
Scattering with neural operators

Sebastian Mizera
Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540, USA

(Received 31 August 2023; accepted 23 October 2023; published 16 November 2023)

Recent advances in machine learning establish the ability of certain neural-network architectures called
neural operators to approximate maps between function spaces. Motivated by a prospect of employing
them in fundamental physics, we examine applications to scattering processes in quantum mechanics. We
use an iterated variant of Fourier neural operators to learn the physics of Schrödinger operators, which map
from the space of initial wave functions and potentials to the final wave functions. These deep operator
learning ideas are put to test in two concrete out-of-distribution problems: a neural operator predicting the
time evolution of a wave packet scattering off a central potential in 1þ 1 dimensions, and the double-slit
experiment in 2þ 1 dimensions. At inference, neural operators can become orders of magnitude more
efficient compared to traditional finite-difference solvers.

DOI: 10.1103/PhysRevD.108.L101701

Do androids dream of Schrödinger’s cats? Recent
advances in machine learning demonstrated the ability of
neural networks to approximate not only functions, but also
nonlinear operators, using various architectures collectively
known as neural operators [1–5]. In this work, we ask
whether they can serve as a practical computational tool in
fundamental physics.1 This question is motivated in part
by the exploding complexity of perturbative quantum field
theory computations needed for precision predictions at the
Large Hadron Collider [9,10], calling for rethinking how to
represent and compute S-matrix elements efficiently.
This investigation has to start somewhere and here we

consider arguably the simplest scattering operator in
(dþ 1)-dimensional quantum mechanics,

S½Vðx⃗Þ� ¼ T e−i=ℏ
R

T

0
Ĥ½Vðx⃗Þ�dt; ð1Þ

which acts on the initial position-space wave function
Ψðx⃗; 0Þ to produce the final one Ψðx⃗; TÞ at some fixed
time T:

Ψðx⃗; TÞ ¼ S½Vðx⃗Þ�Ψðx⃗; 0Þ: ð2Þ

Here, ðx⃗; tÞ are the space-time coordinates, T is the
time-ordering operator, and Ĥ ¼ − ℏ2

2m∇2 þ gVðx⃗Þ is the

time-independent Hamiltonian, where m is the particle
mass, and g is a coupling constant. We emphasized
the functional dependence on the potential V, which is
precisely what makes S a nonlinear operator, viewed as
acting simultaneously on the space of Vs and initial
conditions for Ψ.
We ask whether, instead of computing the time evolution

using traditional methods, the Schrödinger operator S can
be represented as a neural operator N (defined more
precisely below), so that

Ψðx⃗; TÞ ¼? N ½Vðx⃗Þ;Ψðx⃗; 0Þ�: ð3Þ

The universal approximation theorem for operators, origi-
nally due to Chen and Chen [11], actually guarantees an
affirmative answer. Translated to our setup, it implies that
for any ϵ > 0, there exists a complicated enough N ϵ such
that the L2 norm kΨðx⃗; TÞ −N ϵ½Vðx⃗Þ;Ψðx⃗; 0Þ�k < ϵ for
every continuous Vðx⃗Þ and Ψðx⃗; 0Þ, see [12–14] for details.
We will make this statement more precise shortly.
Nevertheless, it is not known how to find such an N ϵ

constructively (it would be akin to looking for the next best-
selling novel in the decimal expansion of π). Indeed,
constructing decent N s became practically viable only
recently, by combining neural operators with deep learning
ideas [1,4]. In this work, we examine whether this frame-
work allows us to machine learn the Schrödinger operator
in a meaningful way.
Strategy: Let us sketch the general idea first. The neural

operator is trained on triples of data:

Vðx⃗Þ;Ψðx⃗; 0Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
input

;Ψðx⃗; TÞ|fflfflfflffl{zfflfflfflffl}
output

; ð4Þ
Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1Neural networks, but not operators, have already had trans-
formative impact on particle-physics phenomenology and be-
yond, see, e.g., [6–8].

