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In general relativity, the use of conformal transformation is ubiquitous and leads to two different frames
of reference, known as the Jordan and the Einstein frames. Typically, the transformation from the Jordan
frame to the Einstein frame involves introducing an additional scalar degree of freedom, often already
present in the theory. We will show that at the quantum level, owing to this extra scalar degree of freedom
these two frames exhibit subtle differences that the entanglement between two massive objects can probe.
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Introduction. As a competitor to Einstein’s general theory
of relativity, there exists a compelling theory, known as the
Brans–Dicke theory of gravitation (sometimes also called
the Jordan–Brans–Dicke theory) [1]. It is an example of a
scalar-tensor theory of gravity, where the gravitational
interaction is mediated by a scalar field as well as the
tensor field. Intriguingly, the gravitational constant G is no
longer a fundamental constant but depends on the dynamics
of a scalar field ϕ. These two theories are designated by two
frames of reference, known as the Einstein and the Jordan
frames, and they are related by a special conformal trans-
formation where the space-time metric is re-scaled by the
scalar field, see Ref. [2] for a detailed review. The scalar-
tensor theories of gravity have been studied widely as a
generalization to Einstein’s gravity in cosmology [3],
resolving the big bang singularity, and of course in black
hole physics [4,5]. Furthermore, such a class of theory can
be considered as the low energy limit of string theory [6]
and appears in the Kaluza-Klein theory involving com-
pactified extra spatial dimensions as well [7]. The natural
question arises: what happens to these frames at a quantum
level? Many studies compare these two frames at a classical
level, see Refs. [8–14]. Here we wish to understand what
happens at the quantum level, especially to some quantum
observables leading to entanglement.
To settle this score, we observe that recently there has

been a proposal to test the quantum nature of gravity in a
lab via spin entanglement witness [15,16], see also [17].
The protocol is known as the quantum gravity-induced
entanglement of mass (QGEM). This protocol intends to
create macroscopic spatial quantum superposition in a lab
with embedded spins to study the entanglement between

two quantum systems solely via gravitational interaction.
It is possible to screen/mitigate the long-range electro-
magnetic interaction by the construction of a Faraday cage
in the experiment, see Refs. [18–20]. Also, there is an
optomechanical protocol to test the spin-2 nature of the
gravitational interaction by witnessing the entanglement
between a quantum system and a photon mediated via
graviton [21,22], and time domain measurements to witness
the entanglement [23].
In brief, as long as we trust in an effective field

theory approach to quantum gravity, where locality and
causality are maintained, we would expect the two quantum
massive objects to entangle even at the lowest order in
the energy, i.e., at the level of Newtonian potential, see
Refs. [22,24–28]. This particular observation is a reminis-
cence to Bell’s test for the entanglement [29], which can be
observed even in the limit when ℏ → 0, as was shown in the
large angular momentum limit [30,31]. Therefore, quantum
entanglement is considered a genuine quantum correlation
that has no classical analog and is helpful to discern
quantum vs classical systems [32,33]. The entanglement
of masses via the quantum gravitational interaction is also
reminiscence to the so-called “local operation and classical
communication” (LOCC) theorem, which states that it is
not possible to entangle two quantum systems if they were
not entangled, to begin with via classical channel [34]. This
would mean that two test masses (quantum) would entangle
in the presence of gravitational interaction if and only if
gravity obeys the rules of quantum mechanics [15,24,25].
As a natural consequence, gravitational interaction with
matter, if treated classically, will not yield any entangle-
ment whatsoever, as shown in [24,25,35].
Entanglement test to quantum nature of gravity has

also been proposed to probe the weak equivalence
principle [36], physics beyond the Standard Model, such
as axions [37], extra spacetime dimensions [38], and also
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gravitational theories with nonlocal gravitational inter-
actions motivated from string theory [35]. One particular
observable for entanglement is the concurrence for the
bipartite systems [39]. In this paper, we will use the same to
understand how the entanglement features can discern the
properties of the two frames, and in this regard, we will
define a new observable, which we call a relative con-
currence difference, which we define as:

Δ≡ CJðGÞ − CEðG ¼ 0Þ
CJðGÞ þ CEðG ¼ 0Þ ð1Þ

where CEðG ¼ 0Þ denotes concurrence in the Einstein
frame in the absence of a scalar field, and CJðGÞ is the
concurrence described in the Jordan frame. Note that this
definition is very similar to the Eötvös parameter, intro-
duced in [25]. We will show that even if the scalar field
mass is small, e.g. mϕ → 0, the relative concurrence can
exhibit the difference between the two frames.

