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In the past two decades, one of the most puzzling phenomena discovered in hadron physics is that a
nominal hadronic state can actually correspond to two poles on the complex energy plane. This
phenomenon was first noticed for the Λð1405Þ, then for K1ð1270Þ, and to a lesser extent for
D�

0ð2300Þ. In this Letter, we show explicitly how the two-pole structures emerge from the underlying
universal chiral dynamics describing the coupled-channel interactions between heavy matter particles and
pseudo-Nambu-Goldstone bosons. In particular, the fact that two poles appear in between the two dominant
coupled channels can be attributed to the particular form of the leading order chiral potentials of the
Weinberg-Tomozawa form. Their line shapes overlap with each other because the degeneracy of the two
coupled channels is only broken by explicit chiral symmetry breaking of higher order. We predict that for
light-quark (pion) masses heavier than their physical values (e.g., about 200 MeV in the Λð1405Þ case
studied), the lower pole becomes a virtual state, which can be easily verified by future lattice QCD
simulations. Furthermore, we anticipate similar two-pole structures in other systems, such as the isopin 1=2
K̄Σc − πΞ0

c coupled channel, which await for experimental discoveries.

DOI: 10.1103/PhysRevD.108.L111502

Introduction. Hadronic states that decay strongly are
referred to as resonances. Experimentally, they often show
up as enhancements in the invariant mass distributions of
their decay products and are parametrized with the Breit-
Wigner formalism. It is well known that close to two-body
thresholds, however, the Breit-Wigner parametrization
cannot accurately capture all the physics and may misrep-
resent the true dynamics [1,2]. There are also other
scenarios where more careful analyses are needed, one
of which is where the enhancements may differ depending
on the observing channels. Among the latter, the Λð1405Þ

state has attracted the most attention, and to a lesser extent,
the K1ð1270Þ and D�

0ð2300Þ states [3].
The Λð1405Þ, with quantum numbers JP ¼ 1=2−, I ¼ 0,

and S ¼ −1, has remained puzzling in the constituent quark
model [4] because it is lighter than its nucleon counterpart
N�ð1535Þ and the mass difference between Λð1405Þ and its
spin-partner Λð1520Þ with JP ¼ 3=2− is much larger than
the corresponding splitting in the nucleon sector [5]. On the
other hand, the Λð1405Þ was predicted to be a K̄N bound
state even before its experimental discovery [6]. Such a
picture received further support in the chiral unitary
approaches that combine SUð3ÞL × SUð3ÞR chiral dynam-
ics and elastic unitarity (see Refs. [7,8] for a more complete
list of references). An unexpected finding of the chiral
unitary approaches is that the Λð1405Þ actually corre-
sponds to two dynamically generated poles on the second
Riemann sheet of the complex energy plane [9,10],
between the thresholds of πΣð1330Þ and K̄Nð1433Þ, where
the numbers in the brackets are the thresholds of the
respective channels in units of MeV. Such a two-pole
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picture1 has recently been reconfirmed in the unified
description of meson-baryon scattering at next-to-next-to-
leading order (NNLO) [11]. In the following years, it was
shown that theK1ð1270Þ [12,13] andD�

0ð2300Þ [14–19] also
correspond to two poles,2 which are needed to explain many
relevant experimental data [13,19] or lattice QCD data [22].
The fact that such two-pole structures emerge in three

different sectors asks for an explanation. In Ref. [10], it is
shown that in the SU(3) flavor symmetry limit, one expects
three bound states, one singlet and two degenerate octets. In
the physical world where SU(3) symmetry is broken, the
singlet develops into the lower pole of the Λð1405Þ, and
one octet evolves into the higher pole. Similar observations
have been made for K1ð1270Þ [12] and D�

0ð2300Þ [17].
It is the purpose of the present Letter to explicitly

demonstrate how the two-pole structures emerge from
the underlying coupled-channel chiral dynamics and the
pseudo Nambu-Goldstone nature of the pseudoscalar mes-
ons. In particular, we would like to answer the following
three questions. (1) Does the off-diagonal coupling
between the two dominant channels play a decisive role?
(2) How does explicit chiral symmetry breaking generate
the two-pole structures? (3) Is the energy dependence of the
Weinberg-Tomozawa (WT) potential relevant?

