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We discuss a continuous family of nonsupersymmetric AdS3 × S3 × T4 vacua in heterotic and type II
supergravities whose complete Kaluza-Klein spectrum is computed and found to be free from instabilities.
This family is protected as well against some nonperturbative decay channels, and as such it provides the
first candidate for a nonsupersymmetric holographic conformal manifold in 2D. We also describe the
operators realizing the deformations in the world sheet and boundary conformal field theories.
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Operators in any conformal field theory (CFT) in
d dimensions can be classified according to their conformal
dimension as relevant (Δ < d), marginal (Δ ¼ d), or
irrelevant (Δ > d). While the cases with Δ ≠ d trigger
(possibly trivial) renormalization group flows between
isolated CFTs, marginal operators play a different role:
they describe the space of theories into which the original
CFT can be deformed continuously without breaking
conformal invariance.
In holographic CFTs, the bulk perspective over these

conformal manifolds has remained an open challenge. The
gravitational description of these deformations is given by
families of AdS solutions that share the same cosmological
constant and are labeled by free parameters. The main
approach to building these solutions is provided by the TsT
prescription [1], which can be applied whenever the
undeformed solution preserves a number of Abelian iso-
metries (see [2,3] for novel approaches), and whenever the
undeformed solution admits a consistent truncation down
to a gauged supergravity in dþ 1 dimensions, the massless
modes dual to the marginal operators usually sit at higher
Kaluza-Klein levels [1,4,5], which prevents using the lower
dimensional theory to describe the deformations—see
[6–8] for a few recent exceptions to this rule.
In this work, we present a family of AdS3=CFT2

duals realizing a two-dimensional conformal manifold
labeled by parameters ðω; ζÞ. The undeformed solution is
the AdS3 × S3 × T4 configuration of type II supergravities

that preserves the small N ¼ ð4; 4Þ superalgebra

½SUð2Þl⋉SUð2j1;1ÞL�× ½SUð2Þr ⋉SUð2j1;1ÞR�×Uð1Þ4:
ð1Þ

This ten-dimensional solutiononlyhas a nontrivial profile for
the fields in the NSNS sector, and can thus also be realized in
heterotic string theory. For each of these ten-dimensional
solutions, there are consistent truncations down to gauged
supergravity in three dimensions, and unlike in [1,4,5], the
scalar modes dual to the operators in the conformal manifold
can already be captured within an appropriate truncation [9].
Thanks to the reformulation of supergravity in the

language of exceptional field theory (ExFT), we construct
the deformed solutions in D ¼ 10 by means of generalized
Scherk-Schwarz (gSS) Ansätze. For generic values of the
marginal deformations, the 10d spacetime is

AdS3 ×M4 × T3; ð2Þ
with the manifoldM4 (trivially) fibered over a deformed S3

as S1y7 ↪ M4 → M3
ω;ζ, with y

7 one of the coordinates on T4.

The generic deformations only preserve

ðUð1ÞL × Uð1ÞRÞ × SUð2Þdiag × Uð1Þ4; ð3Þ
and no supersymmetry, where Uð1ÞL;R ⊂ SUð2ÞL;R and
SUð2Þdiag being the diagonal subgroup of SUð2Þl × SUð2Þr
in (1). Within the two-dimensional space of parameters, there
is a line that preserves the N ¼ ð0; 4Þ superalgebra

Uð1ÞL × ½SUð2Þdiag ⋉ SUð2j1; 1ÞR� × Uð1Þ4: ð4Þ
Owing to the fact that ExFT’s are not only a tool to

describe consistent truncations, but encode the entire
dynamics of the corresponding supergravities, we are also
able to obtain the complete spectrum of Kaluza-Klein
modes [10] on the solutions we construct. This allows
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us to show that, despite generically nonsupersymmetric, the
two-parameter family of solutions is perturbatively stable
for a finite range of the parameters.
In the remainder of this paper, we describe how these

solutions appear in D ¼ 3 gauged supergravity and present
their uplift both to heterotic and type II supergravities through
the ExFT formalism. Subsequently, we discuss how the
spectroscopy techniques of [10,11] can be applied to these
cases and the stability of the nonsupersymmetric solutions.
The family of solutions found in [9] sits within the 3d