Connecting Einstein and Jordan frames. The two frames1

are related by a conformal transformation: gμν → g̃μν ¼
Ω2ðxÞgμν, where the conformal factor can be expressed
as Ω2ðxÞ ¼ 1þ ϕðxÞ, i.e., we assume the linear dilaton
profile for ΩðxÞ. Thus, the metric in the Jordan frame can
be expanded around the flat background and hence
expressed as,

g̃μν ¼ Ω2gμν ¼ ð1þ ϕÞðημν þ hμνÞ
¼ ημν þ ðhμν þ ϕημνÞ; ð2Þ

where hμν is the metric perturbation around the flat back-
ground, which we will quantize (for details see the
Appendix). Therefore, the situation in the Jordan frame
appears to be identical to that in the Einstein frame, with
simply the perturbed metric hμν, being replaced by
h̃μν ≡ hμν þ ϕημν. We would like to point out that ϕ and
hμν are of the same order in the perturbative expansion
around the flat background. Therefore, the gravitational
Lagrangian will now involve nontrivial interactions
between the metric perturbation hμν and the scalar degree
of freedom ϕ, while the interaction Hamiltonian between
gravity and matter in the Jordan frame will become:

H̃int ¼ −
1

2

Z
d3xT̃μνðt;xÞh̃μνðt;xÞ;

¼ Hint −
1

2

Z
d3xϕðt;xÞTðt;xÞ; ð3Þ

where T̃μν is the energy-momentum tensor of the matter
field in the Jordan frame and Hint is the interaction
Hamiltonian in the Einstein frame (As another demonstra-
tion of the above difference, we have presented the corres-
ponding situation in the fðRÞ theories of gravity in the
Supplemental Material [40]). Note that, T̃μν ¼ Tμν þ
terms ofOðϕÞ. Thus in the interaction term, we can simply
use the following replacement: T̃μνðxÞ ¼ TμνðxÞ, since the
additional term of OðϕÞ will contribute only at the second
order. Thus in the Jordan frame, there is an additional
contribution due to the scalar degree of freedom, which is
ϕðxÞTðxÞ.2 Here T ≡ ημνTμν, is the trace of the matter
energy-momentum tensor. Interestingly, the termHint arises
solely from the gravitational interaction with matter in the
Einstein frame, denoted by Hg, while the scalar contribu-
tion is denoted by Hϕ. Owing to the linear nature of
quantum theory (at least in the weak field regime of gravity
that we are interested in), both of these terms, namely Hg

andHϕ can be studied separately. The contribution ofHg to
the entanglement between two massive objects has already
been computed [15,24,25,35], while in this paper, we will
focus on the entanglement due to Hϕ.
To proceed further, we need explicit expressions for the

matter energy-momentum tensor. We assume that the two
masses (quantum) are separated by a distance d and they
can move in one dimension only, so that the energy-
momentum tensor reads,

TμνðrÞ ¼
pμpν

E=c2
�
δðr − rAÞ þ δðr − rBÞ

�
; ð4Þ

where pμ ¼ ð−E=c; pÞ, E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2c2 þm2c4

p
, with μ,

ν ¼ 0, 1, and rA ¼ ðxA; 0; 0Þ, and rB ¼ ðxB; 0; 0Þ denoting
the positions of the two masses. Thus, the only non-
zero components of the energy-momentum tensor are
T00, T01, and T11.

Interaction Hamiltonian in the Einstein frame. First, we
recall the contribution of the interaction HamiltonianHint in
the Einstein frame, which involves the tensor field alone
and hence is also given by Hg. By quantizing the spin-2
graviton in a similar fashion as [24,25,35], along with the
quantum matter sector, we can compute the change in the
gravitational energy ΔĤg of the system involving the two
masses. As we assume the two masses and the graviton to
be in their ground states, the above interaction excites the
graviton and hence the masses as well. The excitation

1In the Jordan frame all the geometrical quantities are denoted
by η̃μν; h̃μν; � � �, while in the Einstein frame they are just denoted
by ημν; hμν; � � �. In our convention, the flat Minkowski metric in
Cartesian coordinate read ημν ¼ diag:ð−;þ;þ;þÞ.

