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We study fishnet Feynman diagrams defined by a certain triangulation of a planar n-gon, with massless
scalars propagating along and across the cuts. Our solution theory uses the technique of separation of
variables, in combination with the theory of symmetric polynomials and Mellin space. The n-point split-
ladders are solved by a recursion where all building blocks are made fully explicit. In particular, we find an
elegant formula for the coefficient functions of the light-cone leading logs. When the diagram grows into a
fishnet, we obtain new results exploiting a Cauchy identity decomposition of the measure over separated
variables. This leads to an elementary proof of the Basso-Dixon formula at 4-points, while at n-points it
provides a natural operator product expansion-like stratification of the diagram. Finally, we propose an
independent approach based on “stampede” combinatorics to study the light-cone behavior of the diagrams
as the partition function of a certain vertex model.
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Introduction. Feynman diagrams [1] are central for our
understanding of Nature at the quantum level. The case of
collider physics is a perfect example of this paradigm.
However, diagrams are often hard to compute and alternative
routes are needed in the study of a relativistic quantum
process. In this paper we embrace this point of view and use
an integrability-based technique, known as separation of
variables (SoV), to study a class of multipoint Feynman
diagrams in 4d, whose complexity depends on a fishnet of
massless scalar propagators. Our diagrams lie on a planar
triangulation of an n-gon, and their SoV representation can
be obtained by gluing together objects assigned to triangles.
The general pattern is presented in [2]. Herewewill focus on
splitting a 4pt triangulation sequentially, so to generate a
particular class of Feynman diagrams. See Figs. 1–3.
While the SoV representation is not new [3–6], some

practical challenges with it remained unexplored until now,
especially for n ≥ 5. First, each triangle carries an R-matrix
tensor structure contribution from the underlying spin-chain
formalism. Second, for higher-pts there are many possible
configurations of propagators. Third, there is a variety of
kinematical limits x2ij → 0 that onemightwant to consider. In
this situation, what we expect fromSoVis the ability tomake
manifest new structures, otherwise hidden in the Feynman

representation, and the ability to provide data in a simpleway,
e.g. by expansions around light-cone limits. At 4pt all of this
is well established. Indeed, the SoV representation allowed
[4] to prove the conjecture of [7] about rectangular fishnets
being equal to determinants of ladder integrals.
In this paper we set the stage for investigating emergent

structures in multi-point fishnet diagrams that lie on the
plane. First, we shall understand the simplest diagrams, i.e.,
split-ladders. Second, we will massage the SoV representa-
tion so tomake it as explicit as possible. For the first task, we
will show that the integration of n-pt split ladders reduces to
a recursion, and that the relevant R-matrix construction
admits a simple closed-form expression. Remarkably,
the coefficient functions of the light-cone leading logs is
expressed as a rational factor times a combination of
multiple polylogarithms (MPLs) taking the elegant form

MPLs
ðWn−3 − W̄n−3Þ

¼
X
a2 ∈N
…

an−3 ∈N

Y
i≥2

DðaiÞ
i;i−1

aLi
i

�
LiL1

ðW1Þ − LiL1
ðW̄1Þ

W1 − W̄1

�

ð1Þ
where

DðaiÞ
i;i−1 ¼

ð−W̄i∂W̄i−1
−Wi∂Wi−1

Þai−1
ðai − 1Þ! : ð2Þ

and the index i ¼ 2;…; n − 3. The variables Wi will
parametrize spacetime cross-ratio, as we explain later,
and the function LikðxÞ is the classical polylogarithm
function.
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For the second task, we will present a Cauchy identity
decomposition of the SoV measure that makes transparent
the derivation of the 4pt determinant of [7,8], and paves the
way to the understanding of the n-pt split-fishnet diagrams.
Finally, we make an intriguing observation inspired by
stampede methods [9] that relates the coefficient functions
of the light-cone leading logs with the partition function of
some vertex model.

