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In this work we introduce ν2-flows, an extension of the ν-flows method to final states containing multiple
neutrinos. The architecture can natively scale for all combinations of object types and multiplicities in the
final state for any desired neutrino multiplicities. In tt̄ dilepton events, the momenta of both neutrinos and
correlations between them are reconstructed more accurately than when using the most popular standard
analytical techniques, and solutions are found for all events. Inference time is significantly faster than
competing methods, and can be reduced further by evaluating in parallel on graphics processing units. We
apply ν2-flows to tt̄ dilepton events and show that the per-bin uncertainties in unfolded distributions is
much closer to the limit of performance set by perfect neutrino reconstruction than standard techniques. For
the chosen double differential observables ν2-flows results in improved statistical precision for each bin by
a factor of 1.5 to 2 in comparison to the neutrino weighting method and up to a factor of four in comparison
to the ellipse approach.
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I. INTRODUCTION

At collider experiments in particle physics, such as those
at the Large Hadron Collider (LHC) [1], beams of hadrons
or leptons are accelerated to high energies and collided
together. These collisions result in an array of particles
which are studied by experiments comprising complex
detectors surrounding the interaction points. General pur-
pose detectors, such as ATLAS [2] and CMS [3], are
designed to record and reconstruct nearly all stable particles
predicted in the standard model of particle physics (SM).
From these reconstructed stable particles, both precision
measurements of the SM as well as searches for new
phenomena beyond the SM (BSM) are performed.
Neutrinos, stable particles produced in many collisions,

interact only through the electroweak force and traverse the
detectors without leaving a trace. Their presence in colli-
sions is inferred from a momentum imbalance in the
transverse plane perpendicular to the beam axis. This
imbalance, known as the missing transverse momentum
p⃗miss
T , is calculated from the negative vector sum of the

transverse momenta of all reconstructed objects in the
transverse plane.
In order to reconstruct individual neutrinos, and thus fully

reconstruct a single event, underlying assumptions need to be
made on their origin and multiplicity. The p⃗miss

T serves as a
proxy for all unobserved particles in the collision, but does
not indicate how many were present, or how the momentum
should be shared in the case of multiple neutrinos.
Furthermore, at hadron colliders there is no experimental
equivalent for the missing longitudinal momentum.
Several approaches are used to reconstruct neutrinos

using p⃗miss
T and by setting constraints on the invariant

masses of intermediate particles. In the case of top-quark
pair production (tt̄) in the semileptonic decay channel,
where there is one lepton and one neutrino in the event, the
neutrino momentum is typically reconstructed by solving
the longitudinal momentum component pz under the
assumption that the invariant mass of the lepton-neutrino
pair is exactly that of the W boson [4–12]. For the case of
events with two neutrinos, such as tt̄ production in the
dileptonic channel, more complicated methods [13–15] are
employed in order to resolve the share of momentum
between the two neutrinos in the event [12,16–28]. These
approaches still require the invariant mass of the two
lepton-neutrino pairs to match the W boson mass, and in
addition require the invariant mass of the lepton-neutrino-
jet triplets to match the top-quark invariant mass.
In ν-flows [29] we use conditional normalizing flows

[30–32] to learn the probability distribution of the neutrino
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momentum vector given the observed objects in an event
for semileptonic tt̄ events. From the learned conditional
probability distribution, solutions can be sampled per event
and the most probable solution can be determined from the
learned likelihood of the solution. In this work, we extend
ν-flows to more challenging final states with multiple
neutrinos. We focus on tt̄ final states in which both top
quarks decay semileptonically. This results in an expected
final state with exactly two oppositely charged leptons, at
least two jets of which two should originate from b-quarks,
and two neutrinos. In comparison to the single neutrino
case, where the main challenge arises in recovering the
longitudinal momentum component of the neutrino, events
with multiple neutrinos have the additional complexity of
how to share the total missing momentum vector between
all neutrinos in the final state. We show that ν-flows yields
improved reconstruction performance in comparison to
standard approaches and demonstrate the direct benefit
to the statistical precision in a simplified double differential
tt̄ dilepton analysis in observables such as the invariant
mass of the tt̄ system,mtt̄, and the angular separation of the
two leptons, Δϕðlþl−Þ. The repository1 and data2 used in
this work are both made publicly available.

II. METHOD

A. ν2-flows

In ν-flows, conditional normalizing flows are used to
capture the distribution of possible solutions for the
neutrino momenta given the reconstructed momenta of
observed objects in a collision. The overall model com-
prises two components, the event feature extraction, and the
conditional normalizing flow. The event feature extraction
learns a representative vector of the event from the
collections of reconstructed objects, namely the jets and
leptons, and p⃗miss

T . The resulting vector is used as a
conditional input to the normalizing flow, in order to learn
the conditional density of all possible neutrino solutions
from the training data.
In this work we extend the initial ν-flows architecture to

predict multiple neutrinos and accommodate any number of
leptons in addition to jets by using attention transformers
[34]. We label this architecture as ν2-flows to distinguish it
from the general method. In order to handle two neutrinos
we double the dimensionality of the conditional normal-
izing flow (from three to six). The neutrinos are also always
predicted in the same order for each event, with the
momentum of the neutrino followed by the momentum
of the antineutrino. When increasing the neutrino multi-
plicity further, the same procedure is used together with a
predefined ordering for the neutrinos. The architecture of
the normalizing flow is otherwise kept largely the same.

