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Inspired from perturbative calculations, this work introduces imaginary (ΩI) and real (Ω) rotation effects
to the pure SUð3Þ gauge potentials simply through variable transformations: the empirical Polyakov
loop (PL) potentials can be rewritten as functions of the imaginary chemical potentials of gluons and
ghosts ðqijÞ, and the transformations are taken as qij → qij � ΩI=T and qij → qij � iΩ=T, respectively.
For the PL potential of Fukushima (V1), a smaller imaginary rotation ΩI tends to suppress PL at all
temperatures, and the deconfinement transition keeps of the first order. However, for the PL potential of the
Munich group (V2), ΩI tends to enhance PL at low temperature T, consistent with lattice simulations, but
suppresses PL at high T, consistent with perturbative calculations. Moreover, the deconfinement alters from
first order to crossover with increasing ΩI as is expected from lattice simulations. On the other hand, the
real rotation Ω tends to enhance PL at relatively low T for both potentials, and the (pseudo)critical
temperature decreases with Ω as expected. Therefore, we find that analytic continuation of the phase
diagram from imaginary to real rotation is not necessarily valid in the nonperturbative region. Finally, we
apply the more successful PL potential V2 to the Polyakov–Nambu–Jona-Lasinio model and discover that
ΩI tends to break chiral symmetry whileΩ tends to restore it. Especially, the modified model is even able to
qualitatively explain the lattice result that a larger T would catalyze chiral symmetry breaking for a largeΩI.
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I. INTRODUCTION

Recently, rotational or vortical effects have been of great
interests to both theorists and experimentalists in high-
energy nuclear physics [1]. Mainly, three aspects of rotation
are extensively concerned in the literature: the anomalous
transport phenomena, the phase diagrams of QCD, and the
polarizations of hyperons and ϕ mesons. The former two
are more of theoretical interests and have been explored
with a variety of methods or effective models, while the last
closely connects theories to experiments and promotes
mutual developments. The earliest study of vortex involved
anomalous transport is the chiral vortical effect [2,3], which
was proposed right after the chiral magnetic effect [4,5]
inspired from the similar polarization effects of rotation and
magnetic field. Later, more anomalous phenomena were
discovered, such as the chiral vortical separation effect [6],
magnetovorticity effect [7], and chiral electric vortical
effect [8,9]. In 2005, Liang and Wang proposed searching
for the global polarization of hyperons in heavy ion
collisions [10], but no significant signal was detected in
the high-energy peripheral heavy ion collisions. The
interests were renewed in 2016 when significant signals
were found at smaller values of collision energy [11], and
the local polarizations were explored for the first time in
both the longitudinal and transversal directions [12–20].
If one translates the polarization signals into the angular

velocities of rotation, the magnitude was evaluated to be as

large asΩ ¼ 9 × 1021 s−1 [11]; thus, the quark-gluon plasma
was regarded as the most vortical fluid in the Universe. In
natural units, the rotation velocity is Ω ¼ 6 MeV, and the
effective chemical potential lΩ is comparable to the QCD
scale ΛQCD ∼ 200 MeV for the angular momentum l ≥ 30.
Since then, the effects of rotation on QCD phases were
extensively studied including the traditional topics such as
chiral symmetry and confinement [21–23] and the possibil-
ities of color superconductivity [21], pion superfluidity
[24–26], and rho meson superconductivity [27,28]. The first
studies of such rotational effects were carried out in the chiral
effective Nambu–Jona-Lasinio (NJL) model where quarks
are the elementary degrees of freedom [21–23]. It was found
that rotation tends to suppress pairing states with zero angular
momentum, such as chiral condensates and two-flavor color
superconductive (2SC) diquark condensates [21]. Later, the
Klein-Gordon theory predicted that pion superfluidity could
appear in a QCD system with parallel magnetic field and
rotation [24], which was then confirmed by the studies in the
NJL model [25,26]. Furthermore, such a circumstance was
carefully checked in advance, and rho meson superconduc-
tivity was found to be more favored for a larger magnetic
field [28].
These years, several lattice QCD (LQCD) simulations

were carried out to understand the features of confinement
and chiral symmetry in the presence of an imaginary
rotation ΩI as there is no sign problem [29–31]. There
seem contradictions among the results. For homogeneous
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phases, ΩI would break confinement and restore chiral
symmetry, and hence the pseudocritical temperature Tc
would decrease with ΩI for a finite system [29,31]. For
inhomogeneous phases, ΩI would suppress deconfinement,
and Tc would increase with ΩI [30]. In the case of a real
rotation, there is sign problem in principle as the effective
chemical potentials lΩ would render the action complex
valued [22]. So, one usually supposes the analytic continu-
ation to be valid for finite rotations and obtains the phase
diagram of Ω from that of ΩI. Then, if one translates the
homogeneous results, the conclusion would be that Tc
increases with Ω [29,31], opposite to the findings in the
NJL model [21–23]. To understand that, perturbative cal-
culations and effective models had been applied to such
systems, but most of the results turned out to be “unsuc-
cessful” [32–35] except a few studies [36,37]. Especially, the
perturbative calculations started with the completely decon-
fined phase at high temperature, where the PL is 1 and only
gluons are the relevant degrees of freedom, and found thatΩI
would reinforce confinement [32]. However, ghosts are the
reasons of confinement at low temperature in the language of
LQCD [38] and would also be directly affected by rotations
[32]. In that sense, the perturbative results do not necessarily
contradict with the LQCD simulations, where the PL was
found to be much less than 1 around Tc [38].
In this work, we want to find a way to reasonably

introduce rotation effects into the gluon sector of QCD and
then check whether it is reliable or not to obtain the real
rotation effect simply through analytic continuation of the
LQCD data. The paper is organized as follows. In Sec. II,
we try to introduce the effects of imaginary and real
rotations into the pure SUð3Þ gauge theory in Sec. II A
and compare the results of two empirical Polyakov loop
(PL) potentials in Secs. II B 1 and II B 2, respectively.
Then, we extend the work to the three-flavor PNJL model
to study the properties of QCD system more realistically in
Sec. III. Finally, a summary will be given in Sec. IV.

