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Out-of-time-order correlators are widely used as an indicator of quantum chaos but give false-positive
quantum Lyapunov exponents for integrable systems with isolated saddle points. We propose an alternative
indicator that fixes this drawback and retains all advantages of out-of-time-order correlators. In particular,
the new indicator correctly predicts the average Lyapunov exponent and the Ehrenfest time in the
semiclassical limit, can be calculated analytically using the replica trick, and satisfies the bound on chaos.
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Introduction. Out-of-time-order correlators (OTOCs) enjoy
an exceptionally wide range of applications from con-
densed matter physics to quantum gravity. The most
important application of OTOCs is the identification of
quantum chaos. This application stems from a generaliza-
tion of the Lyapunov exponent (LE), which measures the
exponential sensitivity to initial conditions in classical
chaotic systems [1–5]. Namely, to extend this property
to quantum systems, we rewrite the sensitivity using a
Poisson bracket [6], ∂ziðtÞ=∂zjð0Þ ¼ fziðtÞ; zjð0Þg, quan-
tize it, average over a thermal ensemble, and define the
OTOC CðtÞ and the quantum LE κq:

CðtÞ ¼
X
i;j

h½ẑiðtÞ; ẑjð0Þ�†½ẑiðtÞ; ẑjð0Þ�i ∼ e2κqt: ð1Þ

This definition implies that classical chaotic systems
acquire a positive quantum LE upon quantization, so
quantum chaos is naturally associated with κq > 0.
Furthermore, this definition of quantum chaos is straight-

forwardly extended to quantum many-body systems and
proves to be related to thermalization and information
scrambling [7–16]. The latter property is especially impor-
tant for large-N quantum systems holographically dual to
black holes. Indeed, black holes are the fastest scramblers
in nature [17–19] and impose a bound on the quantum LE
[2]. Hence, if a quantum system saturates the bound, it is
likely dual to a black hole and provides a qualitative model
of its microstates, which opens a way for experimental

simulation of black holes [20,21]. Besides, OTOCs are
relatively easy to calculate analytically and measure exper-
imentally [22–24]. This makes the OTOCs an indispen-
sable tool and explains the ever-growing interest in them in
both the condensed matter and high-energy physics com-
munities [25–61].
Nevertheless, OTOCs have a serious drawback: They

grow exponentially in classically integrable systems with
isolated saddle points [52–61]. The primary source of such
a false growth is the incorrect order of averaging over the
phase space and taking logarithm in the definition of the
quantum LE, which magnifies the contribution of nontypi-
cal exponentially diverging trajectories in a small vicinity
of a saddle point. So, such false positives call into question
the use of OTOCs as an indicator of chaos in quantum
systems with a well-defined classical limit.
To close this loophole, we suggest an alternative indi-

cator of quantum chaos, which we refer to as the loga-
rithmic OTOC (LOTOC) [62]:

LðtÞ ¼
�
log

�X
i;j

½ẑiðtÞ; ẑjð0Þ�†½ẑiðtÞ; ẑjð0Þ�
��

: ð2Þ

The refined quantum LE κ̄q is extracted from the linear
growth of LOTOC up to the Ehrenfest time [63–66], where
semiclassical description fails and LðtÞ saturates:

LðtÞ ≈ 2κ̄qtþ oðtÞ; 1 ≪ t ≪ tE: ð3Þ

Here, oðtÞ grows slower than linearly [e.g., oðtÞ ∼ log t].
In this paper, we argue that the refined quantum LE

coincides with the phase-space average of the classical
LE in the semiclassical limit. This allows us to reliably
distinguish between chaotic (κ̄q > 0) and integrable
(κ̄q ¼ 0) quantum systems, including systems with isolated
saddle points. In a sense, our definition of quantum chaos
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generalizes the definition of a Kolmogorov system with
positive Kolmogorov-Sinai entropy [67,68].
Moreover, we show that the LOTOC retains the most

important advantages of the conventional OTOC: It can be
calculated analytically in the large-N systems and satisfies
the bound on chaos [2]. To this end, we rewrite the
logarithm in definition (2) using the replica trick:

LðtÞ ¼ lim
n→0

∂CnðtÞ
∂n

and κ̄q ¼ lim
n→0

∂κn
∂n

; ð4Þ

where we introduce the replica OTOC:

CnðtÞ ¼
��X

i;j

½ẑiðtÞ; ẑjð0Þ�†½ẑiðtÞ; ẑjð0Þ�
�

n
�

ð5Þ

and the replica LE κn:

CnðtÞ ¼ 2κntþ oðtÞ; 1 ≪ t ≪ tE: ð6Þ

Similarly to OTOCs, which are naturally defined using
the twofold Keldysh contour [69–71], replica OTOCs are
conveniently calculated using the Schwinger-Keldysh dia-
gram technique on a 2n-fold contour. Furthermore, in the
large-N limit, which is most interesting in the context of
holography, the behavior of correlators on the 2n-fold
contour becomes rather distinguished, so the replica OTOCs
can be estimated analytically. In the following, we present
several examples of such a calculation. For more details on
the extended Schwinger-Keldysh technique and calculation
of replica OTOCs, see [72].

False chaos. As an illustrative example of an integrable
system with an isolated saddle point, we consider the
Lipkin-Meshkov-Glick (LMG) model [54–57,73]:

ĤLMG ¼ x̂þ 2ẑ2; ð7Þ

where x̂; ŷ; ẑ ¼ Ŝx=S; Ŝy=S; Ŝz=S are rescaled SUð2Þ spin
operators with total spin S. In the classical limit S → ∞,
these operators form a classical SUð2Þ spin that lives on
a unit sphere x2 þ y2 þ z2 ¼ 1, and the commutation rela-
tion ½x̂m; x̂n� ¼ iℏϵmnkx̂k with the effective Planck constant
ℏ ¼ 1=S is replaced by the corresponding Poisson bracket,
fxm; xng ¼ ϵmnkxk. The phase space of the classical LMG
model has dimension two, so it is automatically integrable.
At the same time, this model has an isolated saddle point
x ¼ 1, where ∂ziðtÞ=∂zjð0Þ ∼ eκst with κs ¼

ffiffiffi
3

p
.

Let us calculate the OTOC and the LOTOC in the
model (7). For simplicity, we parametrize the phase space
using ðx; y; zÞ coordinates [74] and consider the infinite-
temperature limit, where the behavior of correlation func-
tions (1) and (2) is most pronounced. The numerical result
(Fig. 1) shows that the OTOC grows exponentially up to the
“chaotic” Ehrenfest time,CðtÞ∼ e2κqt for 1≲ t≲ logð1=ℏÞ;

furthermore, κq ≈ κs=2. On the contrary, the LOTOC grows
logarithmically until it saturates at much larger “integrable”
Ehrenfest time, LðtÞ ∼ log t for 1≲ t≲ 1=ℏ. Hence, the
definition (3) implies that the refined quantum LE is zero,
as it should be in an integrable system. Moreover, this
behavior indicates that the semiclassical dynamics of a
quantized integrable system is correctly captured by the
LOTOC rather than the OTOC (also compare with [57]).

True chaos. To study the behavior of the OTOC and the
LOTOC in a truly chaotic system, we consider the
Feingold-Peres (FP) model [75–77]:

ĤFP ¼ x̂1 þ x̂2 þ 4ẑ1ẑ2; ð8Þ

where ðx̂i; ŷi; ẑiÞ are independent rescaled SUð2Þ spin
operators. In the classical limit S → ∞, this model has
positive LEs for the majority of initial conditions; see
Fig. 2(a). In otherwords, the phase-space average of classical

(a) (b)

FIG. 1. (a) Infinite-temperature OTOCs (thin lines) and
LOTOCs (thick lines) in the integrable LMG model. (b) The
same plot in the logarithmic timescale.