PHYSICAL REVIEW D 108, L101701 (2023)
Letter

2470-0010=2023=108(10)=L101701(7) L101701-1 Published by the American Physical Society

https://orcid.org/0000-0002-8066-5891
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.L101701&domain=pdf&date_stamp=2023-11-16
https://doi.org/10.1103/PhysRevD.108.L101701
https://doi.org/10.1103/PhysRevD.108.L101701
https://doi.org/10.1103/PhysRevD.108.L101701
https://doi.org/10.1103/PhysRevD.108.L101701
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


where the input is a Gaussian noise and Ψðx⃗; TÞ is
computed exactly according to (2), see Fig. 1 (top). The
learning process is entirely data driven and has no physics
input: N has to effectively “dream up” its own representa-
tion of the Schrödinger equation from scratch. In fact, the
neural operator learns not just one instance of this equation,
but instead a whole family parameterized by the interaction
potential V.
It would not be surprising if N could accurately solve

problems drawn from the same distribution as it was trained
on. Therefore, after training, or at inference, N is instead
tasked with predicting the time evolution of a previously
unseen problem: for example, a wave packet approaching a
double-slit potential, see Fig. 1 (bottom). In other words,
we are probing the generalization or out-of-distribution
error: the ability of neural operators to extrapolate the
information learned during training to new problems.
The prediction needs to be accurate enough to be able to

iterate this process k times and study strongly coupled
scattering by evolving the wave function Ψðx⃗; kTÞ for long
times. As we will see in Table I, at inference, this way of
encoding physics can become faster and more memory
efficient compared to traditional algorithms, such as finite-
difference methods, because once the operator N is
learned, it does not need to be recomputed for every
new input V and Ψ.

Architecture. We use a version of the Fourier neural
operator architecture [3] adapted to the problem at hand.
Channels: The data is organized into channels. We take

the input I∶D → Rdþ3 to consist of dþ 3 channels,

Iðx⃗Þ ¼ �
Vðx⃗Þ;ReΨðx⃗; 0Þ; ImΨðx⃗; 0Þ; x⃗�; ð5Þ

where D ∋ x⃗ is the spatial domain we take to be the unit
torus D ¼ Td (we impose periodic boundary conditions
for simplicity). In practice, one samples points from a

discretization of D, such as a uniform lattice of Nd points.
Likewise, the output O∶D → R2 consists of two channels:

Oðx⃗Þ ¼ �
ReΨðx⃗; TÞ; ImΨðx⃗; TÞ�: ð6Þ

SplittingΨs into real/imaginary parts and adding positional
embeddings x⃗ is used to increase numerical stability and
facilitate the learning process.
The architecture will be designed to be independent of

the specific discretization of D, which in particular means
that a neural operator trained on a coarse lattice can be
used to make predictions on a finer one, as will be
discussed below.
Neural operator: A neural operator N is written as a

composition of Lþ 2 layers resembling standard deep
neural networks [4]:

N ¼ P � fL � � � � � f2 � f1 � L: ð7Þ

Here, L and P are the lifting and projection layers,
respectively, which act as identities in D and whose role
is to map the input data I to its hidden representations with
h channels, Hl∶ D → Rh for l ¼ 0; 1;…;L, and then
back to the output O:

I↦
L
H0 ↦

f1
H1 ↦

f2 � � � ↦fL HL ↦
P
O: ð8Þ

For us, L and P are implemented as one- and two-layer
perceptrons, respectively, with the hidden dimension p in
the second case. Typically, L ¼ 4 and h; p ≫ d. The
hidden-layer functions flþ1 are defined through

Hlþ1ðx⃗Þ ¼ σ
�
WlHlðx⃗Þ þ ðKlHlÞðx⃗Þ þ bl

�þ slHlðx⃗Þ;
ð9Þ

where the weights Wl ∈Rh×h, biases bl ∈Rh, and skip
connections sl ∈R act as identities in D. The activation

FIG. 1. Example training (top) and testing (bottom) data with
the input in the first two columns and the output in the third one.
Only real parts are displayed for conciseness.

TABLE I. Comparison between single time step GPU times (in
seconds) and memory usage (in GB) of the Crank-Nicholson
(CN) method and neural operator (NO) for different dimensions d
and lattice sizes N. The last column gives an average L2-error
between the two methods across the testing dataset. Original
training sizes for NO are bold. Crosses indicate that a
computation did not terminate due to memory shortage.

d N CN time CN memory NO time NO memory Error

1 256 0.013 0.004 0.002 0.13 0.0005
1 2048 0.2 0.3 0.003 0.14 0.004
1 16384 56 20 0.003 0.2 0.004
1 32768 ✗ >40 0.003 0.3 ✗
2 64 0.5 0.6 0.005 0.16 0.0011
2 128 22 10 0.005 0.2 0.03
2 256 ✗ >40 0.005 0.4 ✗

