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Under flavor SUð3Þ symmetry (SUð3ÞF), the final-state particles inB → PPP decays (P is a pseudoscalar
meson) are treated as identical, and the PPPmust be in a fully-symmetric (FS) state, a fully-antisymmetric
(FA) state, or in one of fourmixed states. In this paper,we present the formalism for the FA states.Wewrite the
amplitudes for the 22B → PPP decays that can be in an FA state in terms of both the SUð3ÞF reduced matrix
elements and diagrams. This shows the equivalence of diagrams and SUð3ÞF. We also give 15 relations
among the amplitudes in the SUð3ÞF limit as well as the additional four that appear when the diagrams
E=A=PA are neglected. We present sets of B → PPP decays that can be used to extract γ using the FA
amplitudes. The value(s) of γ found in this way can be compared with the value(s) found using the FS states.
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I. INTRODUCTION

The B factories BABAR and Belle were built with the
goal of measuring CP violation in B decays. The idea was
to measure the three angles of the unitarity triangle, α, β,
and γ, and to test the standard model (SM) by seeing if
αþ β þ γ ¼ π. Now, α is measured using B → ππ decays,
and the (loop-level) penguin contribution is removed using
an isospin analysis [1]. β is mainly measured in decays such
as B0 → J=ψKS, which are dominated by the tree con-
tribution. And the standard methods of measuring γ [2–5]
involve only tree-level decays. As a result, NP can affect
these measurements only if it can compete with the tree-
level SM contributions. (In principle, there could be (loop-
level) NP contributions to B0-B̄0 mixing, but these effects
cancel in the sum αþ β [6].) Given that no new particles
have been seen at the LHC, we now know that the NP must

be heavy, so its contributions cannot compete with those
of the SM at tree level. It is therefore unsurprising that
αþ β þ γ ≃ π was found [7].
Another way to search for NP using CP violation in B

decays is to measure the same CP phase in two different
ways. If the results do not agree, this would reveal the
presence of NP. An example is β. At the quark level, the
decay B0 → J=ψKS is b̄ → c̄cs̄, which has no weak phase
in the SM. Similarly, the decay B0 → ϕKS involves
b̄ → s̄ss̄, which can arise only via loop-level gluonic
and electroweak penguin contributions, and also has no
weak phase in the SM, to a good approximation. The point
is that β can be measured using either decay [8]. The
difference between the two is that, while tree-level NP
contributions are much smaller than tree-level SM con-
tributions, they can be of the same order as loop-level SM
contributions. Thus, a difference between the (tree-level)
measurement of β in B0 → J=ψKS and its (loop-level)
measurement in B0 → ϕKS would point to a (tree-level) NP
contribution to b̄ → s̄ss̄. Experiments have searched for
such a discrepancy, but none has been observed [7].
In principle, this can also be done with γ. If γ could be

extracted from decays that receive significant penguin
contributions (gluonic and/or electroweak), one could
compare this (loop-level) measurement of γ with that of
the (tree-level) methods of Refs. [2–5].
In fact, methods for making a loop-level measurement of

γ were proposed in Refs. [9–11]. They all involve
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charmless, three-body B → PPP decays (P is a pseudo-
scalar meson). Under flavor SU(3) symmetry [SUð3ÞF], the
three final-state particles are treated as identical. The total
final-state wave function must be symmetric, so the six
permutations of these particles must be considered: the
PPP must be in a fully symmetric state, a fully antisym-
metric state, or one of four mixed states under SUð3ÞF.
For the measurement of the decay B → P1P2P3, the

results are usually presented in the form of aDalitz plot. This
is a function of two of the three Mandelstam variables, say,
s12 and s13, where sij ≡ ðpi þ pjÞ2. One can then perform
an isobar analysis, which is essentially a fit of the Dalitz plot
to a nonresonant and various intermediate resonant contri-
butions, to obtain the decay amplitudeMðs12; s13Þ describ-
ing B → P1P2P3. In Ref. [12], it is pointed out that one can
use Mðs12; s13Þ to construct the amplitudes for the indi-
vidual fully-symmetric, fully-antisymmetric, and mixed
final states. In this way, one can study decays into final
states with each of the possible symmetries.
Reference [12] also shows that the B → PPP amplitudes

can be written in terms of diagrams similar to those used in
B → PP decays [13,14]. The main advantage of using
diagrams to describe B-decay amplitudes is that it can be
argued on dynamical grounds that certain diagrams are
subdominant. The neglect of these diagrams greatly sim-
plifies the analysis. We note that, for B → PP decays, this
theoretical assumption has been borne out by experiment:
decays that are mediated by these supposedly subdominant
diagrams, such as B0 → KþK− and B0

s → πþπ−, are indeed
found to have branching ratios considerably smaller than
those of other charmless B → PP decays.
Still, we stress that this assumption does not follow from

group theory. Before putting it into practice, it must be shown
that the description of the amplitudes using the full set of
diagrams is equivalent to a description in terms of SUð3ÞF
reduced matrix elements (RMEs). In Ref. [15], this is
demonstrated explicitly for the fully-symmetric (FS) final
state in B → PPP. It is therefore justified to use a diagram-
matic description of these decay amplitudes and to neglect
certain diagrams.
In themethods proposed inRefs. [9–11], these techniques

are used to cleanly extract the weak phase γ from the
FS states of various B → PPP decays. The method of
Ref. [10] is particularly interesting. It combines information
from the Dalitz plots for B0 → Kþπ0π−, B0 → K0πþπ−,
Bþ → Kþπþπ−, B0 → KþK0K−, and B0 → K0K0K̄0.
These B → Kππ and B → KKK̄ decays all receive loop-
level penguin and electroweak-penguin contributions, so it
is a loop-level value of γ that is measured here. As noted
above, the comparison of the tree-level and loop-level
measurements of γ is an excellent test of the StandardModel.
This method was applied in Ref. [16] to the measurements

of the Dalitz plots of the five B → Kππ and B → KKK̄
decays by the BABAR Collaboration [17–21]. However, this
was a theoretical analysis; by its own admission, it did not

properly take all the errors into account. Thiswas improved in
Ref. [22], which was a collaboration of theory and experi-
ment. Six possible values of γ were found:

γ1 ¼ ½12.9þ8.4
−4.3ðstatÞ � 1.3ðsystÞ�°;

γ2 ¼ ½36.6þ6.6
−6.1ðstatÞ � 2.6ðsystÞ�°;

γ3 ¼ ½68.9þ8.6
−8.6ðstatÞ � 2.4ðsystÞ�°;

γ4 ¼ ½223.2þ10.9
−7.5 ðstatÞ � 1.0ðsystÞ�°;

γ5 ¼ ½266.4þ9.2
−10.8ðstatÞ � 1.9ðsystÞ�°;

γ6 ¼ ½307.5þ6.9
−8.1ðstatÞ � 1.1ðsystÞ�°: ð1Þ

One solution, γ3, is compatible with the latest world average
tree-level value, γ ¼ ð66.2þ3.4

−3.6Þ° [7]. The other solutions are
in disagreement, perhaps hinting at new physics. In addition,
it is found that,when averaged over the entireDalitz plane, the
effect of SUð3ÞF breaking on the analysis is only at the
percent level.
At this stage, the burning question iswhat the true value of