(a) (b)

FIG. 2. (a) Classical LEs vs energies for 1250 randomly
generated initial conditions in the chaotic classical FP model.
(b) Infinite-temperature OTOCs (thin lines) and LOTOCs (thick
lines) in the quantum FP model.
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LEs κ̄cl ≈ 0.53 > 0, so this system is considered classically
chaotic. Moreover, model (8) has two isolated saddle points
x1 ¼ x2 ¼ �1, at the vicinity of which ∂ziðtÞ=∂zjð0Þ ∼ eκst

with κs ¼
ffiffiffi
3

p
. We emphasize that max½κcl� ≈ κs=2 > κ̄cl

because “overly chaotic” regions take only a small fraction of
the phase space.
The numerical calculation [Fig. 2(b)] confirms the

qualitative difference between truly chaotic systems and
integrable systems with isolated saddle points. In a chaotic
system, both OTOC and LOTOC grow according to a
chaotic pattern until the “chaotic” Ehrenfest time: CðtÞ ∼
e2κqt and LðtÞ ≈ 2κ̄qt for 1≲ t≲ logð1=ℏÞ. Furthermore,
the LOTOC reproduces the average classical LE, κ̄q ≈ κ̄cl,
whereas the OTOC grasps only the contribution from the
saddle points, κq ≈ κs=2. This again confirms that the
LOTOC correctly describes the semiclassical behavior of
a quantized Hamiltonian system.
Another prominent example of a truly chaotic system is

the quantized Arnold cat map [78–81]. In this model, the
LOTOC also correctly reproduces the Ehrenfest time,
tE ∼ logð1=ℏÞ, and the classical LE, κ̄q ≈ κ̄cl; see [72].

Many-body chaos. To illustrate the replica trick (4), we
consider the system of N ≫ 1 nonlinearly coupled oscil-
lators, which is inspired by the spatial reduction of the
SUð2Þ Yang-Mills model [82–85]:

Ĥ ¼
�
1

2
p̂2
i þ

1

2
m2x̂2i þ

λ

4N
x̂2i x̂

2
j

�
−

λ

4N
x̂4i ; ð9Þ

where we assume the summation over the repeated indices
and single out the OðNÞ-symmetric part. The classical
counterpart of this model is chaotic for N ≥ 2, and the
average classical LE is estimated as κ̄cl ≈ 0.7

ffiffiffiffiffiffi
λT4

p
=N in the

large-N and high-temperature limit [43].
To estimate replica OTOCs, we write down the tree-level

correlation functions on the 2n-fold Keldysh contour and
resum the loop corrections. The leading-in-1=N corrections
preserve the OðNÞ symmetry; so, in this approximation,
model (9) is approximately integrable, and replica OTOCs
simply oscillate with time. Nevertheless, the next-to-
leading order in 1=N contains the contributions from the
nonsymmetric vertices that modify the Dyson-Schwinger
equation on the resummed replica OTOC. Substituting an
exponentially growing ansatz CnðtÞ ∼ e2nϰnt into this equa-
tion, we reduce it to the equation on ϰn:

1 ≈ ð2n − 1Þ!!
�
−
1536

N2

λ2

ðμ̃ m̃Þ6
eβ̃ m̃

ðeβ̃ m̃ − 1Þ2
m̃4

ðm̃2 þ ϰ2nÞ2
�n
:

ð10Þ

The leading contribution to this equation is ensured by the
“mixed multirung” ladder diagrams (Fig. 3). For brevity,
we introduce short notations for the inverse temperature of

the replicated model β̃ ¼ ðnþ 1Þ=T, the resummed mass
m̃, and the parameter of the resummed vertex μ̃. The
solution to Eq. (10) gives an approximate expression for the
replica LE:

κn ¼ nϰn ≈ n½ð2n − 1Þ!!� 12n 8
ffiffiffi
6

p

N
λm̃

ðμ̃ m̃Þ3
eβ̃ m̃ =2

eβ̃ m̃ − 1
: ð11Þ

Finally, employing the replica trick (4), we estimate
the refined quantum LE in the high-temperature and weak-
coupling limit, m=T ≪ λ=m3 ≪ 1:

κ̄q ≈ 0.7
ffiffiffiffiffiffi
λT4

p
=N: ð12Þ

We emphasize that the refined quantum LE is approx-
imately 2 times smaller than the conventional LE, κq ≈
1.3

ffiffiffiffiffiffi
λT4

p
=N. From the diagrammatic perspective, the refined

quantum LE is reduced by correlations between different
replicas, which do not factorize and leave footprints in the
behavior of the LOTOC (Fig. 3). From the semiclassical
perspective, the discrepancy arises because classical LEs
have a nontrivial distribution in the phase space (Fig. 4).
The LOTOC measures the fair average of LEs, so κ̄q ≈ κ̄cl

FIG. 3. The approximate Dyson-Schwinger equation that sums
the leading exponentially growing contributions to C2ðtÞ in
model (9). Horizontal lines denote retarded propagators on
different folds of the Keldysh contour, and vertical crescents
denote resummed bubble chains that connect symmetric and
nonsymmetric vertices on different folds.

(a) (b)

FIG. 4. Numerically calculated classical LEs κcl (vertical bars
and violins), conventional quantum LEs κq, and refined quantum
LEs κ̄q for a fixed number of oscillators N ¼ 30 (a) or energy
E ¼ 100m4=λ (b) in model (9).
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as ℏ → 0; on the contrary, the OTOC selects only the points
with the largest LEs, so κq ≈max ½κclðz0Þ� > κ̄cl as ℏ → 0,
where the maximum is taken over all initial conditions z0.
In this respect, model (9) is similar to the FP model, where
the average and maximum classical LEs also differ;
cf. Fig. 2(a).

Maximal chaos. Maximally chaotic quantum systems,
where OTOCs exponentially grow with time and saturate
the bound [2], are especially notable for their putative duality
to black holes. The Sachdev-Ye-Kitaev (SYK) model is
probably the most prominent example of such a system. This
is a quantum mechanical model of N Majorana fermions χi
with all-to-all random couplings [25–30]:

ĤSYK ¼ iq=2
X

1≤k1≤���≤kq≤N
jk1…kqχk1…χkq ; ð13Þ

where numbers jk1…kq are drawn from a Gaussian distribu-
tion with zero mean and the following variance:

hj2k1…kq
i ¼ 2q−1

q
J2ðq − 1Þ!

Nq−1 ðno sumÞ: ð14Þ

Let us calculate the refined quantum LE of the SYK
model and show that it saturates the bound [2] similarly
to the conventional quantum LE. For simplicity, we
consider the limit N ≫ q ≫ 1, where the leading contri-
butions to the exact propagators are calculated explicitly.
To estimate these contributions, we first solve the Dyson-
Schwinger equation on the Euclidean propagator that lives
on the imaginary-time part of the 2n-fold Keldysh contour.
In the limit N ≫ q ≫ 1, this equation resums the melonic
diagrams and has the following approximate solution:

GðτÞ ≈ 1

2
sgnðτÞ

2
641þ 2

q
log

cos πṽ
2

cos
	
πṽ
2
− πṽjτj

β̃



3
75; ð15Þ

where the parameter ṽ is determined from the equation
β̃J ¼ πṽ= cos ðπṽ=2Þ and β̃ ¼ ðnþ 1Þ=T is the inverse
temperature of the replicated model. Analytically contin-
uing propagator (15) to real times, we obtain all propa-
gators on the 2n-fold Keldysh contour. Then, similarly to
model (9), we write down the Dyson-Schwinger equation
on the resummed replica OTOC (Fig. 5), substitute the
ansatz CnðtÞ ∼ e2nϰnt, and obtain the equation on ϰn:

1 ≈ ½2πṽ=β̃ϰn�n: ð16Þ

Note that Eqs. (10) and (16) have different combinatorial
prefactors due to the peculiarities of the large-N limits in
models (9) and (13). Finally, solving Eq. (16) and sub-
stituting the solution into Eq. (4), we obtain the refined
quantum LE in the limit in question:

κ̄q ¼ 2πTv; ð17Þ

where the parameter v is determined from the equa-
tion J=T ¼ πv= cosðπv=2Þ.
We emphasize that, in the SYK model, refined and

conventional quantum LEs coincide, because correlations
between different folds of the Keldysh contour are sup-
pressed by the powers of 1=N; see Fig. 5. Indeed, the
replica OTOCs simply factorize, CnðtÞ ∼ ½C1ðtÞ�n, so the
replica trick (4) yields κ̄q ¼ lim ϰn ¼ κq. In particular, this
implies that the refined quantum LE (17) saturates the
bound κ̄q ≤ 2πT in the low-temperature limit T ≪ J.

A bound on refined chaos. One of the most important
achievements of OTOCs is the bound on quantum LE [2],
κq ≤ 2πT, which resolves the cloning paradox [17–19] and
helps to find holographic duals of black holes. We argue
that the refined quantum LE also satisfies this bound.
First, the semiclassical picture discussed in the pre-

vious sections implies that the refined quantum LE coin-
cides with the phase-space average of classical LEs,
whereas the conventional quantum LE approaches the
phase-space supremum of classical LEs as ℏ → 0. Since
the average cannot be greater than the maximum element of
the set, the refined quantum LE is less than or equal to the
conventional one. Hence, it automatically satisfies the
bound κ̄q ≤ κq ≤ 2πT.
Second, the replica LEs are proved to satisfy the bound

κn ≤ 2πTn for any positive integer n [86,87]. Analytically
continuing this inequality to real n, keeping in mind that
κn ≥ 0 by definition, and employing a variant of the replica
trick (4), κ̄q → ðκn − κ0Þ=n as n → 0, we straightforwardly
obtain the bound κ̄q ≤ 2πT.
Finally, calculations in the SYK model, which is dual to

the nearly AdS2 gravity with matter [31–35], show that the
refined and conventional quantum LEs can coincide and
saturate the bound [2] together. Hence, the saturation of the
inequality κ̄q ≤ 2πT is still a useful indicator of the gauge-
gravity duality.

FIG. 5. The approximate Dyson-Schwinger equation that sums
the leading exponentially growing contributions to C2ðtÞ in the
SYK model with q ¼ 8. Horizontal lines denote retarded propa-
gators, and vertical lines denote Wightman propagators that
connect different folds of the Keldysh contour.

DMITRII A. TRUNIN PHYS. REV. D 108, L101703 (2023)

L101703-4



Discussion. We have shown that the LOTOC correctly
describes the semiclassical behavior of quantized
Hamiltonian systems. Unlike the conventional OTOC, it
correctly reproduces the Ehrenfest time and the average
classical LE in both chaotic and integrable systems,
including systems with isolated saddle points. Of course,
our case studies are by no means exhaustive. In particular, it
is very interesting to examine the behavior of the LOTOC
after the Ehrenfest time. However, our examples make it
sufficiently clear that the LOTOC provides a proper
definition of quantum chaos and quantum butterfly
effect—the exponential sensitivity to typical small pertur-
bations ensured by κ̄q > 0—and correctly reproduces the
definition of classical chaos in the limit ℏ → 0.
At the same time, the LOTOC retains all advantages of the

OTOC. In particular, it can be calculated analytically
employing the replica trick and the extended Schwinger-
Keldysh diagram technique, which are especially useful for
large-N quantum systems dual to black holes. Moreover, the
refined quantum LE satisfies the fundamental bound on

chaos, κ̄q ≤ κq ≤ 2πT. So, in a sense, our approach recon-
ciles the definitions of quantum chaos and scrambling
separated by the observations of [54]. Besides, the
LOTOC and the replica OTOCs can be experimentally
measured using the same protocols as conventional
OTOCs [20–24]. Thus, the LOTOC fixes the flaws of
conventional OTOCs, where these flaws are important,
and has a comparably wide range of applications, from
thermalization of quantum systems to teleportation through a
traversable wormhole (e.g., see [21,88,89]).
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