II. PURE SUð3Þ GAUGE THEORY

A. Introduction of rotation effects

In the pure SUð3Þ gauge theory, the Polyakov loop
serves as a true order parameter for the Z3 center symmetry
of the gauge group, which is directly related to confinement

[38]. It is defined as L≡ 1
Nc
trce

ig
R

β

0
A4dτ, where β ¼ 1=T is

inverse temperature and A4 ≡ Aa
4
λac
2
is the temporal com-

ponent of the non-Abelian gauge field with λac ða ¼ 1–8Þ
the Gell-Mann matrices in color space. Usually, the expect-
ation value of A4 is taken as a diagonal and traceless
constant matrix, that is, gA4 ¼ Tdiagðq1; q2; q3Þ with
q1 þ q2 þ q3 ¼ 0 [38]; then, it follows that

Lðq1; q2; q3Þ ¼
1

Nc
ðeiq1 þ eiq2 þ eiq3Þ: ð1Þ

With respect to that, imaginary color chemical potentials
are introduced to both gluons and ghosts, that is,

�q31; �q21; �q32 ð2Þ

with qij¼qi−qj [38]. Since�qij always show up together,
we only take qijði > jÞ as the independent variables in the
following.
According to the perturbative study in Ref. [32], the

imaginary rotation ΩI introduces extra imaginary chemical
potentials to both gluons and ghosts. And in the deconfined
phase, the effect can be equivalently accounted for by simply
taking two branches of variable transformations to qij in the
thermodynamic potential of physical gluons, that is,

qij → qij þ sΩ̃I ð3Þ

with Ω̃I ≡ ΩI
T , and averaging over s ¼ �1. On the other hand,

the contributions of ghosts were found to be indispensable in
order to explain confinement at low temperature [38]. How
should the imaginary rotation effect be introduced to the
ghosts? In the deconfined phase, ΩI would affect ghosts in a
way similarly as physical gluons, but to introduce an effective
chemical potential, ilΩl, states with orbital angular momen-
tum (OAM) l are required for the scalar ghosts,while the ones
with OAM l� 1 are required for the transversal gluons [32].
For the origin r ¼ 0 [32], it is true that ΩI does not affect
the ghosts as only the states with zero l contribute. However,
lattice QCD usually explores the spatial average of PL
[29,31], in which case the contributions of the states with
l ≠ 0 could also be important. Take a cylindrical system with
radius R for example, we compare the nth eigenenergies k0;n
and k1;n that satisfy the boundary condition Jlðkl;nRÞ ¼ 0 in
Fig. 1. As can be seen, k1;n is slightly larger than k0;n for a
given n. Actually, there are more restrictive unequal relations
among the eigenenergies, that is [39],

k0;n < k1;n < k0;nþ1 < k1;nþ1; ð4Þ

FIG. 1. The nth eigenenergies kl;n that satisfy Jlðkl;nRÞ ¼ 0 for
l ¼ 0 (blue) and l ¼ 1 (yellow).
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so Ωl could induce a remarkable effect to ghosts on average.
In light of that, we will intuitively introduce the rotational
effect to gluons and ghosts by considering the leading-order
nontrivial contributions; that is, the transformations in Eq. (3)
would be extended to the thermodynamic potential of
confined phase.
For the pure SUð3Þ gauge theory, the thermodynamic

potential is usually presented as a function of PL with the
expressions obtained by fitting to lattice simulations [38].
The advantage of such a thermodynamic potential is that
the PL can be self-consistently calculated from the gap
equation and thus the confinement-deconfinement transi-
tion can be well identified from the feature of the order
parameter. In the market, there are two most popular
parametrizations of the PL potential V, which are

V1ðL;L�Þ
T4

¼ −
aðT̃Þ
2

jLj2 − 1.75

T̃3
lnHðL;L�Þ;

aðT̃Þ ¼ 3.51 −
2.47

T̃
þ 15.2

T̃2
ð5Þ

given by Fukushima [40] and

V2ðL; L�Þ
T4

¼ −
aðT̃Þ
2

jLj2 − 0.75
6

ðL3 þ L�3Þ þ 7.5
4

jLj4;

aðT̃Þ ¼ 6.75 −
1.95

T̃
þ 2.625

T̃2
−
7.44

T̃3
ð6Þ

given by the Munich group [41]. Here, T̃ ≡ T=T0 is the
reduced temperature with T0 ¼ 0.27 GeV, and the Haar
measure is defined as [38]

HðL; L�Þ ¼ 27½1 − 6jLj2 þ 4ðL3 þ L�3Þ − 3jLj4�
¼

Y
i;j¼1;2;3;i>j

jeiqi − eiqj j2: ð7Þ

To effectively introduce rotational effect into the PL
potentials, all the terms involved in V1 and V2 must be
reexpressed as functions of qij. The relevant terms can be
rewritten as

jLj2ðqijÞ ¼
1

Nc
þ 1

N2
c

X
t¼�

ðetiq31 þ etiq21 þ etiq32Þ; ð8Þ

HðqijÞ ¼
Y

i;j¼1;2;3;i>j

ð2 − eiqij − e−iqijÞ; ð9Þ

L3ðqijÞ ¼
1

N3
c
e3iq1ð1þ eiq21 þ eiq31Þ3

¼ 1

N3
c
e−iðq21þq31Þð1þ eiq21 þ eiq31Þ3; ð10Þ

L�3ðqijÞ ¼
1

N3
c
eiðq21þq31Þð1þ e−iq21 þ e−iq31Þ3; ð11Þ

then, the PL potentials become

V1ðqijÞ
T4

¼ −
aðT̃Þ
2

jLj2ðqijÞ −
1.75

T̃3
lnHðqijÞ; ð12Þ

V2ðqijÞ
T4

¼ −
aðT̃Þ
2

jLj2ðqijÞ −
0.75
6

½L3ðqijÞ þ L�3ðqijÞ�

þ 7.5
4

½jLj2ðqijÞ�2: ð13Þ

So, by applying the variable transformations in Eq. (3),
the PL potentials with imaginary rotation effect are,
respectively,