Formalism. In this work, we focus on the two poles of
Λð1405Þ andK1ð1270Þ and highlight their commonorigins.3

We first spell out the LO chiral Lagrangians describing the
pseudoscalar-baryon (PB) and pseudoscalar-vector (PV)
interactions,4 from which one can derive potentials V of
the WT type responsible for the dynamical generation of
Λð1405Þ andK1ð1270Þ, and highlight their common feature.
Then we briefly review the chiral unitary approaches.
For the PB interaction describing the scattering of a

pseudoscalar meson off a ground-state octet baryon, the LO
chiral Lagrangian has the following form [10]:

LWT
PB ¼ 1

4f2
TrðB̄iγμ½Φ∂μΦ − ∂μΦΦ;B�Þ; ð1Þ

from which one can obtain the potential in the c.m. frame

Vij ¼ −
Cij

4f2
ð2 ffiffiffi

s
p

−Mi −MjÞ ¼ −
Cij

4f2
ðEi þ EjÞ; ð2Þ

where the subscripts i and j represent the incoming and
outgoing channels in isospin basis, M is the mass of the
baryon and E is the energy of the pseudoscalar meson. Cij

are the corresponding Clebsch-Gordan coefficients. Note
that we have neglected the three momentum of the baryon
in comparison with its mass and numerically verified that
such an approximation has no impact on our discussion.
Likewise for the PV interaction, the LO chiral

Lagrangian [12,38] is

LWT
PV ¼ −

1

4f2
Trð½Vμ; ∂νVμ�½Φ; ∂νΦ�Þ; ð3Þ

from which one can obtain the following potential pro-
jected onto S wave,

VijðsÞ ¼ −ϵi · ϵj
Cij

8f2

�
3s − ðM2

i þm2
i þM2

j þm2
jÞ

−
1

s
ðM2

i −m2
i ÞðM2

j −m2
jÞ
�
: ð4Þ

Note thatMi;j aremasses of vector mesons andmi;j are those
of pseudoscalar mesons. Close to threshold, considering the
light masses of the pseudoscalar mesons as well as the chiral
limit of Mi ¼ Mj ≡M, Eq. (4) can be simplified to

VijðsÞ ¼ −ϵi · ϵj
Cij

8f2
4MðEi þ EjÞ; ð5Þ

which is the same as Eq. (2) up to the scalar product of
polarizationvectors, trivial dimensional factors, andClebsch-
Gordan coefficients.
In the chiral unitary approaches [7], the unitarized

amplitude reads

T ¼ ð1 − VGÞ−1V; ð6Þ
whereG is a diagonal matrix with elementsGkk ≡Gkð

ffiffiffi
s

p Þ.
The loop function Gkð

ffiffiffi
s

p Þ of channel k is logarithmically
divergent and can be regulated either in the dimensional
regularization scheme or the cutoff scheme. In the dimen-
sional regularization scheme, a subtraction constant is
introduced, while in the cutoff scheme one needs a cutoff.
In practice, the subtraction constants or cutoff values are
determined by fitting to the scattering data but should be of
natural size in order for the chiral unitary approaches to
make sense. For details, see, e.g., Refs. [7,12].
The couplings of a resonance/bound state to its con-

stituents can be obtained from the residues of the corre-
sponding pole on the complex energy plane, i.e.,

gigj ¼ limffiffi
s

p
→zR

ð ffiffiffi
s

p
− zRÞTijð

ffiffiffi
s

p Þ; ð7Þ

where zR ≡mR − iΓR=2 is the pole position.

1A proper definition of two-pole structures is needed for
clarifying this mysterious phenomenon. In this work, two-pole
structures refer to the fact that two dynamically generated states,
one resonant and one bound (with respect to the most strongly
coupled channels), are located close to each other between two
coupled channels and have a mass difference smaller than the
sum of their widths. As a result, the two poles overlap in the
invariant mass distribution of their decay products, which creates
the impression that there is only one state.

2In two recent works, it was shown that the Ξð1890Þ [20] and
b1ð1235Þ [21] also correspond to two poles. The former is
governed by the same chiral dynamics highlighted in the present
work, while the latter is generated by a more complicated
coupled-channel interaction.

3We leave out theD�
0ð2300Þ to the Supplemental Material [23].

