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We consider d ¼ 2, N ¼ ð0; 2Þ SCFTs that can arise from M5-branes wrapping four-dimensional,
complex, toric manifolds and orbifolds. We use equivariant localization to compute the off-shell central
charge of the dual supergravity solutions, obtaining a result that can be written as a sum of gravitational
blocks and precisely agrees with a field theory computation using anomaly polynomials and c-
extremization.
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Introduction. Supersymmetric wrapped branes continue to
provide a fertile arena for exploring the AdS=CFT corre-
spondence. They give rise to rich classes of novel SCFTs in
various spacetime dimensions, and they also provide a
concrete framework for obtaining a microstate interpreta-
tion of the Bekenstein–Hawking entropy for asymptotically
AdS black holes. In addition, the supersymmetric AdS
solutions of supergravity associated with wrapped branes
give rise to novel geometric structures, which are of interest
in their own right.
In a recent paper [1], a new calculus was introduced for

supersymmetric solutions of supergravity that have an R-
symmetry. For several general classes of such solutions, it
was shown there exists a set of equivariantly closed
differential forms, which can be constructed from Killing
spinor bilinears. Furthermore, various BPS observables can
then be computed using localization via the Berline–
Vergne–Atiyah–Bott (BVAB) fixed point formula [2,3],
without solving the supergravity equations of motion. Here
we want to further develop these tools for a general class of
AdS3 solutions ofD ¼ 11 supergravity that arise from M5-
branes wrapping four-dimensional manifolds and orbifolds.
The preserved supersymmetry is such that the AdS3
solutions are dual to d ¼ 2, N ¼ ð0; 2Þ SCFTs and, in
particular, they have an R-symmetry.
More precisely, we focus on the class of supersymmetric

AdS3 ×M8 solutions ofD ¼ 11 supergravity considered in
[4] and further analyzed in [5]. We construct a set of
equivariantly closed forms and show that they can be used

to compute the central charge of the dual SCFT, as well as
the conformal dimensions of operators in the SCFT that are
dual to supersymmetric wrapped probe M2-branes. To
illustrate the formalism, we focus on examples where
M8 is an S4 fibration over a toric B4, which are associated
with M5-branes wrapping B4. Focusing on toric B4 is of
interest since we can both compare with some known and
conjectured field theory results, as well as obtain results
that provide new field theory predictions. As we shall see,
the localization results are remarkably simple for these
examples because the fixed points of the R-symmetry,
which is linear combination of the Uð1Þ2 action on S4 and
the Uð1Þ2 action on B4, are a set of isolated points on M8.
We can use the BVAB formula to implement flux quan-
tization as well as obtain an off-shell expression for the
central charge. After extremizing over the undetermined R-
symmetry data, we then obtain an on-shell expression for
the central charge. As explained in more detail in [6], it is
important to emphasize that this will give the correct
central charge, without solving the supergravity equations,
just assuming the supergravity solution actually exists, or
equivalently, that the low energy limit of M5-branes
wrapped on the specific toric B4 does indeed flow to a
SCFT in the IR, in the large N limit. The formalism
therefore provides a geometric, off-shell version of
c-extremization [7,8].
The off-shell expression for the central charge that we

derive takes the form of a sum of gravitational blocks [9].
The terminology “gravitational block” is perhaps some-
what confusing, as in many works, it is not referring to a
computation in gravity, but rather is a conjecture that
should arise for some unspecified gravity computation.
More precisely various off-shell expressions for BPS
quantities have been proposed, which either can be derived
in field theory, for example, using anomaly polynomials, or
alternatively have been noted to give the correct on-shell