V̄1ðqij;ΩIÞ ¼
1

2

X
s¼�

V1ðqij þ sΩIÞ; ð14Þ

V̄2ðqij;ΩIÞ ¼
1

2

X
s¼�

V2ðqij þ sΩIÞ: ð15Þ

Eventually, recalling that in Ref. [32], the color chemical
potentials were alternatively expressed as

q31¼ϕ1; q21¼
ϕ1

2
þ

ffiffiffi
3

p

2
ϕ2; q32¼

ϕ1

2
−

ffiffiffi
3

p

2
ϕ2 ð16Þ

with ϕ1 ∈ ½0; 2π� and ϕ2 ∈ ½− ϕ1ffiffi
3

p ; ϕ1ffiffi
3

p �, and we can further

rewrite the PL potentials as functions of ϕ1 and ϕ2, that is,

V1ðϕ1;ϕ2;ΩIÞ ¼ V̄1

�
ϕ1;

ϕ1

2
þ

ffiffiffi
3

p

2
ϕ2;

ϕ1

2
−

ffiffiffi
3

p

2
ϕ2;ΩI

�
;

ð17Þ

V2ðϕ1;ϕ2;ΩIÞ ¼ V̄2

�
ϕ1;

ϕ1

2
þ

ffiffiffi
3

p

2
ϕ2;

ϕ1

2
−

ffiffiffi
3

p

2
ϕ2;ΩI

�
:

ð18Þ

One can check that Vðϕ1;ϕ2;ΩIÞ is real valued as it
should be, since there is no sign problem for the QCD
action with finite ΩI. Thus, we can search for the global
minimum of the thermodynamic potentials with respect to
ϕ1 and ϕ2 in the constrained region, and then the PL L can
be evaluated according to Eq. (1). For the latter purpose, we
work out qi (i ¼ 1, 2, 3) first as functions of ϕ1 and ϕ2

according to Eq. (16), and we have

q1¼−
ϕ1

2
−

ϕ2

2
ffiffiffi
3

p ; q2¼
ϕ2ffiffiffi
3

p ; q3¼
ϕ1

2
−

ϕ2

2
ffiffiffi
3

p : ð19Þ
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Note that L is not necessarily real valued at finite ΩI, so we will eventually present the absolute value of L instead. To
determine ϕ1 and ϕ2, gap equations can be derived by following ∂V=∂ϕ1 ¼ ∂V=∂ϕ2 ¼ 0, that is,

0 ¼ −
iaðT̃Þ
8N2

c

X
t;s¼�

t½2etiqs31 þ etiq
s
21 þ etiq

s
32 � þ 1.75i

4T̃3

X
s¼�

�
2ðeiqs31 − e−iq

s
31Þ

2 − eiq
s
31 − e−iq

s
31

þ eiq
s
21 − e−iq

s
21

2 − eiq
s
21 − e−iq

s
21

þ eiq
s
32 − e−iq

s
32

2 − eiq
s
32 − e−iq

s
32

�
; ð20Þ

0 ¼ −
ffiffiffi
3

p
iaðT̃Þ
8N2

c

X
t;s¼�

tðetiqs21 − etiq
s
32Þ þ 1.75

ffiffiffi
3

p
i

4T̃3

X
s¼�

�
eiq

s
21 − e−iq

s
21

2 − eiq
s
21 − e−iq

s
21

−
eiq

s
32 − e−iq

s
32

2 − eiq
s
32 − e−iq

s
32

�
ð21Þ

for V1ðϕ1;ϕ2;ΩIÞ with qsij ¼ qij þ sΩI and

0 ¼
X
t;s¼�

�
−
iaðT̃Þ
8N2

c
t½2etiqs31 þ etiq

s
21 þ etiq

s
32 � þ 0.75i

8N3
c
t½e−tiðqs21þqs

31
Þð1þ etiq

s
21 þ etiq

s
31Þ2ð1 − etiq

s
31Þ�

þ 7.5i
4N2

c
t

�
etiq

s
31 þ 1

2
etiq

s
21 þ 1

2
etiq

s
32

�
jLj2ðqsijÞ

�
; ð22Þ

0 ¼
X
t;s¼�

�
−

ffiffiffi
3

p
iaðT̃Þ
8N2

c
tðetiqs21 − etiq

s
32Þ þ 0.75

ffiffiffi
3

p
i

24N3
c

t½e−tiðqs21þqs
31
Þð1þ etiq

s
21 þ etiq

s
31Þ2ð1þ etiq

s
31 − 2etiq

s
21Þ�

þ 7.5
ffiffiffi
3

p
i

8N2
c

tðetiqs21 − etiq
s
32ÞjLj2ðqsijÞ

�
ð23Þ

for V2ðϕ1;ϕ2;ΩIÞ.

Finally, the formalism with real rotation Ω can be
obtained from the one with imaginary rotation ΩI by taking
the analytic continuation: ΩI → −iΩ. One can easily check
that the thermodynamic potential Vðϕ1;ϕ2;−iΩÞ is still
real valued, so we can pin down the ground state by
minimizing Vðϕ1;ϕ2;−iΩÞ over ϕ1 and ϕ2. It is easy to see
from the exponentials

etiq
s
ij → etðiqijþsΩÞ ð24Þ

that real rotation Ω functions as a real chemical potential
to gluons and ghosts. Usually, gluons tends to break
confinement, while ghosts tends to reinforce it in the
language of lattice QCD. So, recalling that the contribu-
tions of ghosts are larger than those of gluons at low
temperature [38], one might expect that Ω favors confine-
ment when both numbers of gluons and ghosts increase
withΩ. As mentioned in Ref. [23], the boundary effect has
to be taken into account self-consistently for real rotation
in order to satisfy the causality. Here, since there is no
summation over transversal eigenenergy in the empirical
PL potentials, we simply neglect that.

B. Numerical results

For the Polyakov loop potentials V1ðϕ1;ϕ2;ΩIÞ and
V2ðϕ1;ϕ2;ΩIÞ just developed, the corresponding numerical
results are presented in Secs. II B 1 and II B 2, respectively.