SoV diagrammatic rules. Draw an n-gon on the plane and
a triangulation of it into n − 2 triangles. Edges between
non-adjacent external points cut the diagram, and are n − 3.
To each cut assign an integer Lj, that counts propagators
along the cut, and another integer Mj, that counts propa-
gators across the cut. For illustration see Fig. 1.
The SoV representation of such diagrams is a certain

integral that can be read from the following set of rules. The
j-th cut carries rapidities uj ¼ ðuj1 ;…; ujMj

Þ and quantum

numbers aj ¼ ðaj1 ;…; ajMj
Þ. Here u∈R, while a∈N

labels an suð2Þ rep Va of spin a−1
2
. Each cut contributes

to the integrand with a measure μ, and an energy factor E.
A triangle filling in between two cuts, represented in
Fig. 2, contributes with an interaction that couples the
variables on the two cuts. This interaction is factorized into
a scalar part Habðu; vÞ, and matrix part Rabðiu − ivÞ with

i ¼ ffiffiffiffiffiffi
−1

p
. Bold font notation wants to abbreviate multi-

variable contributions, which we will make explicit in
(5)–(6). Note that Rab ∈EndðVa ⊗ VbÞ, in particular,
Rab ≔ ðRabÞij;kl. Note also that the triangles are oriented,
indeed Habðu; vÞ ≠ Hbaðv; uÞ.
To read off the spacetime dependence from the triangu-

lation we introduce a pair of cross ratios for any quadri-
lateral obtained by gluing two triangles that share a cut.
With reference to Fig. 2, we define the ratios as

ZZ̄ ¼ x214x
2
23

x212x
2
34

; ð1 − ZÞð1 − Z̄Þ ¼ x213x
2
24

x212x
2
34

ð3Þ

Any such quadrilateral contributes to the SoV integrand
with the factor

⊗M
k¼1 ½ρiuk−

1
2 × eiθJ3;ak �; ρ≡ ZZ̄

e2iθ ¼ Z=Z̄:

Here J3;a ∈EndðVaÞ is the generator of rotations on the

plane of the n-gon. There is a scalar part, ρ
P

ðiuk−1
2
Þ, and

matrix part that we denote by T a. Altogether the SoV
integrand for a diagram with propagators L ¼ L1…Ln−3
and M ¼ M1…Mn−3 is given by

FL;M ¼
Yn−3
j¼1

μajðujÞ × EajðujÞLjþMj × ðρjÞ
PMj

k¼1
ðiujk−1

2
Þ

×
Yn−3
j¼2

Haj−1;ajðuj−1;ujÞ × T a½θ1;…;u1;…� ð4Þ

where a ¼ ða1;…; an−3Þ and we used

Ha;bðu; vÞ ¼
YM
k¼1

YN
h¼1

Hah;bkðuh; vkÞ

EaðuÞ ¼
YM
m¼1

EamðumÞ ¼
YM
m¼1

1

ðu2m þ a2m
4
Þ

ð5Þ

The functions μ and Hab are taken from [2,4,6,7] and
reported in the Supplemental Material [10] of this letter.
The contribution T a in (4) is the trace on a product of
R-matrices

Rabðu − vÞ ¼
YM
k¼1

YN
h¼1

RakbN−hþ1
ðiuk − ivN−hþ1Þ;

T a ¼ Tra

�
⨂

1≤j≤n−3
1≤m≤Mj

�
Zj

Z̄j

�
J3;ajm

·
Yn−3
l¼2

Ral−1;alðiul−1 − iulÞ
�

ð6Þ

where Tra ≡ Tra1 � � �Tran−3 is running over the indices of
all the spaces Vajm

. The matrix Rahbk acts as the identity in
all other spaces which are not Vak and Vbh . For example,
the expression RabRac contains a matrix product only in the

FIG. 2. Left: a tile of the SoV triangulation of a Fishnet integral
carrying excitations ðu; aÞ and ðv;bÞ on its cuts (red dashed
edges). Right: the quadrilateral obtained by gluing two triangles
along a common edge.

FIG. 1. A 6pt diagram on the plane and its SoV triangulation.
There are Li¼1;2;3 ¼ 2 propagators along, and Mi¼1;3 ¼ 3,
M2 ¼ 5, propagators transverse to the cuts, drawn in red.
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space Va. Finally, (4) is integrated over rapidities and
summed over quantum numbers, i.e.,

IL;M ¼
X∞
a1¼1

� � �
X∞
aM¼1

Z
du1 � � �

Z
duMFL;M ð7Þ

The n-point split-ladders are obtained from (4) by setting
Li ≥ 1 with all the Mi ¼ 1. From these, we can think of
growing a fishnet of propagators by increasing theMi > 1.
The 4-pt representative is FL1;M1

. As soon as n ≥ 5, no
matter the values of Li, Mi, the matrix part T a becomes
nontrivial.