The most substantial optimization has been performed
on the feature extraction network. The feature extraction
network attempts to produce a contextual vector, specific to
each event, to guide the transformations within the normal-
izing flow. In the single lepton case, ν-flows uses an
attention pooled deep set [35] to process the jets, with
p⃗miss
x , p⃗miss

y , the lepton four momentum, and some event
level information as extra conditional information. To
extend ν2-flows to multiple leptons, we require a permu-
tation invariant architecture that can accommodate a
variable number of both jets and leptons, motivating the
move to attention transformers.
To train ν2-flows, all jets and leptons are represented by

their four-momentum vectors in the form ðpx; py; pz; logEÞ.
Jets are assigned an additional binary decision on whether
they are tagged as originating from a b-quark. Leptons are
identified as being either an electron or a muon, as well as
whether they had positive or negative charge. The target
neutrino momenta are expressed as ðpx; py; pzÞ for both the
neutrino and antineutrino. The full set of inputs to the
network are provided in Table I. The coordinates chosen
to describe the input and target object kinematics were
optimized in a grid search.
A schematic of the new architecture for ν2-flows is

shown in Fig. 1, which makes use of attention transformers
and object specific embedding networks. Initially, the jets,
leptons, and p⃗miss

T are all independently embedded into
higher-dimensional space using object specific multilayer
perceptrons (MLP).3 The embedded objects subsequently
interact through a transformer encoder using several layers
of multiheaded attention. Additional event information
(Misc) containing object multiplicities, is injected into
the network as conditional information by concatenating

TABLE I. The different input observables used as inputs to the
feature extraction network.

Category Variables Description

p⃗miss
T pmiss

x , pmiss
y Missing transverse

momentum 2-vector

Leptons pl
x , pl

y , pl
z , logEl Lepton momentum 4-vector

ql Lepton charge
lflav Whether lepton is an

electron or muon

Jets pj
x, p

j
y, p

j
z, logEj Jet momentum 4-vector

isB Whether jet passes
b-tagging criteria

Misc Njets, Nbjets Jet and b-jet multiplicities
in the event

1https://github.com/rodem-hep/nu2flows.
2https://zenodo.org/record/8113516 [33].

3Other final state objects such as photons and tau leptons can
also be accommodated by embedding them additional MLPs for
each particle type.
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the vector to each token within the transformer encoder
(TE) blocks. To obtain a single global vector from
transformer as our conditioning vector for the normalizing
flow, we perform repeated cross-attention (CA) with a
learnable class token (CT), a common technique used in
vision transformers [36].
The ν2-flows model in this paper comprises three

transformer encoder blocks and two cross-attention blocks,
each with an embedding dimension of 128 and 16 attention
heads. All MLPs in the network have a single hidden layer
with 256 neurons and use the LeakyReLU activation [37]
and layer-normalization [38]. The output of the transformer
is passed through an MLP to produce the context tensor for
the flow with a dimension of 128. The invertible neural
network employs 10 rational quadratic spline (RQS)
coupling blocks [39] interspersed with LU-decomposed
linear layers, implemented with the nflows package [40]
and PyTorch v2.0 [41]. Each RQS has 10 bins with linear tail
bounds outside �4. The conditional normalizing flow is
trained with the standard maximum likelihood estimation
loss obtained through the change of variables formula, and
transforms the input neutrino momenta to a standard
multivariate normal distribution. The entire ν2-flows
model, including the transformer, has around 600,000
trainable parameters.
We train the ν2-flows model for 100 epochs using the

AdamW optimizer [42] with a learning rate cycling from
10−8 to 10−3 and back every 50 epochs. We use weight
decay with a strength of 10−4.

B. Reference methods

Several analytical techniques have been proposed to
solve the reconstruction of the two neutrinos in dilepton tt̄
events. Amongst these are neutrino weighting [13]
(ν-weighting), an algebraic solution [14], and the ellipse
method [15]. These have been successfully employed
in a wide range of measurements at the Tevatron and

LHC [12,16–28], most notably ν-weighting. In this work
we compare ν2-flows to the ν-weighting due to its common
usage but also the ellipse method due to its reduced
computation time.

1. ν-weighting

In ν-weighting the kinematic properties of the neutrino
are extracted from the identified leptons, jets, and missing
transverse momentum in the event. For our implementation
we follow the prescription described in Ref. [27].
Constraints on neutrino solutions using the invariant mass
of the top quark and W boson

ðl1;2 þ ν1;2Þ2 ¼ m2
w ¼ ð80.38 GeVÞ2; ð1Þ

ðl1;2 þ ν1;2 þ b1;2Þ2 ¼ m2
t ¼ ð172.5 GeVÞ2; ð2Þ

are applied, where l1;2, ν1;2, and b1;2 represent the four-
momenta of the charged leptons, neutrinos, and b-tagged
jets. However, this is not enough to fully constrain the
kinematics of the neutrinos. Therefore, the neutrino and
antineutrino rapidities (ην and ην̄) are individually hypoth-
esized and tested. For each pair of values for ην and ην̄, we
solve the mass equations in Eq. (1), yielding two possible
solutions for the full pair of neutrino kinematics. Each
solution produces an inferred missing transverse momen-
tum p⃗νν̄