γ in this system is. The above analysis was carried out using
the FS final state. One way this question might be answered
is to repeat the analysis—or perform a different analysis to
extract γ—using a different symmetry of the final state. The
hope is that, if there are again multiple solutions for γ, only
one will be common to the two sets of solutions; this will be
the true value of γ. And if it differs from the tree-level value,
this will be a smoking-gun signal of new physics.
The formalism describing B → PPP decays with a FS

final state was presented in Refs. [9,10,12,15]. However,
the same formalism has not been given for the other final-
state symmetries. In this paper, we focus on B → PPP
decays in which the final state is fully antisymmetric.
We begin in Sec. II with a presentation of the

Wigner-Eckart decomposition of the FA B → PPP ampli-
tudes in terms of SUð3ÞF reducedmatrix elements. A similar
decomposition in terms of diagrams is given in Sec. III,
thereby demonstrating the equivalence of SUð3ÞF reduced
matrix elements and diagrams. Various relations among the
amplitude are given in Sec. IV. Section V discusses the
consequences of neglecting the E=A=PA diagrams, which
are expected to be smaller than the other diagrams. Various
applications of this formalism, including the extraction of γ
and the measurement of SUð3ÞF breaking, are elaborated in
Sec. VI. We conclude in Sec. VII.

II. SUð3ÞF WIGNER-ECKART DECOMPOSITION

We begin by representing the B → PPP decay ampli-
tudes for fully-antisymmetric (FA) final states in terms of
SUð3ÞF reducedmatrix elements. The amplitude for a decay
process involves three pieces: a) the initial state, b) the
Hamiltonian, and c) the final state. Here, the SUð3ÞF
representations of the decaying B mesons and the under-
lying quark-level transitions are identical to those used
in Ref. [15], where the FS state was studied. The three-body
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final states we consider in this article are new: under the
exchange of any two of the three final-state particles, the
jPPPi states considered in this article are fully anti-
symmetric.
In this section, we perform SUð3ÞF Wigner-Eckart

decompositions of the FA B → PPP decay amplitudes.
We adopt the notation used in Ref. [15] and represent each
element of SUð3ÞF by jrYII3i, where r is the irreducible
representation (irrep) of SUð3ÞF, Y is the hypercharge, and
I and I3 stand for the isospin and its third component,
respectively. Note that, in general, Lie algebras are not
associative, so the order of multiplication of elements is
important. Here, we take products from left to right. We use
the SUð3ÞF isoscalar factors from Refs. [23,24], along with
SU(2) Clebsch-Gordan coefficients, to construct products
of SUð3ÞF states.
There are 16 b̄ → s̄ and 16 b̄ → d̄ charmless three-body

B → PPP decays, where P ¼ π or K. Under SUð3ÞF, all
three final-state particles belong to the same multiplet [an
octet of SUð3ÞF], and hence they can be treated as identical,
so the six possible permutations of these particles must be
considered. The FA final state is antisymmetric under the
exchange of any two final-state particles. This is only
possible when all three final-state pseudoscalars are dis-
tinct, which reduces the number of available decays to 11
for each of b̄ → s̄ and b̄ → d̄ [25].
For the FA final state, one wants to find ð8 × 8 × 8ÞFA.

The decomposition for 8× 8¼ 27þ 10þ 10� þ 8þ 8þ 1
can be separated into 27þ 8þ 1 (total 36) symmetric and
10þ 10� þ 8 (total 28) antisymmetric under the exchange
of the two 8’s. The FA irreps of 8 × 8 × 8 arise from the
product of the antisymmetric 10þ 10� þ 8 with the
remaining 8. This yields an FA final state that has
dimension 56 under SUð3ÞF. It can be decomposed into
irreps of SUð3ÞF as follows:

ð8 × 8 × 8ÞFA ¼ 27FA þ 10FA þ 10�FA þ 8FA þ 1; ð2Þ

where

27FA ¼ 2

3
2710×8 −

2

3
2710�×8 þ

1

3
278×8;

10FA ¼ −
ffiffiffi
2

3

r
1010×8 þ

ffiffiffi
1

3

r
108×8;

10�FA ¼ −
ffiffiffi
2

3

r
10�10�×8 þ

ffiffiffi
1

3

r
10�8×8;

8FA ¼ 1ffiffiffi
6

p 810×8 þ
1ffiffiffi
6

p 810�×8 þ
ffiffiffi
2

3

r
88×8: ð3Þ

A. SUð3ÞF assignments of pseudoscalar mesons

The light-quark states (u, d and s) transform as the
fundamental triplet (3) of SUð3ÞF. The antiquarks trans-
form as the 3� of SUð3ÞF. The quarks and antiquarks can be
assigned the following representations using the jrYII3i
notation:

jui ¼
����3 13

1

2

1

2

�
; −jūi ¼

����3� − 1

3

1

2
−
1

2

�
;

jdi ¼
����3 13

1

2
−
1

2

�
; jd̄i ¼

����3� − 1

3

1

2

1

2

�
;

jsi ¼
����3 − 2

3
00

�
; js̄i ¼

����3� 23 00
�
: ð4Þ

The pions, kaons, and the octet component of the eta
meson (η8) form an octet (8) of SUð3ÞF, while the η1 is an
SUð3ÞF singlet. The physical η and η0 mesons are linear
combinations of the η8 and η1, constructed through octet-
singlet mixing. In this work, we avoid the complications
arising from this mixing by limiting our analysis to final
states with only pions and/or kaons. The three pions and the
four kaons are as follows:

jπþi ¼ juijd̄i ¼ j8011i; jπ−i ¼ −jdijūi ¼ j801 − 1i;

jπ0i ¼ jdijd̄i − juijūiffiffiffi
2

p ¼ j8010i;

jKþi ¼ juijs̄i ¼
����81 12

1

2

�
; jK0i ¼ jdijs̄i ¼

����81 12 −
1

2

�
;

jK̄0i ¼ jsijd̄i ¼
����8 − 1

1

2

1

2

�
; jK−i ¼ −jsijūi ¼

����8 − 1
1

2
−
1

2

�
: ð5Þ

B. Fully antisymmetric three-body final states

We now construct the normalized FA P1P2P3 final states within SUð3ÞF. The FS final state studied in Ref. [15] could be
divided into three cases, depending on the number of truly identical particles in the final state. For the FA state, there is only one
case: in order for the FA final state to be nonvanishing, all three final-state pseudoscalars must be distinct from one another (e.g.,
π0πþπ−). We first construct states that are antisymmetrized over the first two particles. We then add all three combinations
antisymmetrized in this way to obtain the FA state.
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In what follows, the state is antisymmetrized over
particles that are included within square brackets:

j½P1P2�P3i¼
1ffiffiffi
2

p ½jP1ijP2ijP3i− jP2ijP1ijP3i�;

j½P1P2P3�iFA¼
1ffiffiffi
3

p ½j½P1P2�P3iþj½P2P3�P1iþj½P3P1�P2i�:

ð6Þ
Note that, if any two of three (or all three) of the particles

are identical (e.g., π0π0πþ or π0π0π0), the three-particle
state, j½P1P2P3�iFA, automatically vanishes.