half-maximal supergravity whose scalar manifold is

SOð8; 8Þ
SOð8Þ × SOð8Þ : ð5Þ

The gauging procedure can be described by an embedding
tensor ΘK̄ L̄ jM̄ N̄, with the index M̄ in the vector represen-
tation of SOð8; 8Þ. This embedding tensor must obey a
quadratic constraint [12,13] for the gauge algebra to close.
Additionally, supersymmetry requires that the embedding
tensor is restricted to take values in [14]

Θ∈ 1 ⊕ 135 ⊕ 1820; ð6Þ

and, therefore, it can be parametrized as

ΘK̄ L̄ jM̄ N̄ ¼ θK̄ L̄ M̄ N̄ þ 1

2
ðηM̄½K̄θL̄�N̄ − ηN̄½K̄θL̄�M̄Þ

þ θ ηN̄½K̄ηL̄�M̄; ð7Þ
in terms of totally antisymmetric, symmetric traceless and
singlet tensors, and with ηM̄ N̄ the SOð8; 8Þ invariant tensor.
The embedding tensor describing our gauged supergravity
is specified by the choice

θ¼ 0; θ0̄ 0̄¼−4
ffiffiffi
2

p
; θM̄ N̄ P̄ 0̄ ¼−

1ffiffiffi
2

p XM̄N̄ P̄; ð8Þ
with

Xm̄ n̄ p̄ ¼ Xm̄
n̄ p̄ ¼ Xm̄

n̄
p̄ ¼ Xm̄ n̄

p̄ ¼ εm̄ n̄ p̄; ð9Þ
in terms of indices following the breaking

SOð8;8Þ ⊃ SOð1;1Þ×GLð3Þ×GLð3Þ×SOð1;1Þ;
XM̄ → fX0̄;X0̄;X

m̄;Xm̄;X ī;X ī;X
7̄;X7̄g: ð10Þ

Here, the indices range as m̄∈ ⟦1; 3⟧ and ī∈ ⟦4; 6⟧, and for
future convenience we also introduce Xā ¼ fX ī; X7̄g. A
vacuum of this gauged supergravity is specified by a coset
representative V in (5), that extremizes the scalar potential
and defines the scalar matrixMK̄ L̄ ¼ VK̄

P̄VL̄
P̄. In the basis

(10) and with the soð8; 8Þ generators normalized as
ðTM̄ N̄ÞP̄Q̄ ¼ 2δP̄

½M̄ηN̄�Q̄, the ðω; ζÞ solution can be charac-
terized by

VM̄
N̄ ¼ exp

�
−ωT 3̄

3̄ −
ωζ

1 − e−ω
ðT 3̄ 7̄ − T 3̄

7̄Þ
�
; ð11Þ

with all points sharing the AdS radius l2
AdS ¼ −2=V0.

To describe the ten-dimensional fields in a duality
covariant language, we resort to SOð8; 8Þ ExFT [15],
whose bosonic fields are

fgμν;MMN;AMN
μ ;BμMNg; ð12Þ

with μ∈ ⟦0; 2⟧ and M;N ∈ ⟦1; 16⟧ in the fundamental of
SOð8; 8Þ. All these fields depend on both external coor-
dinates xμ and internal ones YMN , with the latter in the
adjoint of SOð8; 8Þ. The 7-dimensional internal coordinates
yi parametrizing the three-sphere and torus are embedded
in YMN . To ensure that the fields depend only on yi, the
coordinate dependance is subject to the section constraints

∂½MN ⊗ ∂PQ� ¼ 0; ηPQ∂MP ⊗ ∂NQ ¼ 0; ð13Þ
which can be solved by breaking

SOð8;8Þ ⊃ SOð1;1Þ×GLð7Þ;
XM → fX0;X0;Xi;Xig; ð14Þ

and restricting coordinate dependance to yi ¼ Yi0. We align
ExFTindiceswith theones in the three-dimensional theory by
embedding GLð3Þ × GLð3Þ × SOð1; 1Þ ⊂ GLð7Þ as in (10).
The explicit dictionary between the SOð8; 8Þ-ExFT

generalized metric and the internal components of the
NSNS fields is given by

M00 ¼ ĝ−1eΦ̂=2;