T vector which can then be compared to the observed
p⃗miss
T . This comparison defines a weight

w ¼ exp

�
−
jjp⃗miss

T − p⃗νν̄
T jj22

2σ2

�
; ð3Þ

where σ is a fixed resolution scale related to the
p⃗miss
T reconstruction in the detector. In ν-weighting the

hypothesis that maximizes w is chosen as the correct
solution. To find all solutions we perform a grid search
of ην and ην̄ with values ranging from −5 to 5 with a step

FIG. 1. A schematic of the ν2-flows network for learning the conditional likelihood of multiple neutrinos in the event. The network
uses a transformer encoder with cross attention with a learnable class token (shown in the figure as TE, CA, and CT respectively) to
embed an event representation for any multiplicity of physics objects. This operation is permutation invariant and can operate on any jet
and lepton multiplicity. Each physics object has its own dedicated embedding network and additional event information (Misc) is used to
condition the transformer encoder blocks. The representation vector is used to condition the transformation with the normalizing flow.
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size of 0.2. For each of these we also need to test all
combinations of assigning b-tagged jets to each of the
b-quarks from the tt̄ decay. This represents a very costly
computation scan that considers only discrete η values.
Another significant drawback of this method is that

despite the large number of neutrino solutions being tested,
it is still possible that the constraint systems are not
solvable. This can be due to mismeasurement or misassign-
ment of the leptons, jets, or p⃗miss

T . Alternatively, this can
arise from the masses of either the top quarks or W bosons
in the event deviating from the nominal values. Therefore,
to increase the success rate of this method we also iterate
over different values of mt from 171 GeV to 174 GeV with
a step size of 0.5 GeV. This further increases the computa-
tional requirements, but increases the efficiency of finding a
solution for each event.
After selecting the solution with the highest w, any

solution which results inmtt̄ < 300 GeV or where either of
the two reconstructed top quarks have negative energy is
rejected. The ν-weighting method is unable to find a valid
solution on the nominal dataset around 5% of the time.

2. Ellipse method

The ellipse method is derived from a geometric approach
to analytically constrain neutrino kinematics explicitly in
processes where top quarks decay into leptons and neu-
trinos [15]. For a single neutrino, its momentum can be
calculated as a function of the 4-momenta of the b-quark
and the charged lepton, theW boson mass, and the top quark
mass. The solution set for this function defines the surface of
an ellipse. By combining this information with the observed
p⃗miss
T , the solution set collapses to a unique value. For events

with twoneutrinos in the final state, themethod is extended to
calculate the solution for neutrino pairs which aremost likely
to have produced the observed p⃗miss

T .
We use the implementation from the authors of the

ellipse method.4 To solve the b-jet combinatorics we use a
simple minimum ΔRmatching between the leptons and the
b-jets in the event. To reduce the combinations we only take
the two leading jets in pT -passing b-tagging criteria. If the
ΔR matching yields no solutions for the neutrino kinemat-
ics using the ellipse method, the opposite association is
tested.
The drawbacks of this approach is that it requires

accurate matching between each lepton and the associated
b-jet in the event. Furthermore, like ν-weighting, it requires
one to make hard assumptions on the mass of the W boson
and top quark. Finally, it is possible that the method can
yield no solutions, just like ν-weighting. The implementa-
tion used in this work fails to find solutions in 22% of tt̄
dilepton events. In comparison to ν-weighting, the ellipse

method requires much less computational resources
per event.

III. DATASET

In this work, ν2-flows is applied to simulated tt̄ events
where both top quarks decay semileptonically, resulting in
a final state with exactly two leptons (l),5 two neutrinos (ν)
and two jets initiated by b-hadrons (b-jets). Additional jets
arise from initial and final state radiation. All events are
simulated in proton-proton collisions at a center-of-mass
energy of

ffiffiffi
s

p ¼ 13 TeV. Two different samples are gen-
erated, each using a different generator for the hard
interactions in the matrix element.
In the nominal sample, hard interactions are simulated

using MadGraph5_aMC@NLO [43] (v3.1.0). The top-quark
mass mt is set to 173 GeV for all events. All events are
interfaced to PYTHIA8 [44] (v8.243) for the parton shower
and hadronization, using the NNPDF2.3LO PDF set [45] with
αSðmZÞ ¼ 0.130 using the LHAPDF [46] framework.
In the alternative sample, both the hard interactions and

parton shower are simulated with PYTHIA8 (v8.307) with
the Monash tuned set of parameters [47] at leading-order
accuracy. The same PDF set is used as for the nominal
sample.
The detector response is simulated using DELPHES [48]