Strategies and signatures. FL;M is a meromorphic function
of the uj. Hence, the integration on the real axis in (7) can
be performed via Cauchy’s theorem by closing the contour
with an arc at ∞ for each uj. The contour is closed in the
lower half or the upper half complex plane depending on
the kinematical regions, ρj < 1 or ρj > 1. We encode this
in a signature σj ¼ �. Performing the residue integration
accordingly, the result is an expansion of the diagram with
the form of a log-stratification

IL;M ¼
X
fki≥0g

Ffσig
k ðfZi; Z̄igÞ ×

Yn−3
j¼1

logkiρ
−σj
j ; ð8Þ

FromSoV the task is to obtain all F coefficient functions. The
“maxlog”, defined as the F forwhich

P
ki ismax, is the same

as the light-cone leading log, and therefore plays a special
role. Now, since for n ≥ 5 there are a growing number of
signatures, our strategy will be to study a particular one, and
perform the integration. Our choice of signature in this letter
is ð−; � � � ;−Þ, and corresponds to the small-ρj expansion.We
picked this particular one because it gives rise to a nice
recursion w.r.t. the number of external points.

Split-ladders as Mellin-Barnes integrals. The npt split
ladders have by definition Mi ¼ 1 in (4), and the SoV
measure becomes fully factorized wit respect to the pairs
ðuj; ajÞ. This is a situation where standard Mellin-Barnes
techniques (MB) can be applied straightforwardly. We shall

denote them by LL ≔ FL;1…;1. Within the ð− � � �−Þ sig-
nature it is convenient to change variables from uj to sj, as
follows,

iuj ¼
aj
2
þ sj; ð9Þ

so that the integrand is “canonical” as a MB integrand:

LL1;…Ln−3
¼ ρs11

Γ½1 − s1�ð−s1ÞL1

�Yn−3
j¼2

ρ
sj
i Γ½sj − sj−1�
ð−sjÞLj

�

×
Γ½−sn−3�T aQ
n−3
i¼1 ðai þ siÞLi

; ð10Þ

where Γ½x� is Euler’s gamma function and the multi-index
is a ¼ ða1;…; an−3Þ. The matrix part reads

T a ¼
PaðZ1; Z̄1;…; s1…ÞQjajQ
n−3
i¼2 Γ½1þ aj−1 þ sj−1 − sj�

Γ½a1 þ s1�
Γ½1þ an−3 þ sn−3�

:

and it contains an interesting polynomial Pa, that we study
later in (14). For the moment note that the SoV represen-
tation sequentiates, see also Fig. 3. Thus the natural way to
integrate it is by iteration, starting from sn−3, sn−2, etc. until
reaching s1. By doing so we implicitly assume ρn−3 < 1
first, then ρn−2 < 1, etc.
We will now see more explicitly how the residue

integration is performed according to our choice of sig-
nature. In particular, the contour of integration of
each sm variable is simply a vertical line in the complex
plane, as standard for Mellin-Barnes integrals. We begin
from sn−3 by closing the contour so to pick poles from
Γ½−sn−3�=ð−sÞLn−3 . The higher order pole at sn−3 ¼ 0 is
integrated by parts. In any case, derivatives ∂sn−3 acting on
Γ½sn−3 − sn−2� are switched to ∂sn−2 and further integrated
by parts. This pattern continues each time with a slight
generalization. In the end, the poles that matter for the
integration at step m come from a structure like

I
dsmð…Þ∂jmsmΓ½sm − sm−1�

Γ½qmþ1 − sm�
ð−smÞLmþim

ð…Þ ð11Þ

FIG. 3. Split-ladder Feynman diagram in the sequential triangulation. It follows from (3) that the limit Z̄k → 0 can be realized by
sending the dashed blue edges on the light cone. This kinematical region of the Fishnet corresponds to a choice of signature
ð−;−; � � � ;−Þ in the integration over SoV rapidities.
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where im, jm are integers, and qmþ1 ¼ f0;Ng. This
structure is similar to that of a split-ladder with fewer
external points, therefore we can imagine pictorially that
each time we perform an integration, we effectively eat a
triangular slice from the n-gon as in Fig. 3. Since the
pattern repeats, a recursion relation naturally emerges.