1. Polyakov loop potential V1

In Fig. 2, we demonstrate the PL jLj as a function
of temperature T for several imaginary rotations. As can
be seen, ΩI tends to suppress jLj for all T, and the
deconfinement transition is of first order—both features
are consistent with the predictions of perturbative calcu-
lations [38]. Remember that the transition is of strong first
order at ΩI ¼ 0 for V1 [40], so it is not surprising that it
remains of first order even when ΩI is large. In fact, the
imaginary rotation effect is quite nontrivial in the Haar

FIG. 2. The absolute value of Polyakov loop, jLj, as a function
of temperature T for imaginary rotations ΩI ¼ 0, 0.05 and
0.1 GeV.
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measure term, and lots of local minima could be devel-
oped with respect to ϕ1 and ϕ2 at medium T; hence,
several branches of transitions can be involved. For a
wider range of ΩI, the relevant transition temperature is
illustrated in Fig. 3, where three branches of transitions
can be identified: jLj≈0→ jLj≈0.4, jLj ≈ 0.8 → jLj≲ 1,
and jLj≲ 1 → jLj ¼ 1. Though the critical temperature
increases with ΩI for the deconfinement transition
jLj ≈ 0 → jLj ≈ 0.4, as shown in Fig. 2, it decreases with
ΩI for the other transitions, and there is even a critical
end point.
For the case with real rotation Ω, we demonstrate the PL

jLj as a function of temperature T in Fig. 4 and the critical
temperature as a function of Ω in Fig. 5. Comparing Fig. 4
with Fig. 2, we find that real rotation tends to break
confinement while imaginary rotation tends to reinforce it,
as was shown in the perturbative study [32]. Such an
effect of real rotation is opposite to the naive analysis in the
end of the previous section and implies that the centri-
fugal splitting effect overcomes the particle number

enhancing effect. Moreover, the mathematical structure
of V1ðϕ1;ϕ2;−iΩÞ as a function of ϕ1 and ϕ2 is much
simpler than that of V1ðϕ1;ϕ2;ΩIÞ for given rotations, so
only one branch of the first-order phase transition shows up
in Fig. 5. Since this branch corresponds to the deconfine-
ment transition jLj ≈ 0 → jLj ≈ 0.4 in Fig. 2, analytic
continuation of the phase diagram from imaginary to real
rotations seems to be valid here.

2. Polyakov loop potential V2

We demonstrate the PL jLj as a function of temperature
T for different imaginary rotations in Fig. 6. As can be
seen, ΩI tends to enhance jLj at a relatively small T,
consistent with lattice simulations [29,31], but suppresses
it at a relatively large T, consistent with perturbative
calculations [38]. In fact, the sign change of aðT̃Þ around
T ¼ T0 is responsible for such anomalous features: for T a
bit larger than T0, aðT̃Þ > 0, and ΩI reinforces confine-
ment, as has been shown in Ref. [38]; for T ⪅ T0,

1.0

0.25 0.30

1.2

1.4

1.6

1.8

2.0

FIG. 3. The temperature-imaginary rotations (T − ΩI) phase
diagram. The solid and dashed lines correspond to first- and
second-order transitions, respectively, and the blue bullet is a
critical end point.

FIG. 4. The absolute value of Polyakov loop, jLj, as a function
of temperature T for real rotations Ω ¼ 0, 0.05, and 0.1 GeV.

FIG. 5. The temperature-real rotations (T − Ω) phase diagram
with the transition of first order.

0.850.75 0.95

0.3

0.4

FIG. 6. The absolute value of Polyakov loop, jLj, as a function
of temperature T for imaginary rotations ΩI ¼ 0, 0.05, 0.1, 0.15,
and 0.2 GeV.
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aðT̃Þ < 0, and ΩI breaks confinement. The consistent
reverse of the imaginary rotation effect around T ∼ T0

is a strong support of the explanation. Since aðT̃Þ > 0 for
all T in V1, such a reverse does not show up at all in Fig. 2.
Another important observation from Fig. 6 is that the
transition is of weak first order at ΩI ¼ 0 but becomes
crossover for a relatively large ΩI. We can define the
pseudocritical temperature Tc by the peak of ∂T jLj, and
the T −ΩI phase diagram is illustrated in Fig. 7. Though
there is a small oscillation in the phase diagram, the main
trend is that Tc decreases with ΩI, which is consistent with
lattice simulations [29,31]. If the finite boundary effect is
self-consistently taken into account, we believe the
oscillation would eventually disappear as the transition
is smoothed out around T ¼ T0 [29]. In that case, the
reverse may also disappear, and the results may become
more consistent with lattice simulations.
For the case with real rotation Ω, we demonstrate

the PL jLj as a function of temperature T in Fig. 8 and
the (pseudo)critical temperature as a function ofΩ in Fig. 9.

Contrary to the findings in Sec. II B 1, here the effect of real
rotation is the same as that of imaginary rotation on
confinement; compare Fig. 8 with Fig. 6 and Fig. 9 with
Fig. 7. Still, the opposite features of jLj for T < 1.2T0 and
T > 1.2T0 in Fig. 8 are reflections of sign change of
aðT̃Þ around T0. And the study in this section provides
an example that the analytic continuation of the phase
diagram from imaginary to real rotation breaks down. On
the other hand, it is interesting that, even though the effect
of imaginary rotation diverges from one PL potential to
another one, the effects of real rotation are qualitatively the
same. The consistency of real rotation effect is meaningful
since that is the physical situation we are really inter-
ested in.
Why should the effects of imaginary and real rotations be

the same whence the second-order contributions of ΩI and
Ω are nonzero for V2? The point is that the PL potential is
not a trivial function of L and L� anymore when ΩI or Ω is
introduced; rather, it depends on them through the angles
ϕ1 and ϕ2. Take ϕ2 ¼ 0, which is true for the no-rotation
case, for example, the potential V2 is demonstrated as a
function of ϕ1 for ΩI ¼ Ω ¼ 0.05 GeV and T=T0 ¼ 0.9, 1
in Fig. 10. Though the minima are both closely located
around ϕ1 ¼ 4π

3
for T=T0 ¼ 0.9, the temperature T ¼ T0

tends to shift the minimum to larger ϕ1 for the imaginary
rotation, while it shifts to smaller ϕ1 for the real rotation. In
this sense, the effects of ΩI and Ω are indeed opposite to
each other. However, recalling that L ¼ 0 for ϕ1 ¼ 4π

3
,

both shifts tend to enhance the absolute value of PL,
jLj ¼ j 1

3
þ 2

3
cos ϕ1

2
j—that is exactly what we found in

Figs. 6 and 8. Nevertheless, we will see in Sec. III that
the two trends would have different consequences on chiral
symmetry breaking and restoration when quarks are taken
into account.
We summarize the main results about the effects of

imaginary (ΩI) and real (Ω) rotations found from the
Polyakov loop potentials V1 and V2 in Table. I together
with LQCD results.