(v3.4.2) with a parametrization similar to the response of
the ATLAS detector [2]. Jets are reconstructed using the
anti-kt clustering algorithm [49] with a radius parameter of
R ¼ 0.4 using the FastJet package [50]. All jets are required
to have a transverse momentum pT > 25 GeV and fall
within jηj < 2.5. A b-tagging working point corresponding
to 70% inclusive signal efficiency is used to identify jets as
originating from b-hadrons. Up to 10 jets are selected per
event, ordered in descending pT.
Events are required to have at least two b-tagged jets, and

two oppositely charged leptons, each with pT > 15 GeV
and jηj < 2.5. Truth association of jets to the b-quarks in
the tt̄ hard scatter is performed using a ΔR matching, with
partons matched to jets within ΔR < 0.4. Events where
multiple partons are matched to the same jet are removed.
Truth association of the lepton to the parent top quark is
performed assuming there is no charge misidentification,
and the true neutrino momenta are taken directly from
simulation.
In total there are 1.02 million events in the nominal

sample and 1.4 million events in the alternative sample
passing all selection requirements. 940,000 (970,000)
events from the nominal (alternative) sample are used to
train the network, with 80,000 nominal samples used for
evaluation.

4Implementation available at github.com/betchart/analytic-nu. 5Leptons is used to designate either electrons (e) or muons (μ).
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IV. RESULTS

A. Neutrino reconstruction

The first measure of performance is to validate that ν2-
flows is able to correctly reconstruct the momenta and
relative positions of the neutrino pair. To establish a
baseline for the impact of neutrino reconstruction in all
distributions, we define ν-truth to be the case where the
truth neutrinos are reconstructed perfectly, but all other
objects in the event remain the same. This defines the
ground truth of the target distributions and is also the upper
limit in performance for any neutrino reconstruction

approach. We compare the reconstruction performance
with ν2-flows to the ν-weighting and ellipse methods.
The individual neutrino kinematics and the angular

separation between the two neutrinos are shown in Figs. 2
and 3. Here we can see that both ν-weighting and ellipse
overestimate the neutrino transverse momenta and energy
and tend to prefer central neutrinos with a visible peak at
η ¼ 0. The neutrino pair is also predominantly predicted to
be back to back in ϕ, with the opening angle between them
showing a large degree of tension with the ground truth.
In all neutrino kinematic distributions, ν2-flows is able to

FIG. 2. The kinematics of the reconstructed (anti)neutrinos for the three reconstruction methods and ν-truth (shaded gray). The hashed
areas represent statistical uncertainties in the ν-truth prediction.

FIG. 3. The angular separation in η and ϕ between the reconstructed neutrino pair per event for the three reconstruction methods and
ν-truth (shaded gray). The hashed areas represent statistical uncertainties in the ν-truth prediction.
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reproduce the ground truth accurately, with slight discrep-
ancies only visible in the low statistic tails.
From the reconstructed neutrinos it is also possible to

reconstruct the W bosons, top quarks and the full tt̄ system
in the event. Figure 4 shows the reconstructed invariant
mass of theW boson and top quark. Here we always use the
perfect association of jets and leptons to the two top quarks.
The strong bias to the top quark and W boson masses used
in Eq. (1) for the ν-weighting and ellipse methods are
clearly visible. In comparison, ν2-flows follows the full
underlying target distribution for the W boson mass and
better captures the distribution in the reconstructed top-
quark mass, but with a lower resolution than ν-truth.
However, due to the dependence on the masses of the

two particles for ν-weighting and ellipse it is more

interesting to compare the reconstructed kinematics of
the individual top quarks and the tt̄ pair. The reconstructed
top quark pT is also compared for the three methods in
Fig. 4. The true distribution is reproduced with ν2-flows
and up to approximately 200 GeV by ν-weighting.
However, ellipse tends to reconstruct top quarks with a
harder pT. In Fig. 5 the invariant mass, pT and the rapidity
of the reconstructed tt̄ system ytt̄ are shown. Although
discrepancies are observed at low mtt̄ values, ν2-flows is
able to closely reproduce the kinematics of the tt̄ system
much better than ν-weighting and ellipse. The ptt̄

T and ytt̄
distributions are well reconstructed with ν-weighting
but there is an overestimate in the tail of the mtt̄
distribution, whereas ellipse shows poor modeling in all
three observables.

FIG. 4. The reconstructed invariant mass ofW bosons (left) and top quarks (middle), as well as the top quark pT (right) when using the
three neutrino reconstruction methods in comparison to ν-truth (shaded gray).

FIG. 5. The invariant mass, pT, and rapidity of the reconstructed tt̄ system when using the three neutrino reconstruction methods in
comparison to ν-truth (shaded gray).
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As also performed in Ref. [29], we perform a cross check
on the benefit of using the normalizing flow in the ν2-flows
architecture. We train the ν2-flows architecture but without
the flow and predict the two neutrino momenta directly,
establishing a simple machine learning baseline. The
performance achieved is substantially worse with strong
biases in all neutrino kinematics and resulting event level
distributions (see the Appendix).
One of the main drawbacks of ν-weighting, and why

ellipse is often considered despite the reduced performance,
is the computational resources required. In comparison,
ν-flows requires only a single forward pass for each event.
The typical inference times on a CPU for single event
inference are around 70 ms, with the computation time
decreasing substantially with parallelized execution on a
GPU as summarized in Table II.