C. Three-body b̄ → s̄ and b̄ → d̄ transitions
using SUð3ÞF

The Hamiltonian for three-body B decays follows from
the underlying quark-level transitions b̄ → s̄qq̄ and

b̄ → d̄qq̄, where q is an up-type quark (u, c, t). However,
the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM)
matrix, given as

X
q¼u;c;t

V�
qbVqs ¼ 0;

X
q¼u;c;t

V�
qbVqd ¼ 0; ð7Þ

allows us to trade one of the up-type quarks for the
other two. Here, we choose to replace the t-quark operators
and retain only the c-quark and u-quark operators.
Thus, the weak-interaction Hamiltonian is composed of
four types of operators: b̄ → s̄cc̄, b̄ → d̄cc̄, b̄ → s̄uū,
and b̄ → d̄uū.
The SUð3ÞF representations of these operators are

dictated by the light quarks since the heavy b, c, and t
quarks are SUð3ÞF singlets. The transition operators are
given as follows:

Ob̄→s̄cc̄ ¼ V�
cbVcsB

ð3�Þ
f2
3
;0;0g; Ob̄→d̄cc̄ ¼ V�

cbVcdB
ð3�Þ
f−1

3
;1
2
;1
2
g;

Ob̄→s̄uū ¼ V�
ubVus

�
Að3�Þ
f2
3
;0;0g þ Rð6Þ

f2
3
;1;0g þ

ffiffiffi
6

p
Pð15�Þ
f2
3
;1;0g þ

ffiffiffi
3

p
Pð15�Þ
f2
3
;0;0g

�
;

Ob̄→d̄uū ¼ V�
ubVud

�
Að3�Þ
f−1

3
;1
2
;1
2
g − Rð6Þ

f−1
3
;1
2
;1
2
g þ

ffiffiffi
8

p
Pð15�Þ
f−1

3
;3
2
;1
2
g þ Pð15�Þ

f−1
3
;1
2
;1
2
g

�
; ð8Þ

where we have used the notation OðrÞ
fY;I;I3g to represent each

SUð3ÞF operator (O ¼ fA;B; R; Pg). We have taken the
names of these operators and their relative signs from
Ref. [26]. The weak-interaction Hamiltonian that governs
charmless B decays is then simply the sum of these four
operators:

H ¼ Ob̄→s̄cc̄ þOb̄→d̄cc̄ þOb̄→s̄uū þOb̄→d̄uū: ð9Þ

The above Hamiltonian governs the decay of the SUð3ÞF
triplet of B-mesons [B3 ¼ ðBþ

u ; B0
d; B

0
s)], whose compo-

nents have the same SUð3ÞF representations as their
corresponding light quarks. The fully antisymmetric
three-body decay amplitude for the process B → P1P2P3

can now be constructed easily as follows:

AFAðp1; p2; p3Þ ¼ FAh½P1P2P3�jjHjjB3i; ð10Þ

where pi represents the momentum of the final-state
particle Pi.

D. Reduced matrix elements

The 22 charmless three-body B decay amplitudes (11
b̄ → s̄ and 11 b̄ → d̄) can all be written in terms of nine

SUð3ÞF RMEs (the Y, I, and I3 indices of the operators
have been suppressed):

BðfaÞ
1 ≡ FAh1jjBð3�Þjj3i;

BðfaÞ ≡ FAh8jjBð3�Þjj3i;
AðfaÞ
1 ≡ FAh1jjAð3�Þjj3i;

AðfaÞ ≡ FAh8jjAð3�Þjj3i;
RðfaÞ
8 ≡ FAh8jjRð6Þjj3i;

RðfaÞ
10 ≡ FAh10jjRð6Þjj3i;

PðfaÞ
8 ≡ FAh8jjPð15�Þjj3i;

PðfaÞ
10� ≡ FAh10�jjPð15�Þjj3i;

PðfaÞ
27 ≡ FAh27jjPð15�Þjj3i: ð11Þ

The decomposition of all 22 amplitudes in terms of these
RMEs is given in Tables I and II. As in the FS case [15],
there are only seven combinations of matrix elements in
the amplitudes since BðfaÞ and AðfaÞ, as well as BðfaÞ

1 and

AðfaÞ
1 , always appear together:

V�
cbVcqBðfaÞ þ V�

ubVuqAðfaÞ;

V�
cbVcqB

ðfaÞ
1 þ V�

ubVuqA
ðfaÞ
1 : ð12Þ
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III. DIAGRAMS

In Refs. [13,14], flavor-flow diagrams were proposed to
describe two-body B → PP decays. There are eight dia-
grams: T (tree), C (color-suppressed tree), P (penguin), E
(exchange), A (annihilation), PA (penguin annihilation),
PEW [electroweak penguin (EWP)], and PC

EW (color-
suppressed EWP) [27].

A. B → PPP decays

Diagrams can also be used to describe B → PPP
decays [12,15]. These closely follow those used in
B → PP decays. For the three-body analogs of T, C, P,
PEW, and PC

EW, one has to “pop” a quark pair from the
vacuum. The subscript “1” (“2”) is added if the popped
quark pair is between two nonspectator final-state quarks

TABLE I. Amplitudes for ΔS ¼ 1 B-meson decays to fully antisymmetric PPP states as functions of nine SUð3ÞF RMEs.