0.8

0.6

0.4

0.2

0.0
1.3 1.4

FIG. 8. The absolute value of Polyakov loop, jLj, as a function
of temperature T for real rotations Ω ¼ 0, 0.05, 0.1, and
0.15 GeV.

0.95

0.85

0.75

0.25 0.30

FIG. 9. The temperature-real rotations (T − Ω) phase diagram
with the transition of crossover except for the region with Ω ∼ 0.

0.25 0.30

FIG. 7. The temperature-imaginary rotations (T − ΩI) phase
diagram with the transition of crossover except for the region
with ΩI ∼ 0.

GAOQING CAO PHYS. REV. D 109, 014001 (2024)

014001-6



III. THREE-FLAVOR POLYAKOV–NAMBU–JONA-
LASINIO MODEL

Now, we extend the study to a full QCD matter with
gluon degrees of freedom through the modified Polyakov
loop potential and three flavors of quarks through NJL
model [42,43]. According to the studies in Sec. II, the
PL potential V2 is more consistent with the lattice simu-
lations, so we will adopt it for further explorations in this
section. On the other hand, the rotation effects on quark
dynamics have been explored for many years in the NJL
model [21–23,25–28,44], so we are now armed with the
three-flavor Polyakov–Nambu–Jona-Lasinio (PNJL)
model where rotation effects are taken into account in
both quark and gluon sectors. Note that, unlike the baryon
or isospin chemical potential, the rotations can have direct
effects on both gluons and quarks, though it functions

through effective chemical potentials. However, one should
note that there is no interplay between the rotation effects of
the two sectors except implicitly through the quark-PL
coupling. As a consequence, the model might not repro-
duce the numerical results of LQCD so well but could
definitely help us understand the features qualitatively and
physically.

A. Formalism

By introducing the effect of imaginary rotation, the
Lagrangian density of three-flavor PNJL model can be
given as [38,42,43]

LPNJL ¼ ψ̄ ½i=∂ − iγ4ðigA4 þ iΩIðL̂z þ ŜzÞÞ −m0�ψ

þ G
X8
a¼0

½ðψ̄λaψÞ2 þ ðψ̄iγ5λaψÞ2� þ LtH

− V2ðϕ1;ϕ2;ΩIÞ; ð25Þ

where ψ ¼ ðu; d; sÞT is the three-flavor quark field with the
current mass matrix

m0 ≡ diagðm0u; m0d; m0sÞ ð26Þ

and gA4 represents the background SUð3Þ gauge field. In
the imaginary rotation term of quarks, L̂z≡−iðx1∂2−x2∂1Þ
and Ŝz ≡ i

2
γ1γ2 are the operators of orbital and spin angular

momenta, respectively. In the four-quark interaction
terms, the vertices λiði ¼ 1;…; 8Þ are Gell-Mann matrices
in flavor space and λ0 ¼ ffiffiffiffiffiffiffiffi

2=3
p

1. For later use, the ’t Hooft
term LtH ≡ −K

P
t¼�Detψ̄Γtψ can be reexpressed as [42]

LtH ¼ −
K
2

X
t¼�

ϵijkϵimnðψ̄ iΓtψ iÞðψ̄ jΓtψmÞðψ̄kΓtψnÞ ð27Þ

with the interaction vertices Γ� ¼ 14 � γ5 for right- and
left-handed channels, respectively. Here, one should
note the Einstein summation convention for the flavor
indices i, j, k, m, n and the correspondences between
1,2,3, and u, d, s.
For this setup, only gA4 and the scalar condensates

σf ¼ hψ̄ fψ fi ðf ¼ u; d; sÞ are assumed to be nonzero. To
facilitate the study, we would like first to reduce LtH to
an effective form with only four-fermion interactions.
By applying the Hartree approximation to contract a pair
of quark and antiquark in each term [42], we immediately
find

L4
tH¼−Kϵijkϵimnσiðψ̄ jψmψ̄kψn− ψ̄ jiγ5ψmψ̄kiγ5ψnÞ: ð28Þ

Now, the Lagrangian of PNJL model (25) only effectively
involves four-quark interactions after substituting LtH

TABLE I. A summary of the effects of imaginary (ΩI) and real
(Ω) rotations, where ↑=↓ stands for increasing/decreasing and the
orders of deconfinement transition are also listed.

V1 V2 LQCD

ΩI Tc↑ Tc↓ Tc↓
1st order Crossover Crossover

Ω Tc↓ Tc↓ � � �
1st order Crossover � � �

FIG. 10. Assuming ϕ2 ¼ 0, the potential V2 is demonstrated as
a function of ϕ1 for ΩI ¼ 0.05 GeV (upper panel) and Ω ¼
0.05 GeV (lower panel) with T=T0 ¼ 0.9 (blue) and 1 (yellow).
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by L4
tH. Again, contracting the quark-antiquark pairs in all

the four-quark terms, we find the quark bilinear in the form

L2
PNJL ¼ ψ̄ ½i=∂ − iγ4ðigA4 þ iΩIðL̂z þ ŜzÞÞ −m�ψ ; ð29Þ

where the dynamical mass matrix is

m ¼ diagðmu; md; msÞ; ð30Þ

mf ¼ m0f − 4Gσf þ 2Kσjσk ð31Þ

with f ≠ j ≠ k. The G- and K-dependent terms in Eq. (31)
are from the UAð1Þ symmetric and anomalous interactions,
respectively.
Now, the most important mission is to evaluate the

bilinear contribution to the thermodynamic potential in the
presence of rotation. To do that, we consider a cylindrical
system with radius R and simply set the condensates to be
homogeneous across the space. Then, the eigenfunction ψ f
ðf ¼ u; d; sÞ can be presented on the basis of eigenstates of
L̂z and transverse helicity ĥ⊥ ≡ γ5γ3k̂⊥ · Ŝ as [21]