M0i ¼ 1

6!
M00εij1…j6 b̃j1…j6 ;

M00Mij −M0iM0j ¼ ĝ−1ĝij;

M00Mi
j −M0iM0

j ¼ ĝ−1ĝikbkj; ð15Þ
where ĝij is the purely internal block of the ten-dimensional
metric in Einstein frame, and ĝ its determinant. The fields b
and b̃ are not directly related to the higher-dimensional
two-form, but retrieve its field strength as

Ĥ ¼ dbþ eΦ̂=8⋆10db̃: ð16Þ
Upon solving the section conditions, contact with

gauged supergravity is achieved through the gSS Ansatz

gμνðx; YÞ ¼ ρ−2gμνðxÞ;
MMNðx; YÞ ¼ UM

M̄UN
N̄MM̄ N̄ðxÞ;

AMN
μ ðx; YÞ ¼

ffiffiffi
2

p
ρ−1ðU−1ÞM̄MðU−1ÞN̄NAM̄ N̄

μ ðxÞ;

BμKLðx; YÞ ¼ −
ρ−1

2
ffiffiffi
2

p UMN̄∂KLðU−1ÞM̄MAM̄ N̄
μ ðxÞ; ð17Þ

with ρðYÞ a scale factor and UM
M̄ðYÞ an element of

SOð8; 8Þ controlling the twisting of the 3d metric, vectors
and scalars by the internal coordinates. The relevant pair
ðρ; UÞ which recovers (8) can be constructed out of the
SO(4,4)-ExFT parallelization discussed in [9] by embed-
ding it in the fX0; X0; Xm; Xmg block in (10).
The solutions advertised in (2) then follow from intro-

ducing the Ansatz (17) with the 3d representative (11)
in (15). We choose our coordinates as
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Ym;0 ¼ fcos α cos β; cos α sin β; sin α cos γg;
Ya;0 ¼ ya; ð18Þ

with ya ∼ ya þ 1 parametrizing T4, and the angles 0 ≤ α ≤
π
2
and 0 ≤ β; γ ≤ 2π describing a deformed three-sphere

with metric

ds2ðM3
ω;ζÞ¼ dα2þeωΔ4ðcos2αdβ2þðζ2þe−2ωÞsin2αdγ2Þ

−e2ωζ2Δ8ðcos2αdβ− sin2αdγÞ2: ð19Þ

In terms of these coordinates, the solution reads

eΦ̂ ¼Δ2;

dŝ2s ¼ ds2ðAdS3Þþds2ðM3
ω;ζÞþδijdyidyj

þ½dy7þeωζΔ4ðcos2αdβ− sin2αdγÞ�2;
Ĥð3Þ ¼ 2volðAdS3Þþ sinð2αÞΔ8e2ω

×dα∧ ðdβþζdy7Þ∧ ððζ2þe−2ωÞdγ−ζdy7Þ; ð20Þ

with the function

Δ2 ¼ e−ω=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðζ2 þ e−2ω − 1Þcos2α

p ; ð21Þ

and the string frame metric in (20) given by ĝsμ̂ ν̂ ¼ eΦ̂=2ĝμ̂ ν̂.
For generic values of the marginal parameters, the solution
preserves (3), with the Abelian factors acting as shifts on β, γ
and the angles on the torus, and SUð2Þdiag as rigid rotations
preserving δijdyidyj.
Effectively, the ζ modulus controls the fibration of M4

in (2). When setting ζ2 ¼ 1 − e−2ω, M3
ω;ζ itself becomes a

Hopf fibration, S1θ ↪ M3
ω → CP1, and the family of sol-

utions in (20) simplifies to

Φ̂¼−
ω

2
;

dŝ2s ¼ ds2ðAdS3Þþδijdyidyjþds2ðCP1Þþe−2ωη2

þðdy7þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−e−2ω

p
ηÞ2;