Decay amplitude

V�
cbVcs V�

ubVus

BðfaÞ
1 BðfaÞ AðfaÞ

1 AðfaÞ RðfaÞ
8 RðfaÞ

10 PðfaÞ
8 PðfaÞ

10� PðfaÞ
27ffiffiffi

2
p

AðBþ → Kþπþπ−ÞFA 0
ffiffi
2

pffiffi
5

p 0
ffiffi
2

pffiffi
5

p
ffiffi
2

pffiffiffiffi
15

p
ffiffi
2

pffiffi
3

p − 3
ffiffi
2

p
5

0 6
ffiffi
3

p
5

AðBþ → K0πþπ0ÞFA 0 −
ffiffi
2

pffiffi
5

p 0 −
ffiffi
2

pffiffi
5

p −
ffiffi
2

pffiffiffiffi
15

p 1ffiffi
6

p 3
ffiffi
2

p
5

0 −
ffiffi
3

p
5ffiffiffi

2
p

AðB0 → K0πþπ−ÞFA 0 −
ffiffi
2

pffiffi
5

p 0 −
ffiffi
2

pffiffi
5

p
ffiffi
2

pffiffiffiffi
15

p
ffiffi
2

pffiffi
3

p −
ffiffi
2

p
5

0 2
ffiffi
3

p
5

AðB0 → Kþπ0π−ÞFA 0
ffiffi
2

pffiffi
5

p 0
ffiffi
2

pffiffi
5

p −
ffiffi
2

pffiffiffiffi
15

p 1ffiffi
6

p
ffiffi
2

p
5

0 3
ffiffi
3

p
5ffiffiffi

2
p

AðBþ → KþK0K̄0ÞFA 0
ffiffi
2

pffiffi
5

p 0
ffiffi
2

pffiffi
5

p
ffiffi
2

pffiffiffiffi
15

p 0 − 3
ffiffi
2

p
5

0 − 4
ffiffi
3

p
5ffiffiffi

2
p

AðB0 → K0KþK−ÞFA 0 −
ffiffi
2

pffiffi
5

p 0 −
ffiffi
2

pffiffi
5

p
ffiffi
2

pffiffiffiffi
15

p 0 −
ffiffi
2

p
5

2 2
ffiffi
3

p
5

AðB0
s → π0KþK−ÞFA − 1

4
ffiffi
3

p 0 − 1

4
ffiffi
3

p 0
ffiffi
2

pffiffiffiffi
15

p − 1

2
ffiffi
6

p 2
ffiffi
2

p
5

− 1
2 −

ffiffi
3

p
20

AðB0
s → π0K0K̄0ÞFA − 1

4
ffiffi
3

p 0 − 1

4
ffiffi
3

p 0 −
ffiffi
2

pffiffiffiffi
15

p 1

2
ffiffi
6

p − 2
ffiffi
2

p
5

1
2 − 9

ffiffi
3

p
20ffiffiffi

2
p

AðB0
s → π−KþK̄0ÞFA 1

2
ffiffi
3

p 0 1

2
ffiffi
3

p 0 0 1ffiffi
6

p 0 −1
ffiffi
3

p
2ffiffiffi

2
p

AðB0
s → πþK0K−ÞFA 1

2
ffiffi
3

p 0 1

2
ffiffi
3

p 0 0 − 1ffiffi
6

p 0 1
ffiffi
3

p
2

AðB0
s → π0πþπ−ÞFA − 1

2
ffiffi
3

p
ffiffi
2

pffiffi
5

p − 1

2
ffiffi
3

p
ffiffi
2

pffiffi
5

p 0 0 3
ffiffi
2

p
5

0 3
ffiffi
3

p
10

TABLE II. Amplitudes for ΔS ¼ 0 B-meson decays to fully antisymmetric PPP states as functions of SUð3ÞF RMEs.

V�
cbVcd V�

ubVud

Decay amplitude BðfaÞ
1 BðfaÞ AðfaÞ

1 AðfaÞ RðfaÞ
8 RðfaÞ

10 PðfaÞ
8 PðfaÞ

10� PðfaÞ
27

AðBþ → πþK0K̄0ÞFA 0 − 1ffiffi
5

p 0 − 1ffiffi
5

p − 1ffiffiffiffi
15

p 0 3
5

0 2
ffiffi
6

p
5

AðBþ → πþKþK−ÞFA 0 1ffiffi
5

p 0 1ffiffi
5

p 1ffiffiffiffi
15

p 1ffiffi
3

p − 3
5

0 3
ffiffi
6

p
5ffiffiffi

2
p

AðBþ → π0KþK̄0ÞFA 0 0 0 0 0 − 1ffiffi
3

p 0 0
ffiffiffi
6

p
ffiffiffi
2

p
AðB0 → π0K0K̄0ÞFA − 1

2
ffiffi
6

p − 1ffiffi
5

p − 1

2
ffiffi
6

p − 1ffiffi
5

p − 1ffiffiffiffi
15

p − 1

2
ffiffi
3

p −1 − 1ffiffi
2

p 3
ffiffi
3

p
2
ffiffi
2

pffiffiffi
2

p
AðB0 → π0KþK−ÞFA − 1

2
ffiffi
6

p 1ffiffi
5

p − 1

2
ffiffi
6

p 1ffiffi
5

p 1ffiffiffiffi
15

p 1

2
ffiffi
3

p 1 1ffiffi
2

p 3
ffiffi
3

p
2
ffiffi
2

p

AðB0 → πþK0K−ÞFA 1

2
ffiffi
6

p 0 1

2
ffiffi
6

p 0 0 1

2
ffiffi
3

p 0 − 1ffiffi
2

p
ffiffi
3

p
2
ffiffi
2

p

AðB0 → π−KþK̄0ÞFA 1

2
ffiffi
6

p 0 1

2
ffiffi
6

p 0 0 − 1

2
ffiffi
3

p 0 1ffiffi
2

p
ffiffi
3

p
2
ffiffi
2

p

ffiffiffi
2

p
AðB0 → π0πþπ−ÞFA − 1ffiffi

6
p − 1ffiffi

5
p − 1ffiffi

6
p − 1ffiffi

5
p

ffiffi
3

pffiffi
5

p 0 3
5

0 −
ffiffi
3

p
5
ffiffi
2

p

AðB0
s → K̄0πþπ−ÞFA 0 − 1ffiffi

5
p 0 − 1ffiffi

5
p 1ffiffiffiffi

15
p 0 − 1

5

ffiffiffi
2

p ffiffi
6

p
5ffiffiffi

2
p

AðB0
s → K−πþπ0ÞFA 0 2ffiffi

5
p 0 2ffiffi

5
p − 2ffiffiffiffi

15
p 0 2

5

ffiffiffi
2

p
3
ffiffi
6

p
5

AðB0
s → K̄0KþK−ÞFA 0 − 1ffiffi

5
p 0 − 1ffiffi

5
p 1ffiffiffiffi

15
p 1ffiffi

3
p − 1

5
0

ffiffi
6

p
5

CHARMLESS B → PPP DECAYS: THE FULLY … PHYS. REV. D 109, 013001 (2024)

013001-5



(two final-state quarks including the spectator). One there-
fore has Ti, Ci, PEWi, and PC

EWi diagrams, i ¼ 1, 2. It turns
out that P-type diagrams only ever appear in amplitudes in
the combination P̃≡ P1 þ P2. For the three-body analogs
of E, A, and PA, the spectator quark interacts with the b̄,
and one has two popped quark pairs. Here, there is only one
of each type of diagram. Finally, for each of P̃ and PA, two
contributions are allowed, namely, P̃ut, P̃ct, PAut, and PAct,
where P̃ut ≡ P̃u − P̃t, and similarly for the other diagrams.
All diagrams involve products of CKM matrix elements.

We define

λðqÞp ≡ V�
pbVpq; q ¼ d; s; p ¼ u; c; t: ð13Þ

The diagrams Ti, Ci, P̃ut, E, A, and PAut all involve

λðqÞu ; P̃ct and PAct involve λ
ðqÞ
c ; and PEWi, and PC

EWi involve

λðqÞt . In this section, we use the convention in which the λðqÞp

factors are contained completely (magnitude and phase) in
the diagrams [28].
The four EWP diagrams, PEW1;2 and PC

EW1;2, are not
really independent; their addition only has the effect of
redefining other diagrams. The following redefinition rules
can be used to absorb the four EWP diagrams into six other
diagrams:

T1 → T1 þ PC
EW1;

T2 → T2 − PC
EW2;

C1 → C1 þ PEW1;

C2 → C2 − PEW2;

ðP̃ut þ P̃ctÞ → ðP̃ut þ P̃ctÞ þ
1

3
ðPC

EW1 þ PC
EW2Þ: ð14Þ

Note that, before redefinition, Ti, Ci, P̃ut, and P̃ct each
involve only a single product of CKM matrix elements,

λðqÞp . After redefinition, this is no longer true.
There are therefore in total ten diagrams, namely, T1;2,

C1;2, P̃ct, P̃ut, E, A, PAct, and PAut. The decomposition of
all 22 amplitudes in terms of the diagrams is given in
Tables III and IV.

