanced version of the GBDT with
improved speed and performance. Along with parallel
computing, it uses a leaf-wise splitting of the tree rather
than level-wise to increase the model’s speed and reduce
memory usage. Traditional level-wise splitting of a tree
leads to the formation of unnecessary nodes that contain the
tiniest information, and these nodes use up memory but do
not contribute to the overall learning process. In contrast,
splitting a tree leaf wise leads to the most informative split

faster and thus reduces the number of nodes formed,
making the training process faster [49].

III. TRAINING AND EVALUATION

In this section, we discuss our machine-learning models
in detail. We begin with the description of the inputs to the
models, then preprocessing of the dataset, and discuss the
model architecture. Finally, we discuss the training and
evaluation process with the required quality assurance
figures.

A. Input to the machine

The training of the ML models requires a data set with
well-correlated input and target variables. Here, the invari-
ant mass of the reconstructed dimuon pairs (mμμ) can
significantly help in separating the uncorrelated back-
ground from the signal dimuons coming from the J=ψ
meson. On the other hand, prompt and nonprompt pro-
duction of J=ψ can have different production topologies.
The production of the prompt J=ψ would be closer to the
primary vertex, whereas the J=ψ formed from the weak
decays of b hadrons would have a displaced decay vertex
with a finite decay length with respect to the primary
interaction vertex. One such quantity that is used to
differentiate the topological production of the J=ψ by
taking the production vertex into account is the pseudopr-
oper decay length defined in Eq. (2) below [50].

cτ ¼ cmJ=ψ L⃗:p⃗T

jp⃗Tj2
: ð2Þ

Here, L⃗ is a vector pointing from the primary vertex to
the J=ψ decay vertex. c is the velocity of light, mJ=ψ is the
mass of J=ψ meson taken from the Particle Data Group
(PDG) [51]. For each dimuon pair, we require its invariant
mass (mμμ), transverse momentum (pT;μμ), pseudorapidity
(ημμ), and the pseudoproper decay length (cτ) as the input
to the models. All these inputs can be obtained in
experiments as well. Now, following Eq. (2), we need
the quantity L⃗ from PYTHIA8, which is obtained using the
method described below. One can calculate the J=ψ decay
vertex for the dimuon pairs using the Eq. (3).

Sx ¼
ðt1 þ x1m1=px;1Þ − ðt2 þ x2m2=px;2Þ

m1=px;1 −m2=px;2
: ð3Þ

Here, Sx stands for the reconstructed J=ψ decay vertex in
the x direction, for two particles with mass m1 and m2,
which fly off from the J=ψ decay vertex to a distance x1
and x2, in time t1 and t2 with momentum px;1 and px;2.
Similarly, one can also obtain a similar expression for Sy
and Sz. After obtaining the coordinates for J=ψ decay
vertex, one can estimate L⃗ ¼ V⃗ − S⃗. Here, V⃗ ¼
ðVx; Vy; VzÞ is the primary vertex coordinates defined
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in Sec. II A and S⃗ ¼ ðSx; Sy; SzÞ is the J=ψ decay vertex
position for the reconstructed dimuon pairs, obtained
using Eq. (3).
The target labels for the prompt, nonprompt J=ψ , and the

background dimuon pairs are represented with the numeric
tags as 0, 1, and 2, respectively. For the training of the
model, the input features are obtained for the opposite sign
dimuon pairs in the whole pseudorapidity and transverse
momentum range in the minimum bias pp collisions at
ffiffiffi

s
p ¼ 13 TeV using PYTHIA8.