Ĥð3Þ ¼ 2volðAdS3Þþ2η∧ Jþ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−e−2ω

p
J∧ dy7; ð22Þ

which, away from the scalar origin, preserves theN ¼ ð0; 4Þ
superalgebra in (4). The SUð2ÞR there is realized as the
isometries of the Fubini-Study metric onCP1, and Uð1ÞL as
shifts of the angle θ along the Hopf fibre. Here, we define

η ¼ cos2α dβ − sin2α dγ; ð23Þ

together with J and Ω, who are respectively the contact,
Kähler and complex holomorphic forms of the Sasaki-
Einstein structure on S3. They satisfy

dη ¼ 2J; dΩ ¼ 2iη ∧ Ω; J ∧ Ω ¼ 0;

η ∧ J ¼ i
2
η ∧ Ω ∧ Ω̄ ¼ volðS3Þ: ð24Þ

The solution (22) is analogous to theN ¼ 4 vacua found in
[16] in the context ofAdS3 × S3 × S3 × S1. Recently, similar
solutions have appeared in [17–19]. However, those sol-
utions require the presence of D-branes which sit outside the
S-duality orbit of our purely F1-NS5 configuration. The
presence of the aforementioned fibrations has also been an
obstacle for obtaining them as the near horizon limit of brane
intersection with flat branes.
From a string world sheet perspective, the configuration

(20) can be described as a deformation of the SLð2;RÞ ×
SUð2Þ × Uð1Þ4 WZW model [20,21] corresponding to the
undeformed solution [22]. Focusingon (22) for simplicity, the
operator controlling the deformation is JzSUð2ÞJ̄Uð1Þ7 , where
JzSUð2Þ is a component of the holomorphic current realizing the
left-moving copy of SUð2Þ in the symmetry group, and J̄Uð1Þ7
the anti-holomorphic current corresponding to shifts in y7.
Being the product of conserved (anti)holomorphic commut-
ing currents, the operator JzSUð2ÞJ̄Uð1Þ7 is exactlymarginal [23]
and breaks the superalgebra from (1) to (4). Analogously, in
the conformal SymNðT4Þ theory conjectured to sit at the
boundary of AdS3 [24,25], the single-particle operator
realizing the deformation can be identified as

O ∼
XN
k

ðjzSUð2Þj̄S17Þk; ð25Þ

with now jzSUð2Þ a component of the left-moving R-symmetry

group and j̄S1
7
oneof the right-moving currents of T4. The sum

in (25) assures that this operator survives the orbifold
projection. Similar considerations can be made for (20), with
the deformations now breaking supersymmetry completely.
If one perturbs the Scherk-Schwarz parallelization in

(17) à la [10], the spectrum of modes that only excite
NSNS fields can be retrieved. We thus consider the
following expansion in (17) [11]:

gμνðxÞ → ḡμνðxÞ þ hμνΛðpaÞðxÞYΛðpaÞ;

MM̄ N̄ðxÞ → M̄M̄ N̄ þ jM̄ N̄
ΛðpaÞðxÞYΛðpaÞ;

AM̄ N̄
μ ðxÞ → aM̄ N̄ ΛðpaÞ

μ ðxÞYΛðpaÞ; ð26Þ
where the background is described by

fgμν;MM̄ N̄; A
M̄ N̄
μ g ¼ fḡμν; M̄M̄ N̄; 0g; ð27Þ

and fhμνΛðpaÞ; jM̄ N̄
ΛðpaÞ; aM̄ N̄ ΛðpaÞ

μ g are the perturbations
expanded in a basis of scalar harmonics of the S3 × T4

configuration that preserves maximal isometry. As such,
they furnish the infinite-dimensional reducible representa-
tion of SOð4Þ × Uð1Þ4
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YΛðpaÞ ¼ YΛe2πi
P

paya ∈ ⨁
pa ∈Z4

⨁
∞

n¼0

�
n
2
;
n
2

�
ðpaÞ

: ð28Þ

Here, Λ denotes Kaluza-Klein index on S3, which can be
expanded as

YΛ ¼ f1;Yα;YfαYβg;…g; α∈ ⟦1; 4⟧; ð29Þ
with braces denoting traceless symmetrization. This leads
to the definition of T̊ M̄ N̄