SEBASTIAN MIZERA PHYS. REV. D 108, L101701 (2023)

L101701-2



function σ is the only nonlinearity and is applied element
wise. We take it to be the Gaussian error linear unit [15].
Fourier layers: The key objects are the (linear) integral

kernel operators Kl with l ¼ 1; 2;…;L, which take the
general form

ðKlHlÞðx⃗Þ ¼
Z
D
Klðx⃗; y⃗ÞHlðy⃗Þddy⃗ ð10Þ

for all x⃗∈D. Note this is the only layer acting non-
diagonally in D.
Out of the previously explored choices for parametrizing

the convolution kernel Kl [2–4], we write (10) using
Fourier transforms F and their inverses F−1:

KlHl ¼ F−1
�
F ½Kl�F ½Hl�

�
: ð11Þ

This choice allows us to representF ½Kl� directly in Fourier
space D� ∋ p⃗, as a tensor Tl ∈CF×h×h, where F is the
number of Fourier modes. The expression (11) can then
be evaluated efficiently using fast Fourier transforms and
tensor multiplication.
To summarize, the parameters of N are the entries of

Wl, Tl, bl, and sl that we will optimize for, see Fig. 2. The
hyperparameters are all the numbers describing the network
properties, such as L, h, F, etc. In this case, the afore-
mentioned universal approximation theorem states that one
can always find large enough values of the hyperparameters
such that there exist specific Wl, Tl, bl, and sl for which
the L2 error is bounded by ϵ for any input in a compact
subset of a Banach space [12–14]. Note that the theorem
would not be true if we did not include the nonlinearity σ
and the Fourier layers.
In practice, we truncate the number of modes to be half

along each dimension, i.e., F ¼ ðN=2Þd, and ensure reality
of the output by imposing F ½Kl�ðp⃗Þ ¼ F ½Kl�ð−p⃗Þ� on the
remaining ones. Since the tensors Tl are by far the largest
part of the neural operator (contributing 2Lmh2 real para-
meters), it pays off to instead represent them using Tucker
decomposition with rank, or compression ratio, r [16].
We have tried adding a number of other features, includ-

ing normalization layers, dropout regularization [17], and
Sobolev training [18] without drastic improvements in the

results. Nonetheless, we suspect they will be important in
large-scale applications of neural operators.
There exist different open-source implementations of

Fourier neural operator [19], as well as other neural-
operator architectures, including DeepONet [1] and their
variations [20–37].
Loss function: We use the L2 error as the loss function:

loss ¼��Ψðx⃗; TÞ −N
�
Vðx⃗Þ;Ψðx⃗; 0Þ���; ð12Þ

where Ψðx⃗; TÞ is the answer computed using the Crank-
Nicolson finite difference method, which for our purposes
will be referred to as exact or as the ground truth below.
To avoid confusion, we will add subscripts: ΨGTðx⃗; TÞ ¼
Ψðx⃗; TÞ and ΨNOðx⃗; TÞ ¼ N ½Vðx⃗Þ;Ψðx⃗; 0Þ� to distinguish
between the exact and inferred computations.
We use the AdamWoptimizer [38], which is an adaptive

variant of stochastic gradient descent, with learning rate ν
and weight decay w, together with a scheduler halving ν
every time the training loss reaches a plateau.
Training dataset: The training set is constructed by

drawing the first three entries of (5) independently from
a Gaussian random field with spatial width μ ¼ 0.1 (i.e., the
power spectrum ∝ e−μ

2jp⃗j2=2), sampled over a uniform grid
of Nd points on Td. In particular, the potential Vðx⃗Þ is
purely real. In order to probe unitarity, each sample is
normalized such that kΨðx⃗; 0Þk ¼ 1 and we similarly set
kVðx⃗Þk ¼ 1. We then create a timeline by iteratively
solving for ΨGTðx⃗; kTÞ up to k ≤ M ¼ 256. Hence,
each timeline produces M − 1 input-output pairs. For
numerical stability, we normalize each output such that
kΨGTðx⃗;kTÞk¼1 before evolving it to ΨGTðx⃗; ðkþ 1ÞTÞ.
We repeat this process K ¼ 32 times, which results in the
training dataset of size ntrain ¼ KðM − 1Þ ¼ 8160. See
Figs. 1 and 3 (top rows) for examples.
We emphasize that it is possible to achieve much better

performance with a training set adapted to scattering
problems, for example by including Ψs resembling wave
packets. Likewise, one can include probability conserva-
tion in the loss function, hard code the fact N is supposed
to be linear in Ψ, or make use of other physics-informed
training strategies [39–42]. Here, we purposely do not
employ these steps, because our goal is to probe the out-of-
distribution error and find out whether N has learned
quantum physics.
All computations are performed on a single NVIDIA

A100 Graphics Processing Unit (GPU) with 40 GB
memory.