B. Preprocessing and training

Classification models require to be trained on a similar
number of training instances for each of the output classes.
We call these instances examples of training. Any imbal-
ance in the examples during the training may bias the
output towards the majority class. This is often regarded as
the “class imbalance problem,” and the model shows high
accuracy just by predicting the majority class. In this study,
the majority class is the background followed by the
prompt J=ψ . The ratio of background:prompt:nonprompt
is ≈20∶10∶1. Thus, the models will favor the training
mainly towards the background data, and will mostly
misclassify the prompt and the nonprompt J=ψ . To over-
come this data sample imbalance, sampling techniques like
undersampling and oversampling are used. Undersampling
removes some instances of the majority class while over-
sampling adds some instances to the minority class to
balance the data points present in each class. Nevertheless,
a drawback of undersampling is that it leads to data loss
since the instances from the majority class are discarded.
Therefore, we prefer to balance the datasets by oversam-
pling. A random oversampling technique from the imblearn
library [52] is implemented on the training set wherein both
the minority classes (prompt and nonprompt) are resampled
to match that of the majority class (background). We use
90% of the entire data as training and the rest 10% as
testing. Further, the resampling is performed on the training
set, which solves the class imbalance issue, and then 10%
of the data from the training sample is used as the
validation set.
Now, we proceed to define the model architecture and

the training process. Model parameters such as the loss
function, learning rate, subsample, number of trees, and
maximum depth are tuned for each model. The best
parameters are selected through a grid search method,
which is listed in Table II.
In Table II, the learning rate is a hyperparameter that

governs the pace with which the model learns and updates
its weights. The subsample indicates the fraction of the data
that the model will sample before growing trees, which
occurs in every boosting iteration and prevents overfitting.
Increasing the maximum depth would make the model
more complex. Objective indicates the function that
guides the training process, which quantifies the model’s

performance and reduces the prediction error. In both
models, we have used softmax objective for the multiclass
classification, available as “multi:softmax” and “multi-
class” for XGB and LGBM, respectively [47,49]. The
metric is the function that evaluates the model’s perfor-
mance in each training iteration. In both models, we have
used the logloss metric function for the multiclass classi-
fications, the definition of which can be found in
Refs. [47,49]. All the other hyperparameters are kept as
their default values for both models.

C. Quality assurance

Figure 3 shows the learning curve for XGB (top) and
LGBM (bottom) for both training and validation, i.e., the
evolution of the loss as a function of the number of decision
trees. For good training, the loss decreases with the increase
in the number of decision trees and saturates at a particular
loss value, indicating that the training must be stopped now.
Another essential training benchmark can be deduced by
looking at the difference between the curves for the training
and validation simultaneously. For reasonable training, the
learning curves for the training and validation should be
close; however, a big difference between them can arise due
to overfitting or underfitting. One can infer from Fig. 3 that
the loss values for validation and training decrease with the
increase in the number of trees and saturates at around 25
trees for XGB and at around 45 trees for the LGBM. In
addition, for both XGB and LGBM, the curves for
validation and training lie on top of each other, indicating
no overfitting by the models.
Another essential benchmark of the classification models

can be inferred from the confusion matrix or sometimes
called as error matrix. Each row of a typical confusion
matrix represents the instances of a true class, while each
column represents the instances of a predicted class. The
confusion matrix as a whole represents the confusion by the
model to predict different classes. In Fig. 4, the normalized
confusion matrix is shown for XGB and LGBM with the
three output classes, i.e., prompt, nonprompt, and the
background. Both XGB and LGBM have similar predic-
tions; the backgrounds and the nonprompt dimuon pairs are
identified correctly with 100% accuracy; however, the
models misidentify 2% of the dimuons coming from the

TABLE II. Parameters used in XGB and LGBM with corre-
sponding values obtained through the grid search method.