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 108, L101903 (2023)
Letter

2470-0010=2023=108(10)=L101903(7) L101903-1 Published by the American Physical Society

https://orcid.org/0000-0002-2479-375X
https://orcid.org/0000-0001-6622-7812
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.L101903&domain=pdf&date_stamp=2023-11-08
https://doi.org/10.1103/PhysRevD.108.L101903
https://doi.org/10.1103/PhysRevD.108.L101903
https://doi.org/10.1103/PhysRevD.108.L101903
https://doi.org/10.1103/PhysRevD.108.L101903
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


result for some specific, explicitly known supergravity
solutions. For the former, invoking AdS=CFT, there is
then an expectation that there will be a corresponding off-
shell computation within gravity that leads to the same off-
shell result for the central charge. However, it is not at all
clear, in general, how one should go off-shell on the gravity
side. That being said, in the setting of GK geometry, for
Sasaki–Einstein fibrations over spindles, this was recently
achieved in [10]. The results of this paper, as well as [1,6],
indicate that the equivariant calculus of [1] provides a
universal way of deriving gravitational blocks within a
gravitational context. Moreover, the new results make it
clear that the origin of gravitational blocks is when a trial R-
symmetry has isolated fixed points on the space that the
brane is wrapping.
In [6] we provide some further details of the equivariant

calculus for the general class of AdS3 solutions of D ¼ 11
supergravity discussed here. In addition, we will also
analyze other examples of wrapped M5-branes, where
the R-symmetry fixed point set no longer consists of
isolated points, and, in particular, gravitational blocks
are not relevant.

AdS3 ×M8 solutions. We consider supersymmetric solu-
tions of D ¼ 11 supergravity of the form

ds2 ¼ e2λ½ds2ðAdS3Þ þ ds2ðM8Þ�;
G ¼ e3λF þ volðAdS3Þ ∧ e3λf; ð1Þ

where λ, F and f are a function, a four-form and a one-form
onM8, respectively. In addition, ds2ðAdS3Þ is the metric on
a unit radius AdS3 and volðAdS3Þ is the corresponding
volume form. The Bianchi identity implies dðe3λfÞ ¼ 0,
and it is convenient to introduce a function a0, locally
defined in general, via e3λf ¼ da0.
We assume that the preserved supersymmetry is such

that the dual d ¼ 2 SCFTs have N ¼ ð0; 2Þ supersym-
metry. We will focus on the class of solutions classified in
[4]. Following the conventions of [5], there is then a
complex spinor ϵ on M8, with ϵ̄ϵ ¼ 1 ¼ ϵ̄cϵ as well as
ϵ̄cγ9ϵ ¼ 0, where γ9 ≡ γ1…γ8. There is an R-symmetry
Killing vector ξ, with a dual one-form ξ♭ which can be
constructed as a bilinear:

ξ♭ ¼ −
i
2
ϵ̄γ9γð1Þϵ: ð2Þ

We have introduced the notation γðrÞ ¼ 1
r! γμ1���μrdx

μ1 ∧
� � � ∧ dxμr and have normalized ξ so that Lξϵ ¼ i

2
ϵ. We

also define a scalar, two two-forms and a four-form bilinear

sin α ¼ ϵ̄γ9ϵ; J ¼ −iϵ̄γð2Þϵ;

ω ¼ −iϵ̄γ9γð2Þϵ; Ψ ¼ ϵ̄γð4Þϵ; ð3Þ

and introduce the locally defined function y, given by
y ¼ 1

2
ðe3λ sin α − a0Þ.

These ingredients can be used to define the following
polyforms on M8:

Φ ¼ e9λvol8 þ
1

4
e9λ � J − 1

8
ye6λΨ −

1

16
y2e3λF

þ 1

32
y2e3λωþ 1

192
y3;

ΦF ¼ e3λF −
1

2
e3λω −

1

4
y;

Φ�F ¼ e6λ � F − a0e3λF −
1

2
ðe6λJ − a0e3λωÞ −

1

4
y2; ð4Þ

where � denotes the Hodge dual, and vol8 is the volume
form on M8. A key result [11] is that the differential and
algebraic conditions satisfied by the above bilinears, along
with the Bianchi identity and equation of motion for the
four-form, imply these polyforms are equivariantly closed:
dξΦ ¼ dξΦF ¼ dξΦ�F ¼ 0, where dξ ≡ d − ξ ⌟ . Thus, we
can compute their integrals on closed cycles using the
BVAB formula. In particular, the integral of ΦF on a
four-cycle Γ4 represents the flux of the four-form of
11-dimensional supergravity, which (in the large N limit)
should be quantized as