4As the two-pole structure persists up to higher chiral orders
[11,34–37], we stick to the leading order to demonstrate the chiral
dynamics at play and its universality in the present work.
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Coupled channel effects. We first focus on the Λð1405Þ
state. In the isospin 0 and strangeness −1 meson-baryon
system, the K̄N and πΣ channels play the most important
role around the 1400 MeV region [10,39]. With the
following subtraction constants aK̄N ¼ −1.95 and aπΣ ¼
−1.92, we find two poles on the complex energy plane, i.e.,
WH¼1426.0−20.1iMeV and WL ¼ 1393.1−68.7iMeV,
consistent with the LO [10], NLO [34–36], and NNLO
results [11]. One might naively expect that the two poles are
linked to the coupling between the K̄N and πΣ channels.
This is actually not the case. To demonstrate this, we
decrease the coupling between K̄N and πΣ by multiplying a
factor 0 ≤ x ≤ 1 to the off-diagonal matrix elements of the
WT potential and obtain the evolution of the two poles
shown in Fig. 1. Two things are noteworthy. First, even in
the limit of complete decoupling, i.e., x ¼ 0, the two poles
still appear in between the K̄N and πΣ thresholds, but the
imaginary part of the higher pole approaches zero while the
imaginary part of the lower pole becomes larger. Second,
the coupling between the two channels not only pushes the
two poles higher, but also allows the higher pole to decay
into the πΣ channel and as a result develops a finite width.
Nevertheless the most important issue to note is that the
coupling between the two channels is not the driving factor
for the existence of two dynamically generated states in
between the two relevant channels. On the other hand, it
does play a role in the development of the two-pole
structure, because otherwise the higher pole will not
manifest itself in the invariant mass distribution of the
lower πΣ channel. We note that Ref. [40] has used a similar
approach, the so-called zero coupling limit [39], to study
the pole contents of various unitarized chiral approaches.

Explicit chiral symmetry breaking. In the following, we
explicitly show that it is the underlying chiral dynamics that
is responsible for the emergence of the two-pole structure.
According to Eq. (2), the diagonal WT interaction is

proportional to the energy of the pseudoscalar meson.
For the K̄N and πΣ channels of our interest, they read5

VK̄N−K̄Nð
ffiffiffi
s

p Þ ¼ −
6

4f2
EK̄ ¼ −

6

4f2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K̄ þ q2K̄

q
;

VπΣ−πΣð
ffiffiffi
s

p Þ ¼ −
8

4f2
Eπ ¼ −

8

4f2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ q2π

q
: ð8Þ

Due to the explicit chiral symmetry breaking, the mass of
the kaon is much larger than that of the pion. As a result,
close to threshold, the K̄N interaction is stronger than the
πΣ one, which leads to a K̄N bound state. In addition, the
energy dependence and the small pion mass together
enhance the q2 term of the πΣ interaction and therefore
are responsible for the existence of a πΣ resonance.6 We
stress that the role of explicit symmetry breaking can be
appreciated by studying the pole trajectories as a function
of the light-quark (pion) mass.
As the pion mass changes, masses of the baryons and the

kaon also vary. We adopt the covariant baryon chiral
perturbation theory to describe their light-quark mass
dependence. Up to Oðp2Þ, the octet baryon masses read

MBðmπÞ ¼ M0 þMð2Þ
B ¼ M0 þ

X
ϕ¼π;K

ξB;ϕm2
ϕ; ð9Þ

where M0 is the chiral limit baryon mass and ξB;ϕ are the
relevant coefficients that contain three low-energy con-
stants, which are fitted to the lattice QCD data of the PACS-
CS collaboration [43] in Ref. [44], where one can also find
the pion mass dependence of the kaon.
The trajectories of the two poles ofΛð1405Þ are shown in

Fig. 2. The evolution of the higher pole is simple. As the
pion mass increases, both its real and imaginary parts
decrease. This indicates that the effective K̄N interaction
and coupling to πΣ both decrease as the pion (kaon) mass
increases. Note that as the pion mass increases, the two
thresholds increase as well. On the other hand, the
trajectory of the lower pole is more complicated and highly
nontrivial. As the pion mass increases, it first becomes a
virtual state from a resonant state for a pion mass of about
200 MeV. For a pion mass of about 300 MeV, it becomes a
bound state and remains so up to the pion mass of 500MeV.
The evolution of the lower pole clearly demonstrates the
chiral dynamics underlying the two-pole structure
of Λð1405Þ.
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KN(1433)

x=0

FIG. 1. Evolution of the two poles of Λð1405Þ as a function of
the off-diagonal potential x × VK̄N−πΣ with 0 ≤ x ≤ 1. Every
point on the lines is taken in steps of x ¼ 0.1.

5As we have shown that the coupling between K̄N and πΣ does
not play a decisive role in generating the two-pole structure, the
following discussion should be understood in the single-channel
approximation.