B. Equivalence of RMEs and diagrams

In Sec. II, it was shown that the 11 b̄ → d̄ decay
amplitudes can be expressed in terms of nine RMEs,
two of which contain V�

cbVcd, while seven others contain
V�
ubVud. In the previous subsection, we have seen that the

same 11 b̄ → d̄ decay amplitudes can also be expressed in
terms of ten diagrams. By comparing the expressions for
the amplitudes of the 11 b̄ → d̄ decays, it is possible to
express the nine RMEs in terms of the ten diagrams. These
expressions are

V�
cbVcdB

ðfaÞ
1 ¼ 2

ffiffiffi
6

p �
P̃ct − PAct

�
; ð15Þ

V�
cbVcdBðfaÞ ¼

ffiffiffi
5

p
Pct; ð16Þ

V�
ubVudA

ðfaÞ
1 ¼

ffiffiffi
3

p

2
ffiffiffi
2

p
�
8P̃ut − 8PAut − 3T1

þ 3T2 þ C1 þ C2 − 8E
�
; ð17Þ

V�
ubVudAðfaÞ ¼

ffiffiffi
5

p

8

�
8P̃ut−3T1þ3T2þC1þC2þE−3A

�
;

ð18Þ

TABLE III. Amplitudes for ΔS ¼ 1 B-meson decays to fully antisymmetric PPP states as a function of the three-body diagrams
(b̄ → s̄ diagrams are written with primes).

V�
cbVcs V�

ubVus

Decay amplitude P̃0
ct PA0

ct P̃0
ut PA0

ut C0
1 C0

2 T 0
1 T 0

2 E0 A0
ffiffiffi
2

p
AðBþ → Kþπþπ−Þ ffiffiffi

2
p

0
ffiffiffi
2

p
0 −

ffiffiffi
2

p
0 0

ffiffiffi
2

p
0 −

ffiffiffi
2

p
AðBþ → K0πþπ0Þ −

ffiffiffi
2

p
0 −

ffiffiffi
2

p
0 0 1ffiffi

2
p 1ffiffi

2
p 0 0

ffiffiffi
2

p
ffiffiffi
2

p
AðB0 → K0πþπ−Þ −

ffiffiffi
2

p
0 −

ffiffiffi
2

p
0 −

ffiffiffi
2

p
0

ffiffiffi
2

p
0 0 0

AðB0 → Kþπ0π−Þ ffiffiffi
2

p
0

ffiffiffi
2

p
0 0 1ffiffi

2
p − 1ffiffi

2
p

ffiffiffi
2

p
0 0ffiffiffi

2
p

AðBþ → KþK0K̄0Þ ffiffiffi
2

p
0

ffiffiffi
2

p
0 0 0 0 0 0 −

ffiffiffi
2

p
ffiffiffi
2

p
AðB0 → K0KþK−Þ −

ffiffiffi
2

p
0 −

ffiffiffi
2

p
0 −

ffiffiffi
2

p
0 0 −

ffiffiffi
2

p
0 0

AðB0
s → π0KþK−Þ − 1ffiffi

2
p 1ffiffi

2
p − 1ffiffi

2
p 1ffiffi

2
p 0 − 1ffiffi

2
p 1ffiffi

2
p − 1ffiffi

2
p

ffiffiffi
2

p
0

AðB0
s → π0K0K̄0Þ − 1ffiffi

2
p 1ffiffi

2
p − 1ffiffi

2
p 1ffiffi

2
p 0 1ffiffi

2
p 0 0 0 0ffiffiffi

2
p

AðB0
s → π−KþK̄0Þ ffiffiffi

2
p

−
ffiffiffi
2

p ffiffiffi
2

p
−

ffiffiffi
2

p
0 0 0

ffiffiffi
2

p
−

ffiffiffi
2

p
0ffiffiffi

2
p

AðB0
s → πþK0K−Þ ffiffiffi

2
p

−
ffiffiffi
2

p ffiffiffi
2

p
−

ffiffiffi
2

p
0 0 −

ffiffiffi
2

p
0 −

ffiffiffi
2

p
0

AðB0
s → π0πþπ−Þ 0

ffiffiffi
2

p
0

ffiffiffi
2

p
0 0 0 0 3ffiffi

2
p 0
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V�
ubVudR

ðfaÞ
8 ¼

ffiffiffiffiffi
15

p

4
ðT1 − T2 − C1 − C2 þ E − AÞ; ð19Þ

V�
ubVudR

ðfaÞ
10 ¼

ffiffiffi
3

p

2
ðT1 þ T2 − C1 þ C2Þ; ð20Þ

V�
ubVudP

ðfaÞ
8 ¼ 1

8
ðT1 − T2 þ C1 þ C2 þ 5Eþ 5AÞ; ð21Þ

V�
ubVudP

ðfaÞ
10� ¼ −

1

2
ffiffiffi
2

p ðT1 þ T2 þ C1 − C2Þ; ð22Þ

V�
ubVudP

ðfaÞ
27 ¼ −

1

2
ffiffiffi
6

p ðT1 − T2 þ C1 þ C2Þ: ð23Þ

Note that, in all of these relations, it naively appears that
both sides involve the same products of CKM matrix
elements. However, this is not really true—as noted above,
once the EWP contributions have been removed by
redefining the other diagrams, these other diagrams no
longer involve a well-defined product of CKM matrix
elements.
By analyzing the 11 b̄ → s̄ decays, one can similarly

establish a corresponding set of expressions relating the
diagrams to the RMEs for b̄ → s̄ decays.
This demonstrates the equivalence of diagrams and

SUð3ÞF for the fully antisymmetric PPP state.

IV. AMPLITUDE RELATIONS

Since all 22 decay amplitudes can be expressed in terms
of seven combinations of RMEs, the amplitudes must obey
15 independent relationships in the SUð3ÞF limit. These
relationships can be found as follows. The 11 b̄ → s̄ decay
amplitudes can be expressed in terms of the seven combi-
nations of RMEs—there must be four relations among
these amplitudes. A subset of these relations can be
obtained by considering processes related by isospin
symmetry, while the remaining can be found using the
full SUð3ÞF symmetry. The process can be repeated for the
11 b̄ → d̄ decays generating four additional amplitude
relations. The remaining seven relations follow from the
application of U-spin symmetry that relates b̄ → s̄ decays
to b̄ → d̄ decays.

A. b̄ → s̄ decays

The 11 b̄ → s̄ decays (see Table I) include four B →
Kππ decays, two B → KKK̄ decays, four B0

s → πKK̄
decays, and one B0

s → πππ decay. Each decay amplitude
can be expressed as a linear combination of seven RMEs.
Therefore, these amplitudes must satisfy four relationships.
We find that the four B → Kππ decays and the four B0

s →
πKK̄ decays each satisfy one quadrangle relationship,
while two additional quadrangle relationships span multi-
ple types of decays. These relations are:

(1) B → Kππ:

ffiffiffi
2

p
AðBþ → Kþπþπ−ÞFA þAðBþ → K0πþπ0ÞFA ¼

ffiffiffi
2

p
AðB0 → K0πþπ−ÞFA þAðB0 → Kþπ0π−ÞFA: ð24Þ

(2) B0
s → πKK̄:

ffiffiffi
2

p
AðB0

s → π0KþK−ÞFA þ
ffiffiffi
2

p
AðB0

s → π0K0K̄0ÞFA ¼ −AðB0
s → π−KþK̄0ÞFA −AðB0

s → πþK0K−ÞFA: ð25Þ

TABLE IV. Amplitudes for ΔS ¼ 0 B-meson decays to fully antisymmetric PPP states as a function of the three-body diagrams.