NΓ4
≡ 1

ð2πlpÞ3
Z
Γ4

ΦF ∈Z; ð5Þ

where lp is the Planck length. By computing the effective
three-dimensional Newton constant, one can show that the
integral of Φ is proportional to the trial central charge

c ¼ 3

25π7l9
p

Z
M8

Φ: ð6Þ

M5-branes wrapped on B4.Within the above setup, we are
interested in solutions that describe holographic duals to
M5-branes wrapping a holomorphic four-cycle B4 inside a
Calabi–Yau four-fold. A local model for the Calabi–Yau is
given by the sum of two line bundles L1 ⊕ L2 → B4

subject to the condition

c1ðL1Þ þ c1ðL2Þ þ c1ðTB4Þ ¼ 0; ð7Þ

which also guarantees the supersymmetry of a wrapped
M5-brane. For the associated supergravity solutions (in
the near horizon limit), we take M8 to be an S4 bundle
over B4,

S4 ↪ M8 → B4: ð8Þ

Here we write S4 ⊂ C1 ⊕ C2 ⊕ R, where the Ci factors are
twisted by the respective line bundles Li. We will assume
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that the solutions have Uð1Þ2 ⊂ SOð5Þ isometry of the S4,
as well as the isometries of B4. In the following, we will
first consider the B4 base to be a complex toric surface and
compute the corresponding trial central charge using
equivariant localization. Later we will consider cases when
the toric B4 has orbifold singularities, and we will then also
slightly generalize the Calabi-Yau condition (7). Other
classes of B4 are considered in [6].
For the toric B4 examples considered here, the R-

symmetry will only have isolated fixed points, and as a
consequence, the BVAB formula takes a particularly simple
form. On M8, and even-dimensional invariant submani-
folds M2k ⊂ M8, the integral of a general equivariantly
closed polyform Φ is given by a sum of contributions from
the fixed points xl

Z
M2k

Φ ¼
X
l

1

dl

ð2πÞk
ϵl1 � � � ϵlk

Φ
����
xl

: ð9Þ

Here M can have orbifold singularities, where the normal
space to the point xl is R2k=Γl, and dl is the order of the
finite group Γl. On this normal space ξ generates a linear
isometric action with weights ϵli .
In the sequel, for simplicity, we impose one other

condition on the class of solutions that we are considering,
namely, that a certain flux integral threading the S4

vanishes [12]:

Z
S4
ðe6λ � F − a0e3λFÞ ¼ 0: ð10Þ

Smooth toric base. The first family of solutions we focus on
is when the base B4 is a toric complex surface, with B4

having Uð1Þ2 isometry. The R-symmetry Killing vector ξ
on M8 generically mixes the Uð1Þ2 ⊂ SOð5Þ isometry of
the S4 with the Uð1Þ2 of B4, and so we can write

ξ ¼
X2
i¼1

bi∂φi
þ
X2
A¼1

εA∂ψA
; ð11Þ

where bi, εA are constants. Here ∂φi
rotate the two copies of

Ci in S4 ⊂ C1 ⊕ C2 ⊕ R, with weight 1, and ∂ψA
are a lift

of the generators of the torus isometry of B4 to M8.
For generic bi, εA, the fixed points of the action of ξ

on M8, where kξk ¼ 0, are isolated, as noted above.
Concretely, the Uð1Þ2 action on the S4 has two fixed
points, at the north and south pole. If we take the Uð1Þ2
isometry on B4 to have d isolated fixed points, we then have
a total of 2d fixed points onM8. These are labeled by (N=S,
a), where N=S refers to the north or south pole of S4, and
a ¼ 1;…; d labels the isolated fixed points on B4.
We can now use the BVAB formula to compute the flux

ofΦF through the S4 cycle over any of the d fixed points on

the base. Since these cycles are all in the same homology
class [13], using (5), we have