Wave packet scattering. As the first application, we
consider wave packet scattering in d¼ 1. We set ℏ¼m¼ 1

and g ¼ 3 × 103. In those units, the time step is chosen to
be T ¼ 6.3 × 10−5, which is fine enough to produce a
“movie,” see [43]. Much smaller Ts can cause numerical
approximation errors and much larger ones prove more

FIG. 2. Diagram of the neural operator architecture used in this
work. The Fourier layer (red) is introduced in (11).

SCATTERING WITH NEURAL OPERATORS PHYS. REV. D 108, L101701 (2023)

L101701-3



difficult to train. The spatial dimension is a unit circle
T1 ∋ x1 and we discretize it with N ¼ 256 points.
Testing dataset: The testing dataset is prepared in exactly

the same way as the training one, except it is out of
distribution: we start with the specific wave packetΨðx1; 0Þ
approaching a potential well Vðx1Þ, as illustrated in Fig. 3
(bottom left). After evolving it through time t ≤ MT, the
testing dataset comprises of ntest ¼ M − 1 ¼ 255 samples.
Hyperparameters: We performed a Bayesian search

over the hyperparameter space, which revealed preference
for relatively small networks that are less prone to over-
fitting. In the results below, we use h ¼ 64, p ¼ 512
hidden and projection channels, L ¼ 4 Fourier layers, and
Tucker rank r ¼ 10−2. Learning rate is set to ν ¼ 10−3,
weight decay to w ¼ 10−5, and training is performed in
batches of size b ¼ 32. The resulting model has ∼9 × 104

parameters.
Example learning curves are shown in Fig. 4, where we

also keep track of the testing loss as a benchmark. At first, it
closely follows the training loss, but around epoch ≳500
the neural operator starts overtraining (memorizing instead
of learning). We still find it beneficial to continue learning
until both losses stabilize with the training loss converging
to ∼3 × 10−4 and testing to ∼5 × 10−4. The kinks in the
losses occur in places where the learning rate ν gets halved.
Example training and testing data samples are compared in
Fig. 3. Note that in the latter case, the wave function has flat
near-zero segments, which are very nongeneric from the
perspective of the training data, but nevertheless correctly
evolved.
Unitarity: We found that unitarity can be treated as a

proxy for the confidence of the neural operator about its
predictions. In Fig. 5 (left), we display a histogram of

kΨNOðx1; TÞk over the whole training and testing datasets.
It demonstrates the neural operator has learned unitarity
with ∼10−4 precision.
Long-term predictions: Finally, we discuss the ability of

the neural operator to make long-term scattering predic-
tions by iterating N ,

ΨNOðx⃗; kTÞ ¼ N k
�
Vðx⃗Þ;Ψðx⃗; 0Þ�; ð13Þ

where k ≤ M ¼ 256. For simplicity of exposition, we keep
the input potential V constant, even though the same N k is
also capable of treating time-dependent Vs. As with the
finite-difference methods, we normalize kΨNOðx⃗; kTÞk ¼ 1
after each iteration. Example timelines of kΨNOðx⃗; tÞk
before normalization are shown for t ≤ 256T in Fig. 5
(right) for examples of training and testing samples. They
remain accurate to within ∼10−4 of identity, indicating high
confidence in reliable predictions.
A full timeline is presented in Fig. 6, which shows the

wave packet approaching the central potential, interfering
with it, and emerging on the other side with a time delay
and a spreading effect. The error builds up over time, but
stays within ∼0.02 even in the final time step t ¼ 256T,
showing strong generalization capabilities. It demonstrates

FIG. 4. Example training and testing losses for d ¼ 1, 2. Single
epoch takes ∼1.8 (d ¼ 1) and ∼4.9 seconds (d ¼ 2).

FIG. 5. Unitarity of the neural operator outputs for the training
and testing datasets in d ¼ 1, 2. Left: histogram of kΨNOðx⃗; tÞk
after one step t ¼ T. Right: norms kΨNOðx⃗; tÞk along the timeline
t ≤ 256T.