Maxlog function and R-matrix at the pole. The maxlogs
originate from higher degree poles in sj ¼ 0, upon inte-
gration by parts (ibp). Namely, if X and l are generic, the
following is true:

Z
X

ð−sÞlþ1
¼ −

Z
X
l!

∂
l
s

�
1

s

�
¼
ibp

Z ð−Þlþ1

l!
∂
l
sX
s

:

A particular maxlog is found when all derivatives hit
sequentially the exponent of ρj ’s, producing the termQ

jðlog ρjÞLj . This is not the only one we expect: when
two base-points of a triangle effectively approach each
other, see Fig. 3, propagators lying on different adjacent
cuts will pile up, and new contributions are generated.
These new contributions come from ibp derivatives in sj
hitting the Γ½sj − sj−1�. As a result, the order of the next
pole, sj−1 ¼ 0, increases. By taking this into account,

ILjmaxlog ¼
X

0≤in−3≤Ln−3
…

0≤i2≤L2þjð3Þ

F−���−
i1;…;in−3

ðfZi; Z̄igÞ
Y
k≥1

logikρk;

where i1 ¼ L1 þ jð1Þ and jðkÞ ¼
P

m>kðLm − imÞ. An
explicit computation shows that maxlogs are an evaluation
formula at sj ¼ 0 that we can write as

F−���−
i1;…;in−3

¼
X
a

T að0ÞQ
k≥1a

Lk
k

×
Y
k≥1

ð−ÞLkþ1

ik!
; ð12Þ

T að0Þ ¼ Dðan−3Þ
n−3;n−2…Dða2Þ

2;1

�
Wa1

1 − W̄a1
1

W1 − W̄1

�
; ð13Þ

in term of the operators (2), whereW1 ¼ Z1, W̄1 ¼ Z̄1, and
Wi≥2 ¼ ZiWi−1, similarly for W̄i≥2. Nicely enough, the
sum over a1 ∈N in (12) can be done, and yields the right-
hand side (rhs) of formula (1). Note that the split-ladders
are pure transcendental functions of ðZi; Z̄iÞ, multiplied by
a rational prefactor, i.e., the leading discontinuity. From the
maxlog we find that the latter is ðWn−3 − W̄n−3Þ−1 ¼
ðQZi −

Q
Z̄iÞ−1. This fact has been checked independ-

ently from the Feynman representation of the diagram, see
eg. [18,19].

Twisted traces and polynomials. The SoV representation
provides concrete formulas for any coefficient function in
(8), not just the maxlogs. The only complication comes
from the R-matrix and the polynomial

Pa ¼ ρ
a1−1
2

1

Yn−3
i¼2

ð−1Þai−1ðρiÞ
ai−1
2

× Tra

�
⊗

1≤j≤n−3

�
Zj

Z̄j

�
J3;aj

·
Yn−3
l¼2

Ral−1;al

�
: ð14Þ

Nicely enough, we have found an explicit formula for this
trace. Let us introduce first,

rai;bjðUÞ¼
X
k≥0

ð1þj−aþi−UÞb−1−j−kða−iÞk

×
ðk−U−iÞj−kðb−j−kÞkð1þi−kÞkð1þj−kÞk

ðk!Þ2 ;

where ðxÞa ¼ Γ½xþ a�=Γ½x�. Then, the simplest 5pt case,
Pab, is given by

Pab ¼
Xa−1
i¼0

Xb−1
j¼0

rai;bjðU12ÞZi
1Z

j
2Z̄

a−1−i
1 Z̄b−1−j

2 ; ð15Þ

withU12 ≡ s1 − s2. Here the sum over Z#1 Z̄#2 runs over the
eigenvalues of J3;a; J3;b. The generalization to higher points
is straightforward,

Pa ¼
X

j1≤a1−1
…

jn−3≤an−3−1

Yn−3
k¼2

rak−1jk−1;akjkðUk−1;kÞZj1
1 …Z̄a1−1−j1

1 …;

and works upon checking on (many) explicit examples.