XGB LGBM

Learning rate 0.3 0.1
Subsample 1.0 1.0
No. of trees 60 60
Maximum depth 3 3
Objective Softmax Softmax
Metric Mlogloss Multilogloss
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prompt J=ψ as the nonprompt dimuons. As the ratio of
prompt to nonprompt is around 10∶1, this discrepancy in
the identification has less effect on the prompt; but it may
enhance the nonprompt production yield. Initially, this 2%
misclassification yield coming from the prompt J=ψ to the
nonprompt J=ψ , was suspected to be contributed from the
indirect prompt production, which are the decays from
higher excited states of charmonia. This is because, they
might not have produced and decayed exactly at the
primary vertex, and therefore may have traveled a finite
pseudoproper decay length before decaying. This probable
cause is discarded as a similar prediction is obtained while
dealing with dataset having only indirectly produced
prompt J=ψ . So, this misclassification error is inherited
in the model itself.
Figure 5 shows the percentage importance score of each

feature during training for both XGB and LGBM models.
In the context of decision trees, the importance score for a

feature is defined as the number of times the feature is used
to split a node. The importance score shown in the figure
indicates how useful or valuable each feature is during the
construction of the boosted decision trees. As one can infer
from the figure, the input features that carry the most
information about the production species of the recon-
structed dimuon pairs are mμμ and cτ, and hence, these are
the crucial features for this classification task. In the LGBM
model, the order of relative importance to the classification
task is mμμ > cτ > pT;μμ > ημμ. In contrast, XGB requires
only mμμ and cτ to make a prediction, whereas the model
discards the contribution of pT;μμ and ημμ. Another aspect to
learn from this figure is that for the same classification task,
different models can learn from the same input features
with different importance scores. However, for this clas-
sification task, mμμ and cτ hold the highest importance
scores in both models.

FIG. 3. Learning curve (loss versus number of decision trees)
for both training (blue) and validation (orange) for both XGB
(top) and LGBM (bottom).

FIG. 4. Confusion matrix for both XGB (top) and LGBM
(bottom) representing the accuracy and discrepancy in the true
and prediction for prompt, nonprompt, and background dimuon
pairs.
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IV. RESULTS

Figure 6 shows the transverse momentum (pT) spectra for
the inclusive, prompt, and nonprompt J=ψ in minimum bias
pp collisions at

ffiffiffi

s
p ¼ 13 TeV inmidrapidity (jyj < 0.9) and

forward rapidity (2.5 < y < 4). Additionally, the pT spec-
tra for pp collisions at

ffiffiffi

s
p ¼ 7 TeV in midrapidity

(jyj < 0.9) are also added. These results include PYTHIA8

(true), and the predictions from both the trained models,
i.e., XGB and LGBM, which are trained with minimum
bias pp collisions at

ffiffiffi

s
p ¼ 13 TeV data. Here, J=ψ →

μþ þ μ− channel is used to reconstruct the pT spectra. At
first glance, one notices that the J=ψ produced from the
b-hadron decays have a significantly lower yield in the low-
pT region than the prompt J=ψ . However, this difference in

their production yield tends to decrease as one moves
towards high pT. These observations using PYTHIA8 are
consistent with the experimental measurements [50,53,54].
It is seen that both the machine learning models, XGB and
LGBM, can accurately identify the inclusive and prompt
dimuon pairs originating from J=ψ , and thus, their pre-
dictions for the pT spectra match well with the results
obtained from PYTHIA8 (true). However, some discrepancy
ariseswhen bothXGBandLGBMmodels try to identify the
dimuon pairs coming from the nonprompt J=ψ . Both
models consistently overestimate the yield of nonprompt
J=ψ . The predictions from the LGBM model are slightly
worse at low-pT for the midrapidity case as compared to the
XGB model, whereas in the intermediate to high-pT, both
the models are fairly comparable in accuracy. As discussed
earlier in the description of Fig. 4, this overestimation of the
yield of the nonprompt J=ψ predicted by both the models is
a direct consequence of themisidentification of the dimuons
coming from the prompt J=ψ as the nonprompt dimuons.
In addition, both XGB and LGBM models are found to

be robust for the energy dependence predictions of inclu-
sive, prompt, and nonprompt J=ψ pT spectra as seen in
Fig. 6 for pp collisions at

ffiffiffi

s
p ¼ 7 TeV. It is important to

note that the models are trained with
ffiffiffi

s
p ¼ 13 TeV data,

while they can still make predictions for
ffiffiffi

s
p ¼ 7 TeV.