FIG. 3. Comparison between the exact and inferred wave
functions for training (top) and testing (bottom) datasets in
d ¼ 1. From left to right: potential Vðx1Þ (yellow) and the initial
wave function Ψðx1; 0Þ (real part in red, imaginary part in blue);
exact wave function ΨGTðx1; TÞ; neural operator output
ΨNOðx1; TÞ; and the error ΨGTðx1; TÞ − ΨNOðx1; TÞ magnified
103× for visibility. The difference between t ¼ 0 and t ¼ T is
nonzero but barely visible by eye due to the choice of a small time
step; see Fig. 6 for time evolution across t ≤ 256T.

SEBASTIAN MIZERA PHYS. REV. D 108, L101701 (2023)

L101701-4



that the iterated neural operator N k has effectively learned
the physics of the Schrödinger operator at strong coupling
in d ¼ 1.

Double-slit experiment.We next discuss neural operators in
d ¼ 2, with the out-of-distribution test problem being a
wave packet scattering off a double-slit potential, see Fig. 1
(bottom) for the initial conditions.
The hyperparameters used are the same as in the d ¼ 1

case, except for the Tucker rank, which we take to be
r ¼ 10−3 and the grid size, N ¼ 64. The resulting number
of parameters is ∼1.2 × 105. Training and testing dataset
sizes remain the same as in d ¼ 1.
Learning: As expected, the neural operator becomes

more difficult to train in d ¼ 2, as exemplified by the
learning and unitarity curves in Figs. 4 and 5, respectively.
The generalization error is worse by around an order of
magnitude compared to d ¼ 1: the unitarity errors stay
within ∼4 × 10−3 of identity; the training and testing losses
reach ∼3 × 10−4 and ∼1.1 × 10−3, respectively. Unitarity
dips around the time when the wave function develops
high-frequency modes due to encountering the potential
barrier.
Performance: As before, we construct N k to study time

evolution of the wave function. The results are illustrated in
Fig. 7. After passing through the double-slit openings, the
wave packet interferes with itself, creating a fringe pattern
in the x1 direction. Due to periodic boundary conditions, it
also develops interference in the x2 direction at late times.
As in the d ¼ 1 case, the numerical errors build up over
time: in the first and last time frames, t ¼ T and t ¼ 256T,

the L2 error between the exact and inferred computations is
∼5 × 10−4 and ∼0.14, respectively.
Zero-shot super-resolution: Let us finish this discussion

by emphasizing the distinction between a neural network
acting on a very large but finite-dimensional Hilbert space
(obtained by a specific discretization of D) and a neural
operator, which acts on an infinite-dimensional space
(independent of the discretization). In particular, it means
that the latter can be trained on a lower-resolution lattice
and then applied to computing ΨNOðx⃗; TÞ at higher reso-
lution. In the literature, this procedure is called a zero-shot
super-resolution [4].
To exemplify it, in Table I we collected indicative times

for computingΨGTðx⃗; TÞ andΨNOðx⃗; TÞ from the testing set
at various resolutions, together with the L2 errors between
the two techniques. Finite-difference methods scale badly at
large lattice sizes because they involve computing and taking
powers of an Nd × Nd matrix for every new potential V. On
the other hand, neural operator trained on the original sizes
(here, N ¼ 256 in d ¼ 1 and N ¼ 64 in d ¼ 2) can be
applied to finer grids and new potentials with low overhead.

Discussion. In this work, we explored the idea of using
deep operator learning as a computational tool for mapping
between function spaces appearing in fundamental physics.

FIG. 6. Wave packet scattering in d ¼ 1. Top: absolute values
of the exact computation jΨGTðx1; tÞj, the neural operator output
jΨNOðx1; tÞj, and the error jΨGTðx1; tÞ − ΨNOðx1; tÞj multiplied
by 102. Bottom: final-step wave function at t ¼ 256T in the same
notation as in Fig. 3.

FIG. 7. Double-slit experiment in d ¼ 2. From left to right:
absolute values jΨGTðx⃗; tÞj, jΨNOðx⃗; tÞj, and 10 × jΨGTðx⃗; tÞ −
ΨNOðx⃗; tÞj for the indicated times t. An outline of the potential is
plotted with white lines.