NS4 ¼
1

ð2πlpÞ3
Z
S4
ΦF

¼ −
1

ð2πlpÞ3
1

4

ð2πÞ2
ba1b

a
2

ðyaN − yaSÞ; ð12Þ

where NS4 is the number of wrapped M5-branes. Here yaN=S

denotes the value of the function y at the fixed point
(N=S, a), and bai are the weights of the action of ξ on the
normal space R4 ¼ C ⊕ C to the fixed point in S4. We can
similarly compute the flux of Φ�F through the same cycles
which, recall from (10), we assumed to vanish. Utilizing the
BVAB formula then immediately gives ðyaNÞ2 ¼ ðyaSÞ2.
Thus, requiring that NS4 ≠ 0, we conclude that

yaN ¼ −yaS ¼ −4πl3
pba1b

a
2NS4 : ð13Þ

We can similarly evaluate the central charge, with
contributions from the 2d fixed points given by

c ¼ 3

25π7l9
p

1

192

Xd
a¼1

ð2πÞ4
ϵa1ϵ

a
2b

a
1b

a
2

½ðyaNÞ3 − ðyaSÞ3�

¼
Xd
a¼1

1

ϵa1ϵ
a
2

ðba1ba2Þ2ð−NS4Þ3: ð14Þ

Here the normal space to the fixed points in M8 is
R8 ¼ C⊕4, with bai , ϵ

a
A being the associated weights of

the action of ξ on those four copies of C.
It is remarkable how simply the key expression (14), as a

sum of blocks, emerges from our formalism. In particular,
we see that each block is related to the off-shell central
charge for the d ¼ 6,N ¼ ð0; 2Þ SCFT in the large N limit
[14]. To obtain our final off-shell result, it remains to
compute bai , ϵ

a
A in terms of the R-symmetry vector (11),

together with global topological data forM8. In fact we will
be able to do this straightforwardly, utilizing various
standard results in the toric geometry literature.

Weights from toric geometry. We begin by recalling some
key facts about complex toric four-manifolds B4. By
definition these are complex manifolds equipped with a
holomorphic ðC�Þ2 action, which has a dense open orbit.
There always exists a compatible Kähler metric, where
Uð1Þ2 ⊂ ðC�Þ2 is an isometry, but we emphasize that no
metric data enters the fixed point formulas we use.
Such a B4 has a distinguished set of a ¼ 1;…; d toric

divisors Da ⊂ B4. By definition these are complex two-
dimensional submanifolds, invariant under the Uð1Þ2
action, where the normal space to a given Da is rotated
by the Uð1Þ ⊂ Uð1Þ2 subgroup specified by a vector with
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components vaA ∈Z, A ¼ 1, 2. The set of vaA is referred to as
the toric data for B4. The toric divisors may be ordered
cyclically, with xa ¼ Da ∩ Daþ1 precisely giving the set of
d points that are fixed under the Uð1Þ2 action, the index a
understood to be defined modulo d.
If ∂ψA

denote vector fields generating theUð1Þ2 isometry,
then we may write a Killing vector on B4 as

P
2
A¼1 εA∂ψA

.
The fixed point xa has normal space R4

a ¼ Ca
1 ⊕ Ca

2 , and
the weights ϵaA of this Killing vector on Ca

A are given by the
standard toric geometry formulas

ϵa1 ¼ − detðvaþ1; εÞ; ϵa2 ¼ detðva; εÞ: ð15Þ
The internal space M8 is in turn the total space of an S4

bundle over B4. By definition the vector fields ∂φi
in (11)

rotate the two copies of Ci in S4 ⊂ C1 ⊕ C2 ⊕ R, with
weight 1, but to define ξ, we must also choose a lifting of
the ∂ψA

to M8. This may be achieved by choosing a lifting
to each line bundle Li → B4, making these equivariant line
bundles. On the other hand, a basis of such equivariant line
bundles La is naturally provided by the toric divisors Da.
The corresponding equivariant first Chern class cξ1ðLaÞ,
when restricted to the fixed point xb ∈B4, is given by the
formula

cξ1ðLaÞjxb ¼ δa;bϵ
a
1 þ δa;bþ1ϵ

b
2; ð16Þ

where the weights ϵaA are given by (15). We may thus write
Li ¼ −

P
d
a¼1 p

a
i La, where pai ∈Z specify both the top-

ology of L1 ⊕ L2 → B4, and also a choice of lifting of the
Uð1Þ2 isometry of B4 to the total space. From (16) the
weights of ξ on the two complex line fibres are then

bai ¼ bi −
Xd
b¼1

pbi c
ξ
1ðLbÞjxa ¼ bi − pai ϵ

a
1 − paþ1

i ϵa2: ð17Þ

Having determined explicit formulas (15) and (17) for
the weights of ξ at the fixed points, finally we must impose
that ξ is an R-symmetry: That is, there is a Killing spinor ϵ
satisfying Lξϵ ¼ i

