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We consider an accelerated relativistic fluid in four-dimensional (anti–)de Sitter space-time. Analyzing
only hydrodynamic equations, we construct the equilibrium stress-energy tensor. We confirm that (A)dS
vacuum corresponds to a thermal bath in the accelerated frame with a temperature, depending on the
acceleration in a flat higher-dimensional (namely, five-dimensional) space, in which curved space-times are
embedded. We develop the duality between hydrodynamics and gravity finding a direct relationship between
the transport coefficients in flat and curved space-times.
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Introduction. Hydrodynamics allows us to describe many
physical systems and phenomena, not only classical, but
also quantum. A particularly striking example is the extreme
state of strongly coupled matter in the deconfinement phase,
i.e., the quark-gluon plasma (QGP) found in heavy-ion
collisions, which can be described as relativistic fluid
system [1]. The main tools of the hydrodynamic approach
are the conservation laws (e.g., of the stress-energy tensor
(SET) and currents), as well as the gradient expansion [2,3].
The idea of the gradient expansion is that hydrodynamic
quantities are given by series in terms of space-time
derivatives acting on hydrodynamic degrees of freedom,
such as temperature, chemical potential, fluid four-velocity
ðT; μ; uμÞ. Considering hydrodynamics in curved space-
time, we additionally take into account the gradients of the
space-time metric gμν.
A well-known example of the application of the first-

order current gradient expansion is the work [4] in which
the relationship is established between seemingly very
distant phenomena: hydrodynamics and gauge chiral
anomaly (see also another original derivation [5]). This
successful application of the methods of hydrodynamics
to the analysis of quantum anomalies led to a series of
subsequent works, such as [6,7], but mostly also for a
gauge chiral anomaly. Therefore, of undoubted interest are

the works on the study of another famous anomaly, the
gravitational chiral anomaly [8–11].
This list includes recent work in the context of the

hydrodynamic approach to anomalies [12], in which the
relationship was established between the transport coeffi-
cients in flat space-time and the gravitational axial anomaly,
which was called kinematical vortical effect (KVE). This
effect is a manifestation of the duality between flat space-
time and curved space-time (gravity), because it was shown
that the axial current in a vortical and accelerated fluid in a
flat space-time is determined by the gravitational chiral
anomaly. In [12] derivation of the KVE was made in Ricci-
flat space-time approximation Rμν ¼ 0. The next logical
step is to generalize our derivation and consider space-time
with nonzero Ricci tensor, in the simplest case proportional
to space-time metric Rμν ¼ Λgμν, so-called Einstein mani-
folds. This means that expressions for hydrodynamic
quantities will contain terms with scalar curvature R.
Finding the corresponding expansions in the case of the
stress-energy tensor and the search for new elements of
duality between hydrodynamics and gravity is the main goal
of this paper.
Besides duality, we will give a new perspective on the

interesting question of the Unruh effect in curved space-
time. It is known that the Hawking effect extends to other
space-times with a horizon, in particular, there is a well-
known analog of Hawking radiation in an accelerated
frame, the Unruh effect [13,14]. The radiation temperature
(the Unruh temperature) depends on the acceleration
TU ¼ jaj

2π, where aμ ¼ uν∂νuμ is the proper acceleration,
jaj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

−aμaμ
p

, and uμ is the four-velocity. There is also
another well-known example of the de Sitter space-time,
whose temperature is determined by the scalar curvature
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TR ¼
ffiffiffiffiffiffiffiffi
R=12

p
2π [15]. Later, the combined case with constant

curvature and acceleration was considered, and the temper-
ature of the radiation was shown to be a combination of
TU and TR