2This extra term will create a difference between the two
frames in the quantum gravitational entanglement between two
masses at the linear order. This is also consistent with [41], where
minimal couplings are shown to violate equivalence between the
two frames, which is the case in linear order.
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experienced by the masses is given by the interaction term
ΔĤg, which is given by:

ΔĤg ≡
XZ

dk gh0jĤintjkig ghkjĤintj0ig
Eg
0 − Eg

k

; ð5Þ

where the above summation takes care of the polarization
states of one particle graviton energy eigenstates jkig, see
Refs. [25,35]. Moreover, j0ig denotes the vacuum state
of the graviton and Eg is the energy of the graviton. By
performing the above integration and keeping terms up to
Oð1=c4Þ, the gravitational interaction experienced by the
two (quantum) masses become [25] (ignoring self-energy
terms, see the Supplemental Material [40]):

ΔĤg ¼ −
Gm2

jr̂A − r̂Bj
þ 4Gp̂Ap̂B

c2jr̂A − r̂Bj
−

9Gp̂2
Ap̂

2
B

4c4m2jr̂A − r̂Bj
: ð6Þ

The above expression for the change in the gravitational
energy involving the two point masses matches with the
known results from quantizing gravity at the linear level,
see Refs. [42–45]. For perturbative quantum gravity, the
change in the gravitational energy is an operator-valued
entity, depending on the operators x̂A, x̂B, p̂A, and p̂B,
rather than complex numbers [25,35].

Interaction Hamiltonian in the Jordan frame. The change
in the gravitational energy of the two masses in the Jordan
frame requires quantizing the dilaton/scalar field ϕ. We
assume that the scalar field has a mass mϕ, and hence the
canonical quantization scheme yields,

ϕ ¼ χ

Z
d3k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2ωkð2πÞ3
s �

Q†
ke

−ik·r þQkeik·r
�
; ð7Þ

where the commutation rule between the creation operator
Q†

k and the annihilation operator Qk is given by,
½Qk; Q

†
k� ¼ δ3ðk − k0Þ. Note that χ is an overall constant

determining the strength of the scalar perturbation.
Given the vacuum state of the scalar field j0iϕ, satisfying
Qkj0iϕ ¼ 0 ¼ ϕh0jQ†

k, it follows that the first order shift in
Hamiltonian due to the interacting scalar field vanishes.
Hence the shift in the interaction Hamiltonian of the two
masses due to the exchange of a scalar field is given by,

ΔĤϕ ¼
Z

d3k0 ϕh0jĤ
ϕ
intjk0iϕ ϕhk0jĤϕ

intj0iϕ
Eϕ
0 − Eϕ

k0
: ð8Þ

Here, we have defined the state jkiϕ to be the one-particle
state of the ϕ field having momentum ℏk, i.e., jkiϕ≡
Q†ðkÞj0i. By using the fact that Eϕ

0 − Eϕ
k ¼ −ℏωk, and

ignoring the self-energy terms (which neither contribute to

the infrared at low energies, not to the entanglement), in
the nonrelativistic regime,3 we obtain:

ΔĤϕ ¼ −
e−jr̂A−r̂Bj=L

jr̂A − r̂Bj
�
Gm2 þ Gp̂2

Ap̂
2
B

4m2c4

�
; ð9Þ

where, we have introduced a new length scale L in the
problem, defined as the inverse of the mass of the scalar
field mϕ, such that

L≡ ℏ
mϕc

; G≡ χ2c2

16π
; ð10Þ

and we have defined G as an effective strength for the scalar
field. Therefore, the total interaction Hamiltonian for the
two masses, due to the exchange of the scalar and the
graviton degrees of freedom between them, can be written
as (keeping terms up to second order in the post-Newtonian
expansion and ignoring the self-energy terms),

ΔĤAB ¼ ΔĤg þ ΔĤϕ ¼ −
ðGþ Ge−ðr̂A−r̂BÞ=LÞm2

jr̂A − r̂Bj

þ 4Gp̂Ap̂B

c2jr̂A − r̂Bj
−
9ðGþ 1

9
Ge−ðr̂A−r̂BÞ=LÞp̂2

Ap̂
2
B

4m2c4jr̂A − r̂Bj
;