ðpaÞΛΣ as the representation matrix
encoded in the SOð8; 8Þ twist matrix as

ρ−1ðU−1ÞM̄MðU−1ÞN̄N
∂MNYΛðpaÞ ¼−

ffiffiffi
2

p
T̊ M̄N̄

ðpaÞΛΣYΣðpaÞ;

ð30Þ
which, following (28), can in turn be decomposed as

T̊ M̄ N̄
ðpaÞΛΣ ¼ T̊ M̄ N̄

ΛΣ þ δΛΣT̊ M̄ N̄
ðpaÞ: ð31Þ

For our twist, the SO(4) piece T̊ M̄ N̄
ΛΣ has nonvanishing

components

T̊ m̄ 0̄
αβ ¼

ffiffiffi
2

p
δ½α4 δ

β�
m̄; T̊ m̄

0̄
αβ ¼ 1ffiffiffi

2
p εm̄4αβ; ð32Þ

when acting on the level n ¼ 1 harmonics. Higher level
tensors can then be constructed recursively from (32) [9].
Similarly, the Uð1Þ4 block is given by

T̊ ā 0̄
ðpaÞ ¼ −

1ffiffiffi
2

p 2πipa: ð33Þ

Introducing (26) into the ExFT equations of motion and
keeping only terms linear in the perturbations, one can read
off mass matrices whose eigenvalues, modulo removal of
redundancies and Goldstonemodes [9], are themasses of the
modes in the KK spectrum that only excite NSNS fields. To
additionally capture perturbations exciting vectors in the
heterotic theory, we can embed SOð8; 8Þ into SOð8; 24Þwith
trivial components on theSO(16) block.On theother hand, to
describe the modes that excite RR fields of type II super-
gravities, the SOð8; 8Þ theory must be embedded in E8ð8Þ as

E8ð8Þ ⊃ SOð8;8Þ;
248 → 120þ128s;

tM → ft½MN�;tAg; ð34Þ
and analogously for barred indices. The relevant 3d gauged
supergravity is described by a symmetric embedding tensor
XM̄ N̄ living in the 1 ⊕ 3875 representation of E8ð8Þ and
subject to [26,27]

XR̄ P̄XS̄ðM̄fN̄ Þ
R̄ S̄ ¼ 0; ð35Þ

with fN̄ R̄
S̄ the E8ð8Þ structure constants. Taking the latter as

fMN;PQ
RS ¼ −8δ½M ½RηN�½PδQ�S�;

fMN;A
B ¼ 1

2
ΓMNA

B;

fAB
MN ¼ −

1

2
ΓMN
AB ; ð36Þ

the E8ð8Þ quadractic constraint (35) is solved by embedding
the SOð8; 8Þ embedding tensor (8) in XM̄ N̄ as [13]

XK̄ L̄ jM̄ N̄ ¼ 2ΘK̄ L̄ jM̄ N̄ ;

XĀ B̄ ¼ −θηĀ B̄ þ 1

48
ΓK̄ L̄ M̄ N̄
Ā B̄

θK̄ L̄ M̄ N̄ ; ð37Þ

in terms of the chiral gamma matrices of SOð8; 8Þ and the
charge conjugationmatrix ηĀ B̄. The ðω; ζÞ family of solutions
is then characterized by the E8ð8Þ=SOð16Þ representative

VM̄
N̄ ¼ exp

�
−ωf3̄3̄ −

ωζ

1 − e−ω
ðf3̄ 7̄ − f3̄7̄Þ

�
: ð38Þ

This maximal gauged supergravity can be uplifted to 10d
by means of E8ð8Þ ExFT [28], whose fields are

fgμν;MMN ;AM
μ ;BμMg; ð39Þ

alongside their fermionic superpartners [29]. All these
fields depend on both the same three external coordinates
xμ as before, as well as on a set of 248 extended coordinates
YM. Coordinate dependence is however restricted by the
section constraints