TUR ¼ a5
2π

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
U þ T2

R

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaj2 þ R=12

p
2π

: ð1Þ

It is noteworthy that (1) is valid both for accelerated
dS [16,17] (R > 0) and anti–de Sitter (AdS) [17] (R < 0)
spaces.
This combined case became indicative, demonstrating

the role of the flat higher-dimensional space-times in which
curved space-times can be embedded. As in the Unruh
effect, the temperature (1) is determined by acceleration,
not four, but five-dimensional, the square of which is
ja5j2 ¼ jaj2 þ R=12. In this letter, we analyze the thermal
radiation in accelerated (A)dS space from the point of view
of relativistic hydrodynamics. We argue that (1) can be
obtained from the basic hydrodynamic equations and the
general relativistic covariance, if we know the hydrody-
namic expansions in a curved space-time in the case with
acceleration only. This approach develops the mentioned
similarity between thermodynamics and gravity.
For clarity, let us start the consideration with the case of

hydrodynamics in flat space-time and ordinary Unruh
effect.

Unruh effect from hydrodynamics: Acceleration in flat
space-time. Let us consider a relativistic non-dissipative
fluid with four-velocity uμ, constant acceleration aμ and
zero chemical potential μ ¼ 0 in flat space-time [we
choose the signature ðþ;−;−;−Þ]. For simplicity, the
particles that form the fluid will be assumed to be massless
(or nearly massless, when the mass is much less than the
other dimensional parameters). The stress-energy tensor
can be constructed in terms of gradient expansion that
terminates at the fourth order [18–20]. The corresponding
transport coefficients can be found within the quantum
statistical approach from the correlators with boost oper-
ators. In particular, for the spins s ¼ 0 and s ¼ 1=2 we
obtain [21–24]1

hT̂μνis¼0 ¼
�
π2T4

90
−

jaj4
1440π2

�
ð4uμuν − gμνÞ; ð2Þ

hT̂μνis¼1=2 ¼
�
7π2T4

180
þ jaj2T2

72
−

17jaj4
2880π2

�
ð4uμuν − gμνÞ;

ð3Þ

It is essential that both SETs are equal to zero at the Unruh
temperature [13], which is a direct indication of the Unruh
effect [26]

hT̂μνiðT ¼ TUÞ ¼ 0: ð4Þ

The explanation is the following. The matrix element of
the SET is divergent and should be renormalized. A
renormalization is used for which the matrix element
for the Minkowski vacuum state (when there are no
particles in the inertial frame) is zero. Relativistic covari-
ance tells us that a tensor equal to zero in one reference
frame is equal to zero in any other, including non-inertial
ones [27]. Thus, it follows from the equality (4) that the
finite temperature in the accelerated system corresponds to
the Minkowski vacuum state. And this is, actually, the
Unruh effect.
However, it is easy to show that a naive generalization

of (2) and (3) to the case of curved space-time, with just a
change of derivatives to covariant ones, e.g., aμ ¼ uν∇νuμ,
leads to non-conserved SETs. In particular (the details are
given in the next section), we would obtain from (2) a
nonzero contribution to the divergence in the case of the
curved space-time, namely ∇μhT̂μνiðs¼0Þ ¼ − a2R

4320π2
aν ≠ 0.

This indicates that there are additional effects of curvature,
that are not taken into account, which we consider in the
next section.

Hydrodynamic gradient expansion: Acceleration and
constant curvature. Consider now the same fluid, but in
(A)dS space-time with Rμν ¼ Λgμν, where R ¼ 4Λ is a
constant curvature. In this case, the gravitational field will
be considered as external. Gradient expansion should now
also take into account the contribution of terms with scalar
curvature R ¼ 4Λ of the space-time (which is the second
order in the gradients of the metric). Let us write down the
expansion for the SET in the general case of massless
particles with an arbitrary spin. Also, to facilitate the finding
of covariant derivatives and further calculations, it will be
convenient to switch to a dimensionless (or “thermal”)
acceleration αμ ¼ aμ

T . Therefore the SET in the fourth order
in terms of gradients will have the form

hT̂μνi ¼ ðρ0 þA1α
2 þA2RþB1α

4 þB2α
2RþB3R2Þuμuν

− ðp0 þA3α
2 þA4RþB4α

4 þB5α
2RþB6R2Þgμν

þ ðA5 þB7α
2 þB8RÞαμαν þOð∇6Þ; ð5Þ

where ρ0ðTÞ, p0ðTÞ, AiðTÞ, and BiðTÞ are coefficients that
depend on the only dimensional parameter, temperature T.