ð11Þ

where we have explicitly shown the operators. From the
above expression, (11), we can conclude the following4:
The interaction Hamiltonian ΔĤϕ has a term proportional
to m2 and a term proportional to p̂2

Ap̂
2
B, however the linear

order term p̂Ap̂B is absent. In particular, the total effect of
gravity and the scalar system can be encoded by defining an
effective gravitational constant at the leading order:

G̃ ¼ Gþ Ge−d=L; ð12Þ

where, d ¼ jrA − rBj. Note that in the limit L → 0, or,
mϕ → ∞, the modified gravitational constant in the Jordan
frame becomes that of the Einstein frame, i.e., the same as
Newton’s constant G̃ ¼ G.
On the other hand, at a higher order, namely Oð1=c4Þ,

the contribution of gravity and scalar adds up to yield
a different effective gravitational constant, G̃0 ¼ Gþ
ð1=9ÞGe−d=L. Thus it is interesting to observe that the
effect of the scalar field is not a mere uniform translation of

3Non-relativistic in the sense that the (quantum) masses are
“moving slowly”, such that we can express the energy in terms
of the momentum as, E ¼ mc2f1þ ðp2=2m2c2Þg, which also
leads to ðmc2=EÞ ¼ f1 − ðp2=2m2c2Þg.

4To the best of our knowledge the interaction Hamiltonian
between the two masses in the Jordan frame has been computed
for the first time in this paper.
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the gravitational constant at every order in ð1=c2Þ, rather, it
affects every order differently.

Concurrence in a QGEM setup.We will follow the original
QGEM protocol [15] to test the quantum nature of gravity
via entanglement and will consider a parallel setup as
discussed in [37,46–48]. Such spatial superposition can
be created in the Stern-Gerlach setup with a nitrogen
valence (NV) spin embedded in the crystal [15,49–54].
Here we mainly discuss the theoretical consequence of
the concurrence in this setup and will place the masses
in a superposition of size Δx in a parallel arrangement,
as shown in Fig. 1. We will now study how this spatial
superposition/non-Gaussian state evolves under gravita-
tional interaction Hamiltonian, with additional contribution
from the scalar field. We start with the following initial state
jψii ¼ 1

2
jCiAjCiBðj↑iA þ j↓iAÞðj↑iB þ j↓iBÞ, where, jCiA

and jCiB correspond to the localized state of particle A and
particle B, respectively. After acting on the above state with
appropriate stern-Gerlach apparatus, see Refs. [49–52],
we arrive at the spatial superposition of the two test masses
A and B,

jψii →
1

2
ðjL;↑iA þ jR;↓iAÞðjL;↑iB þ jR;↓iBÞ: ð13Þ

The spatial superposition is created such that jLiA and jRiB,
as well as, jRiA and jLiB, are separated by a distance d,
while jLiA, jLiB and jRiA, jRiB are separated by a
distance

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ ðΔxÞ2

p
.

In what follows, we will consider the nonrelativistic limit
and will take into account the leading order contributions,
with p̂A; p̂B → 0 in (11), such that the final state evolves to
after time t ¼ τ,

jψif ¼ e−iΔĤABτjψii
¼ 1

2
ðeiθjL;↑iAjL;↑iB þ eiϕjL;↑iAjR;↓iB

þ eiϕjR;↓iAjL;↑iB þ eiθjR;↓iAjR;↓iBÞ; ð14Þ

where, two phases θ and ϕ are given by:

θ ¼
�

Gm2

ðd2 þ Δx2Þ1=2 þ
Ge−ðd2þΔx2Þ1=2=Lm2

ðd2 þ Δx2Þ1=2
�
τ

ℏ
;

ϕ ¼
�
Gm2

d
þ Ge−d=Lm2

d

�
τ

ℏ
: ð15Þ

Subsequently, after passing through a full-loop interferom-
eter, we obtain:

jψif ¼
eiθ

2
jCiAjCiB

�j↑iAðj↑iB þ eiðϕ−θÞj↓iBÞ
þ j↓iAðj↓iB þ eiðϕ−θÞj↑iBÞ

�
: ð16Þ

Subsequently, tracing out the spin degrees of freedom of B,
we get the density matrix associated with the spin states of
the mass A as,