Cauchy identity tool for multipoint fishnets. The crucial
novelty for fishnets, with respect to split-ladders, is the
nonfactorizable measure. To deal with it systematically, we
use the dual Cauchy identity for Schur polynomials Pλ, see,
e.g., [20], and rewrite the measure as

μaðuÞ ¼
VdMðsÞVdMðsþ aÞ

ð2πiÞMM!

X
λ⊆MM

PλðsÞPλcðsþ aÞ:

Here, VdMðsÞ is the VanderMonde of variables si¼1;…M,
whereas λ; λc are two conjugate partitions of MM. From
here the residue integration becomes quite more trans-
parent. First, note that VdMðsÞPðsÞ is itself a determinant,
thus when acted upon by derivatives from ibp, it vanishes in
s ¼ 0 unless the derivatives are distributed as ∂

#i
si with

#i ¼ λi þ ði − 1Þ or permutations thereof. Consider now
the jth cut. Each EajðujÞLjþMj energy factor produces
Mj−1þLj derivatives ∂si from ibp for each i ¼ 1;…;Mj.
The minimal set of ibp derivatives that the measure can
absorb corresponds to λ ¼ ∅, for which P∅ ¼ 1 and
∅c ¼ ½Mj;…;Mj�. We find that for each of the si a
number ðMj − 1Þ=2þ Lj of derivatives distribute antisym-
metrically on P½Mj;…;Mj�ðsjþajÞ×VdM×ρsj×Ha;b×T a.
From combinatorics it follows that ðlog ρjÞMjLj is the
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maximal power of log ρj. The remaining derivatives, in
number ðMj − 1Þ=2 for each of the si, with i ¼ 1;…;Mj,
and for all j ¼ 1;…n − 3, will act on the rest of the
integrand, ie. factors P½Mj;…;Mj�ðsj þ ajÞ × VdM and
Ha;b × T a, and an expression for the maxlog coefficient
function follows. A similar analysis generalizes to λ ≠ ∅.
In the special case of the 4pt fishnets there is only a cut

and so the maxlog is given by ibp derivatives acting on
P½M1;…;M1�ðsþ aÞ × VdM. Hence, a determinantal formula
for the maxlog follows immediately by construction; and
by imposing Steinmann relations as in [7] one can
straightforwardly lift this maxlog determinant and obtain
a version of the Basso-Dixon result.

Stampedes. In planar and light-cone kinematics we can
combine SoV results with stampedes technique. Let Sj ¼
fj;…jþmjg be a collection of consecutive indices, for
j∈P ⊂ f1;…; ng. We consider the regime where points in
Sj approach a light-ray, that is xi∈ Sj ¼ ðwi∈ Sj ; w̄jÞ in light-
cone coordinates, and look at the leading behavior of the
diagram. For an n-pt fishnet we then expect a generalized
Taylor expansion of the form

IM×L ¼
X
jkj¼ML
J≥0

��Y
j∈P

λ
kj
j

Y
i∈ Sj;i≠j

wJi
i;j

�
fk;Jðη; η̄Þ þ � � �

�
þ � � �

ð16Þ
where λj ∼ − log w̄i;j. The functions fk1;…;kp;J carry the
leftover coordinate dependence, denoted collectively as
ðη; η̄Þ. For (16) to hold, any vertex of the diagram has to be
the intersection of two lines emitted from external points xi,
xk such that ∃ j∈Pji; k∈ Sj.
We are going to show that the fk1;…;kp;J are generated via

combinatorics. First, fields that become null-separated, e.g.
ϕðxjÞ;ϕ0ðxjþ1Þ for j∈P, are replaced by a Taylor expan-
sion along a light-ray. Doing so, we create states jinðJÞij
obtained from inserting light-cone derivatives ∂̂

n ≡ ∂
n=n!

between a number R and R0 of fields emitted from the
points xj and xjþ1,

ðϕ1 � � �ϕRÞðxjÞ∂̂Jðϕ0
1 � � �ϕ0

R0 ÞðxjÞjvacuumi¼ jinðJÞij ð17Þ

as in FIG. 4. Last formula becomes jinðJ1; J2; J3;…Þij
when also fields ϕ00ðxjþ2Þ;ϕ000ðxjþ3Þ;… are expanded
around xj. Next, we will generate loop corrections by
acting on these states with the one-loop dilations Hi at
position xi. Each ϕ is one of the fields X ; X̄ or Z; Z̄ in the
fishnet CFT [4,21], whose propagators are rows/columns of
the fishnet diagram. The action of Hi is