1Due to the covariance of (2) and (3), the metric can be both the
Minkowski or, for example, the Rindler metric. Also note that (2)
and (3) include, the contribution jaj4, that is generally related to
the vacuum, see for example [25]. This contribution plays a key
role in providing relativistic covariance.
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We distinguished the coefficients corresponding to the terms
of different orders of gradients: AiðTÞ correspond to the
second order, and BiðTÞ to the fourth order. Note that in our
gradient expansion there are no odd gradient terms like
a2nRkaμuν, since they violate T-symmetry (they are dis-
sipative) and hence vanish in the global equilibrium.
In general, expansion (5) may contain higher order terms,

denoted by Oð∇6Þ. The transport coefficients in each order
can be obtained in the framework of the perturbation theory
for an equilibrium medium [7,21–23,28,29], and are given
by loop diagrams at a finite temperature. It was shown in a
number of special cases [18,19,22,30], that for massless
fields this series terminates at the fourth order, and the
thermodynamic quantities are given by polynomials [e.g.,
(2) and (3)]. The emergence of polynomials is a remarkable
and rare situation in quantum field theory, and in the case
under consideration is characteristic precisely for massless
fields in equilibrium.2 We assume that for the equilibrium
medium of massless constituents in space with constant
curvature R ¼ 4Λ, the series also terminates at the fourth
order, and apply Oð∇6Þ ¼ 0.
The SETs (2) and (3) are now special cases of (5) in flat

space-time limit. On the other hand, there is the well-known
SET for the (A)dS vacuum state [31,32]3

hT̂μνivac ¼
k
4
R2gμν: ð6Þ

The conservation equations form the basis of hydrody-
namics, in particular, for the SET, we have

∇μhT̂μνi ¼ 0; hT̂μ
μi ¼ kR2: ð7Þ

The second equation contains the famous gravitational
conformal anomaly, and the numerical coefficient k depends
on the spin of the microscopic constituents [31,33,34]

kðs¼0Þ ¼ 1

34560π2
; kðs¼1=2Þ ¼ 11

34560π2
: ð8Þ

We assume that system is in a global thermodynamic
equilibrium, which implies that the inverse temperature
vector βμ ¼ uμ

T satisfies Killing equation [35]

∇μβν þ∇νβμ ¼ 0: ð9Þ

The chosen Killing vector should be time-like as well as
future-oriented. Therefore, the equilibrium condition is
possible both for stationary space-times and for static
space-times as a special case. Note that for the static
AdS space-time coordinates are global, while for the dS

they cover only part of the manifold forming the static
patch. The use of the condition (9) is dictated both by the
physical formulation of the problem and by a significant
simplification of the calculations, which actually allows us
to study the higher order hydrodynamic effects in a
gravitational field.
To find the covariant derivative of the SET, we need to

determine the covariant derivatives of temperature and
acceleration. Using (9) and the definition of the
Riemann tensor as a commutator of derivatives we obtain

∇μ∇νβα ¼ −Rρ
μναβρ; ð10Þ

as for any Killing vector. Finally, using (9), (10) and the
condition uμuμ ¼ 1 we obtain

�∇μT ¼ T2αμ;

∇μαν ¼ −Tα2uμuν − R
12T ðgμν − uμuνÞ:

ð11Þ

According to the first of the equations, the temperature
gradient is the source of acceleration, which is consistent
with the well-known Luttinger relation [36].4 System (11)
was obtained in the global equilibrium approximation of
the system and it can be seen from the system that all higher
derivatives (differentiation) are expressed through lower
derivatives. Thus, all gradient terms are expressed through
the combination of α and R.
To avoid unnecessarily cumbersome expressions, we

will divide the tensor into two parts with different orders of
gradients and consider them separately, which is possible,
since each of the orders forms an independent system of
equations.