While XGB retains its accuracy of prediction in the entire
pT range for the inclusive and prompt J=ψ in pp collisions
at

ffiffiffi

s
p ¼ 7 TeV, a similar discrepancy for the nonprompt

case is observed in pp collisions at
ffiffiffi

s
p ¼ 7 TeV as seen in

pp collisions at
ffiffiffi

s
p ¼ 13 TeV. On the other hand, although

LGBM retains its accuracy for the inclusive and prompt
J=ψ , it starts to deviate much from the true values towards
the lower transverse momentum regions. The success of the
models in learning and predicting the energy dependence of

FIG. 5. Training importance scores (%) of pseudoproper decay
length (cτ), reconstructed dimuon mass (mμμ), transverse mo-
mentum (pT;μμ) and pseudorapidity (ημμ) for LGBM (orange),
and XGB (blue).
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FIG. 6. The top panel shows the transverse momentum spectra for the inclusive, prompt and nonprompt J=ψ in pp collisions at
ffiffiffi

s
p ¼ 13 TeV measured in the midrapidity (jyj < 0.9) and forward rapidity (2.5 < y < 4), and pp collisions at

ffiffiffi

s
p ¼ 7 TeV in the

midrapidity (jyj < 0.9) using PYTHIA8 along with the predictions from the XGB and LGBMmodels. The middle panel shows the ratio of
XGB to PYTHIA8, and the bottom panel shows the ratio of LGBM to PYTHIA8.
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inclusive, prompt, and nonprompt production demonstrates
the robustness and accuracy of the models. This could be
attributed to the fact that most of its learning comes from the
invariant mass and the pseudoproper decay length of the
dimuon pairs, which are independent of the collision energy.
Figure 7 represents the fraction of J=ψ produced from

b-hadron decays (fB) as a function of transverse momen-
tum at midrapidity in minimum bias pp collisions at

ffiffiffi

s
p ¼

13 TeV using PYTHIA8. The results are compared with the

predictions from XGB and LGBM. The experimental data
from ALICE [50] are added. Here, the trend of fB as a
function of pT is similar to the experimental observations,
where the value of fB is found to be increasing with pT in
the range 5.0 ≤ pT ≤ 20.0 GeV=c. It is seen that the value
of fB remains almost flat and is independent of pT in pT <
5.0 GeV=c and pT > 20.0 GeV=c range. By using the
machine learning models, we can directly identify the
source of the dimuon pairs and, hence, it becomes easy to
estimate fB in very fine bins of pT, which leads to this
observation. As the production fraction of nonprompt J=ψ
becomes larger in high pT, it is natural to observe that the
difference in the pT spectra between prompt and non-
prompt J=ψ becomes smaller in high-pT as seen in Fig. 6.
Figure 8 represents the rapidity spectra for inclusive,

prompt, and nonprompt J=ψ in minimum bias pp collisions
at

ffiffiffi

s
p ¼ 13 TeV and

ffiffiffi

s
p ¼ 7 TeV using PYTHIA8 includ-

ing the predictions from XGB and LGBM models. The
inclusive and prompt J=ψ are found to have a flat and
rapidity independent yield in the region jyj < 2.5, after
which the yield starts to decrease. On the other hand, for the
nonprompt case, the yield is independent of rapidity only for
a smaller rapidity coverage, i.e., jyj < 1.0. These features of
the rapidity spectra for different production modes of J=ψ
using PYTHIA8 are consistent with the experimental mea-
surements reported inRef. [50]. Interestingly, the predictions
from both XGB and LGBM agree with the PYTHIA8 values
for the inclusive and prompt J=ψ values, while the values for
nonprompt J=ψ are slightly overestimated. Such a study
using a broad range of rapidity is to demonstrate the
usefulness and validity of the machine learningmodels used.
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FIG. 7. Fraction of J=ψ produced from b-hadron decays (fB) as
a function of transverse momentum at the midrapidity in
minimum bias pp collisions at

ffiffiffi

s
p ¼ 13 TeV using PYTHIA8

and the predictions from XGB and LGBM, compared with the
corresponding experimental results from ALICE [50].
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However, an experimental measurement involving muons is
not practical at the midrapidity, where the experiment is a
multipurpose one which deals with particle identification,
like the ALICE at the LHC and the STAR at the RHIC.
One can observe the magnitude of disagreement in the