V�
cbVcd V�

ubVud

Decay amplitude P̃ct PAct P̃ut PAut C1 C2 T1 T2 E A

AðBþ → πþK0K̄0Þ −1 0 −1 0 0 0 0 0 0 1
AðBþ → πþKþK−Þ 1 0 1 0 −1 0 0 1 0 −1ffiffiffi
2

p
AðBþ → π0KþK̄0Þ 0 0 0 0 0 −1 −1 0 0 0ffiffiffi

2
p

AðB0 → π0K0K̄0Þ −2 1 −2 1 0 −1 0 0 0 0ffiffiffi
2

p
AðB0 → π0KþK−Þ 0 1 0 1 −1 0 0 0 2 0

AðB0 → πþK0K−Þ 1 −1 1 −1 0 0 0 1 −1 0
AðB0 → π−KþK̄0Þ 1 −1 1 −1 0 0 −1 0 −1 0ffiffiffi
2

p
AðB0 → π0πþπ−Þ −3 2 −3 2 −1 −1 2 −2 3 0

AðB0
s → K̄0πþπ−Þ −1 0 −1 0 −1 0 0 −1 0 0ffiffiffi

2
p

AðB0
s → K−πþπ0Þ 2 0 2 0 0 1 −2 1 0 0

AðB0
s → K̄0KþK−Þ −1 0 −1 0 −1 0 1 0 0 0
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(3) B0 → Kππ; B0
s → πKK̄, and B0 → KKK̄ or B0

s → πππ:

AðB0 → K0πþπ−ÞFA −AðB0 → K0KþK−ÞFA ¼ AðB0
s → π−KþK̄0ÞFA −AðB0

s → πþK0K−ÞFA; ð26Þ
ffiffiffi
2

p
AðB0 → Kþπ0π−ÞFA þ

ffiffiffi
2

p
AðB0

s → π0KþK−ÞFA ¼ AðB0
s → π−KþK̄0ÞFA þ

ffiffiffi
2

p
AðB0

s → π0πþπ−ÞFA: ð27Þ

B. b̄ → d̄ decays

The 11 b̄ → d̄ decays (see Table II) include seven B → πKK̄ decays, one B0 → πππ decay, two B0
s → Kππ decays, and

one B0
s → K̄KK̄ decay. Again, each decay amplitude can be expressed as a linear combination of seven RMEs, so that there

must be four amplitude relationships. We find two quadrangle relationships among these amplitudes:

AðB0 → πþK0K−ÞFA −AðB0 → π−KþK̄0ÞFA ¼ AðB0
s → K̄0KþK−ÞFA −AðB0

s → K̄0πþπ−ÞFA; ð28Þ

ffiffiffi
2

p
AðB0 → π0KþK−ÞFA −AðB0 → πþK0K−ÞFA ¼

ffiffiffi
2

p
AðB0 → π0πþπ−ÞFA þ

ffiffiffi
2

p
AðB0

s → K−πþπ0ÞFA: ð29Þ

In addition, all seven B → πKK̄ decays satisfy
one amplitude relationship, while another relationship
involves multiple different amplitudes. As these relation-
ships are not particularly enlightening, we do not present
them here.

C. U spin

The final states in six b̄ → s̄ decays in Table I and six
corresponding b̄ → d̄ decays in Table II do not involve any
π0 s. Each pair of corresponding b̄ → s̄ and b̄ → d̄ decays
is related by U-spin reflection (d ↔ s). The six pairs are:
(1) B0 → K0πþπ− and B0

s → K̄0KþK−,
(2) B0 → K0KþK− and B0

s → K̄0πþπ−,
(3) B0

s → π−KþK̄0 and B0 → πþK0K−,
(4) B0

s → πþK0K− and B0 → π−KþK̄0,
(5) Bþ → Kþπþπ− and Bþ → πþKþK−,
(6) Bþ → KþK0K̄0 and Bþ → πþK0K̄0,

where the first (second) decay is b̄ → s̄ (b̄ → d̄). In each
pair, amplitude terms multiplying V�

cbVcs and V�
ubVus in the

b̄ → s̄ process equal amplitude terms multiplying V�
cbVcd

and V�
ubVud in the b̄ → d̄ process (up to an overall negative

sign arising from the order of final-state particles [29]; see
Tables I and II). Thus, one can write relations among the
b̄ → s̄ and b̄ → d̄ decay amplitudes involving CKM matrix
elements.
However, there is another relationship between

U-spin pairs that is more useful experimentally [29–31].
It is

As

Ad

Bs

Bd
¼ −1; ð30Þ

where

Bd ¼ jAðb̄ → d̄Þj2 þ jAðb → dÞj2;
Bs ¼ jAðb̄ → s̄Þj2 þ jAðb → sÞj2;

Ad ¼
jAðb̄ → d̄Þj2 − jAðb → dÞj2
jAðb̄ → d̄Þj2 þ jAðb → dÞj2 ;

As ¼
jAðb̄ → s̄Þj2 − jAðb → sÞj2
jAðb̄ → s̄Þj2 þ jAðb → sÞj2 : ð31Þ

Bd and Bs are related to the CP-averaged b̄ → d̄ and b̄ → s̄
decay rates, while Ad and As are direct CP asymmetries.
The CP-conjugate amplitude Āðb̄ → q̄Þ is obtained from
Aðb → qÞ by changing the signs of the weak phases. These
relations hold for all final symmetry states for all U-spin
reflections.
There are six U-spin relations of this kind. Two addi-

tional U-spin amplitude relations connect several b̄ → s̄
and b̄ → d̄ decays. Since these additional relations are of no
particular interest, we do not present them here. Along with
the four b̄ → s̄ and four b̄ → d̄ decay amplitude relations,
of which one pair [Eqs. (26) and (28)] is related by U-spin
reflection, this makes a total of 15 independent relations.
This is consistent with the fact that 22 decay amplitudes are
all expressed as a function of seven combinations of
SUð3ÞF matrix elements.

V. NEGLECT OF E=A=PA

We have seen in the previous sections that FA B → PPP
decays can be written in terms of SUð3ÞF RMEs or in terms
of diagrams and that these descriptions are equivalent.
However, the diagrammatic description does provide an
additional useful tool.
When diagrams were introduced to describe B → PP

amplitudes [13,14], it was noted that the description in
terms of diagrams provides dynamical input. In particular,
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the diagrams E, A, and PA all involve the interaction of the
spectator quark. As such, they are expected to be consid-
erably smaller than the T, C, and P diagrams and can
therefore be neglected, to a first approximation. This
reduces the number of unknown parameters and simplifies
the analysis considerably. It must be stressed that this does
not follow from group theory—it is dynamical theoretical
input. Even so, experimental measurements are consistent
with this approximation; the branching ratios of processes
that proceed only throughE=A=PA are indeed considerably
smaller than those that are described by T=P=C.
With this in mind, it is likely that the E=A=PA diagrams

can be neglected in B → PPP decays. The neglect of these
diagrams leads to relationships among the SUð3ÞF RMEs:

BðfaÞ
1 ¼ 2

ffiffiffi
6

p
ffiffiffi
5

p BðfaÞ;

AðfaÞ
1 ¼ 2

ffiffiffi
6

p
ffiffiffi
5

p AðfaÞ;

PðfaÞ
8 ¼ −

ffiffiffi
3

p

2
ffiffiffi
2

p PðfaÞ
27 : ð32Þ

The above relations reduce the number of combinations of

RMEs in SUð3ÞF. Because BðfaÞ
1 and BðfaÞ always appear

with AðfaÞ
1 and AðfaÞ, respectively [Eq. (12)], the first and

second relations only lead to a reduction of the number of
RMEs by 1. An additional reduction by one RME can be
attributed to the third relation. The total number of RMEs
upon neglecting E=A=PA diagrams is then 5, down from
the original 7.
This leads to two additional relations among the b̄ → s̄

amplitudes, and similarly for the b̄ → d̄ amplitudes. For
b̄ → s̄, the additional relations are:
(1) AðB0

s → π0πþπ−ÞFA ¼ 0, i.e., the decay B0
s →

π0πþπ− is pure E0=A0=PA0. This simplifies
Eq. (27) into a triangle relationship.