Second-order gradients: The SET in the second order in
gradients has the form

hT̂μνið2Þ ¼ ðA1α
2þA2RÞuμuν−ðA3α

2þA4RÞgμνþA5α
μαν:

ð12Þ

Combining derivatives from (11) we obtain

8>>>>>>><
>>>>>>>:

∇μAi ¼ ∂Ai
∂T ∇μT ¼ A0

iT
2αμ;

∇μðuμuνÞ ¼ Tαν;

∇μðαμανÞ ¼ −
�
Tα2 þ R

3T

�
αν;

∇μα
2 ¼ − R

6T αμ:

ð13Þ

Then, the derivative of the SET will give us2For earlier indications and a discussion of polynomiality in
quantum statistical mechanics, see [5,9].

3The corresponding vacuum contribution is additional to the
Λ-term, which is responsible for the geometric background.

4Thus, there are no external forces other than gravity and the
SET is covariantly conserved in (7).
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∇μhT̂μνið2Þ ¼
�
ðA1α

2T þ A2RTÞ

−
�
A0
3α

2T2 − A3

R
6T

þ A0
4RT

2

�

þ
�
−A5α

2T − A5

R
3T

þ A0
5α

2T2

�	
αν ð14Þ

Now we have to take into account that (14) is zero and
hT̂μ

μið2Þ ¼ 0, according to (7). Collecting terms of the same
tensor structure and taking into account that (7) are satisfied
only when each independent term is zero, we obtain the
following system of differential equations8>>>>><

>>>>>:

A1 − A0
3T − A5 þ A0

5T ¼ 0;

A2T2 þ A3

6
− A0

4T
3 − A5

3
¼ 0;

A1 − 4A3 þ A5 ¼ 0;

A2 − 4A4 ¼ 0:

ð15Þ

Since the fields are massless and the only dimensional
parameter is temperature, we know in advance the temper-
ature dependence for AiðTÞ

A1 ¼ λ1T4; A2 ¼ λ2T2; A3 ¼ λ3T4;

A4 ¼ λ4T2; A5 ¼ λ5T4; ð16Þ

where λi are dimensionless constants. Therefore we trans-
form (15) into a system of algebraic equations8>>>><

>>>>:

λ1 − 4λ3 þ 3λ5 ¼ 0;

λ2 þ λ3
6
− 2λ4 −

λ5
3
¼ 0;

λ1 − 4λ3 þ λ5 ¼ 0;

λ2 − 4λ4 ¼ 0;

ð17Þ

which can be easily solved. It follows that λ5 ¼ 0,
λ2 ¼ − λ1

12
, λ3 ¼ λ1

4
, λ4 ¼ − λ1

48
and finally (12) has the form

hT̂μνið2Þ ¼ A

�
a2 −

R
12

�
T2ð4uμuν − gμνÞ; ð18Þ

where A ¼ λ1
4
.

Also, it is necessary to pay some attention to the zeroth
order. Since in the zeroth order the trace anomaly is absent,
simply from the conservation relations we obtain the
standard expression

hT̂μνið0Þ ¼ σT4ð4uμuν − gμνÞ; ð19Þ

in accordance with the formulas (2), (3). The coefficient σ
refers us to the Stephan-Boltzmann’s law.