B. Unfolding analysis

In order to evaluate the downstream impact of the
improved neutrino reconstruction from ν-flows, we follow
the unfolding analysis performed in Ref. [26], where a
double differential cross section measurement is per-
formed to measure the spin correlation in tt̄ events, by
measuring the invariant mass of the tt̄ system mtt̄ and the
angular separation between the two leptons Δϕðlþl−Þ.
Reconstruction of the two neutrinos is crucial in order to
fully reconstruct the tt̄ system, which in Ref. [26] is
performed using ν-weighting. To benchmark our model,
we replace the neutrino reconstruction with the result from
ν2-flows. In addition to ν-weighting we also compare the
performance to the ellipse method due to its reduced
computational complexity.

We focus on the reconstruction of individual observables
dependent on the neutrino kinematics as well as the
statistical precision of the unfolded distributions. In addi-
tion to Δϕðlþl−Þ, we look at other observables in
conjunction with mtt̄, motivated by the distributions mea-
sured in Ref. [51]. These observables are described in
Table III and the corresponding bin edges for the double
differential unfolding and corresponding response matrices
are shown in Table IV.
All distributions are compared to ν-truth, and the total

uncertainty in each bin after unfolding is calculated with
respect to the optimal performance achieved when using
ν-truth. The correct jet and lepton association is used for
both top quarks in order to remove the effects arising from
matching inefficiencies. We perform the unfolding using
the singular value decomposition (SVD) method [52] with
a regularization factor of 7, using the implementation
provided in RooUnfold [53]. The regularization factor
was optimized for the ν-truth distributions for a reduced χ2

value closest in agreement to one for the four double
differential distributions. In all cases we only consider the tt̄
process and ignore the impact of background estimation
and subtraction in the methods.
Although more modern machine learning approaches for

unfolding are an active area of research [54–59], we leave
their study and application to dilepton tt̄ events to future
studies, in particular the study of unbinnedmultidimensional
unfolding with the reconstructed neutrino kinematics.
The response matrix using each of the neutrino

reconstruction methods is shown in Fig. 6 for the two-
dimensional binning in mtt̄ and Δϕðlþl−Þ and in Fig. 7
for mtt̄ and pt

T. In the ideal case only the main diagonal
would contain entries, however due to inefficiencies in the
neutrino reconstruction methods as well as detector reso-
lution effects, off diagonal elements are unavoidable. In
both cases it is clear that using ν2-flows to reconstruct the
neutrino pair results in a more diagonal response matrix
than the other two approaches. This is quantified by the
trace fraction of each matrix.
Although the trace fraction can give a good measure of

which method is performing best, the off diagonal elements
still contribute to the unfolded distributions. To quantita-
tively assess the true impact of using each method, the

TABLE II. Required time for single event inference using
ν2-flows. Times representative of using a single core of an
AMD EPYC 7742 2.25 GHz CPU and a NVIDIA® RTX
3080 graphics card.

Resource Batch size Time/event [ms]

CPU 1 71.4

GPU
1 33.3

1000 0.03

TABLE III. Kinematic observables of the reconstructed tt̄
system studied for an unfolding analysis in dilepton events.

Observables

mtt̄ Invariant mass of tt̄ system
Δϕðlþl−Þ Separation in ϕ between the two leptons
pt
T Transverse momentum of the top quark

ptt̄
T Transverse momentum of the tt̄ system

ytt̄ Rapidity of the tt̄ system

TABLE IV. Bin edges used for each of the kinematic observ-
ables of the reconstructed tt̄ system studied for two-dimensional
unfolding analyses.

Observable Bin edges

mtt̄ [0, 400, 500, 800, inf] GeV
Δϕðlþl−Þ [0.0, 0.25, 0.5, 0.75, 1.0] rad=π
pt
T [0, 75, 125, 175, inf] GeV

ptt̄
T [0, 70, 140, 200, inf] GeV

ytt̄ [-inf, −1.0, 0.0, 1.0, inf]
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response matrices are inverted using SVD and the overall
uncertainties for each bin at parton level are calculated.
Figure 8 shows the relative statistical uncertainty for

each method with respect to ν-truth. The values are
obtained for each bin of the unfolded distributions using
SVD with the chosen level of regularization. For the
individual bins of the four double differential distributions
the uncertainties are typically a factor of 1.5 to two times
smaller when using ν2-flows compared to ν-weighting, and
up to four times smaller in comparison with ellipse.

C. Robustness to training sample

In comparison to the standard analytical approaches,
ν-flows is trained on a specific sample of Monte Carlo
simulated events. This could introduce a performance
dependence on the sample used for training, which may
not be optimal for all generators. It should be noted that the

same model is used for all events and, just like the analytical
approaches, is independent of which samples it is applied to.
However, if ν-flows has learned sample specific effects this
can lead to a suboptimal performance or even unusable levels
of performance when applied to other samples.
To study the impact of this effect we train ν2-flows using

the alternative tt̄ dilepton sample [ν2-flows (PYTHIA8)] and
use it to reconstruct the neutrinos for the nominal tt̄ sample.
We compare the reconstructed kinematic distributions as well
as the uncertainties in each bin of the unfolded distributions.
Negligible differences are observed in the reconstructed

neutrino kinematics, though the difference can clearly be
seen for the reconstructed W boson mass and a slight
difference is also seen for the reconstructed top quark
invariant mass.
Some small differences are also observed in the tails of

the reconstructed top quark and tt̄ properties in Fig. 9,
however the performance is still substantially improved in

FIG. 6. Binned response matrices for the double-differential measurement ofmtt̄ andΔϕðlþl−Þwhen using each of the three methods
for neutrino reconstruction. The binning is symmetric for both the parton and detector level observables, however themtt̄ bins are labeled
on the x-axis with the Δϕðlþl−Þ bins labeled on the y-axis. The trace fraction is calculated for each method for a simple quantitative
comparison and is 0.73 when using ν-truth.