SCATTERING WITH NEURAL OPERATORS PHYS. REV. D 108, L101701 (2023)

L101701-5



As an illustrative example, we considered neural operators
predicting quantum-mechanical scattering of wave packets
with potential barriers and wells. We envisage that neural
operators have much broader applicability in quantum
theory, beyond just time-evolution operators, both in
numerical and symbolic manipulations.
Let us emphasize that this strategy depends on a reliable

way of producing training samples. The prospect is that,
once trained, a neural operator can perform the same
computation approximately but much more efficiently.
The biggest open question concerns out-of-distribution
errors. For example, given that neural operators represent
physics in unconventional ways, would cheaply obtainable

training data (e.g., coming from exactly solvable systems)
suffice to learn solutions to conventionally difficult prob-
lems? We leave a study of this provocative question until
future work.

Acknowledgments. The author thanks Nima Arkani-
Hamed, Carolina Figueiredo, Aidan Herderschee, Aaron
Hillman, and the participants of the S-Matrix Bootstrap
Workshop at the SwissMAP Research Station in Les
Diablerets for useful comments. The author gratefully
acknowledges funding provided by the Sivian Fund and
the Grant No. DE-SC0009988 from the U.S. Department of
Energy.

[1] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis,
Learning nonlinear operators via DeepONet based on the
universal approximation theorem of operators, Natl. Mach.
Intell. 3, 218 (2021).

[2] A. Anandkumar, K. Azizzadenesheli, K. Bhattacharya, N.
Kovachki, Z. Li, B. Liu, and A. Stuart, Neural operator:
Graph Kernel network for partial differential equations, in
ICLR 2020 Workshop on Integration of Deep Neural Models
and Differential Equations (2019), arXiv:2003.03485.

[3] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K.
Bhattacharya, A. Stuart, and A. Anandkumar, Fourier neural
operator for parametric partial differential equations, in
International Conference on Learning Representations
(2021), arXiv:2010.08895.

[4] N. B. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K.
Bhattacharya, A. M. Stuart, and A. Anandkumar, Neural
operator: Learning maps between function spaces, arXiv:
2108.08481.

[5] L. Lu, X. Meng, S. Cai, Z. Mao, S. Goswami, Z. Zhang, and
G. E. Karniadakis, A comprehensive and fair comparison of
two neural operators (with practical extensions) based on
FAIR data, Comput. Methods Appl. Mech. Eng. 393,
114778 (2022).

[6] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N.
Tishby, L. Vogt-Maranto, and L. Zdeborová, Machine
learning and the physical sciences, Rev. Mod. Phys. 91,
045002 (2019).

[7] G. Karagiorgi, G. Kasieczka, S. Kravitz, B. Nachman, and
D. Shih, Machine learning in the search for new funda-
mental physics, arXiv:2112.03769.

[8] S. Badger et al., Machine learning and LHC event gen-
eration, SciPost Phys. 14, 079 (2023).

[9] F. Caola, W. Chen, C. Duhr, X. Liu, B. Mistlberger, F.
Petriello, G. Vita, and S. Weinzierl, The path forward to
N3LO, in Snowmass 2021 (2022), arXiv:2203.06730.

[10] F. Febres Cordero, A. von Manteuffel, and T. Neumann,
Computational challenges for multi-loop collider phenom-
enology: A Snowmass 2021 white paper, Comput. Softw.
Big Sci. 6, 14 (2022).

[11] T. Chen and H. Chen, Universal approximation to nonlinear
operators by neural networks with arbitrary activation
functions and its application to dynamical systems, IEEE
Trans. Neural Networks 6, 911 (1995).

[12] S. Lanthaler, S. Mishra, and G. E. Karniadakis, Error
estimates for DeepONets: A deep learning framework in
infinite dimensions, Trans. Math. Appl. 6, tnac001
(2022).

[13] N. Kovachki, S. Lanthaler, and S. Mishra, On universal
approximation and error bounds for Fourier neural oper-
ators, J. Mach. Learn. Res. 22 (2021).

[14] T. D. Ryck and S. Mishra, Generic bounds on the approxi-
mation error for physics-informed (and) operator learning,
arXiv:2205.11393.

[15] D. Hendrycks and K. Gimpel, Gaussian error linear units
(GELUs), arXiv:1606.08415.

[16] J. Kossaifi, N. B. Kovachki, K. Azizzadenesheli, and A.
Anandkumar, Multi-grid tensorized Fourier neural operator
for high resolution PDEs (2023), https://openreview.net/
forum?id=po-oqRst4Xm.