Fourth-order gradients: Now we write out the SET in the
fourth order in gradients

hT̂μνið4Þ ¼ ðB1α
4 þ B2α

2Rþ B3R2Þuμuν
− ðB4α

4 þ B5α
2Rþ B6R2Þgμν

þ ðB7α
2 þ B8RÞαμαν: ð20Þ

Using (13) we find the expression for the covariant
derivative of the SET

∇μhT̂μνið4Þ ¼
�
ðB1α

4T þ B2α
2RT þ B3R2TÞ −

�
B0
4α

4T2 − B4α
2
R
3T

þ B0
5α

2RT2 − B5

R2

6T
þ B0

6R
2T2

�

þ
�
B0
7α

4T2 − B7α
4T − B7α

2
R
2T

þ B0
8α

2RT2 − B8α
2RT − B8

R2

3T

�	
αν: ð21Þ

As in the previous section, substituting (21) into (7) we have the system of differential equations

8>>>>>>>>><
>>>>>>>>>:

B2T2 þ B4

3
− B0

5T
3 − B7

2
þ B0

8T
3 − B8T2 ¼ 0;

B1 − B0
4T þ B0

7T − B7 ¼ 0;

B3T2 þ B5

6
− B0

6T
3 − B8

3
¼ 0;

B1 − 4B4 þ B7 ¼ 0;

B2 − 4B5 þ B8 ¼ 0;

B3 − 4B6 ¼ k:

ð22Þ
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but now it includes the trace anomaly. Again, we can move
on to dimensionless constants

B1¼ b1T4; B2 ¼ b2T2; B3¼ b3; B4¼ b4T4;

B5¼ b5T2; B6 ¼ b6; B7¼ b7T4; B8¼ b8T2; ð23Þ

where bi ¼ const, after that we are left with a system of
algebraic equations

8>>>>>>>>><
>>>>>>>>>:

b2 ¼ −b1=6 − b8;

b3 ¼ b1=144þ b8=3;

b4 ¼ b1=4;

b5 ¼ b2=4þ b8=4 ¼ −b1=24;
b6 ¼ b3=4 − k=4 ¼ b1=576þ b8=12 − k=4;

b7 ¼ 0:

ð24Þ

Therefore (20) can be rewritten as

hT̂μνið4Þ ¼ B
�
a2 −

R
12

�
2

ð4uμuν − gμνÞ þ k
4
R2gμν

þ b8

�
R2

12
ð4uμuν − gμνÞ þ a2R

�
aμaν

a2
− uμuν

�	
;

ð25Þ

where B ¼ b1
4
.

From the relativistic covariance, (25) should also
describe the system in the vacuum state, correspondingly
transforming into (6). The vacuum state does not depend on
the reference frame, and hence acceleration does not affect
the vacuum SET. For fulfillment of this condition it is
necessary to put b8 ¼ 0, since (25) contains a term of the
form Raμaν, and therefore, finally we obtain

hT̂μνið4Þ ¼ B

�
a2 −

R
12

�
2

ð4uμuν − gμνÞ þ k
4
R2gμν: ð26Þ

Combining (18), (19), and (26) together, we obtain the final
full formula

hT̂μνi ¼
�
σT4 þ A

�
a2 −

R
12

�
T2 þ B

�
a2 −

R
12

�
2
	

× ð4uμuν − gμνÞ þ k
4
R2gμν: ð27Þ

Coefficients A and B for spins s ¼ 0 and s ¼ 1=2 can be
taken from (2), (3)

(
A ¼ 0; B ¼ − 1

1440π2
; s ¼ 0;

A ¼ − 1
72
; B ¼ − 17

2880π2
; s ¼ 1

2
:

ð28Þ

Taking into account equality aμaμ ¼ −jaj2, for the case of
s ¼ 0 expression (2) will take the form

hT̂μνis¼0 ¼
�
π2

90
T4 −

1

1440π2

�
jaj2 þ R

12

�
2
	
ð4uμuν − gμνÞ

þ 1

960π2

�
R
12

�
2

gμν: ð29Þ

And for the case of s ¼ 1=2 expression (3) will change as

hT̂μνis¼1=2 ¼
�
7π2

180
T4 þ 1

72

�
jaj2 þ R

12

�
T2 −

17

2880π2

×

�
jaj2 þ R

12

�
2
	
ð4uμuν − gμνÞ

þ 11

960π2

�
R
12

�
2

gμν: ð30Þ

The formula (30) matches the result of [20] (that was
obtained using quantum field theory in AdS space-time).