κMN
∂M ⊗ ∂N ¼ 0;

fMN
P∂M ⊗ ∂N ¼ 0;

ðP3875ÞMN
KL

∂K ⊗ ∂L ¼ 0; ð40Þ

acting, as usual, on any combination of fields or gauge
parameters. The Cartan-Killing form κMN and projector
ðP3875ÞMN

KL can be found in [27]. The uplift can be
expressed as the gSS factorization

gμνðx;YÞ¼ρ−2gμνðxÞ;
MMNðx;YÞ¼UM

M̄UN
N̄MM̄N̄ðxÞ;

Aμ
Mðx;YÞ¼ρ−1ðU−1ÞM̄MAM̄

μ ðxÞ;

BμMðx;YÞ¼ρ−1

60
fM̄

P̄Q̄ðU−1ÞP̄P∂MðU−1ÞQ̄PAM̄
μ ðxÞ: ð41Þ

As we did for the embedding tensor in (37), we solve the
section constraints and parametrize the twist matrix by
using the SOð8; 8Þ setup detailed above. We embed the
coordinates as yi ⊂ YMN ⊂ YM and discard all dependen-
cies on YA, so that the E8ð8Þ section conditions (40) follow
from (13). Concerning the uplift, we use the same ρ as
before, and the twist matrix

UM
M̄ ¼

�
U½MM̄UN�N̄ 0

0 UA
Ā

�
: ð42Þ

UA
Ā is a 128s representation of UM

M̄ ∈SOð8; 8Þ:
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UA
Ā ¼ exp

�
1

2
uMNΓMN

�
A

Ā
; ð43Þ

where u is such that UM
M̄ ¼ exp ðuPQTPQÞMM̄.

The KK modes can then be captured by perturbing the
Ansatz (41) as

gμνðxÞ → ḡμνðxÞ þ hμνΛðpaÞðxÞYΛðpaÞ;

MM̄ N̄ ðxÞ → M̄M̄ N̄ þ jM̄ N̄
ΛðpaÞðxÞYΛðpaÞ;

AM̄
μ ðxÞ → aM̄;ΛðpaÞ

μ ðxÞYΛðpaÞ; ð44Þ
with the harmonics in (28). Again, thanks to the choice of
harmonics, the mass operators that can be read off from the
linearized equations of motion in ExFT become algebraic
matrices, given that

ρ−1ðU−1ÞM̄M
∂MYΛðpaÞ ¼ −T M̄

ðpaÞΛΣYΣðpaÞ; ð45Þ

with only nonvanishing components T M̄ N̄ ¼ 2T̊ M̄ N̄ .
Further details on these E8ð8Þ-covariant Kaluza-Klein mass
matrices will be given elsewhere [30].
Armed with the ExFT mass matrices for the KK modes,

we have computed the masses in the different 3d super-
gravities and ExFT’s for the first few levels on the S3 and
arbitrary level on the T4 for bosons and fermions. These
results can be encapsulated in a simple master formula in
terms of the charges of the modes under the relevant
symmetry (super-)algebra.
The Kaluza-Klein spectrum of type II supergravities on

the round AdS3 × S3 × T4 organizes into supermultiplets
of (1). We denote by pa the Uð1Þ4 charges, and long
multiplets of SUð2Þ ⋉ SUð2j1; 1Þ as ½Δ; j−; jþ�—see the
Appendix A of Ref. [9] for a review—withΔ the conformal
dimension of the conformal primary and jþ; j− its spins
under the two SUð2Þ factors. The type II spectrum at this
point is given by (cf. [31])

S ¼ ⨁
jþ≥0

pa ∈Z4

ð½ΔL; 0; jþ� ⊗ ½ΔR; 0; jþ�Þfpag; ð46Þ

where the conformal dimension of the primary of each
factor is

ΔL ¼ ΔR ¼ −
1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffi
1þ f

p
; ð47Þ

with f depending on the quantum numbers as

f ¼ 4jþðjþ þ 1Þ þ
X
a

ð2πpaÞ2: ð48Þ

The unitary bound ΔL;R ¼ jþ is saturated for pa ¼ 0 and
the multiplets get shortened (see [9]).
Turning on generic ðω; ζÞ deformations, the spectrum

organizes itself in representations of (3). The spectrum on
arbitrary points of the family can be obtained by shifting the
dimensionof each physicalmode in (46) asf → f þ Δfwith