6The different role played by the heavy kaon and the light
pion has been noted previously in other contexts, see, e.g.,
Refs. [41,42].
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To check how the energy dependence of the chiral
potential affects the two-pole structure,7 we replace Ei þ
Ej of the chiral potential of Eq. (2) with mi þmj. With the
original subtraction constants, we obtain only one pole at
1413.3 − 13.2i MeV, corresponding to a K̄N bound state.
We checked that switching off the off-diagonal interaction
affects little our conclusion. As the pion mass is much
smaller than the kaon mass, the attraction of the πΣ single
channel is weaker than that of the K̄N single channel, and
thus cannot support a bound state. Of course if we increase
the strength of the attractive potential, we can obtain two
bound states but not a bound state and a resonant state, and
as a result there is no two-pole structure any longer.
K1ð1270Þ. From the above study, one immediately

realizes that if one replaces the matter particles (the
ground-state baryons) with the ground-state vector mesons,
one may also expect the existence of a two-pole structure.
This is indeed the case as shown in Refs. [12,13], where
K1ð1270Þ is found to correspond to two poles. The most
relevant channels areK�πð1030Þ andρKð1271Þ. InRef. [13],
it was shown that with μ ¼ 900 MeV, aðμÞ ¼ −1.85, and
f ¼ 115 MeV, where μ is the renormalization scale, aðμÞ is
the common subtraction constant, and f is the pion decay
constant, one finds two poles located at WH ¼ 1269.3 −
1.9i MeV and WL ¼ 1198.1 − 125.2i MeV below the ρK
and above the K�π thresholds. Eliminating the three higher
channels, we can find almost the same two poles located at
WH¼1269.5−12.0iMeV andWL ¼ 1198.5− 123.2iMeV
by adjusting slightly the subtraction constants as aK�π ¼
−2.21, aρK ¼ −2.44.

Further two-pole structures. In principle, because of the
universality of chiral dynamics discussed in this work, one
can expect more such two-pole structures in other systems

composed of a pair of heavy matter particles and pseudo-
scalar mesons, such as the singly charmed baryon sector
[46]. Using the criteria proposed in this work, one can
identify the two channels K̄Σcð2949Þ and πΞ0

cð2714Þ that
has the potential of generating a two-pole structure.
With a common cutoff of Λ ¼ 800 MeV in the cutoff

regularization scheme and using the WT potential similar
to Eq. (2),8 we find two poles in the isospin 1=2 channel,
located atWH ¼ 2882.7 − 21.0i MeV andWL ¼ 2842.6−
127.9i MeV. The higher pole couples strongly to the K̄Σc
channel, while the lower pole couples more to the πΞ0

c
channel, as shown in Fig. 3. With the unitary amplitudes
K̄Σc → πΞ0

c and πΞ0
c → πΞ0

c and following Ref. [46], we
can construct the πΞ0

c invariant mass distributions shown
in Fig. 4. Note that the line shape of the K̄Σc → πΞ0

c
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FIG. 2. Trajectories of the two poles of Λð1405Þ as functions of the pion massmπ from 137 to 497 MeV. Critical masses are labeled by
solid squares, between which the points are equally spaced.
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FIG. 3. Two poles of the K̄Σc − πΞ0
c system. The dominant

channels in relation to the two states are denoted by the arrows.
The vertical bars are the widths corresponding to twice of the
imaginary parts of the pole positions.

7The relation between the energy dependence of the WT
potential and the simultaneous appearance of a bound state and a
resonant state has been noted in, e.g., Ref. [45].

8It is hard to directly compare with Ref. [47], because there the
extra coupled channels of charmed mesons and ground-state
baryons are considered, which are not constrained by the same
chiral dynamics studied in this work.
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amplitude overlaps much with that of the πΞ0
c → πΞ0

c one,
but they peak at slightly different positions and have dif-
ferentwidths.These can bequalitatively explainedby the fact
that the process K̄Σc → πΞ0

c receivesmore contribution from
the higher pole, while the process πΞ0

c → πΞ0
c couples more

to the lower pole. We need to stress that although the two-
pole structure is tied to the underlying chiral dynamics, the
regularization, i.e., the cutoff in the present case, plays a
relevant role. We therefore encourage further theoretical and
experimental studies of the states predicted.

Conclusion and outlook. We have examined the origin of
the mysterious two-pole structures and attributed this
fascinating phenomenon to the underlying chiral dynamics.
First, chiral symmetry strongly constrains the interactions
of a matter particle with a pseudoscalar meson, which are

often referred to as the Weinberg-Tomozawa potentials.
Second, the pseudo Nambu-Goldstone boson nature of π,
K, and η are responsible for the generation of two nearby
poles: one bound and one resonant. Furthermore, the
explicit chiral and SU(3) flavor symmetry breaking dictates
that the two relevant coupled channels are close to each
other such that the line shapes of the two states overlap and
thus create the impression that there is only one state. We
anticipate more such two-pole structures in other systems
governed by the same chiral dynamics and encourage
dedicated experimental and lattice QCD studies to verify
the chiral dynamics underlying such phenomena. Last, we
stress that flavor symmetry also plays a relevant role here,
as it dictates the relative coupling strengths between
different channels.
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