2
ϵ. This is where the Calabi–Yau con-

dition (7) enters as a further set of constraints on our
parameters.
For a toric complex manifold B4, we have the standard

toric geometry formula c1ðTB4Þ ¼
P

d
a¼1 c1ðLaÞ. Since

also by definition Li ¼ −
P

d
a¼1 p

a
i La, imposing the equiv-

ariant version of Eq. (7) gives

Xd
a¼1

�X2
i¼1

pai − 1

�
cξ1ðLaÞ ¼ 0: ð18Þ

The cξ1ðLaÞ are precisely a set of generators for the
equivariant cohomology of B4, with no relations, so the
coefficients in (18) must all be zero:

P
2
i¼1 p

a
i ¼ 1.

On the other hand, the resulting SUð4Þ-invariant chiral
spinor on the Calabi–Yau fourfold satisfies a standard set of
projection conditions γ2j−1;2jϵ ¼ iϵ in an orthonormal
frame, for each j ¼ 1, 2, 3, 4. The original local Calabi–
Yau geometry is embedded insideM8 as the normal bundle
of the north pole section, in our conventions for the labeling
of north/south poles. As shown in the Appendix, given the
above projection conditions, the charge of the spinor at the
point xNa in this north pole section is then

Lξϵ ¼
i
2
ðba1 þ ba2 þ ϵa1 þ ϵa2Þϵ ¼

i
2
ðb1 þ b2Þϵ: ð19Þ

Here we have used (17), and then imposed the Calabi–Yau
condition in the form (18). Thus, together we have the
following constraints on our parameters:

b1 þ b2 ¼ 1;
X2
i¼1

pai ¼ 1: ð20Þ

We will discuss a generalization of these constraints later.
Inserting the formulas (15) and (17) into (14) gives our

final “gravitational block” formula for the trial central charge
in supergravity, expressed in terms of the toric data vaA, p

a
i ,

and choice of R-symmetry vector field (11), subject to (20).
Our resulting expression agrees precisely with the field
theory formula in [15], obtained via equivariant localization
of theM5-brane anomaly polynomial and provides a striking
confirmation of AdS=CFT. To get the on-shell result, we
need to extremize over the choice of R-symmetry; in [6] we
show that on the gravity side this is indeed a necessary
condition for imposing the supergravity equations ofmotion.

Other observables. As also shown in [1,6], other physical
observables may similarly be computed using equivariant
localization in supergravity.
For example, consider the four-cycles Γa

i ⊂ M8 that are
the total spaces of S2i bundles over the toric divisors
Da ⊂ B4, where S2i ⊂ Ci ⊕ R is a linearly embedded
two-sphere within the fibre S4. There are four fixed points,
namely the copies of xa, xa−1 at the north and south poles of
the fibre S2i . In fact xa, xa−1 are also precisely the poles of
Da ≅ S2a, with ϵa2 and ϵa−11 ¼ −ϵa2 being the weights on the
tangent space, respectively. Picking for instance i ¼ 1,
using localization, we compute the flux