[17] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, Dropout: A simple way to prevent neural
networks from overfitting, J. Mach. Learn. Res. 15, 1929
(2014).

[18] W.M. Czarnecki, S. Osindero, M. Jaderberg, G. Świrszcz,
and R. Pascanu, Sobolev training for neural networks, Adv.
Neural Inf. Process. Syst. 30 (2017).

[19] GitHub repositories neuraloperator, lululxvi/
deeponet, SciML/NeuralOperators.jl, pde-
bench/PDEBench, lu-group/deeponet-fno,
HaoZhongkai/GNOT, scaomath/galerkin-
transformer, ashiq24/UNO (2023).

[20] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K.
Bhattacharya, A. Stuart, and A. Anandkumar, Multipole
graph neural operator for parametric partial differential
equations, arXiv:2006.09535.

[21] G. Gupta, X. Xiao, and P. Bogdan, Multiwavelet-
based operator learning for differential equations, arXiv:
2109.13459.

SEBASTIAN MIZERA PHYS. REV. D 108, L101701 (2023)

L101701-6

https://doi.org/10.1038/s42256-021-00302-5
https://doi.org/10.1038/s42256-021-00302-5
https://arXiv.org/abs/2003.03485
https://arXiv.org/abs/2010.08895
https://arXiv.org/abs/2108.08481
https://arXiv.org/abs/2108.08481
https://doi.org/10.1016/j.cma.2022.114778
https://doi.org/10.1016/j.cma.2022.114778
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1103/RevModPhys.91.045002
https://arXiv.org/abs/2112.03769
https://doi.org/10.21468/SciPostPhys.14.4.079
https://arXiv.org/abs/2203.06730
https://doi.org/10.1007/s41781-022-00088-0
https://doi.org/10.1007/s41781-022-00088-0
https://doi.org/10.1109/72.392253
https://doi.org/10.1109/72.392253
https://doi.org/10.1093/imatrm/tnac001
https://doi.org/10.1093/imatrm/tnac001
https://arXiv.org/abs/2205.11393
https://arXiv.org/abs/1606.08415
https://openreview.net/forum?id=po-oqRst4Xm
https://openreview.net/forum?id=po-oqRst4Xm
https://openreview.net/forum?id=po-oqRst4Xm
https://arXiv.org/abs/2006.09535
https://arXiv.org/abs/2109.13459
https://arXiv.org/abs/2109.13459


[22] K. Bhattacharya, B. Hosseini, N. B. Kovachki, and A. M.
Stuart, Model reduction and neural networks for parametric
PDEs, arXiv:2005.03180.

[23] J. Guibas, M. Mardani, Z. Li, A. Tao, A. Anandkumar, and
B. Catanzaro, Adaptive Fourier neural operators: Efficient
token mixers for transformers, arXiv:2111.13587.

[24] S. Cao, Choose a transformer: Fourier or Galerkin,
arXiv:2105.14995.

[25] M. A. Rahman, Z. E. Ross, and K. Azizzadenesheli, U-NO:
U-shaped neural operators, arXiv:2204.11127.

[26] V. Fanaskov and I. Oseledets, Spectral neural operators,
arXiv:2205.10573.

[27] P. Jin, S. Meng, and L. Lu, MIONet: Learning multiple-
input operators via tensor product, SIAM J. Sci. Comput.
44, A3490 (2022).

[28] M. Zhu, S. Feng, Y. Lin, and L. Lu, Fourier-DeepONet:
Fourier-enhanced deep operator networks for full waveform
inversion with improved accuracy, generalizability, and
robustness, Comput. Methods Appl. Mech. Eng. 416,
116300 (2023).

[29] Z. Jiang, M. Zhu, D. Li, Q. Li, Y. O. Yuan, and L. Lu,
Fourier-MIONet: Fourier-enhanced multiple-input neural
operators for multiphase modeling of geological carbon
sequestration, arXiv:2303.04778.

[30] S. Wang, H. Wang, and P. Perdikaris, Learning the solution
operator of parametric partial differential equations with
physics-informed DeepONet, Sci. Adv. 7, eabi8605 (2021).

[31] L. Lu, R. Pestourie, S. G. Johnson, and G. Romano,
Multifidelity deep neural operators for efficient learning
of partial differential equations with application to fast
inverse design of nanoscale heat transport, Phys. Rev.
Res. 4, 023210 (2022).