uf;k⊥;kz;l;t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵf þmf

4ϵf

r
eikzx3

0
BBBBB@

J̃l
tJ̃lþ1

kz−itk⊥
ϵfþmf

J̃l
ik⊥−tkz
ϵfþmf

J̃lþ1

1
CCCCCA

ð32Þ

vf;k⊥;kz;l;t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵf þmf

4ϵf

r
e−ikzx3

0
BBBBB@

kz−itk⊥
ϵfþmf

J̃l
tkz−ik⊥
ϵfþmf

J̃lþ1

J̃l
−tJ̃lþ1

1
CCCCCA

ð33Þ

with t ¼ �, the energy ϵfðk⊥; k3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ k23 þm2

f

p
, and

J̃lðk⊥r; θÞ≡ eilθJlðk⊥rÞ. So, the quark Feynman propa-
gators are

Gf ¼
X
t¼�

uf;k⊥;kz;l;tūf;k⊥;kz;l;t ð34Þ

on the variable space k⊥; kz, and l, and then functional
integrations of the quark fields can be carried out to
give [21]

Ωbl ¼ −
X

f¼u;d;s

X∞
l¼−∞

Z
dk2⊥
2π

Z
dk3
2π

Z
R

0

rdr
R2

½J2l ðk⊥rÞ þ J2lþ1ðk⊥rÞ�
�
Ncϵf þ T

X3
j¼1

X
u¼�

ln ½1þ e−ϵ̃fþuiðqjþðlþ1
2
ÞΩ̃IÞ�

�
ð35Þ

with ϵ̃f ≡ ϵf=T. For Ω̃I ¼ 0, recall the normalization property
P∞

l¼−∞ J2l ðk⊥rÞ ¼ 1; the thermodynamic potential can be
reduced to

Ωbl ¼ −2
X

f¼u;d;s

Z
dk2⊥dk3
8π2

�
Ncϵf þ T

X3
j¼1

X
u¼�

ln ½1þ e−ϵ̃fþuiqj �
�
: ð36Þ

This is exactly the same as the one given in Ref. [38] except
that the integration variables are now taken as the trans-
versal momentum k⊥ and longitudinal momentum k3.
For a finite rotation Ω, the radius should satisfy R ≤ Ω−1

for the sake of causality. Then, to average the Bessel
functions over transversal space, the boundary condition
has to be applied at finite R. In Sec. II A, we have
mentioned how the boundary condition can be applied
to the bosonic fields; here, for a Dirac field, the boundary
condition is a little tricky since we cannot require all

components of the wave function to vanish. Instead, no net
current across the boundary was adopted as the physical
boundary condition [23], and we simply have

kl;nR ¼
�
ξl;n; l ≥ 0

ξ−l−1;n; l < 0
; ð37Þ

where ξl;n is the nth zero of JlðzÞ. So, by altering k⊥ to kl;n
and the integration to summation correspondingly, the
bilinear term (35) becomes

Ωbl ¼ −
X

f¼u;d;s

X∞
l¼−∞

X∞
n¼1

2=π
R2J2lþ1ðkl;nRÞ

Z
dk3
2π

Z
R

0

rdr
R2

½J2l ðkl;nrÞ þ J2lþ1ðkl;nrÞ�
�
Ncϵf þ T

X3
j¼1

X
u¼�

ln ½1þ e−ϵ̃fþuiqj �
�

ð38Þ
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with the weight for the summation over n follows that given in Ref. [23]. Recalling the propertiesR
R
0

2rdr
R2 J2l ðkl;nrÞ ¼

R
R
0

2rdr
R2 J2lþ1ðkl;nrÞ ¼ J2lþ1ðkl;nRÞ, it follows that

Ωbl ¼ −2
X

f¼u;d;s

X∞
l¼−∞

1

πR2

X∞
n¼1

Z
dk3
2π

�
Ncϵf þ T

X3
j¼1

X
u¼�

ln ½1þ e−ϵ̃fþuiðqjþðlþ1
2
ÞΩ̃IÞ�

�

¼ −2
X

f¼u;d;s

X∞
l¼0

1

πR2

X∞
n¼1

Z
dk3
2π

�
2Ncϵf þ T

X3
j¼1

X
u;t¼�

ln ½1þ e−ϵ̃fþuiðqjþtðlþ1
2
ÞΩ̃IÞ�

�
: ð39Þ

Here, it is interesting to notice that 1
πR2 plays a role of

degeneracy factor for the summation over n and the
corresponding eigenenergies satisfy k2l;n∝R−2. This is quite
similar to the case with a finite magnetic field [45]: the
degeneracy factor is jqBj

2π for the higher Landau levels n ≥ 1,
and the corresponding Landau energies are 2njqBj.
However, the effects of finite size and magnetic field are
completely different due to the lowest Landau level, with a
vanishing energy, in a magnetic field [45].
In the limitΩI → 0, we find that the bilinear potentialΩbl

in Eq. (39) is still R dependent, inconsistent with Eq. (36).

The reason is that the boundary condition has not been
self-consistently taken into account in Eq. (36) and the
form only corresponds to the thermodynamic limit R → ∞
where the boundary effect is negligible. In this sense,
Eq. (39) must be consistent with Eq. (36) in the limit
R → ∞ as the system considered is exactly the same.
For ΩI ¼ 0, T ¼ 0.15 GeV, and R ¼ 800 GeV−1, we have
checked numerically that the convergent thermal parts are
consistent with each other within an error 0.1%. On the
other hand, the vacuum part of the thermodynamic potential
is divergent and can be regularized as

Ωbl ¼ −2
X

f¼u;d;s

X∞
l¼0

1

πR2

X∞
n¼1

Z
dk3
2π

�
2Ncϵ

Λ
f þ T

X3
j¼1

X
u;t¼�

ln

�
1þ e−ϵ̃fþuiðqjþtðlþ1

2
ÞΩ̃IÞ

��
ð40Þ

by adopting the Pauli-Villars scheme, where the regularized vacuum energy is [42]

ϵΛf ¼
X3
j¼0

ð−1ÞjCj
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2f þ jΛ2

q
: ð41Þ

To facilitate numerical calculations, the integration over k3 can be carried out for the vacuum part, and the thermal part can
be rewritten by utilizing the condition q1 þ q2 þ q3 ¼ 0; we have

Ωbl ¼ −
X

f¼u;d;s

X∞
l¼0

1

π2R2

X∞
n¼1

�
Nc

X3
j¼0

ð−1Þj−1Cj
3ðϵ2f0 þ jΛ2Þ lnðϵ2f0 þ jΛ2Þ

þ 2T
X
t¼�

Z
∞

0

dk3
h
ln
	
1þ 3Le−ϵ̃fþitðlþ1

2
ÞΩ̃I þ 3L�e−2ϵ̃fþ2itðlþ1

2
ÞΩ̃I þ e−3ϵ̃fþ3itðlþ1

2
ÞΩ̃I



þ c:c:

i�
ð42Þ

with ϵf0 ≡ ϵfðkl;n; 0Þ and C−1
2 ¼ 0.