FIG. 7. Binned response matrices for the double differential measurement of mtt̄ and pt
T when using each of the three methods for

neutrino reconstruction. The binning is symmetric for both the parton and detector level observables, however themtt̄ bins are labeled on
the x-axis with the pt

T bins labeled on the y-axis. The trace fraction is calculated for each method for a simple quantitative comparison
and is 0.62 when using ν-truth.
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comparison to ν-weighting and ellipse. The response
matrix for ν2-flows (PYTHIA8) for the double differential
distribution in mtt̄ and pt

T is shown in Fig. 10. These
differences translate to a very slight change in the statistical

precision in each bin after performing the unfolding (see
the Appendix).
As another test of robustness we study how well ν2-flows

performs in comparison the ν-weighting and ellipse at

FIG. 8. The relative statistical uncertainty in each unfolded bin of the two-dimensional distributions for mtt̄ and Δϕðlþl−Þ (top left),
pt
T (top right), ptt̄

T (bottom left), and ytt̄ (bottom right). Comparing the three reconstruction methods with respect to ν-truth (upper pad),
and the relative improvement of ν-flows with respect to ν-weighting and ellipse (lower pad).

FIG. 9. The invariant mass, pT, and rapidity of the reconstructed tt̄ system when using ν2-flows trained on the nominal or alternative
sample, in comparison to the two baseline approaches and ν-truth (shaded gray).
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reconstructing tt̄ events which have been simulated with
additional initial-state radiation (ISR). This sample has
280,000 events and is otherwise the same as the nominal
sample, however substantial differences are be observed in
the jet multiplicity distributions and underlying kinematics
of the top-quark and tt̄ pair. Most notably the distribution of

ptt̄
T is much harder, due to the recoil against the addi-

tional ISR.
Figure 11 shows the reconstructed distributions for the

three approaches. As before, ν2-flows exhibits very good
agreement across the majority of the kinematic phase space,
despite having been optimized for a different sample.

D. Measuring the top-quark mass

In contrast to ν-weighting and ellipse, which both
assume values for the top-quark mass in the neutrino
reconstruction, ν2-flows only implicitly learns this relation
from the training data. To test whether ν2-flows has
sensitivity to the underlying top-quark mass, we use the
default ν2-flows model to evaluate events in which the truth
mt has been changed to either 171 GeVor 175 GeV. These
samples each have 160,000 events and are otherwise the
same as the nominal sample.
We compare the reconstructed top-quark mass using the

four momenta of the lepton, b-quark, and neutrino (mt) to
the invariant mass using only of the lepton and b-quark
from the same top decay (mbl).
The distributions are shown in Fig. 12. Despite training

purely on events with the nominal top quark mass, the
reconstructed distribution using ν2-flows is sensitive to the
difference in truth mt. The separation between the three
templates is similar to using mbl, however for ν2-flows the
difference is more prominent in the bulk of the distribution.
This sensitivity could be improved by training ν2-flows on
samples with a range of values formt and parametrizing the
network, however this would introduce additional compu-
tational complexity to the method. Another benefit of
ν2-flows is also demonstrated, with a smoother templates

FIG. 10. Binned response matrices for the double differential
measurement of mtt̄ and pt

T when using ν2-flows (PYTHIA8) but
evaluating on the nominal tt̄ sample. The binning is symmetric
for both the parton and detector level observables, however the
mtt̄ bins are labeled on the x-axis with the pt

T bins labeled on the
y-axis. The trace fraction is calculated for each method for a
simple quantitative comparison and is 0.62 when using ν-truth
and 0.31 for the nominal ν2-flows.

FIG. 11. The reconstructed top quark pT, and the invariant mass and pT of the reconstructed tt̄ system for an independent sample with
additional initial state radiation when using ν2-flows trained on the nominal sample in comparison to the two baseline approaches and
ν-truth (shaded gray).
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constructed by sampling multiple neutrino solutions for
each event.