[32] S. Cai, Z. Wang, L. Lu, T. A. Zaki, and G. E. Karniadakis,
DeepM&Mnet: Inferring the electroconvection multiphysics
fields based on operator approximation by neural networks,
J. Comput. Phys. 436, 110296 (2021).

[33] M. Zhu, H. Zhang, A. Jiao, G. E. Karniadakis, and L. Lu,
Reliable extrapolation of deep neural operators informed by
physics or sparse observations, Comput. Methods Appl.
Mech. Eng. 412, 116064 (2023).

[34] Z. Li, D. Z. Huang, B. Liu, and A. Anandkumar, Fourier
neural operator with learned deformations for PDEs on
general geometries, arXiv:2207.05209.

[35] B. Deng, Y. Shin, L. Lu, Z. Zhang, and G. E. Karniadakis,
Convergence rate of DeepONets for learning operators arising
from advection-diffusion equations, arXiv:2102.10621.

[36] O. Ovadia, E. Turkel, A. Kahana, and G. E. Karniadakis,
DiTTO: Diffusion-inspired temporal transformer operator,
arXiv:2307.09072.

[37] M. A. Rahman, M. A. Florez, A. Anandkumar, Z. E. Ross,
and K. Azizzadenesheli, Generative adversarial neural
operators, arXiv:2205.03017.

[38] I. Loshchilov and F. Hutter, Decoupled weight decay
regularization, in International Conference on Learning
Representations (2019), arXiv:1711.05101.

[39] M. Raissi, P. Perdikaris, and G. Karniadakis, Physics-
informed neural networks: A deep learning framework
for solving forward and inverse problems involving non-
linear partial differential equations, J. Comput. Phys. 378,
686 (2019).

[40] S. Goswami, A. Bora, Y. Yu, and G. E. Karniadakis,
Physics-informed deep neural operator networks, arXiv:
2207.05748.

[41] Z. Li, H. Zheng, N. Kovachki, D. Jin, H. Chen, B. Liu, K.
Azizzadenesheli, and A. Anandkumar, Physics-informed
neural operator for learning partial differential equations,
arXiv:2111.03794.

[42] M. Rotman, A. Dekel, R. I. Ber, L. Wolf, and Y. Oz, Semi-
supervised learning of partial differential operators and
dynamical flows, arXiv:2207.14366.

[43] See the Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevD.108.L101701 for movies
of the wave packet evolution in d ¼ 1 and d ¼ 2.

SCATTERING WITH NEURAL OPERATORS PHYS. REV. D 108, L101701 (2023)

L101701-7

https://arXiv.org/abs/2005.03180
https://arXiv.org/abs/2111.13587
https://arXiv.org/abs/2105.14995
https://arXiv.org/abs/2204.11127
https://arXiv.org/abs/2205.10573
https://doi.org/10.1137/22M1477751
https://doi.org/10.1137/22M1477751
https://doi.org/10.1016/j.cma.2023.116300
https://doi.org/10.1016/j.cma.2023.116300
https://arXiv.org/abs/2303.04778
https://doi.org/10.1126/sciadv.abi8605
https://doi.org/10.1103/PhysRevResearch.4.023210
https://doi.org/10.1103/PhysRevResearch.4.023210
https://doi.org/10.1016/j.jcp.2021.110296
https://doi.org/10.1016/j.cma.2023.116064
https://doi.org/10.1016/j.cma.2023.116064
https://arXiv.org/abs/2207.05209
https://arXiv.org/abs/2102.10621
https://arXiv.org/abs/2307.09072
https://arXiv.org/abs/2205.03017
https://arXiv.org/abs/1711.05101
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://arXiv.org/abs/2207.05748
https://arXiv.org/abs/2207.05748
https://arXiv.org/abs/2111.03794
https://arXiv.org/abs/2207.14366
http://link.aps.org/supplemental/10.1103/PhysRevD.108.L101701
http://link.aps.org/supplemental/10.1103/PhysRevD.108.L101701
http://link.aps.org/supplemental/10.1103/PhysRevD.108.L101701
http://link.aps.org/supplemental/10.1103/PhysRevD.108.L101701
http://link.aps.org/supplemental/10.1103/PhysRevD.108.L101701
http://link.aps.org/supplemental/10.1103/PhysRevD.108.L101701
http://link.aps.org/supplemental/10.1103/PhysRevD.108.L101701