Eventually, the coupled gap equations of chiral condensates follow directly from the definitions σf ≡ hq̄iqii ¼ ∂Ωbl
∂mf

as [42]

σf ¼ −
2

π2R2

X∞
l¼0

X∞
n¼1

�
Ncmf

X3
j¼0

ð−1Þj−1Cj
3 lnðϵ2f0 þ jΛ2Þ

− 3
X
t¼�

Z
∞

0

dk3
mf

ϵf

�
Le−ϵ̃fþitðlþ1

2
ÞΩ̃I þ 2L�e−2ϵ̃fþ2itðlþ1

2
ÞΩ̃I þ e−3ϵ̃fþ3itðlþ1

2
ÞΩ̃I

1þ 3Le−ϵ̃fþitðlþ1
2
ÞΩ̃I þ 3L�e−2ϵ̃fþ2itðlþ1

2
ÞΩ̃I þ e−3ϵ̃fþ3itðlþ1

2
ÞΩ̃I

þ c:c:

��
: ð43Þ

And the total self-consistent thermodynamic potential of the PNJL model can be found to be [46]

ΩPNJL ¼ 2G
X

f¼u;d;s

σ2f − 4Kσuσdσs þΩbl þ V2ðϕ1;ϕ2;ΩIÞ ð44Þ
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by utilizing the definitions of chiral condensates and their relations to dynamical masses (31). SinceΩbl also depends on the
background gauge fields qi (i ¼ 1, 2, 3), the gap equations of ϕ1 and ϕ2 follow ∂ΩPNJL=∂ϕi ¼ 0 (i ¼ 1, 2) as

0¼ −6T
X

f¼u;d;s

1

πR2

X∞
l¼0

X∞
n¼1

Z
dk3
2π

X
t¼�

� ∂L
∂ϕi

e−ϵ̃fþitðlþ1
2
ÞΩ̃I þ ∂L�

∂ϕi
e−2ϵ̃fþ2itðlþ1

2
ÞΩ̃I

1þ 3Le−ϵ̃fþitðlþ1
2
ÞΩ̃I þ 3L�e−2ϵ̃fþ2itðlþ1

2
ÞΩ̃I þ e−3ϵ̃fþ3itðlþ1

2
ÞΩ̃I

þ c:c:

�
þ ∂V2ðϕ1;ϕ2;ΩIÞ

∂ϕi

ð45Þ

with the last term given by the right-hand sides of Eqs. (22)
and (23). And according to Eqs. (1) and (19), the deriv-
atives of L can be evaluated as

∂L
∂ϕ1

¼ i
6
ð−eiq1 þ eiq3Þ;

∂L
∂ϕ2

¼ i

6
ffiffiffi
3

p ð−eiq1 þ 2eiq2 − eiq3Þ: ð46Þ

For the case with real rotation, the thermodynamic
potential and gap equations can be directly obtained
from Eqs. (42)–(45) by taking the analytic continuation:
ΩI → −iΩ. At first glance, it seems that the thermal part in
Eq. (42) would diverge with increasing l. In fact, it would
not if one notices that the eigenenergy kl;n is also l
dependent; since ξlþ1;n > ξl;n þ 1 and ξ0;1 ≈ 2.4, we find
kl;n > ðlþ 1=2ÞR−1 > ðlþ 1=2ÞΩ after applying the cau-
sality condition ΩR ≤ 1 and the divergence disaster is well
avoided. We want to emphasize that by presenting the
OAM l in the form of a natural number the imaginary parts
cancel out in the thermodynamic potential of quarks
even for a real rotation, which means that there is no sign
problem at all for the LQCD simulations [38]. To achieve
that, it is important that only homogeneous phases are
considered and the boundary condition is self-consistently
taken into account.

B. Numerical results

Now, we are going to solve the five coupled gap
equations for given T and ΩI, that is, three in Eq. (43)
and two in Eq. (45). The model parameters can be fixed as

m0u ¼m0d ¼ 5.28MeV; m0s ¼ 0.124 GeV;

Λ¼ 1.13 GeV; G¼ 3.51 GeV−2; K ¼−6.50 GeV−5

ð47Þ

by best fitting to the chiral condensates; pion decay
constant; and masses of pion, kaon, and η mesons from
the Particle Data Group, that is,

hūui ¼ hd̄di ¼ ð−0.25 GeVÞ3; fπ ¼ 93 MeV;

mπ ¼ 138 MeV; mK ¼ 496 MeV; mη ¼ 548 MeV:

ð48Þ

Note that we are not able to reproduce the kaon and η
masses simultaneously with the Pauli-Villars regulariza-
tion. So, the model parameters m0s and K are fixed by
giving the smallest deviations from the experimental
masses, that is, ðm̄K −mKÞ2 þ ðm̄η −mηÞ2. For the param-
eters in Eq. (47), it turns out that the best-fitting masses
are m̄K ¼ 0.409 GeV and m̄η ¼ 0.600 GeV, respectively.
Moreover, the dynamical masses of quarks are mv

u ¼ mv
d ¼

0.220 GeV and mv
s ¼ 0.454 GeV in vacuum, which are all

smaller than the ones with hard-cutoff regularization [46].
In the following, we take a small system with radius

R ¼ 10 GeV−1, for example, so that the causality condition
allows a rotation velocity as large as 0.1 GeV. For
imaginary rotation, the numerical results are illustrated
in Fig. 11, which are found to be qualitatively consistent
with the LQCD simulations [29,31]. Though the absolute
value of the Polyakov loop, jLj, increases with temperature