Hij∂̂h1ϕ1…∂̂
hRϕRii ¼

XR−1
k¼1

hk;kþ1j∂̂h1ϕ1…∂̂
hRϕRii

where

h12j∂̂h1X ; ∂̂h2Zii ¼
X

jþl¼h1þh2

j∂̂jZ; ∂̂lXii
h1 þ h2 þ 1

: ð18Þ

Other nonzero matrix elements are obtained by cyclic
permutations X → Z → X̄ → Z̄. In particular, states with
opposite chirality are annihilated ĥ12j∂̂nZ; ∂̂mXi ¼ 0.
At this point, fk1;…;kp;J is the monomial of degree

ðk1;…; kpÞ in the “times” λj, of the generating function

GJðλjÞ ¼ C · e
P

i∈P
λiHi jinðJÞi;

jinðJÞi ¼ ⨂
i∈ f1;…;ngnS
S≡∪jSjnfjg

jinðJiÞii ð19Þ

The initial state is given by (17) whenever i∈P,

jinðJiÞii ≡ jinðJh1 ;…; Jhmi−1
Þii;

otherwise Ji ¼ 0 for i ∉ P. Finally, the functional C is the
free-theory contraction of fields ϕiðyiÞ and ϕ0

iðy0iÞ that stand
at endpoints of a given line in the fishnet lattice.
For example, take a 4-pt fishnet with S1 ¼ f1; 2g;

fML;J ¼
1Q

L
h¼1

Q
M
k¼1ðMþL−h−kþ1Þ×FM;LðJÞ; ð20Þ

where FM;LðJÞ is the canonical partition function of a
vertex model on a square-lattice of size M × L, with J
excitations, Boltzmann weights

Vða; b; c; dÞ ¼ δaþb;cþd

aþ bþ 1
;

and domain-wall boundary conditions as in Fig. 5. From
this description, the maxlog in (16) is the grand canonical
partition function of the above vertex-model with fugacity
Z ¼ w12w34=w14w23. The zero-temperature pre-factor in
(20) was computed in [9] as the euclidean operator product
expansion limit Z → 0. The same vertex model describes
maxlogs for higher-pt partition functions.

FIG. 4. The signature ð−;−;−Þ captures explicitly the log4 ρ1
behavior of the six-point ladder with Li¼1;2 ¼ 1 and L3 ¼ 2 in the
limit x212 → 0. Here, the displacement between fields at x1, x2 is
replaced by the expansion Tr½ϕðx1Þðxμ12∂μÞJϕðx1Þ4�.
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Conclusions and outlook. We initiated a systematic
study of multi-point Feynman integrals at any-loop order
in planar kinematics, by combining integrability/SoV
methods [2,4,6,22], with Mellin space and symmetric
polynomials techniques. We first solved a class of point-
split ladder integrals by an elegant recursion, and then for
n-point fishnets, we introduced a Cauchy identity repre-
sentation of the SoV measure, showing how this could be
used to understand the pattern of emergent structures.
Some future directions. Our results apply directly to

Fishnet CFTs, a family of integrable 4d theories closely
related toN ¼ 4 SYM [21,23,24], where it is known that all
Feynman diagrams ultimately should be related to partition
functions of an integrable lattice model [25]. Throughout our
discussion we have indeed provided concrete realizations of
this statement. But in addition, fishnet diagrams describe
conformal correlators and can be considered as a simplified

playground to familiarize with CFT/integrability tools for
multipoint correlators, e.g., [26–32]. In this respect, beyond
one-loop, not much is known about multi-point conformal
integrals and the space of functions they describe, see [33–37]
for recent progress. An intriguing direction would be to
bootstrap the diagrams we discussed here by combining 1)
data from the SoV log stratification, 2) an ansatz in terms of
pure functions (such as [38–42]) and 3) analytic constraints
(single-valuedness, Steinmann relations [43,44], etc.). We
expect integrability to imply simple structures at any loop
order, generalizingnontrivially thedeterminants foundby [6].
Finally, it would be interesting to lift our methods out of the
plane, and extend the use of SoV technique to multi-point
conformal integralswith other topologies, but similar analytic
properties.
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