ρ̂A ¼ 1

2

�
1 cosðϕ − θÞ

cosðϕ − θÞ 1

�
; ð17Þ

and hence the following expression for the concurrence
follows [39]:

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − trðρ̂2AÞÞ

q
¼ j sinðϕ − θÞj: ð18Þ

In Fig. 2 we have illustrated how the relative concurrence
difference Δ scales with (d=L) for different values of the
scalar coupling G in the Jordan frame. If the scalar coupling
G → 0, then G̃ ¼ G, the Newton’s constants in both the

FIG. 1. Configuration of two massive objects separated by
distance d in spatial superposition, with the splitting beingΔx. The
radius of objects are R ∼ ð3m=4πρÞ1=3, so that R ≪ ðΔx; dÞ, for
ρ¼3.5 gcm−3 typical of a diamondlike system with m∼10−14 kg.

FIG. 2. Plot of relative concurrence difference Δ, see Eq. (1),
with the dimensionless distance parameter (d=L) has been
presented, for different values of ðG=GÞ, where G is the four-
dimensional Newton’s constant. We have set d ¼ 200 μm,
Δx ¼ 100 μm, m ¼ 10−14 kg, and τ ¼ 1 s. For L → ∞, imply-
ing mϕ → 0, we have the largest relative concurrence difference,
implying the deviation between the Jordan and the Einstein
frames is most pronounced there.
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frames become identical. In this case, the relative con-
currence difference tends to be zero, which can be verified
from Fig. 2. We can see that the relative concurrence
difference has the most pronounced effect in the limit of
L → ∞, andmϕ → 0, for any finite d. This very fact can be
used as a probe to evidence what nature selects, the Jordan
or the Einstein frame at a quantum level. This will allow
us to probe light masses at an unprecedented level, which
we had not been able to do by any other gravitational
experiment.
We would like to emphasize that there are several

constraints on the scalar-tensor theories arising from
various classical experiments, ranging from solar system
tests to gravitational wave measurements. However, all of
these measurements probe the scalar field at a macroscopic
level, while we have presented the effect of the scalar
field at the quantum level, with a very distinct observable,
with no classical analog. Moreover, the most stringent
constraints from gravitational waves on some of the scalar-
tensor theories, e.g., Horndeski [55], can be lifted by
advocating appropriate screening mechanisms and are
likely to remain so even for future gravitational wave
measurements [56]. On the other hand, at the quantum
level, the existence of an additional scalar mediator results
in entanglement, which can testify to the existence of a fifth
force, in the cleanest possible way.
Indeed, there are various efforts to perform such kind of

entanglement experiment on an atom chip, see Ref. [50],
and there are many experimental challenges that need to be
overcome. Creating superposition of such massive objects
is another challenge, there might be the hypothetical
collapse of the wave function [57,58], which might even
limit us to create such a large superposition, but such
theories go beyond the scope of linearity of quantum

mechanics while introducing nonlinearities in gravity,
hence we do not deal with such class of theories here.
Besides these, there are known StandardModel interactions
that can decohere the superposition, which severely puts a
limit on the ambient temperature, the temperature of the
object, pressure, impurities in the crystal, external gravi-
tational stochastic waves [15,18,20,48,59,60].
Despite all these challenges, the import of this work is to

show that at a quantum level the bonafide quantum
observable, such as an entanglement/concurrence, exhibits
the key difference between the Jordan and the Einstein
frame. We have captured this by the relative concurrence
difference Δ, (1). The difference between the two frames
arises from the propagation of an extra scalar degree of
freedom in the Jordan frame. Though present generation
experiments are not sensitive enough to detect the macro-
scopic superposition of massive objects, it is expected that
within the next five to ten years this should be possible with
the advancement of technology [49]. In which case, this
feature will be testable in a laboratory setting involving the
quantum superposition of two massive objects with a mass
of 10−14 kg separated by a distance of d ¼ 200 μm, and
Δx ∼ 100 μm, with sensitivity of Oð10−1Þ for the relative
concurrence. Therefore, quantum experiments will be
essential to unravel one of the mysteries of gravitational
physics, in which frame the quantum observables make
sense.
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