0.3

0.6

0.5

0.4

0.3

FIG. 11. The masses mfðf ¼ u; d; sÞ (upper panel) and Poly-
akov loop jLj (lower panel) as functions of temperature T for
imaginary rotationsΩI ¼ 0.01 GeV (black solid lines), 0.05 GeV
(blue dotted lines), and 0.1 GeV (red dashed lines).
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regardless of the value of ΩI, the features of the dynami-
cal masses or chiral condensates are quite nontrivial; for
small ΩI, mfðf ¼ u; d; sÞ decrease with T, but for large
ΩI, mfðf ¼ u; d; sÞ slightly decrease and then increase
with T. The latter feature is unexpected as temperature
usually tends to restore chiral symmetry thus reduce
dynamical masses [42,43] but is consistent with the
LQCD results [31]. The reason of the anomalous behav-
ior is that the real part of the PL, ReðLÞ, is negative for
larger ΩI and T, contrary to the positive value in general
case. As a consequence, the temperature effect can be
reversed by the couplings between L=L� and one/two
quark terms in Eq. (42) when

Re½3Le−ϵ̃fþit
2
Ω̃I þ 3L�e−2ϵ̃fþ2it

2
Ω̃I þ e−3ϵ̃fþ3it

2
Ω̃I � < 0: ð49Þ

For ΩI ¼ 0.05 GeV, we can take Ω̃I ¼ 0 around T0; then,
by adopting the lowest transversal energy k0;1 in ϵ̃f , the
inequality implies that ReðLÞ < −0.032. This is roughly
consistent with the threshold of increasing masses in the
upper panel of Fig. 11; see Fig. 12. Furthermore,
according to the results in Fig. 11, the transition becomes
crossover when quark degrees of freedom are taken into
account, but contrary to the LQCD simulations [31], the
pseudocritical temperature increases with ΩI (though
very little). The latter observation indicates that the chiral
symmetry breaking effect of ΩI is stronger than its
deconfinement effect in the modified PNJL model. To
reproduce the LQCD results better, more realistic PL
potential and quark-gluon interplay are needed in the
PNJL model.
For the real rotation, the results are illustrated in Fig. 13.

The features of mfðf ¼ u; d; sÞ and jLj are all consistent
with the initial expectations; that is, jLj increases with both
T and Ω due to deconfinement, while mfðf ¼ u; d; sÞ
decrease with both T and Ω due to chiral symmetry
restoration. The corresponding phase diagram is presented
in Fig. 14, in which the pseudocritical temperatures Tc,
defined by the peak of the absolute values of the

susceptibilities, decrease with Ω as they should [21].
Note that the Tc of the PL jLj is closer to that of s quark
dynamical mass ms. Again, similarly to the pure gauge
theory, such effects of real rotation are opposite to those
analytically continued from the results of the imaginary
rotation [29,31], so the model explorations in Refs. [34,35]
are not necessarily unsuccessful. We hope that the LQCD
simulations with real rotation can help to settle the issues in
the future, as we have shown that there is no sign problem
for a special consideration.

FIG. 13. The masses mfðf ¼ u; d; sÞ (upper panel) and Poly-
akov loop jLj (lower panel) as functions of temperature T for real
rotations Ω ¼ 0 (black solid lines), 0.05 GeV (blue dotted lines),
and 0.1 GeV (red dashed lines).

FIG. 14. The pseudocritical temperatures Tc as functions of real
rotation Ω for mu=d; ms, and jLj in the PNJL model.

0.1

FIG. 12. The real part of the Polyakov loopReðLÞ as a function of
temperature with the baseline corresponding to ReðLÞ ¼ −0.032.
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IV. SUMMARY

The work is composed of two parts: the pure SUð3Þ
gauge theory and the Polyakov–Nambu–Jona-Lasinio
model. Firstly, we try to introduce the rotational effect to
the pure SUð3Þ gauge theory inspired from the pertur-
bative study [32] but without introducing any extra free
parameters. Then, the rotational effects on confinement
are compared for the two most popular empirical
Polyakov loop potentials given by K. Fukushima and
Munich’s group, respectively. Secondly, the more suc-
cessful Munich’s potential is applied to the chiral
effective PNJL model in order to explore the features
of chiral symmetry and confinement simultaneously for
a QCD matter.
For the first part, the main findings can be summarized as

the following: For the PL potential of Fukushima, a smaller
imaginary rotation ΩI tends to suppress PL at all temper-
ature and the deconfinement transition keeps of first order.
At larger ΩI, two more branches of transitions can be
identified: jLj ≈ 0.8 → jLj ≲ 1 of first order and jLj≲ 1 →
jLj ¼ 1 of second order, both the critical temperatures of
which decrease with ΩI. However, for the PL potential of
Munich’s group,ΩI tends to enhance PL at low temperature
T, consistent with lattice simulations [29,31]; but suppress
PL at high T, consistent with perturbative calculations [32].
Moreover, we only find one branch of deconfinement
transition which alters from first order to crossover with
increasing ΩI, expected from lattice simulations [29]. On
the other hand, the PL is consistently enhanced by the real

rotation Ω at relatively low T in both potentials, and the
(pseudo-)critical temperature Tc decreases with Ω.
Therefore, we at least find an example that the phase
diagrams T − ΩI and T −Ω cannot be analytically con-
tinued to each other, though ΩI is introduced through
analytic continuation of Ω, that is, Ω → iΩI [29,31]. The
reason is that the PL potential is not a trivial function of L
and L� anymore in the presence of rotations, and any
deviation of L=L� from 0 would enhance jLj.
For the second part, we find that the interplays between

quarks and gluons render the pseudocritical temperature
Tc insensitive toΩI as its effects are opposite from the two
sectors while Tc decreases with Ω as the effects are the
same. For a larger ΩI, we surprisingly find that temper-
ature would further break chiral symmetry as was also
presented in the LQCD results [31]. The reason is that
ReðLÞ becomes more negative with increasing ΩI and the
effect of temperature is reversed due to the linear
dependences on L and L� in the logarithmic terms of
Ωbl. In the future, we hope the LQCD groups could
directly study the real rotation effect by adopting Taylor
expansions—that would better help us to understand what
is the real situation with rotation.
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