Na
1 ¼

1

ð2πlpÞ3
Z
Γa
1

ΦF

¼ −
1

ð2πlpÞ3
ð2πÞ2
4

�
yaN − yaS
ba1ϵ

a
2

þ ya−1N − ya−1S

ba−11 ϵa−11

�

¼ 1

ϵa2
½pa2ðϵaþ1

2 þ ϵa−12 Þ − ðpaþ1
2 þ pa−12 Þϵa2�NS4

¼ −qa2NS4 ; ð21Þ
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and similarly Na
2 ¼ −qa1NS4. To get the third line in (21),

we substituted (13) and (17) and used (15). To get the final
line, we evaluated the determinants in (15), subject to
detðva−1; vaÞ ¼ detðva; vaþ1Þ ¼ 1, which follow from B4

being smooth. In (21) qai ∈Z is (minus), the integral of the
first Chern class of Li through the divisor Da

qai ≡ −
Z
Da

c1ðLiÞ ¼
X
a;b

Dabpbi ; ð22Þ

whereDab ¼
R
B4
c1ðLaÞc1ðLbÞ is the intersection matrix of

the toric divisors

Dab ¼
8<
:

1 b ¼ a� 1

− detðva−1; vaþ1Þ b ¼ a

0 otherwise

: ð23Þ

A derivation of (21), using only algebraic topology, can be
found in an Appendix to [6].
We can also compute the dimension of chiral primary

operators dual to M2-branes wrapping submanifolds cali-
brated by ω. These are obtained by applying the BVAB
formula to ΦF restricted to Σ2 [6]. Consider the (homo-
logically trivial) S2i just considered over a fixed point xa; if
it is calibrated by ω, then

ΔðS2i Þ ¼
1

ð2πÞ2l3
p

Z
S2i

e3λω ¼ 1

ð2πÞ2l3
p

2π

bai

yaN − yaS
2

¼ 2ba1b
a
2

bai
ð−NS4Þ: ð24Þ

One can also similarly consider the divisor Da at, say, the
north pole of the S4, and if this is calibrated by ω, then (with
an appropriate orientation choice)

ΔðDaÞ ¼ −
1

ð2πÞ2l3
p

Z
Da

e3λω

¼ −
1

ð2πÞ2l3
p

2π

2

�
yaN
ϵ2a

þ ya−1N

ϵ1a−1

�

¼ 1

ϵ2a
ðba1ba2 − ba−11 ba−12 ÞNS4

¼ ðb1qa2 þ b2qa1 þDabcpb1p
c
2Þð−NS4Þ: ð25Þ

The same expression holds for the divisor Da at the south
pole of S4, up to an overall sign related to the choice of
orientation. Here we introduced the intersection of three
equivariant Chern classes (see, e.g., [16] for a review)

Dabc≡
Z
B4

cξ1ðLaÞcξ1ðLbÞcξ1ðLcÞ

¼

8>>><
>>>:

−ϵa−12 ai ¼ aj ¼ akþ1≡a

−ϵa1 ai ¼ aj ¼ ak−1≡a

−ðϵa1Þ2− ðϵa−12 Þ2 ai ¼ aj ¼ ak≡a

0 otherwise

: ð26Þ

Notice that the first two terms in the last line of (25), as well
as the expression (24), are both independent of εA and
indeed match the analogous formulas in the absence of
Uð1Þ2 symmetry on B4 discussed in [6]. In contrast, this is
not true of Dabc in (25), and in fact ΔðDaÞ is linear in ϵaA.

Orbifolds and antitwists. The above discussion has some
immediate generalizations, and this allows us to make a
connection with the results of [16,17].
First, we may replace B4 by a complex toric orbifold.

Here the fixed points xa of the Uð1Þ2 action are now
orbifold points, with tangent space C2=Zda , where more
generally da ¼ detðva; vaþ1Þ. The latter is positive, with
appropriately oriented cyclic ordering of the toric divisors,
and is equal to 1 when B4 is a smooth manifold.
Appropriate factors of 1=da then enter fixed point

formulas, as also explained in [1,6]. In particular, the S4a
cycles over the fixed points xa on B4 do not belong to
the same homology class, but instead the classes
½daS4a�∈H4ðM8Þ are all equal. Correspondingly the fluxes
through the cycles are not (12) but instead