V. CONCLUSIONS

With ν2-flows we have built upon the success of the ν-
flows method to employ conditional normalizing flows to
reconstruct the momentum vectors of multiple neutrinos in
a single event. In comparison to other commonly used
approaches, ν2-flows is able to reconstruct both neutrinos
without enforcing strong constraints on reconstructed
particle masses in order to find solutions in an undercon-
strained system. This translates to a reduced bias in the
reconstruction of neutrinos, without a preference for back-
to-back neutrinos, and with a more accurate reconstruction
of the kinematics of individual top quarks and the full tt̄
system. The reconstructed neutrinos can be used directly
or potentially combined with other machine learning
approaches which aim to reconstruct the underlying hard
scatter event [60–64]. The generalized architecture intro-
duced in ν2-flows has been designed to be easy to extend to
any neutrino multiplicity, and does not place restrictions on
the multiplicities of reconstructed objects, or how they are
combined to extract information from the event.
In applying ν2-flows to dilepton tt̄ events we achieve

significant improvements in the statistical precision of
unfolded distributions in comparison to the most com-
monly used analytical approaches for a wide range of
distributions of interest. These improvements can lead to an
increased sensitivity in the measurement of top-quark spin
correlation and entanglement at the LHC. Furthermore, in
contrast to other approaches, ν2-flows has solutions for all
events and the fast single event inference below 75 ms on a
single computing core. As each sample is associated with a

probability from the transformation under the normalizing
flow, this could also provide opportunities for separating tt̄
events from background processes, similar to the weight in
ν-weighting. This could be done using the probability of
the single solution per event, or, as multiple solutions can
be sampled for each event, the highest possible probability
value for an event.
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APPENDIX: ADDITIONAL MATERIAL

1. Unfolding efficiencies

The relative uncertainty for each bin in the unfolded
distributions is compared in Table V for all methods with
respect to ν-truth, including both ν2-flows and ν2-flows
(PYTHIA8). The efficiency of finding a solution with the
ν-weighting and Ellipse methods for each bin of the double
differential distributions are summarized in Table VI.

FIG. 12. The reconstructed top-quark mass using just from the lepton and b-quark from the top-quark decay (mbl, left), the full
invariant mass using ν2-flows to reconstruct the neutrinos from the top quarks (mt, middle), and a smoothed template formt obtained by
sampling 256 solutions for each event with ν2-flows (right). The statistical uncertainty on the distributions arising from the training
dataset has not been propagated into the final statistical uncertainty.
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As ν2-flows is able to find a solution for all events, a value
lower than 100% indicates where additional statistical
sensitivity can be achieved with ν2-flows. This is particu-
larly notable with increasing values of mtt̄, but also for
higher values of ptt̄

T. This is especially the case in
comparison to Ellipse, with some bins having more than
50% of events without solutions, however, in certain
unfolding bins 10–20% of events also do not have solutions
when using ν-weighting.

2. Direct regression

Strong biases are introduced when replacing the normal-
izing flow with a naïve feed-forward network to predict the
neutrino momenta for each event directly. This network,
ν2-FF, has the same architecture as the feature extraction
network in ν2-flows, but with a dense output layer for the

neutrino momenta, and is trained with an L2 loss. Figure 13
shows the reconstructed invariant mass of the top quark and
tt̄ pair when using ν2-FF to reconstruct the neutrinos in
comparison to the other reconstruction approaches. A
strong negative bias can be seen in both distributions.

3. Origin of improvement over ν-weighting

In the ν-weighting a weight is used to find the best
solution, as defined in Eq. (3), which can also be interpreted
as how good a solution is. The improvement from ν2-flows
could arise from the events with low values of w or no
solutions, or come from all events regardless of how well
ν-weighting performs.
To investigate this we compare the reconstruction

performance for events where ν-weighting has either a
good solution or a poor solution. We define good

TABLE V. Relative uncertainty in each bin of the respective unfolded double differential distributions for each neutrino reconstruction
method with respect to the uncertainty when using ν-truth. The bins are ordered first by increasing mtt̄ followed by the second variable,
with vertical dividers indicating the bin edges in mtt̄. The method with the smallest relative increase in uncertainty in comparison
to ν-truth is highlighted in bold.

Observables Method Relative uncertainty to ν-truth (per bin)

mtt̄ ytt̄ ν-weighting 2.9 3.2 3.0 2.6 2.9 3.4 3.1 2.6 2.7 2.8 2.9 2.6 2.4 2.5 2.6 2.7
Ellipse 3.5 3.6 3.2 2.4 2.2 3.6 3.5 3.1 3.6 3.8 4.1 3.5 3.1 3.4 3.6 3.6
ν2-flows 1.8 1.9 1.9 1.8 1.9 2.1 1.9 1.8 1.8 1.8 1.8 1.7 1.6 1.6 1.6 1.7
ν2-flows (PYTHIA8) 1.9 1.9 1.9 1.8 1.9 2.1 2.0 1.8 1.8 1.8 1.8 1.7 1.7 1.6 1.7 1.8

ptt̄
T ν-weighting 3.5 2.6 1.6 2.1 3.4 3.0 2.4 2.3 2.5 2.7 2.5 2.2 2.1 2.2 2.2 2.3

Ellipse 7.6 5.3 2.2 3.7 7.3 5.7 4.3 4.1 4.0 4.7 4.4 3.8 3.6 3.3 3.5 3.8
ν2-flows 1.9 1.6 1.2 1.4 2.0 1.7 1.5 1.5 1.6 1.6 1.6 1.5 1.5 1.5 1.5 1.5
ν2-flows (PYTHIA8) 2.0 1.6 1.2 1.4 2.0 1.7 1.5 1.5 1.7 1.6 1.6 1.5 1.5 1.5 1.5 1.5

pt
T ν-weighting 3.1 2.3 1.7 2.5 3.2 3.2 2.8 2.9 2.8 2.9 2.9 2.3 2.2 2.2 2.3 2.4

Ellipse 4.8 3.1 2.5 3.8 4.9 4.9 3.8 4.3 4.0 4.4 4.9 3.0 3.5 3.7 3.6 3.4
ν2-flows 2.2 1.9 1.8 2.1 2.5 2.4 2.0 2.2 2.1 2.0 2.0 1.7 1.9 1.9 1.7 1.6
ν2-flows (PYTHIA8) 2.3 1.9 1.9 2.2 2.5 2.4 2.0 2.3 2.2 2.1 2.0 1.7 2.0 2.0 1.7 1.6