Discussion. Generalized unruh effect: Accelerated observer
in (A)dS space-time: Let us analyze the consequences
of (27). First, we should recall that in the limit R → 0 the
usual Unruh effect in flat space imposes the condition
hT̂μνiðT ¼ TUÞ ¼ 0, as discussed in Unruh effect from
hydrodynamics: Acceleration in flat space-time section.
This allows us to immediately obtain the connection
between σ, A, and B, and (27) takes the form

hT̂μνi ¼
�
σT4 þ A

�
a2 −

R
12

�
T2 þ

�
A
4π2

−
σ

16π4

�

×

�
a2 −

R
12

�
2
	
ð4uμuν − gμνÞ þ k

4
R2gμν; ð31Þ

which, of course, both (29) and (30) satisfy. On the other
hand, the vacuum SET should have the form (6). From the
general relativistic covariance, the vacuum SET should
have the form (6) in any reference frame, in particular,
accelerated. Now we see that (31) at TUR leads to (6)

hT̂μνiðT ¼ TURÞ ¼
k
4
R2gμν: ð32Þ

This means that the value of temperature TUR corresponds
to vacuum, which therefore, is perceived by the accelerated
observer as a heat bath with a temperature (1). Thus, the
generalized Hawking-Unruh effect for accelerated observer
in (A)dS space-time [16,17,37] actually follows from the
basic hydrodynamic equations (and the usual Unruh effect
in flat space). This is a somewhat unexpected result, since
our analysis essentially concerned only hydrodynamics in
four-dimensional space-time, while (1) is associated with a
five-dimensional acceleration a5.
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Duality between hydrodynamics and gravity: The result
obtained add new elements to the duality between hydro-
dynamics and gravity previously discussed in [12]. At first
glance, these two approaches are essentially different—
gravitational interaction is fundamental. It is described, for
example, by the vertex δgμνTμν in action, where δgμν is the
fluctuation of the space-time metrics. On the other hand,
acceleration effects correspond to the macroscopic inter-
action αμKμ in the density operator [26] with boost operator
Kμ. However, the analysis of conservation relations links
the two types of effects. Indeed, for the SET (5), according
to (27) we obtain the relations

A1 ¼ 4A3 ¼ −12A2T2 ¼ −48A4T2;

B1 ¼ 4B4 ¼ −6B2T2 ¼ −24B5T2 ¼ 144B3T4

¼ 576B6T4 þ 144kT4: ð33Þ

In this case, A1, B1, A3, andB4 characterize the contribution,
associated only with the acceleration aμ, which survives in
the limit R → 0, while A2, B2, B3, A4, B5 and B6 describe
effects with the finite curvature R (or mixed hydro-gravity
effects). As follows from (33), these two classes of effects
are related to each other.
Since the hydrodynamic gradient expansion and con-

servation relations are quite general, our analysis is to be
valid for any fluid with massless constituents with an
arbitrary spin. However, at temperatures below the Unruh
temperature T < TU quantum phase transition occurs,

a detailed analysis of which is given in [38], and as the
result (3) changes. It should be expected that a similar
constraint holds for (29), (30), and (31) when T < TUR.

Conclusion. We have considered a relativistic accelerated
fluid of massless particles with an arbitrary spin in a
thermodynamic equilibrium in a four-dimensional (A)dS
space-time. We have derived the stress-energy tensor,
which takes into account the effects of both acceleration
and constant curvature.
Conservation of the stress-energy tensor and general

relativistic covariance allow us to find the linear equations
relating the transport coefficients in flat and curved space-
times. We have verified these relations directly in the
particular case of the Dirac field in the AdS space-time.
The immediate consequence of the obtained formulas is a

novel confirmation of the generalized Unruh effect for
accelerated systems in (A)dS space-time: the temperature
of the vacuum measured by the accelerated observer is
determined by acceleration in a flat five-dimensional
space-time.
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