(2) AðBþ → Kþπþπ−ÞFA ¼ AðB0 → K0KþK−ÞFAþ
2AðB0

s → π−KþK̄0ÞFA.
For b̄ → d̄, they are:

(1) AðBþ → πþKþK−ÞFA ¼ cAðB0 → πþK0K−ÞFAþffiffiffi
2

p
AðB0 → π0KþK−ÞFA,

(2) AðB0 → πþK0K−ÞFA þ AðB0
s → K̄0πþπ−ÞFA ¼ffiffiffi

2
p

AðB0 → π0KþK−ÞFA

VI. APPLICATIONS

In Sec. III, we established a one-to-one correspondence
between SUð3ÞF RMEs and flavor-flow diagrams for the
fully antisymmetric PPP state. By expressing all 22 b̄ → s̄
and b̄ → d̄ decay amplitudes in terms of both RMEs and
diagrams, we showed that these approaches are equivalent.
In this section, we go beyond the demonstration of this
equivalence and explore predictions that can be tested
experimentally.

A. Observing decays to the PPP fully
antisymmetric state

To obtain the fully-antisymmetric final state for a given
B → PPP decay, one proceeds as follows [12]. For the
decay B → P1P2P3, one defines the three Mandelstam
variables sij ≡ ðpi þ pjÞ2, where pi is the momentum of
each Pi. Only two of these three are independent. Say the
B → P1P2P3 Dalitz plot is given in terms of s12 and s13.
One can obtain the decay amplitudeMðs12; s13Þ describing
this Dalitz plot by performing an isobar analysis. Here, the
amplitude is expressed as the sum of a nonresonant and
several intermediate resonant contributions:

Mðs12; s13Þ ¼ N DP

X
j

cjeiθjFjðs12; s13Þ; ð33Þ

where the index j runs over all contributions. Each
contribution is expressed in terms of isobar coefficients
cj (magnitude) and θj (phase), and a dynamical wave
function Fj. N DP is a normalization constant. The Fj take
different forms depending on the contribution. The cj and
θj are extracted from a fit to the Dalitz-plot event
distribution. With Mðs12; s13Þ in hand, one can construct
the fully antisymmetric amplitude. It is given simply by

MFAðs12; s13Þ ¼
1ffiffiffi
6

p ½Mðs12; s13Þ −Mðs13; s12Þ −Mðs12; s23Þ þMðs23; s12Þ −Mðs23; s13Þ þMðs13; s23Þ�; ð34Þ

where one uses the relationship s12 þ s13 þ s23 ¼ m2
B þ

m2
P1

þm2
P2

þm2
P3

to express the third Mandelstam variable
in terms of the first two. For any three-body decay for
which a Dalitz plot has been measured, one can extract the
fully antisymmetric amplitude in the above fashion. The
Dalitz plane can be divided into six regions by three lines of
symmetry; along each line of symmetry, there is a pair of
Mandelstam variables that are equal. It is sufficient to

constructMFA in only one of these six regions as the other
five regions do not contain additional information due
to the fully antisymmetric nature of MFAðs12; s13Þ. In a
similar vein, one can construct the fully antisymmetric
amplitude for the CP-conjugate process, M̄FA, from its
measured Dalitz plot.
The fully antisymmetric amplitudes for the process and

its CP conjugate are not directly observable as these
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contain unknown phases. However, one can construct the
following three linearly independent observables using
these amplitudes:

XFAðs12; s13Þ ¼ jMFAðs12; s13Þj2 þ jM̄FAðs12; s13Þj2;
YFAðs12; s13Þ ¼ jMFAðs12; s13Þj2 − jM̄FAðs12; s13Þj2;
ZFAðs12; s13Þ ¼ Im½M�

FAðs12; s13ÞM̄FAðs12; s13Þ�: ð35Þ

For any given decay, the observables XFA;YFA, and ZFA
depend on the position in the Dalitz plot and are related to
the CP-averaged decay rate, the direct CP asymmetry, and
the indirect CP asymmetry. While X and Y exist for any
three-body decay with three distinct particles in the final
state, Z is a meaningful physical observable only for
decays in which the final state is flavor neutral, such as
K0KþK− or π0K0K̄0.

B. Confronting data

As we saw in the previous section, when the E=A=PA
diagrams are neglected, the amplitudes can be written as
functions of five combinations of RMEs. Four are propor-
tional to V�

ubVuq, and the fifth is a linear combination of
pieces proportional to V�

ubVuq and V�
cbVcq. However, when

it comes to using this parametrization to describe actual
data, this counting must be reexamined. This is because
some observables measure CP violation, which is sensitive
to the weak phases of the CKM matrix. The RMEs
proportional to V�

ubVuq and V�
cbVcq do not contribute

equally to these observables. So, the number of RMEs
that can be probed by the data is actually 6, five propor-
tional to V�

ubVuq and one proportional to V�
cbVcq.

Turning to diagrams, the first thing is that we cannot
redefine diagrams to absorb the EWPs, since that mixes
pieces involving different CKM factors. Instead, we do the
counting as follows. When E=A=PA are neglected, there

are ten diagrams. Ti, Ci, and P̃ut involve λ
ðqÞ
u ; P̃ct involves

λðqÞc ; and the four EWP diagrams involve λðqÞt . Here, it is
important to use a different convention for the diagrams
than that used in Sec. III A. Here, the diagrams contain only

the magnitudes of the λðqÞp ; the phase information, including
minus signs, is explicitly written as a factor multiplying the
diagrams. The key point now is that, just as was the case in
B → PP decays [32–34], the EWP diagrams are related to
the tree diagrams. Taking the ratios of Wilson coefficients
c1=c2 ¼ c9=c10, which holds to about 5%, the simplified
form of these relations is

PEWi ¼ κTi; PC
EWi ¼ κCi; ð36Þ

where

κ ≡ −
3

2

jλðqÞt j
jλðqÞu j

c9 þ c10
c1 þ c2

: ð37Þ

These are the same EWP-tree relations as hold for the FS
state; see Ref. [9]. With this, there are six independent
diagrams, of which two—P̃ct and P̃ut—always appear
together as a linear combination.