Δϕðlþl−Þ ν-weighting 2.0 2.0 1.5 1.4 1.9 2.1 2.0 1.9 1.9 2.0 2.2 2.0 1.5 1.6 1.9 2.0
Ellipse 2.2 2.1 1.5 1.3 1.8 2.3 2.4 2.3 2.3 2.5 2.8 2.4 1.7 1.9 2.4 2.6
ν2-flows 1.5 1.5 1.4 1.4 1.6 1.6 1.5 1.5 1.5 1.5 1.6 1.5 1.3 1.4 1.5 1.5
ν2-flows (PYTHIA8) 1.5 1.5 1.4 1.4 1.6 1.6 1.5 1.5 1.5 1.5 1.6 1.5 1.3 1.4 1.5 1.5

TABLE VI. Efficiency for finding a solution in each bin of the respective unfolded double differential distributions with ν-weighting
and Ellipse. The bins are ordered first by increasingmtt̄ followed by the second variable, with vertical dividers indicating the bin edges in
mtt̄. The efficiency of ν2-flows in all bins is 100%.

Observables Method Efficiency at finding a solution (per bin) [%]

mtt̄ ytt̄ ν-weighting 97 98 97 97 96 96 97 96 93 94 94 94 89 90 89 89
Ellipse 91 92 92 91 84 82 84 82 67 68 68 70 58 54 51 50

ptt̄
T ν-weighting 99 95 91 89 98 95 90 84 97 92 89 82 94 88 81 81

Ellipse 96 86 74 59 88 79 66 50 75 66 52 38 60 52 34 37

pt
T ν-weighting 98 96 92 86 97 97 96 91 95 95 95 93 96 89 90 89

Ellipse 95 88 72 51 89 86 80 63 77 74 72 63 61 56 55 51

Δϕðlþl−Þ ν-weighting 96 97 98 99 96 96 97 97 93 94 94 94 90 90 91 88
Ellipse 90 92 92 94 84 84 83 82 76 74 68 64 57 57 57 48
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FIG. 13. The invariant masses of the reconstructed top quark and tt̄ system when using the three neutrino reconstruction methods
discussed in the paper, as well as a feed-forward regression model ν2-FF, in comparison to ν-truth (shaded gray). This plot highlights
large negative bias induced by the feed-forward model.

FIG. 14. The reconstructed top quark pT, and the invariant mass and pT of the reconstructed tt̄ system when using ν2-flows and
ν-weighting in comparison to the two baseline approaches and ν-truth (shaded gray) for events where ν-weighting returns w > 0.95 (top)
and w < 0.8 (bottom).
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FIG. 15. The reconstructed invariant mass of the W boson and top quarks when using the three neutrino reconstruction methods in
comparison to ν-truth (shaded gray) as well as the alternative ν2-flows (PYTHIA8) model.

FIG. 16. The invariant mass, pT, and rapidity of the reconstructed tt̄ system (top row) and the invariant mass, and pT of the
reconstructed top quarks (bottom row) for ν-truth with the three independent simulated samples.
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performance as values of w > 0.9 and poor performance as
w < 0.3. The pt

T, ptt̄
T, and mtt̄ distributions with these

selections are shown in Fig. 14. Although substantial
improvement can be seen over ν-weighting in regions
where ν-weighting has a low weight, ν2-flows still exhibits

improved agreement with ν-truth. It is equally encouraging
that there is no noticeable difference in the quality of
reconstruction with ν2-flows for events that can be con-
sidered well reconstructed or poorly reconstructed by
ν-weighting.

FIG. 17. The jet and b-jet multiplicities of the three independent simulated samples.

FIG. 18. Binned response matrices for the double differential measurement of mtt̄ and ptt̄
T (top) and mtt̄ and ytt̄ (bottom) when using

each of the three methods for neutrino reconstruction. The binning is symmetric for both the parton and detector level observables,
however themtt̄ bins are labelled on the x-axis with the ytt̄ bins labelled on the y-axis. The trace fraction is calculated for each method for
a simple quantitative comparison and is 0.70 when using ν-truth.
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4. Additional figures

The reconstructed top quark and W boson invariant
masses are compared in Fig. 15. The ν-truth distributions
for the nominal, alternative and extra ISR sample are
compared in Fig. 16, and the jet and b-jet multiplicities
for the three samples are compared in Fig. 17.

The response matrices for the double differential dis-
tributions in mtt̄ and pt

T, and mtt̄ and ytt̄, are shown
in Fig. 18.
Detailed schema of the transformer encoder block

and cross-attention block used in ν2-flows are detailed
in Fig. 19.
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