XGB and LGBM predicted values for the nonprompt J=ψ
yield with the true values from the simulation is similar to
the pT spectra shown in Fig. 6 for both the collision
energies. For the case of nonprompt J=ψ , the yield ratio of
XGB to PYTHIA8 is almost a constant with a value of 1.3;
however, the yield ratio of LGBM to PYTHIA8 is slightly
higher in the midrapidity and decreases slowly while
moving to forward rapidity. These observations are similar
for both collision energies.
We suspect these discrepancies in the prediction for the

nonprompt J=ψ are due to the same misidentification of
prompt as nonprompt as discussed already in Sec. III C.
However, this discrepancy in the values for the prompt and
nonprompt J=ψ can be fixed by considering the magnitude
of mispredictions in Fig. 4. This is discussed in detail in the
Appendix.
Figure 9 depicts the normalized pT-integrated J=ψ yield

for the inclusive, prompt, and nonprompt J=ψ as a function
of normalized charged particle density at midpseudorapid-
ity using PYTHIA8, which includes the predictions from
XGB and LGBMmodels for pp collisions at

ffiffiffi

s
p ¼ 13 TeV

and
ffiffiffi

s
p ¼ 7 TeV. Figure 9 also includes the ALICE data

comparison for inclusive J=ψ yield (measured in the
dielectron channel at the midrapidity) in pp collisions at
ffiffiffi

s
p ¼ 13 TeV measured in the V0 region (multiplicity
measurement), i.e., −3.7< η<−1.7 and 2.8< η< 5.1 [55].

The normalized yields for inclusive, prompt, and non-
prompt J=ψ from PYTHIA8 are found to increase with the
increase in the normalized charged particle density for
both the collision energies. The increase in yield is
significantly enhanced for the nonprompt J=ψ , which is
consistent with the values reported in Refs. [56,57].
While PYTHIA8 slightly overestimates the experimental
data, it almost maintains the overall trend of the normal-
ized yield for the inclusive J=ψ . Towards higher multi-
plicities in the final state, J=ψ from b decays show an
increasing trend with nonlinear behavior. The slopes of
these multiplicity-dependent yields of inclusive, prompt,
and nonprompt J=ψ show energy dependence with higher
slopes at higher collision energies. The predictions from
XGB and LGBM give an overall good estimation for
PYTHIA8 while deviating around 10% towards the lower
multiplicity for the nonprompt J=ψ cases for both colli-
sion energies.

V. SUMMARY

In this work, an effort ismade to disentangle the inclusive,
prompt, and nonprompt J=ψ from the uncorrelated back-
ground dimuon pairs using machine learning tools. We use
experimentally available inputs for the models. The J=ψ
meson are reconstructed in the μþ þ μ− decay channel. For
each dimuon pair, we require its invariant mass (mμμ),
transverse momentum (pT;μμ), pseudorapidity (ημμ), and
the pseudoproper decay length (cτ) as the input to the
models. We use XGBoost and LightGBM models for this
classification task. The training of the models is performed
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FIG. 9. Top panel shows the normalized pT-integrated inclusive, prompt, and nonprompt J=ψ yield as a function of normalized
charged particle pseudorapidity density at the mid pseudorapidity region with multiplicity selection at the V0 region (V0M) for
minimum bias pp collisions at
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s
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ffiffiffi