NS4a ¼ −
1

8πl3
p

1

da

yaN − yaS
ba1b

a
2

: ð27Þ

However, from the above remarks, the combinations daNS4a
are necessarily all equal, and we label these by NS4 so that
(13) is not modified. The same orbifold order appears in the
BVAB formula used to compute (14), which generalizes to

c ¼
Xd
a¼1

1

da

1

ϵa1ϵ
a
2

ðb1ab2aÞ2ð−NS4Þ3: ð28Þ

This result provides a gravitational derivation of the
gravitational block conjecture for M5-branes wrapped on
toric four-orbifolds in [17]. Similarly, the expressions (15)
for the weights receive a factor of 1=da, whereas (17) is
formally unchanged. The expression (21) for the flux Na

i is
also formally unchanged, but if B4 is not smooth, the
intersection matrix Dab reads
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Dab ¼

8>>><
>>>:

1=da−1 b ¼ a − 1

− detðva−1; vaþ1Þ=da−1da b ¼ a

1=da b ¼ aþ 1

0 otherwise

; ð29Þ

with a similar expression for the generalization of (26) that
may be found in [16].
Second, wemay relax theCalabi-Yau condition (7), and in

particular, (20). This is motivated by the so-called antitwist,
discovered in [18] as a novel way to preserve supersymmetry
for D3-branes wrapped on a two-dimensional orbifold
known as a spindle, but which has since been generalized
to many other setups. In particular the solutions [19],
describing M5-branes wrapping orbifolds B4 that are the
total spaces of spindles fibred over spindles, have been
further studied in [16,17,20,21], where it was proposed to
relax the second condition in (20) to

X2
i¼1

pai ¼ σa: ð30Þ

Here σa ¼ �1 is a priori chosen freely for each toric divisor.
Again using (17), one can check that the following identity
now holds, for each a ¼ 1;…; d:

ba1 þ ba2 þ σaϵa1 þ σaþ1ϵa2 ¼ 1: ð31Þ

From thediscussion in theAppendix,wemay interpret this as
a necessary condition for the spinor ϵ to have R-charge 1

2
, but

where the projection conditions on the spinor at different
fixed points nowdependon the choice of σa. In particular, the
chirality of the spinor at xNa is determined by the sign of
σaσaþ1. This change of chirality at different fixed points is
understood in detail for the spindle [22], and indeed the
motivation for introducing σa in [17] was precisely that this
describes the known supergravity solutions where B4 is a
spindle fibred over another spindle [19].
It would be interesting to understand better what global

constraints there are on the choice of projection conditions
in a general setup, but we leave this for future work.
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Appendix: Chirality, charge relation for killing spinors.
We consider Killing spinors with definite charge under
a Killing vector ξ, and show how this is related to the
chirality of the spinor at a fixed point. Suppose the
charge is q so that Lξϵ≡ ξa∇aϵþ 1

8
ðdξ♭Þabγabϵ ¼ iqϵ.

Also suppose the Killing spinor satisfies a Killing spinor
equation of the form ∇aϵ ¼ ðM · γÞaϵþ ðN · γÞaϵc.
Near a fixed point, we introduce Cartesian coordinates

ðx1; y1;…; x4; y4Þ and polar coordinates ðri;ϕiÞ for each
plane parametrized by ðxi; yiÞ. The Killing vector is given
by ξ ¼ P

4
i¼1 ϵi∂ϕi

¼ P
4
i¼1 ϵið−yi∂xi þ xi∂yiÞ. From the

Killing spinor equation, we deduce that at a fixed point
ξa∇aϵ ¼ 0, and hence, 1

8
ðdξ♭Þabγabϵ ¼ iqϵ, or

iqϵ ¼ 1

2

X4
i¼1

ϵiγ
2i−1;2iϵ: ðA1Þ

Thus, ϵ is an eigenvector of each γ2i−1;2i, which is square to
−1 and thus has eigenvalues �i. Therefore, a spinor with
definite charge q is related to the weights ϵi via

q ¼ 1

2

X4
i¼1

siϵi; ðA2Þ

for some signs si ¼ �1. Define the chirality operator by
γ9 ≡ γ12���8, with γ29 ¼ 1 and eigenvalues �1. Thus, when
acting on a spinor with definite charge q, we also have

γ9ϵ ¼
�Y4

i¼1

si

�
ϵ; ðA3Þ

so the chirality is equal to the product of the signs appearing
in the charge.
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