C. Extracting γ

1. B → Kππ and B → KKK̄ decays

The method proposed in Ref. [10] and carried out in
Refs. [16,22] uses the FS states of three B → Kππ and
two B → KKK̄ decays. They are B0 → Kþπ0π−,
B0 → K0πþπ−, Bþ → Kþπþπ−, B0 → K0KþK−, and
B0 → K0K0K̄0 (with both K0 and K̄0 identified as KS).
These are chosen because the amplitudes can be expressed
as functions of only five combinations of diagrams (and
not six).
However, this method cannot be applied to the FA states,

since there is no such state for B0 → K0K0K̄0. Of the six
B → Kππ and B → KKK̄ decays listed in Table I, two are
not used in the above method: Bþ → K0πþπ0 and
Bþ → KþK0K̄0. While the first decay clearly has an FA
state, the second decay has one only if the K0K̄0 in the final
state is detected as KSKL. While this may be possible
experimentally, it is not easy, so we will not include
this decay.
In this case, the amplitudes for the five decays B0 →

Kþπ0π−, B0 → K0πþπ−, Bþ → Kþπþπ−, B0 → K0KþK−,
and Bþ → K0πþπ0 are functions of six diagrams, so there
are 12 unknown theoretical parameters: six magnitudes of
diagrams, five relative strong phases, and γ. And there are a
total of 12 observables: the CP-averaged decay rates (XFA)
and direct CP asymmetries (YFA) for the five decays and
the indirect CP asymmetries (ZFA) of B0 → K0πþπ− and
B0 → K0KþK−. With an equal number of observables and
unknown theoretical parameters, γ can be extracted from a
fit, albeit with discrete ambiguities.
Now, it is expected that jP̃ucj ≃ λ2jP̃tcj, where

λ≡ sin θC ≃ 0.22, so it is not a bad approximation to
neglect P̃0

uc. If one does this, there are now ten unknown
theoretical parameters, which will reduce the discrete
ambiguity in the extraction of γ. (In this case, it is possible
to add a theoretical parameter parametrizing the breaking of
SUð3ÞF; see the discussion below.)

2. General analysis

To date, methods to extract γ from B → PPP decays
have focused mainly on ΔS ¼ 1 B → Kππ and B → KKK̄
decays. However, there are many more decays, including
ΔS ¼ 0 processes and/or ΔS ¼ 1 B0

s decays. Looking at
Tables I and II, and eliminating those that (i) contain K0K̄0
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in the final state and (ii) vanish when E=A=PA are
neglected, we see there are a total of 17B → PPP decays
that have an FA final state. All of these are functions of the
same six diagrams, so there are in total 12 unknown
theoretical parameters. If/when the Dalitz plots of these
decays are measured, we have the potential to perform a fit
to the data with many more observables than unknown
parameters. (Of course, this also holds for the FS final
state.) We will probably be able to extract γ with no discrete
ambiguity.

D. SUð3ÞF breaking

In this entire discussion, it has been assumed that SUð3ÞF
is a good symmetry. However, we know that SUð3ÞF is in
fact broken, and these breaking effects will inevitably affect
the extraction of γ. In some cases, it is possible to include
new theoretical parameters in the fit that measure the size of
SUð3ÞF breaking. Now, the fits are performed at a specific
point in the Dalitz plot. But there is evidence that, when one
averages over the entire Dalitz plot, the size of SUð3ÞF
breaking is significantly reduced.
As described above, the amplitudes of the FS states of

the three B → Kππ and two B → KKK̄ decays used in the
analysis of Ref. [22] are functions of five effective
diagrams. As such there are ten unknown parameters.
But there are 12 observables. In light of this, the B →
KKK̄ amplitudes were multiplied by an additional SUð3ÞF-
breaking parameter αSUð3Þ. It represented the fact that, for
these decays, one must pop an ss̄ pair from the vacuum,
while in B → Kππ decays, a uū or dd̄ pair is popped. In
Ref. [22], it was found that, while the value of the
magnitude of αSUð3Þ could be sizeable at a given point in
the Dalitz plot, it could also have either sign. When
averaged over the entire Dalitz plot, it was found that
the effect of SUð3ÞF breaking was only at the percent level.
A similar technique can be used for the FA B → PPP

states. The number and type of SUð3ÞF-breaking para-
meters that are added to the amplitudes depend on how
many more observables there are than unknown theoretical
parameters. But in principle, it should be possible to add
such parameters and see if, as was the case above, the size
of SUð3ÞF breaking is actually reduced when averaged over
the entire Dalitz plot.
Another technique for testing U-spin breaking by aver-

aging over the Dalitz plot was discussed in Ref. [15] for the
fully-symmetric final state. This technique is to apply
Eq. (30) to two decays that are U-spin reflections of each
other, in the presence of U-spin breaking. In terms of the
Dalitz plot observables of Eqs. (35) and (30) can be
rewritten as

−
YFAðb̄ → s̄Þ
YFAðb̄ → d̄Þ ¼ YFA; ð38Þ

where YFA is a real number that captures the amount of
U-spin breaking. Under perfect U-spin symmetry YFA ¼ 1,
however, its measured value may be YFA > 1 or YFA < 1
depending on the Dalitz plot point. Averaging over the
Dalitz plot one can then test the amount of U-spin breaking
in these decays. This technique can be applied to test U-
spin breaking in the six U-spin-related pairs of decays listed
in Sec. IV C.

VII. CONCLUSIONS

Recently, theCP-phase γwas extracted from observables
associated with the Dalitz plots of B0 → Kþπ0π−, B0 →
K0πþπ−, Bþ → Kþπþπ−, B0 → KþK0K−, and B0 →
K0K0K̄0 [22]. These decays all receive significant loop-
level gluonic and/or electroweak penguin contributions and
so could be affected byNP. The presence of thisNPwould be
revealed by a difference between the (loop-level) value of γ
found here and the value found using a standard method
involving only tree-level decays [2–5].
In three-body charmless B → PPP decays, there are six

possibilities for the final state: a fully symmetric state, a
fully antisymmetric state, or one of four mixed states. The
analysis of Ref. [22] used the FS state and found six
possible values for γ. One value agrees with that measured
independently using tree-level decays, while the other
five are in disagreement and hint at the presence of NP.
In order to determine which of these is the true value
of γ in this system, one must extract γ from a second set of
B → PPP decays, this time using a different symmetry
of the final state. There may again be multiple
solutions, but the true value of γ will be common to both
analyses.
In this paper, we present the formalism describing

charmless B → PPP decay amplitudes in which the
final-state particles are all π’s or K’s, and the final state
is fully antisymmetric. This can be used to perform
analyses for extracting γ. In FA states, there are no identical
particles in the final state; there are 11 b̄ → s̄ and 11 b̄ → d̄
B → PPP decays of this type. (But note that four decays
have K0K̄0 in the final state. These have an FA state only if
this pair can be detected as KSKL.) We write all 22
amplitudes in terms of seven combinations of nine
SUð3ÞF reduced matrix elements. We also present the 15
relations among the amplitudes, some of which can be
tested experimentally.
The amplitudes can also be written in terms of eight

combinations of ten diagrams. By comparing the expres-
sions for the amplitudes in terms of RMEs and diagrams,
we are able to write the RMEs as functions of diagrams.
This demonstrates the equivalence of diagrams and
SUð3ÞF. Diagrams also provide dynamical input: the three
diagrams E, A, and PA all involve the interaction of the
spectator quark and are expected to be considerably smaller
than the other diagrams. If E=A=PA are neglected, we find
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two additional relations among each of the b̄ → s̄ and
b̄ → d̄ amplitudes.
We show how the FA amplitudes can be measured

through an isobar analysis of the Dalitz plots. The analysis
of Ref. [22] cannot be applied to FA states (since B0 →
K0K0K̄0 has no FA state), so we describe other sets of
B → PPP decays that can be used to extract γ using
the FA amplitudes. Finally, we discuss how SUð3ÞF

breaking is reduced when it is averaged over the entire
Dalitz plot.
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