s
p ¼ 7 TeV (right) using PYTHIA8 and includes the predictions from XGB and

LGBMmodels, and comparison with experimental data measured at ALICE [55]. The middle panel shows the ratio of XGB to PYTHIA8,
and the bottom panel shows the ratio of LGBM to PYTHIA8.
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with the minimum bias pp collisions at
ffiffiffi

s
p ¼ 13 TeV

simulated with PYTHIA8. The predictions from both the
models are tested for pp collisions at

ffiffiffi

s
p ¼ 13 TeV and pp

collisions at
ffiffiffi

s
p ¼ 7 TeV. Both the models show accuracy

up to 98%; however, they misidentify 2% of the prompt J=ψ
as the nonprompt. The transverse momentum (pT) and
pseudorapidity (η) differential measurements of inclusive,
prompt, and nonprompt J=ψ , its multiplicity dependence,
and the pT dependence of fraction of nonprompt (fB) are
shown. These results are compared to experimental findings
wherever possible.
This study presents a unique method to separate the

production of prompt and nonprompt J=ψ from the
uncorrelated background dimuon pairs. As the models
do not include any fitting to the pT differential spectra,
it can be applied to identify each dimuon pairs separately
having any value of pT in any rapidity range and thus allow
us to probe the production fraction, fB of nonprompt J=ψ
even in fine bins of pT, η, and y. The direct identification of
dimuon pairs as prompt or nonprompt can help study many
aspects of charmonia and bottomonia production, which
are almost impossible using conventional methods. One
such application would be the effect of polarization on
prompt and nonprompt J=ψ production.
In addition, ALICE has reported the nonlinearity in the

normalized J=ψ yield at the midrapidity in the dielectron
channel towards higher final state normalized multiplicity
[58]. As seen in this present study, such behavior is an
outcome of the nonprompt J=ψ both at the mid- and
forward rapidities. The present method can be used in
the experiments to separate prompt from nonprompt J=ψ
and hence study the related production dynamics.
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APPENDIX: BIN-WISE YIELD CORRECTION

The inconsistency between the true and the predicted
values for the nonprompt J=ψ , as shown in Figs. 6 and 8
can be corrected by correcting the yields of each bin in the
transverse momentum, rapidity, and spectra. Considering
the correction factor is independent of transverse momen-
tum, rapidity, and pseudorapidity, for a given bin i, the
corresponding corrected prompt and nonprompt J=ψ yield
is given by the following expression:

Ycorr
p;i ¼ Yuncorr

p;i

1 − f
; ðA1Þ

Ycorr
np;i ¼ Yuncorr

np;i −
f

1 − f

Yuncorr
np;i Yuncorr

p

Yuncorr
np

: ðA2Þ

In Eqs. (A1) and (A2), f denotes the correction factor for
the prompt yield, which is 0.02 in our case for both XGB and
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FIG. 10. Transverse momentum spectra (left), rapidity spectra (right) in minimum bias pp collisions at
ffiffiffi

s
p ¼ 13 TeV for inclusive,

prompt, and nonprompt J=ψ using PYTHIA8 compared with the predictions from XGB and LGBM with corrections.
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LGBM. Yp;i and Ynp;i are the yields in the ith bin of the
spectra for the prompt and nonprompt, respectively, whereas
Yp and Ynp denotes the total yields. The superscripts “corr”
and “uncorr” stand for the corrected and uncorrected yields,
respectively. Figure 10 shows the corrected transverse
momentum and rapidity spectra in minimum bias pp colli-
sions at

ffiffiffi

s
p ¼ 13 TeV for the prompt, nonprompt, and the

inclusive J=ψ . The transverse momentum spectra are calcu-
lated in the midrapidity (jyj < 0.9) regions. As one can see,
the nonprompt J=ψ predictions after implementing the
corrections using Eq. (A2) matches the PYTHIA8 calculations
quitewell for all the spectra.The reason for notmaking such a
correction in the present study is to demonstrate the actual
predictions given by the ML models.
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