Δf¼e2ω

4

�
ðqL−qRÞþðqLþqRÞðe−2ωþζ2Þþ4πp7ζ

�
2
−q2L;

ð49Þ
where qL;R denote the (integer-normalized) charges under
Uð1ÞL;R, respectively.
In the heterotic case, the N ¼ ð0; 4Þ supergroup organ-

izing the spectrum at the scalar origin is

½SUð2Þl ⋉ SUð2ÞL� × ½SUð2Þr ⋉ SUð2j1; 1ÞR�
× Uð1Þ4 × SOð16Þ: ð50Þ

The spectrum follows from Eq. (46) as a truncation that
only keeps those states with integer spin under SUð2Þl, and
further supplemented at each level by 16 copies of the
multiplet

ððΔL; 0; jþÞ ⊗ ½ΔR; 0; jþ�Þp4;p5;p6;p7
; ð51Þ

with ΔL ¼ 1
2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffi
1þ f

p
and ΔR in (47), forming an

SOð16Þ vector. For the ðω; ζÞ deformation, the conformal
dimension of each physical field gets shifted as in Eq. (49).
The masses mð0Þ of all scalars in the spectrum can be

retrieved using Eqs. (46)–(48) and (49) on any point of the
family of nonsupersymmetric solutions (20), and analo-
gously for the heterotic case. The Breitenlohner-Freedman
bound [32] in 3d, i.e., ðmð0ÞlAdSÞ2 ≥ −1, shows that there
are only two potentially unstable types of modes for each
level n ¼ 2jþ, pa ¼ 0 in (28). As conjectured in [9], those
modes have masses

− ð4þ 2nÞ þ ð2þ nÞ2e2ω ½2�;
− ð4þ 2nÞ þ ð2þ nÞ2e−2ωð1þ e2ωζ2Þ2 ½2�; ð52Þ

with the integers between square brackets indicating their two-
fold degeneracy. The stability condition is most requiring at
the gauged supergravity level n ¼ 0. Thereby, the configura-
tion is perturbatively stable if ðω; ζÞ lie within the range

e−ω ≤
2ffiffiffi
3

p ; ζ2 þ
�
e−ω −

ffiffiffi
3

p

4

�
2

≥
3

16
: ð53Þ

In this paper, exceptional field theory has been utilized
to find a family of nonsupersymmetric deformations of
the AdS3 × S3 × T4 solutions of heterotic and type II
supergravities. We showed that these new solutions are
perturbatively stable within a finite region of the parameter
space and that there exists a one-dimensional subspace
where N ¼ ð0; 4Þ supersymmetry is preserved. Moreover,
the holomorphicity arguments in the world sheet formu-
lation and boundary CFT2 description suggest that these are
solutions of string theory and not only purely large N
configurations. It will be interesting to explicitly compute
the 1-loop corrections à la [33,34] in the future to check this
expectation.
The stability of the solution against nonperturbative

decay channels needs to be investigated. One possible
decay channel for nonsupersymmetric AdS3 solutions is the
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destabilisation of the stack of branes that comprise them
[35–38]. We have explicitly checked that that is not the case
for our nonsupersymmetric solutions by considering probe
F1- as well as Dp- and NS5-branes with no world volume
fluxes. These branes can be embedded in AdS3, possibly
wrapping the internal geometry, and their world volume
actions show that they are attracted to the original stack,
instead of emitted from it.
Another possible decay channel is the nucleation of

bubbles, including Coleman-de Luccia bubbles [39] and
bubbles of nothing [40,41]. We leave this question for future
work, but in line with the arguments in [8], one could expect
the family to be protected due to the fact that it is away from
the SUSY vacua only by a marginal deformation.
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